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Abstract: Selecting a suitable method to solve a black-box optimization problem that uses noisy
data was considered. A targeted stop condition for the function to be optimized, implemented as
a stochastic algorithm, makes established Bayesian methods inadmissible. A simple modification
was proposed and shown to improve optimization the efficiency considerably. The optimization
effectiveness was measured in terms of the mean and standard deviation of the number of function
evaluations required to achieve the target. Comparisons with alternative methods showed that the
modified Bayesian method and binary search were both performant, but in different ways. In a
sequence of identical runs, the former had a lower expected value for the number of runs needed
to find an optimal value. The latter had a lower standard deviation for the same sequence of runs.
Additionally, we suggested a way to find an approximate solution to the same problem using
symbolic computation. Faster results could be obtained at the expense of some impaired accuracy
and increased memory requirements.

Keywords: acquisition function; Bayesian optimization; Gaussian process; loss distribution; Monte
Carlo; binary search; value-at-risk; VaR; entropy; knowledge gradient; R; Mathematica; COVID-19

1. Introduction

Reverse Stress Testing (RST) is a relatively new technique for finding cases that cause
a bank to cross the barrier between survival and default. Bank default can lead to a chain of
further defaults, so determining how RST should be done is vital for limiting systemic risk.
Stress testing, in which outcomes resulting from amended model parameters are calculated,
is more common and is a regulatory requirement. The precise distinction between reverse
stress testing and stress testing is discussed in Section 2. In this paper, we suggest an
optimal way to do RST in the context of operational risk, which is the risk of incurring
financial loss from adverse events. In doing so, we make a significant improvement to
an established optimization method and provide evidence that our suggestion is, indeed,
optimal. Sufficient guidance for practitioners is given to enable sufficiently accuracy to
be achieved.

We considered the problem of optimizing a real-valued black-box function f (D, x)
of data, D, where x is a parameter value to be optimised. The domain of x is a closed
real interval I. Function f is a Value-at-Risk (VaR) calculator, which incorporates a non-
linear Monte Carlo process that is subject to significant stochastic variation. Consequently,
the VaR calculation takes excessive time to evaluate if too many Monte Carlo cycles are
used. Too many evaluations would be procedurally intractable. We call such functions
“expensive”. An optimization method that minimises two factors is therefore required. In
a sequence of independent runs under precisely the same conditions, the first factor is
the mean number of runs required to complete the optimization. The second factor is the
corresponding standard deviation.

1.1. The Context: Operational Risk and Stress Testing

Every year, financial institutions (banks, insurance companies, pension funds, etc.)
have to demonstrate that they are resilient to adverse economic conditions. To do that, they
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are required to calculate, using an appropriate model, what level of capital reserves would
be necessary for the upcoming year. The most common type of stress test is to amend
either model parameters, or to amend data, re-run the model and assess the outputs in
light of the amended inputs. There are often correlations between operational risk and
economic factors, but such correlations are also often weak or absent completely. The
subject was touched upon in [1], where a much more robust method of stress testing was
presented. In RST, a desired level of stress in VaR is decided in advance, and the necessary
data and/or parameter changes to achieve that stress level are calculated. Further details
are in Section 2.

The context considered in this paper is operational risk, which arises from adverse
events that result in monetary loss. Operational risk may be summarised in the following
definition from the Bank for International Settlements (BIS) [2]:

"The risk of loss resulting from inadequate or failed
internal processes, people and systems or from external events"

Operational risk losses are payments related to non-financial adverse events (as opposed
to financial events in credit and market risk). They may be characterised by the “Five-Fs”:

Fails Fire Flood Fines Fraud

One further category—Conduct–is not represented in the “Five-Fs”’ list. Conduct risk
losses subsume the fines category and tend to be treated separately from others because
conduct risk loss distributions are often heavily skewed by a huge single loss (possibly
hundreds of million euros). Other operational risk losses range from very small (10 euros)
to a few million euros and usually fit a fat-failed distribution (such as log normal). Some
examples from the data used in this study are (all in £ sterling):

• 140: ex gratia payment;
• 18,000: damage to a bank branch caused during a robbery;
• 187,000: computer hacking fraud;
• 42,000,000: provision for mis-selling.

A notable operational risk loss appeared at the end of 2020: customer compensations
for fraud as a result of the 2020 COVID-19 pandemic. They amounted to £10.88m, although
that figure came too late for inclusion in the data for this study.

Operational risk reserves are usually calculated in terms of the 99.9% Value-at-Risk
(VaR, using the Loss Distribution Approach (LDA) algorithm of Frachot et al. [3]. The
99.9% quantile is specified in the BIS regulations [4]. The LDA algorithm is summarised in
Appendix A, where implementations in R and Mathematica are also shown. Steps marked
(**) are used in Section 5.

1.2. Contribution of this Paper

The literature review discussion in Section 3 shows that very little research has been
done on how to apply stress testing in any financial context. In particular, there is a
deficiency in guidance on RST (defined in Section 2). Practitioners therefore have little idea
what could be done. More significantly, regulatory authorities provide no guidance on how
stress testing should be done (see Section 3.3). Informally, analysts from different banks
each use ad hoc methods based on varying model parameter values. The purpose of this
paper is to clarify both what could be done and to provide a sound RST methodology. The
bullet points below give a summary of the presentation in this paper.

• To provide a clear methodological basis for RST in the context of OpRisk.
• To compare existing and new methodologies for RST in the context of OpRisk, with a

view toward determining an optimal method.
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• To provide guidance for practitioners, pointing out how to apply the proposed method-
ology in an efficient way, with a balance between accuracy and time required to
complete the testing.

1.3. Acronyms and Abbreviations

The following acronyms and abbreviations are used in this paper. All are in common
usage in the field of operational risk or Bayesian optimization.

• RST: Reverse Stress Testing
• OpRisk: Operational Risk
• VaR: Value-at-Risk
• Capital: cash retained by banks annually for use as a buffer against unforeseen

expenditure, the details of which are specified by national regulatory bodies
• BoE Bank of England
• FCA Financial Conduct Authority, the U.K. regulator
• ECB European Central Bank, the EU regulator
• Fed Federal Reserve Board, the U.S. regulator
• BO: Bayesian Optimization (acquisition functions are listed below)
• GP: Gaussian Process
• POI: the Probability Of Improvement acquisition function
• CB: the Confidence Bound acquisition function; there are two versions: Upper (UCB)

and Lower (LCB)
• EI: the Expectation Improvement acquisition function

2. Reverse Stress Testing

In RST [5], a desired level of stress in a target metric is decided in advance, and the
necessary data or model parameter transformations to achieve that stress level are calcu-
lated. The overall procedure for RST can be cast as an optimisation problem (Equation (1)).
In that equation, V̂ is the target value of a metric (such as capital), and E(V(t) | ω) is the
expected value of the metric at time t conditional on some scenario ω, taken from a set of
possible scenarios Ω.

ω̂ =

{
ω ∈ Ω : min

∣∣∣∣E(V(t) | ω)− V̂
∣∣∣∣} (1)

In March 2021, the BoE published guidance for the 2021 stress test [6]. It is interesting
to note that the economic scenarios presented were prepared in response to the 2020
COVID-19 pandemic using an RST method. Details of the method were not published.

2.1. Problem Formulation

Equation (1) represents a general context for RST, for which the precise relationship
between the parameters concerned is not explicit. In this section, we provide the necessary
relationships for the context of operational risk.

2.1.1. Issues in Optimization in the Context of OpRisk

The LDA algorithm [3] is a general-purpose Monte Carlo algorithm that is applicable
in all OpRisk VaR calculations. It has two major disadvantages. First, it can be very slow
to complete a single Monte Carlo run. The speed depends on the number of Monte Carlo
trials within the run and the best fit distribution function for the data. We have encountered
cases that take many hours for a single run. Second, sampling from a fat-tailed distribution
(typical in OpRisk) frequently results in outliers that distort the VaR value. The result
is that, in RST, finding an ω that targets a particular VaR V̂ (Equation (1)) is subject to
considerable stochastic variation. An ω that “should” work often does not, because of
sampling idiosyncrasies. In some cases, calculated VaR values are bipartite: sometimes, you
get approximately one value, and in other cases, you get a completely different value. In
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multiple evaluations, the VaR distribution is clearly bimodal. The log logistic distribution
suffers from this problem, and we avoid it whenever possible.

Two strategies are available to deal with these problems. The first is to use a low
number of trials in the Monte Carlo process and repeat the entire Monte Carlo process a
large number of times. The second is to use a large number of Monte Carlo trials with only
a few runs. Neither is palatable. The time taken to find a suitable ω must be balanced with
the number of repeated runs. It is therefore essential to minimise the number of searches
for a solution.

2.1.2. Problem Formulation Details

Since the LDA process is non-linear, RST is formulated as an optimization problem in
the following way. Let the LDA be summarized by a function f (D, x), which calculates
VaR using data D, and a scale factor x for the data, defined on a real-valued interval I. The
scenario ω̂ is then the value of x. An optimal value for x must be found such that the VaR of
the scaled data, V̂ = f ((1 + x)D), is within a pre-determined limit L from a target value V.
The data have two components. The first is fixed historic data, and it forms approximately
90% of the total. The second is simulated data, generated according to the distribution of
the historic data. The optimization problem to be solved is then given by Equation (2).

x̂ = argmin
x∈I

(∣∣∣∣ f ((1 + x)D)−V
V

∣∣∣∣ < L
)

(2)

To simplify expressions used later in this paper, the term
∣∣∣∣ f (xD)−V

V

∣∣∣∣ in the objective

function will be replaced by a simpler term g(x) (Equation (3)). In most cases in this paper,
we refer to optimizing g rather than f, and the parameters D and V are implied.

x̂ = argmin
x∈I

(
g(x) < L

)
(3)

2.2. Motivation and Strategies

The practical constraints surrounding the problem summarized in Equation (2) make
it essential to find an efficient solution method. In addition to minimizing the number
of “expensive” evaluations of f, an additional difficulty arises when a sequence of trials
is repeated. The number of “expensive” evaluations should vary as little as possible
between trials.

The motivation for considering Bayesian Optimization (BO), in conjunction with
an embedded Gaussian Process (GP) to solve this problem, is to exploit an established
and efficient optimization technique. However, non-Bayesian methods are also available.
In many cases, BO works well, but in this paper, we highlight problems arising in two
circumstances: first, when the data used in the function f incorporate a significant noise
component and, second, when evaluating f incorporates a target. As potential viable
alternatives, we also considered that other methods are not based on BO: binary search,
random search and linear interpolation.

Specifically, the expected number of “expensive” Monte Carlo evaluations using any
of the expected improvement, probability of improvement or confidence bound acquisi-
tion functions is typically between 10 and 20. Precise figures are reported in Section 6.3.
That degree of “expense” is impractical. We seek to reduce the number of “expensive”
Monte Carlo evaluations nearer to five. The problem is inherent in the LDA process:
an optimised solution still may not satisfy the condition in Equations (2) and (3) due to
stochastic variation.
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3. Literature Review

This review is comprised of three parts. The first deals with Gaussian processes,
focussing on the development of acquisition functions. In the second, we review recent
developments in RST. The third gives an overview of financial regulations that govern RST.

3.1. Acquisition Function Development

The concepts surrounding BO were introduced by Mockus [7], who proposed that
a GP may be used as a proxy for optimising a function that is difficult to optimise in
any other way. Mockus’ central idea was to build a distribution of functions, with two
parameters µ and K, equivalent to a normal distribution’s mean and variance. The former
is a vector, and the latter is a matrix, termed the kernel. Further, Mockus showed how to
use a GP to estimate an optimal solution from multiple fast evaluations using µ and K. That
is achieved using an acquisition function, derived from the GP kernel. We concentrated on
the Confidence Bound (CB) acquisition function, which originated from Cox and John [8].
The proposals in this paper extend the original (CB) acquisition function, as we found that
it was not successful in solving the problem formulated in Equation (2). We also found that
other commonly used acquisition functions yielded disappointing results (see Section 6).
They include Probability Of Improvement (POI), which originated from Kushner [9], and
Expected Improvement (EI) [10]. Several enhancements of the EI method have since
appeared. A review of notable ones may be found in [11]. One enhancement, augmented
expected improvement, has a similar idea to the one used in our linear interpolation
method: using a “best estimate so far” in calculating the next proposal value.

Comprehensive overviews of BO and GPs may be found in Rasmussen and Williams [12]
and Murphy [13]. An informative BO animation, which shows how the optimization works
stage by stage, may be found at https://www.youtube.com/watch?v=WkZueBgKFYM (ac-
cessed on 28 April 2021).

The problem of Bayesian optimisation subject to constraints was addressed in [14].
The EI acquisition function is scaled by a factor, using a weight function derived from prob-
abilities that the current proposal will be more effective than previous feasible proposals.
Other approaches include Gramacy et al. [15] (using a Lagrangian) and Wang et al. [16]
(using a moment generating function). Amendments to CB acquisition are less common.
de Freitas et al. [17] amended the UCB acquisition function using a branch and bound
algorithm. Merrill et al. [18] discussed several extensions of UCB (mostly using SOO
(Simultaneous Optimistic Optimization)) in which the search space is partitioned into cells,
which are then examined systematically.

We also investigated two further acquisition functions. Hennig’s entropy search [19]
uses a GP proposal derived from the maximum Shannon entropy. The knowledge gradient,
originally proposed by Frazier [20], uses concepts similar to those used in EI, plus a
comparison with a “next best” proposal.

Among other search methods, binary search [21] has proven to be generally successful
and has a worst-case performance characteristic of O(log(n)) for a search of n objects.
Performance in this study was a priori uncertain, due to the stochastic LDA process.
However, binary searching does support approximate matches, which is the requirement
in Equation (2). The choice of the interval I was such that g(x) > 0 at one end of I and
g(x) < 0 at the other, indicating that linear interpolation should be a viable method. The
stochastic LDA process cast initial doubt on its efficacy, but in practice, linear interpolation
proved to be performant.

The knowledge gradient concept [20] (using Powell’s implementation [22]) provides a
further acquisition function, which can either make use of a GP or can be used without it.
The knowledge gradient method defines a sequence of existing candidate solutions, plus a
new alternative. One of the existing candidates is the “best so far”. The expected value of a
utility using the “best so far” candidate is compared with the expected utility using the
alternative. If the utility using the alternative improves, the alternative becomes the new
“best so far” candidate. This process continues until a stopping condition occurs.

https://www.youtube.com/watch?v=WkZueBgKFYM
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A recent development of EI acquisition [23] in the context of optimization subject
to noisy observations and noisy constraints uses batch processing, a quasi-Monte Carlo
(qMC) process and post-optimization processing. In batch optimization, EI is iteratively
maximized over pending outcomes. With qMC, high-dimensional integrals are approx-
imated by means of their integrand. There is a post-processing stage in which the point
that has the largest expected reduction in objective over a known baseline is selected. The
technique has been shown to be effective, but would be less so in our context, which is
one-dimensional.

3.2. Recent Advances in Reverse Stress Testing

We first considered three recent (and rare until recently) cases of a formal methodology
for RST in a financial context. They illustrate how the context determines what type of
optimization method is the most appropriate.

Baes and Schaanning [24] provided an example of an algorithmic approach to solving
an optimization problem similar to our own. Specifically, they sought a stress scenario
that generated the worst total fire-sales loss. (A fire-sale is the sale of a financial product
at a price that is well below its market value.) They used a gradient descent method,
which would not be appropriate in our case because it requires a well-defined gradient
function, which we did not have. Additionally, they required initial values derived from a
random selection, which was larger than the three random points that we used in our BO
optimizations (hinting that their optimization process was much faster than ours).

Montesi et al. [25] implemented an RST system using simulated annealing. They said
“there is no optimal algorithm to be adopted for all conditions” and did not fully justify their
choice of optimization algorithm. They linked systemic risk factors (GDP, interest rates,
etc.) and some idiosyncratic factors (including OpRisk) to bank balance sheet items (profit,
earnings, etc.) via appropriate mathematical relationships that defined a multi-period
forecast model. This type of model would not be appropriate for our purposes, because it is
essentially much simpler. Our model must calculate VaR using only one variable: OpRisk
losses. There were two curiosities in the Montesi study. First, only 10,000 trials were used.
That would lead to too much inaccuracy for our purposes. Second, OpRisk was modelled
using a Beta distribution, which would not normally be used for fat-tailed data. A general
OpRisk level in the region of 4–5 million euros was quoted, which is surprisingly low for a
bank. We would expect hundreds of millions.

A model of systemic credit risk in a banking system was studied by Grigat and
Caccioli [26]. The authors constructed a network of inter-dependent banks and considered
scenarios in which the default of any one bank led to the default of others. DebtRank (a risk
metric that measures the impact of the distress of any bank in a network across the whole
network) was used as the risk metric. The problem was formulated as a minimisation,
which is very similar to the problem stated in Equation (2) because it contains a limiting
inequality. The problem was solved using Lagrange multipliers, which is quick to do.
That method would not be suitable in our case (OpRisk VaR), because there is no explicit
symbolic representation for VaR.

Some other studies cannot be classified strictly as RST, although they claimed the
reverse description. They were more akin to stress testing because they evaluated multiple
pre-determined scenarios and picked extreme cases from the results. An example is [27],
which described additional processes connected with stress testing.

In the study of Albanese et al. [28], twenty-thousand pre-determined scenarios were
evaluated, and the most adverse were selected to determine a “worst case” metric. The
context is KVA (Capital Valuation Adjustment): the cost of holding regulatory capital as
a result of a financial derivative position. (The acronym CVA is used for Credit Valuation
Adjustment.) Like VaR, KVA requires a Monte Carlo process. Only one Monte Carlo
trial per scenario is done. That is understandable, given the number of scenarios, but is
not consistent with accuracy. Our analysis specifically included accuracy (measured by
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the standard deviation of multiple Monte Carlo trials) as a goal in selecting an optimal
optimization method.

The study by Grundke [29] was similar to that of Albanese et al. in that pre-determined
scenarios were evaluated, and VaR was determined from them. The context was credit and
interest rate risk measured through cash flows of assets and liabilities. Risk was measured
using an interest rate swap model in which risk arises because obligors can default on their
debts. The obligor relationships were expressed through a transition matrix of conditional
expectations of total loss, which is a standard type of model in credit default. Only 1000
Monte Carlo trials per scenario were used, and the degree accuracy was not assessed.

3.3. The Financial Regulatory Environment

In this section, we consider RST within recent financial regulatory environments in
the U.K., the EU and the U.S.

The data used in this study apply to the U.K. and spanned the period up to the
middle of 2020. Consequently, the BoE regulations [30] for 2019 applied. Those regulations
focus on what financial instruments should be included and on the operational principles
involved (data security, data collections, time deadlines, etc.). They say nothing about
how stress testing should be done and do not mention RST. However, in response to
the COVID-19 pandemic, the BoE revised its stress testing procedures during 2020 and
derived 2021 scenarios using RST [6]. The result was a single COVID-directed set of
economic projections, including a three-year 37% decrease in GDP and an 11.9% rise in
unemployment (both relative to 2019). RST has only been mentioned very recently (April
2021), in the FCA Handbook [31]. In that publication, only general points (which banks
participate, purpose and definitions) are given.

Directives from the ECB are similar. The only specific requirement in [32] is Clause
389, which specifies that OpRisk predictions under stressed conditions should not be less
than an average of historic OpRisk losses and that there should be no reduction relative to
the current year. Again, RST is not mentioned. In March 2021, the ECB issued an update
for the 2021 stress test [33]: a pair of COVID-directed sets of economic projections. The
first reflects economic conditions as they were in December 2020, and the second models
more extreme economic conditions, including a worldwide economic contraction up to
2023. Specifically, the ECB predicts a 3.6% decline in GDP, a 4.7% rise in unemployment
and a 50% reduction in equity prices.

In the U.S., the Fed [34] has specified a different set of regulations in its latest CCAR
(Comprehensive Capital Analysis and Review) publication. The Fed specifies the loss
distribution model to be used and how a regression of OpRisk losses against economic
features should be done. The model is specified by the Fed, to be implemented by regulated
firms with their own data. We discussed the validity of this approach in [1]. RST is not
mentioned (nor in its 2021 update).

4. Proposed Solutions

We first explain the optimization framework that embeds the optimization in
Equations (2) and (3). A detailed discussion of the optimization follows.

4.1. Optimization Framework

The purpose of the optimization is to estimate what change to data would result in
a VaR value that is inflated relative to its measured historic value. A historic VaR value,
V, is determined from the most recent historic data, D. A target VaR value is fixed by
increasing V by some percentage p. The optimization problem in Equation (2) arises in
finding a scale factor for the data, x, that would produce, approximately, the scaled VaR.
the approximation is quantified by a limit L. The principal steps are shown in Table 1.
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Table 1. Optimization framework: principal steps.

Step Operation Comment

1 V = f (D, x = 1) Historic VaR, no inflation
2 V̂ = V(1 + p

100 ) Inflated VaR by p%
3 V̂ = f (D(1 + x)) Formulate expression for the VaR of scaled data
4 | V̂−V

V | < L Formulate expression for the relative change in VaR

5 x̂ = argmin
x∈I

(
| V̂−V

V | < L
)

Solve for x (Equation (2))

4.2. Gaussian Processes’ Acquisition Functions

Comments in Section 2.2 on the effect that the performance of “established” GP
acquisition functions is sub-standard in the context of the problem described in Sections 1
and 2.1 prompt a search for alternatives. We therefore considered alternative acquisition
functions and some optimization methods which are not BO-dependent.

A GP is specified completely by its parameters: a vector of function means, µ(x)
and the kernel, which is a covariance matrix K = k(xi, xj), where x, xi, xj are vectors with
components in I. A GP is initialized by conditioning it on a small initial set of {x, g(x)}
values. Its purpose is then to propose a next candidate evaluation point xn in the BO
calculation. The way in which the GP formulates proposals is fast. Therefore, whilst g is
“expensive” to evaluate, a GP conditioned on a few evaluations of g is “non-expensive”.
The mean and covariance functions drive the entire GP. A GP is conditioned on (i.e., fitted
to) observed function values (in this case f ). Function evaluation is only necessary at a
finite, but arbitrary, set of “evaluation” points X and is drawn from a Gaussian distribution
N(µ(X), K(X, X)).

Empirical trials noted in Section 6 show that the CB, POI and EI acquisition functions
do not produce satisfactory results in solving Equations (2) and (3). In some cases, random
selection of candidate solutions x ∈ I results in fewer “expensive” evaluations of f. We
found that a simple amendment to the CB acquisition function produces a significant
improvement. Therefore, we first describe CB acquisition and then amendments to it.

At each of M possible evaluation points, the (n− 1)th application of the GP defines
a set of mean and standard deviation pairs {µn−1, σn−1}. From these components, we
can define Lower and Upper Confidence Bound acquisition functions (LCB and UCB,
respectively). LCB is defined in Equation (4). UCB is similar: −κ is replaced by +κ. The
next evaluation point xn is calculated using a user-defined tunable parameter κ.

LCBn(xi) = µn−1(xi)− κσn−1(xi); i = 1..M

xn = argmin
i=1..M

(
LCB(xi)

)
(4)

4.2.1. The Zero Acquisition Functions

It is likely that the EI, POI and CB acquisition functions would fail because the
optimisation rule in Equation (3) contains the additional requirement that the minimum
deviation from zero must be within a pre-determined limit. The following amendment to
the LCB acquisition functions provides a solution. We call it ZLCB (Z for “Zero”), since the
optimal solution should result in a zero error. UCB acquisition can be similarly amended,
resulting in the ZUCB acquisition function.

Definition 1 (ZLCB).

ZLCBn(xi) =
(
µn−1(xi)− κσn−1(xi)

)2; i = 1..M

xn = argmin
i=1..M

(
ZLCBn(xi)

)
(5)
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Zero acquisition was discussed in detail in [35,36]. The intuition behind the proposal
in Equation (5) is that since g has to be as close as possible to a target, a simple way to
measure closeness is “deviation-squared” (absolute deviation works just as well). Although
such an argument for a next evaluation point xn can be made, its ultimate justification
is empirical. We used values of κ in the range [0, 2]. That range provided a reasonable
balance between exploitation (κ∼0) and exploration (κ∼2). Using values of κ greater than
two produced results that resembled a random choice of the parameter to be optimised.

4.3. Zero Acquisition: Properties

The most significant property of zero acquisition from our point of view concerns
its minimum values, compared to the minimum values of LCB acquisition. For all x ∈ I,
if LCBn(x) > 0, the minimum values of the LCB and zero acquisition functions coincide.
They do not if LCBn(x) ≤ 0 for some x ∈ I. This point is important in the discussion of
Section 4.4 and is illustrated in Figure 1. Let the minimum values for LCB and zero acquisi-
tions be x] and x∗, respectively. In the case LCBn(x) ≤ 0 for some x ∈ I, ZLCBn(x∗) = 0
and either x] > x∗ or x] < x∗. Figure 1 shows the former case. Effectively, zero acquisition
induces a “pull” towards the mid-range values of x.

Following the list in the analysis of Wilson et al. [37] (Section 2), further properties of
zero acquisition parallel those of LCB acquisition.

1. ZLCBn(x) is myopic, since it is defined in terms of the maximum of a point wise
utility function (namely Equation (5)). Wilson showed that the implication is that
the iterative strategy in a GP always selects the largest immediate reward. Usually,
optimizing a myopic function is straightforward, but in our case, optimization was
complicated by the stochastic nature of our function f (Equation (2)).

2. ZLCBn(x) is very responsive for the low-dimensional case that we considered.
3. ZLCBn(x) is non-convex, as may be demonstrated by examining the value of ZLCBn(xi)

for a set of values xi ∈ I. Figure 1 is a typical instance.

4.4. Quantitative Analysis of Zero Acquisition

In this section, we give a quantitative explanation of why ZLCB acquisition converges
faster than LCB acquisition. The following proof is not rigorous, but gives an indication
that supports the empirical evidence. The starting point is a theorem concerning a bound
on a GP-calculated function evaluation, provided by Srinivas [38].

|g(x)− µn−1(x)| ≤
√

βnσn−1(x) ∀x ∈ I; n = 1, 2, ... (6)

The bound applies with “high probability’. We write Equation (6) as a probability,
with β = max

x=1..M
(βn) (so that β = κ2), and a small real number ε. ∀x ∈ I; n = 1, 2, ...,

P
(
|g(x)− µn−1(x)| ≤

√
βσn−1(x)

)
> 1− ε. (7)

The argument proceeds by comparing E(n− 1, x) = µn−1(x)− κσn−1(x) in the case of
LCB and ZLCB acquisitions. When E(n− 1, x) > 0 ∀x ∈ I, the next proposal from ZLCB
coincides with the next proposal from LCB (the locations of all extrema agree). Therefore,
we need to consider only the case E(n− 1, x) < 0 for some x ∈ I. The rest of the argument
deals with this case, which is illustrated in Figure 1.
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Figure 1. E(n− 1, x) in the interval I for ZLCB and LCB, showing minimum value next proposals
x∗ and x] respectively.
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For ZLCB, the minimum of E(n− 1, x) is found when E(n− 1, x) = 0 at a value x∗.
Therefore, µn−1(x∗) = κσn−1(x∗). Then, we derive Equation (9), with m = max

i
(µn−1(xi)),

and for small ε′ = ε
2 , provided that the condition CZ in Equation (8) applies.

[CZ] : m
(√β

κ
+ 1
)
< L (8)

P
(
|g(x∗)− µn−1(x∗)| ≤

√
β

κ
µn−1(x∗)

)
> 1− ε

∴ P
(

g(x∗) ≤
(√β

κ
+ 1
)

m
)
> 1− ε′

∴ P
(

g(x∗) ≤ L
)
> 1− ε′ (9)

Next, we apply a similar argument to LCB acquisition. The next LCB proposal, x], is
such that E(n− 1, x]) < 0. We rewrite that in terms of a positive term φ:

µn−1(x]) + φ = κσn−1(x]); φ > 0 (10)

Using Equation (10), we derive Equation (12), provided that the condition CZ′ in
Equation (11) is satisfied.

[CZ′ ] : m
(√β

κ
+ 1
)
+

φ
√

β

κ
< L (11)

P
(
|g(x])− µn−1(x])| ≤

√
β

κ
(φ + µn−1(xz))

)
> 1− ε

∴ P
(

g(x]) ≤
(√β

κ
+ 1
)

m +
φ
√

β

κ

)
> 1− ε′

∴ P
(

g(x]) ≤ L
)
> 1− ε′ (12)

Equations (9) and (12) both assert that the “stopping” condition applies with high
probability. However, different conditions, CZ and CZ′ , respectively, are attached to
them. Condition CZ′ is more stringent than condition CZ and is therefore harder to satisfy.
Therefore, we would expect ZLCB acquisition to result in faster convergence than LCB
acquisition. This completes the proof.
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4.5. Risk Reduction

There is an increasing emphasis in financial services to be risk averse. Equation (7)
(Section 4.4) provides an opportunity to compare the risk associated with the ZLCB and
LCB acquisitions. We can measure the risk with the difference g(x̂)− g(xi) (i.e., deviation
from an optimal solution) and show an outline of the argument below. From Equation (7),
we obtain inequalities for x̂ (the second line arises because x̂ is optimal):

P
(

g(x̂) ≤ µn−1(x̂) +
√

βσn−1(x̂)
)
> 1− ε1

∴ P
(

g(x̂) ≤ µn−1(x) +
√

βσn−1(x)
)
> 1− ε1 (13)

Similarly, for xi,

P
(
− g(xi) ≤ −µn−1(xi) +

√
βσn−1(xi)

)
> 1− ε2 ∀i (14)

Forming the difference g(x̂)− g(xi) from Equations (13) and (14) and assuming the
independence of the events implied in those equations:

P
(

g(x̂)− g(xi) ≤ 2
√

βσn−1(xi)
)
> (1− ε2)(1− ε2) (15)

Now, let σZLCB and σLCB be the minimum value of σn−1(xi) for ZLCB and LCB
acquisition, respectively. Empirically, σZLCB < σLCB, and we deduce that:

P
(

g(x̂)− g(xi) ≤ 2
√

βσLCB

)
< P

(
g(x̂)− g(xi) ≤ 2

√
βσZLCB

)
(16)

Equation (15) asserts that there is a high probability that the risks associated with
ZLCB and LCB acquisition are both low, provided that the σ-terms are small. Equation (16)
asserts that lower risk is associated with ZLCB acquisition.

4.6. Other Acquisition Functions

An acquisition function that uses the maximum Shannon Entropy [19] (SE) makes
use of disorder (i.e., randomness) in the optimization. For an m-dimensional GP with
parameters µ and σ, the Shannon entropy is given by SE =

log(σ)
2 +

m log(eπ)
2 . Parameter µ

is not used. The proposal value is then max(SE), taken over pairs {µ, σ}.
The concept of the knowledge gradient, formulated in [20], compares a potential

next proposal point with a “best proposal so far” x∗ (i.e., the one with the least absolute
deviation of g(x) from zero). We calculate a knowledge gradient, γ, in two ways, both
based on the implementation due to Powell, described in [22]. Only the first is GP based.
The GP parameter vector components {µ1, µ2, ...} and {σ1, σ2, ...} are used to generate a
set of proposals { (x∗−µ1)

σ1
, (x∗−µ2)

σ2
, ...}. A set of γ-values {γ1, γ2, ...} is calculated for each of

those proposals using Powell’s algorithm, and the maximum of them, γ = max(γ1, γ2, ...),
is selected as the next proposal. We refer to this first knowledge gradient method as KG-GP.
The second is discussed in Section 4.7.

4.7. Non-BO Optimizations

The knowledge gradient concept provides a second acquisition function that does not
need a GP. We refer to it as KG. In order to derive the next proposal xn+1, a single knowl-
edge gradient γ′ is calculated. Then, xn+1 is calculated using xn+1 = x∗ + sign(e∗)αγ′

where e∗ is the error corresponding to x∗. The parameter α is a constant initially set to
one. It is increased automatically to five in the rare cases where the number of “expen-
sive” evaluations of g (Equation (3)) exceeds 12 as protection against a “stuck” sequence
of proposals.
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For a binary search method (BS), the only requirement is one over-estimate and one
under-estimate for a solution to the optimization problem in Equation (3). They are the
end-points of I, x+ = sup(I) and x− = in f (I), respectively. By construction, a solution
to Equation (3) must lie in I because it is known that g(x) is either an increasing or a
decreasing function of x. A binary search then starts in the range [x−, x+].

The Linear Interpolation (LI) method is similar to BS and resembles a golden section
search. A prerequisite is to identify the same interval endpoints x+ and x−. An initial
linear estimate, x∗, is then given by x∗ = x− + g(x−)

(x+−x−)
g(x+)−g(x−)

. Then, there are three
possibilities. If g(x∗) < L, the process stops with the returned value x∗. If g(x∗) > L, a
further estimate is made in the same way, but with x∗ replacing x+. If g(x∗) < −L, the
further estimate uses x∗ instead of x−. Further replacements are made until the required
bound on g is achieved.

The random search (RS) used in this analysis is “directed’: the interval I is sub-divided
into three sub-intervals: the lower quartile, the upper quartile and the two middle quartiles.
A random search is used in each sub-interval. This increases the probability of hitting
the limit condition g(x) < L in advance of any “expensive” VaR calculation. Further
random proposals from I are made subsequently. There is clearly no guarantee that the
limit condition will ever be satisfied, but in practice, it is without excessive repetitions
(see Section 6.3).

4.8. Run Number

The solution to Equations (2) and (3) is the first value of xn derived from a sequence
of “expensive” evaluations of function f such that g(xn) < L. We measured optimization
success using the run number metric, which applies for all optimizations considered here.
We aimed to select an acquisition function that has a run number with both minimal
expected value and minimal standard deviation for a sequence of identical trials.

Definition 2 (Run Number). The random variable run number, R, is the first integer n in a
sequence of evaluations {g(x1), g(x2), ...} such that the condition g(xn) < L is satisfied.

R =
{

n :
(

g(xn) < L
)

&
(

g(xj) ≥ L
)
; j = 1, 2, ..., n− 1

}
(17)

If {R1,R2, ...,RN} are the run numbers for N repeated optimizations, the “success”
metrics, R̄ and var(R), are given in Equations (18):

R̄ = E(R) = 1
N

N

∑
i=1
Ri; var(R) = 1

N

N

∑
i=1

(Ri − R̄)2 (18)

5. Approximate Analytical Method

Symbolic computation provides a potential way to find an approximate solution to
Equation (2) without multiple iterative evaluation of the slow LDA algorithm. We proposed
a way to use symbolic computation in this way by applying the LDA algorithm, but retain-
ing the stress factor x throughout. Results for the effect of COVID-19 using this method are
shown in Section 6.9. They illustrate the effectiveness of the fast, symbolic approximation.

Consider a set of H historic operational risk losses h1, h2, ..., hH and a (smaller) set of P
projected losses p1, p2, ..., pP (for example, for the next quarter). When stressed with the
stress factor x, random samples can be drawn from the set {l1, l2, ..., lH , xp1, xp2, ..., xpP}
(Step 2b in Appendix A). Each set of random samples is summed (Step 2c in Appendix A).
In each case, the sum is expressed as a linear function of x. Step 3 in Appendix A is to
extract the 99.9 percentile of those sums. In numerical work, that task is easy: the elements
in a vector of sums are ordered, and the correct element is extracted. Ordering linear
expressions of the form ci + xmi(ci, mi ∈ IR) is non-trivial, and we adopt an approximation,
using the values of the ci and mi and based on the marginal effect of stressing projected data.
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The major steps are shown in Figure 2. They are elaborated upon in the symbolic
linear algorithm. The stage marked (**) corresponds to the stages marked in the same way
in the LDA algorithm in Appendix A.

Version April 16, 2021 submitted to Math. Comput. Appl. 13 of 24

The major steps are shown in Figure 2. They are elaborated upon in Algorithm496

Symbolic Linear. The stage marked (**) corresponds to the stages marked in the same way497

in the LDA algorithm in Appendix A.498

Figure 2. Major steps in Algorithm SymbolicLinear

Algorithm Symbolic Linear499

500

1. Apply stress501

(a) Stress projected losses pi → xpi.502

(b) Calculate distributions and parameters for historic and projected losses.503

2. Derive linear forms504

(a) Sample linear forms {ci + xmi} from the set {hi + xpi}505

(b) Sum linear forms: Σ(ci + xmi).506

3. Derive a quantile linear form507

(a) Calculate the 99.9 quantiles, Q0 and Q1, of the linear forms ci + xmi when508

x = 0 and x = 1. The difference Q1 −Q0 measures the effect of including509

unstressed data. This stage establishes a base value for calculating stress.510

(b) Calculate the gradients, gi, of each linear form ci + xmi, and extract the 99.9511

quantile, G, from the set of gi (**).512

(c) Assert that the line Q1 − Q0 + xG should be the required quantile linear513

form. This line measures the linear deviation from the base value as x514

increases.515

4. Solve for x516

(a) Solve the (linear) equation Q1 − Q0 + xG = V( T
4 )(1− L) for a 1 quarter517

prediction. V and L are the same as in Equation 2 and T is an annual inflation518

factor for VaR, such as 0.5 for 50% annual inflation. For projection 1 year519

ahead, VT(1− L) would be used instead. The solution, x′, represents a520

marginal stress factor, representing the amount of the inflated VaR.521

(b) The overall stress factor, referred to the original capital, V, is returned as522

x̂ = 1 + x′.523

The Mathematica code in Appendix B shows the procedure that implements the524

above algorithm. The algorithm should be seen both a heuristic and a practical proposi-525
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Symbolic Linear Algorithm

1. Apply stress

(a) Stress projected losses pi → xpi
(b) Calculate distributions and parameters for historic and projected losses

2. Derive linear forms

(a) Sample linear forms {ci + xmi} from the set {hi + xpi}
(b) Sum linear forms: Σ(ci + xmi)

3. Derive a quantile linear form

(a) Calculate the 99.9 quantiles, Q0 and Q1, of the linear forms ci + xmi when
x = 0 and x = 1. The difference Q1 − Q0 measures the effect of including
unstressed data. This stage establishes a base value for calculating stress.

(b) Calculate the gradients, gi, of each linear form ci + xmi, and extract the 99.9
quantile, G, from the set of gi (**)

(c) Assert that the line Q1 −Q0 + xG should be the required quantile linear form.
This line measures the linear deviation from the base value as x increases.

4. Solve for x

(a) Solve the (linear) equation Q1 − Q0 + xG = V( T
4 )(1 − L) for a 1 quarter

prediction. V and L are the same as in Equation (2), and T is an annual
inflation factor for VaR, such as 0.5 for 50% annual inflation. For projection
1 year ahead, VT(1− L) would be used instead. The solution, x′, represents a
marginal stress factor, representing the amount of the inflated VaR.

(b) The overall stress factor, referred to the original capital, V, is returned as
x̂ = 1 + x′.
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The Mathematica code in Appendix B shows the procedure that implements the above
algorithm. The algorithm should be seen both as a heuristic and a practical proposition. It
has the advantage that only one long LDA evaluation is needed. Other methods considered
in this paper need at least three in most cases. The results produced tend to be over-
estimates (by about 8%; see Section 6.7). Memory requirements are more stringent than
for numeric calculations, as a large number of symbolic expressions must be held in RAM
prior to extracting one of them to represent a quantile expression. A symbolic approach
does, however, allow the possibility of applying non-linear stress to the projected losses.

6. Results
6.1. Data and Implementation

The OpRisk loss data set used was extracted from a dedicated OpRisk database and
spanned the period from January 2010 to December 2019. Basel risk class Clients, Products
and Business Practice was excluded because of distortions introduced by extreme losses
and in accordance with BoE directives. We refer to this data set as nonCPBP.

Referring to the five-year data window described in Section 4.1, the data in each five
year window were a good fit to a log normal distribution at a 95% confidence level. The
log normal µ parameters ranged from 9.723 to 10.538, with a mean of 9.971. The log normal
σ parameters ranged from 1.999 to 2.291 with a mean of 2.147. These values are typical for
OpRisk data. The mean VaR of the last five windows, which represents the most recent
data, was 213.2. The mean of the entire data set was approximately 364,000, whereas the
maximum three values were 61.35 million, 49.02 million and 32.82 million. The small mean,
coupled with very large maximum values, are typical of fat-tailed data (Fat-tailed data are
characterised by a distribution whose tail decays according to a power law).

All calculations were done using the R statistical programming language (https://
www.r-project.org/, accessed on 28 April 2021), with particular emphasis on the lubridate
and dplyr packages for date manipulation and data selection, respectively. Mathematica
Version 12 was used for graphics, dynamic illustrations and the approximate optimization
method that makes use of symbolic computation (Section 5).

6.2. Previous Results

The OpRisk-VaR context has not been considered before by other authors. We have
published extensive results for zero acquisition, including comparisons with “established”
acquisition functions. They may be found in [35,36]. Those results are too extensive to
reproduce in full in this paper, but we do report a summary of them below. In this paper,
we supplemented zero acquisition with a range of alternative optimizations. Thus, we
can contrast the main results for “established” acquisition functions with the alternatives.
One further comparison is possible. We noted that some other authors have used very few
Monte Carlo trials in their analyses ([25,29], for example). Although their contexts were
very different from ours, we can find what happens if we use a low number of Monte Carlo
trials. The results are in Section 6.5.

For later reference, we refer to the “established” acquisition functions (EI, POI and
CB) as Block 1 methods and the “zero” acquisition functions (ZLCB and ZUCB) as Block 2.
Other acquisition functions (SE and KG-GP) are referred to as Block 3 methods. Methods
that do not use acquisition functions (KG, BS, LI and RS) are referred to as Block 4 methods.

The main findings from [35,36] were (the list below shows the means of run numbers
with standard deviations in square brackets):

• For one million Monte Carlo trials using Block 1 (“traditional”) methods: 15.64 [11.90]
• For three million Monte Carlo trials using Block 1 (“traditional”) methods: 12.49 [9.24]
• For five million Monte Carlo trials using Block 1 (“traditional”) methods: 13.35 [10.25]
• For one million Monte Carlo trials using Block 4 (“random”) methods: 12.42 [12.56]
• For three million Monte Carlo trials using Block 4 (“random”) methods: 16.12 [12.01]
• For five million Monte Carlo trials using Block 4 (“random”) methods: 10.84 [10.88]
• For one million Monte Carlo trials using Block 2 (zero) methods: 7.25 [5.42]

https://www.r-project.org/
https://www.r-project.org/
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• For three million Monte Carlo trials using Block 2 (zero) methods: 5.43 [3.52]
• For five million Monte Carlo trials using Block 2 (zero) methods: 5.44 [3.41]

A qualitative summary of previous results is that Block 1 (“traditional”) methods
have the same performance characteristics as random selection, and that zero acquisitions
approximately halves both the “traditional” means and standard deviations run number.
In the sections that follow, our current results are compared to our previous results.

6.3. Run Number Expected Value Results

The run number expected values presented in Table 2 follow the order (Blocks 1 to 4)
in which they were introduced in Section 2.1.

Table 2. Run number expected values, based on 25 runs in each case. * When κ = 0 the upper and
lower CB methods are identical.

MC Iterations (m)

Block Method 1 2 3 4 5

1 UCB (κ = 2) 8.64 14.12 12.16 14.24 14.92
1 UCB (κ = 1) 13.44 11.88 14.12 13.08 12.16
1 LCB (κ = 0) * 13.60 11.84 11.00 10.88 14.24
1 LCB (κ = 1) 17.56 13.72 13.92 11.84 9.85
1 LCB (κ = 2) 15.24 13.76 9.32 11.56 16.20
1 EI 18.08 16.44 14.48 15.16 11.45
1 POI 22.92 16.52 12.44 15.00 14.60

2 ZUCB (κ = 2) 5.56 5.44 6.20 5.20 4.72
2 ZUCB (κ = 1) 6.64 4.36 5.32 4.84 4.28
2 ZLCB (κ = 0) * 5.58 5.60 5.28 4.68 5.20
2 ZLCB (κ = 1) 5.96 6.02 5.88 5.00 4.72
2 ZLCB (κ = 2) 6.19 5.52 4.96 4.88 5.08

3 SE 11.52 13.08 10.36 7.32 7.40
3 KG-GP 9.90 11.00 10.45 12.45 13.70

4 KG 6.50 5.50 6.25 5.45 5.40
4 BS 6.08 5.44 5.40 5.36 5.36
4 LI 6.84 5.60 6.44 6.60 6.04
4 RS 12.42 17.32 16.12 13.00 10.84

The most notable observation from Table 2 is the poor performance of all methods
in Block 1 compared to their corresponding Block 2 methods (the zero acquisitions). The
Block 1 method expected values were similar to the random selection (RS) method in Block
4. The degree of improvement introduced by the zero methods was considerable. The
Block 3 methods provided some improvement on LCB and UCB, but not as much as the
zero methods. In contrast, the Block 4 methods excluding RS were comparable to the
zero methods.

Table 2 reveals two broad trends. First, accuracy (i.e., a minimal run number) generally
improved with an increasing number of Monte Carlo iterations. Second, for CB methods,
accuracy was usually better for a lower value of κ. This indicated that exploration (i.e.,
searching away from the GP-suggested mean) was an inferior policy.

6.4. Standard Deviation Results

The run number standard deviations are shown in Table 3.
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Table 3. Run number standard deviations, based on 25 runs in each case. * When κ = 0 the upper
and lower CB methods are identical.

MC Iterations (m)

Block Method 1 2 3 4 5

1 UCB (κ = 2) 7.05 8.85 9.27 9.57 9.20
1 UCB (κ = 1) 10.14 8.48 9.95 9.05 9.88
1 LCB (κ = 0) * 9.69 9.94 7.98 9.35 8.62
1 LCB (κ = 1) 15.7 10.98 10.91 9.72 7.72
1 LCB (κ = 2) 12.67 9.45 7.71 10.77 11.51
1 EI 12.15 11.53 9.24 11.47 10.43
1 POI 15.87 11.04 9.64 9.58 14.41

2 ZUCB (κ = 2) 2.75 2.58 2.75 2.63 2.53
2 ZUCB (κ = 1) 3.46 2.64 3.39 2.1 1.79
2 ZLCB (κ = 0) * 3.89 2.90 2.69 2.81 2.60
2 ZLCB (κ = 1) 3.32 3.03 3.00 2.97 1.79
2 ZLCB (κ = 2) 3.20 2.71 2.72 3.81 3.87

3 SE 10.31 10.77 7.34 5.53 5.86
3 KG-GP 6.17 5.21 5.53 4.24 4.14

4 KG 1.93 2.01 2.55 1.43 1.35
4 BS 1.91 1.36 0.71 0.76 1.25
4 LI 2.81 1.38 2.35 2.33 1.72
4 RS 12.56 18.12 12.01 13.79 10.88

The standard deviation results were similar. Zero acquisition (Block 2) outperformed
the Block 1 methods by a considerable margin. The zero methods were notable because
their standard deviations were less than their corresponding expected values. For Block 1
methods, the standard deviations were approximately the same size as their corresponding
expected values. The real gain, when the standard deviation was less than two, was that
long runs in which the sequence of “expensive” fits failed to attain the required target were
almost eliminated. The BS method was particularly good in this respect.

6.5. Results from a Few Monte Carlo Trials

Studies in other contexts have used very few Monte Carlo trials in their analyses ([25]:
10,000 trials; [29]: 1000, for example). There are no direct comparisons of our work with the
work of other authors. As a crude comparison, Table 4 shows the results of running the
binary and zero (with κ = ±0.75) methods with only 10,000 Monte Carlo trials. In practice,
we would only do that to ensure that the software works correctly. The random selection
method is included as a comparison.

Table 4. Run number means and SDs, 100 runs in each case. Timings are in minutes for 100 runs.

Method Mean SD Time (minutes)

ZUCB (κ = 0.75) 18.0 17.1 21.0
ZLCB (κ = 0.75) 17.6 14.5 18.5

BS 22.5 22.1 14.7
RS 21.0 22.2 14.4

Table 4 shows that the benefits of zero and binary acquisition were lost with only 10,000
Monte Carlo trials. Both run number means and standard deviations were unacceptably
high. We concluded that other contexts are more stable with respect to the optimization
processes used, although precise characteristics were not apparent in the papers concerned.
The OpRisk-VaR is essentially different because of the stochastic nature of calculating VaR
with fat-tailed data. We observed that extreme VaR values can be obtained if outliers are
generated in random sampling.
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6.6. Run Number 95% Confidence Interval

Figure 3 shows a comparison of two of the optimal optimization methods that proved
to be viable methods for solving the optimisation problem in Equations (2) and (3). ZLCB
and ULCB were approximately equivalent in terms of expected run number. However,
BS beat them on the standard deviation. The figure shows ZLCB and BS. The 3D plots
illustrate surfaces for the upper limit of 95% (two-tailed) confidence intervals for the
variation of run number with the number of Monte Carlo iterations and κ. With the
notation in Equation (17) and assuming normally distributed R, the upper limit of this
interval is given by R̄+ 1.96

√
(var(R).
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6.7. Optimal Value Consistency Results

The consistency of the calculated optimal values returned by the optimisation (i.e.,
x̂ in Equations (2) and (3)) was examined by running the same set of trials repeatedly.
The means of 1–5 m Monte Carlo cycles for viable (in terms of expected run number)
optimisation methods only were considered. Table 5 shows that BS was the preferable
method, since the BS SD was approximately half the size of the others, although all were of
acceptable consistency.

Table 5. Means and SDs for optimal values (x̂): viable optimisation methods: 25 runs each, interval
I = [0, 1.5].

Method Mean SD

BS 1.0928 0.0054
LI 1.0882 0.0117

KG 1.0946 0.0091
ZUCB (κ = 1) 1.0929 0.0097
ZLCB (κ = 1) 1.0918 0.0101

Five hundred independent trials of the approximate analytical method (Section 5)
gave a mean value for x̂ of 1.1779, with a standard deviation of 0.0285. That represents an
overestimate relative to those in Table 5 of approximately 7.3%.
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6.8. Timings

Figures 4 and 5 summarise the times taken to complete each run using binary search
and ZLCB acquisition, respectively, using the number of Monte Carlo cycles indicated.
There was a near linear progression of the mean run time with increasing number of Monte
Carlo cycles, as might be expected, in both cases. For the binary case, the SDs showed
no discernible trend, although the spread was remarkably small in the 5 m case. The
major improvement was as far as three million Monte Carlo iterations. Beyond that point,
outliers persisted, and the time taken to complete a large number of independent runs
became excessive. The spreads were much more apparent in the ZLCB case, but appeared
to increase as the number of Monte Carlo iterations increased. Therefore, using more than
three million was not necessary.
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Figure 5. Box plot timings for ZLCB κ = 1 optimisation: 10 runs in each case.

Figure 6 shows box plots for the timings of symbolic optimization using the approxi-
mate analytical method described in Section 5. The most apparent difference between it
and Figures 4 and 5 is the extremely small box heights with a lack of outliers. Per single
Monte Carlo run (note that the approximate analytical method needs only one, whereas
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others need at least three), the approximate analytical route was slower: Mathematica was
usually slower than R.
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6.9. The Effect of COVID-19

The COVID-19 pandemic has resulted in extreme economic stress, some of which is
reflected in operational risk losses, even though they are non-financial. Consequently, it is
useful to see what economic stress should be applied to operational risk losses in case there
is a need to increase capital (i.e., VaR) significantly. The symbolic computation method
of Section 5 provides a quick and easy way to estimate the required stress factors. There
are indications from Risk.net (see https://www.risk.net/comment/7652866/op-risk-data-
losses-plummet-during-lockdown, accessed on 28 April 2021) that some banks’ operational
risk losses have fallen significantly due to much reduced activity. Therefore, we calculated
what stress factor would be needed if activity, as measured by the number of predicted
transactions, falls by up to 50%. Figure 7 shows the results of trials of random reductions
of predicted transactions centred on 25% and 50% (with a sample size of 500 for each).
Note that they are likely to all be slight overestimates. As a direct comparison, the “zero”
predicted transaction reduction mean was 1.176, and the SD was 0.112. Each set took about
40 min to complete. The mean results were as expected: as activity reduced, the required
stress to maintain the same capital increased.
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7. Discussion

Table 2 gives an indication of what value of κ to use to give optimal results. We
suggested κ ∈ (0.5, 0.75). The stochastic nature of the LDA-based evaluation of g makes it

https://www.risk.net/comment/7652866/op-risk-data-losses-plummet-during-lockdown
https://www.risk.net/comment/7652866/op-risk-data-losses-plummet-during-lockdown
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unsafe to pick an actual minimum based on any particular value of κ. It is more straightfor-
ward to select an appropriate number of Monte Carlo cycles to use. The more there are, the
better, but using more takes longer.

We also noted informally that for BS, LI, KG and zero optimisations, there was a
steady reduction in the error function g(x) as the run number increased, until the condition
g(x) < L was met. That did not occur with the other methods considered. In those cases,
the sequence of error function values looked more like the results of a random parameter
value selection.

7.1. Implications for Practitioners

For users (developers and risk analysts), the implications of this study are clear. First,
the proposed methods for RST are appropriate and work successfully in the context of
OpRisk, as shown by the results in Sections 6.3 and 6.4. For risk analysts, the issue is to
balance the accuracy of testing with the time taken to achieve that accuracy. Although
in the following section, we recommend the binary search method, others might accept
the zero method because the expected run number is lower. For the zero method, we
suggest using 10 distinct runs, each of three million Monte Carlo trials. For the binary
search method, we recommend 10 distinct runs, each of one million Monte Carlo trials.
Generally, there is little to be gained by using more than three million. If time is an issue, in
both cases, we would agree to 10 runs, each with Monte Carlo trials of 500,000, and would
take care to add note wider error bounds. We encourage developers to calculate 95% error
bounds as a matter of course.

Hitherto, regulators have not paid attention to RST. The COVID-19 pandemic has
prompted the U.K. regulator to use RST for its dedicated COVID economic scenario, and
they may do so to model severe economic conditions in the future. We speculate that
regulators have not understood how to implement RST processes, and we hope to inform
them in this paper. RST models in other contexts (see Section 3.2) show that since 2018,
there has been increased interest in research on RST, with an emphasis on modelling
systemic risk. This is of vital importance to society, since the banking system underpins
other commercial activity. The implication of informative stress testing (reverse or not) has
a profound implication for banks. If too much capital is retained, the banking business
model is not sustainable because banks cannot lend.

As a general direction for research, we consider that seeking simple solutions for
simple problems will be fruitful. We demonstrated that “established” BO acquisition
functions (EI, POI and CI) do not work well in the “simple” context of OpRisk-VaR.
The “simple” solution is to square the acquisition function (Equation (5): µn−1(xi) −
κσn−1(xi)→ (µn−1(xi)− κσn−1(xi))

2). We speculate that the same solution may work in
other contexts.

7.2. Contribution to the Literature

We summarise the contribution to the corpus of knowledge, with particular reference
to the OpRisk community, as follows.

1. This work is the first application of RST in the context of OpRisk. It is both simple
conceptually and easy to apply in practice.

2. The U.K. regulatory authority has hitherto avoided discussion of how stress testing
(reverse or not) should be done. We provided a first solution.

3. The use of “traditional” acquisition functions in Bayesian optimization has been
shown to be ineffective in the context of OpRisk. A simple solution, the ZERO
acquisition function, was defined and found to be performant.

4. Two performant optimization methods, zero and binary, were identified as optimally
performant in the context of OpRisk.
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8. Conclusions

The justification for using zero acquisition in place of any of the Block 1 methods is
ultimately empirical. The improvement in the mean and standard deviation run number is
compelling, even in the absence of any theoretical justification.

The results in Section 6.8 show that the number of Monte Carlo cycles used depends
mostly on the time available. A large number, as well as a small number, can generate
outliers. It is therefore more important to carry out as many independent runs as possible:
ideally between two and three million.

Overall, in practice, binary search is the “least risk” optimisation procedure. It gives
a combination of low values for the run number mean and standard deviation, with a
low standard deviation for the optimal parameter value. The linear interpolation and
knowledge gradient methods produce marginally worse results on all of those metrics.
Although optimisation using zero acquisition has a lower run number expected value
than binary search, the corresponding standard deviation is higher, and optimal parameter
accuracy is also impaired slightly. The final decision therefore depends on what property
is valued most. If it is speed, then zero acquisition is preferable. If it is consistency, then
binary search is preferable. We favour the second of these options.

Further Work

The results of the symbolic approach in Section 5 are encouraging and open the possi-
bility of a more general approach. Using a generic function, G, in place of the specific linear
transformation of projected losses would allow the application of non-linear transforma-
tions by supplying G as a function argument. For example, G(x) = x{P}, where x is a
stress factor to be determined and {P} is a set of predicted losses, would model preferential
inflation of large losses.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. The LDA Algorithm

This Appendix shows the essential stages in the LDA algorithm of Frachot et al. [3].
The stages marked (**) were referred to in Section 5. Given N losses over y years, with m
Monte Carlo iterations and a fitted severity distribution F:

1. Calculate the annual loss frequency, f = N
y

2. Repeat m times

(a) Obtain a frequency sample size λ by drawing a random sample of size 1 from
a Poisson (f ) distribution (*) (**)

(b) Draw a sample of size λ, Sλ, from the severity distribution, F (**)
(c) Sum the losses in Sλ to obtain ΣSλ, the annual loss estimate, and add to a

vector of annual loss estimates (**)

3. Calculate VaR: the 99.9th percentile of the vector of annual loss estimates.

(*) A Poisson distribution is not the only way to do this. A negative binomial distribu-
tion is often used.

For the R and Mathematica implementations, the inputs are:

• data: a vector of numbers n1, n2, ....
• params: the log normal parameters fitted to data
• years: the number of years covered by the data
• m: the number of Monte Carlo iterations
• threshold: the minimum datum for modelling purposes.

In both cases, the output is the 99.9% value-at-risk.
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LDA Implementation in R

# Call:
# data <- c(n1, n2, ....); LDA(data, c(10,2), 5, 1000000, 10)

LDA <- function(data, params, years, m, threshold)
{
data <- data[data>threshold]
freq <- length(data)/years
xSum <- numeric(m)
for (t in 1:m)
{

# Apply a frequency correction: freq1 = freq/Prob(loss>threshold)
cdf <- plnorm(threshold, params[1], params[2])
freq1 <- freq/(1 - cdf)
n <- rpois(1, freq1)
x <- rlnorm(n, params[1], params[2])
xSum[t] <- sum(x)

}
xSum <- sort(xSum)
var <- xSum[ceiling(0.999*length(xSum))]
return(var)

}

LDA Implementation in Mathematica

(* Call:
data = {n1, n2, ....}
LDA1[data, {10, 2}, 5, 1000000, 10] *)

LDA[data_, params_, years_, m_, threshold_] :=
Module[{data1, freq, mu, sigma, var, xSum, p, n},

data1 = Select[data, (# > threshold)&];
freq = Ceiling[Length[data1]/years];
p = Length[data1]/Length[data];
freq = Ceiling[freq/p]; (* Frequency correction for threshold *)
mu = First[params]; sigma = Last[params];
xSum = Map[(n = RandomVariate[PoissonDistribution[freq], 1];
RandomVariate[LogNormalDistribution[mu, sigma, n] /.

List -> Plus) &, Array[# &, m]];
xSum = Sort[xSum];
var = xSum[[Ceiling[0.999*Length[xSum]]]]

]

Appendix B. Mathematica Code Implementing Algorithm Symbolic Linear

The Mathematica code in this Appendix is an implementation of the symbolic linear
algorithm in Section 5.

(* Inputs:
lin: the set of linear forms from sampling
q: 0.999, the 99.9 quantile
x: the output variable *)

(* Call:*)
eq = LinearQuantile[lin, q, x]
xprime = Solve[eq == V (T/400) (1 - L), x]; xhat = 1 + First[x /. xprime]
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LinearQuantile[lin_, q_, x_] :=
Module[{lin1, lin0, q1, q0, EQ, m, c, mc, mc2, G, B},

(* Calculate the ‘‘base’’ quantile *)
lin1 = lin /. x -> 1; lin0 = lin /. x -> 0;
q1 = FindQuantile[lin1, q][[1, 1]]; q0 = FindQuantile[lin0, q][[1, 1]];
B = lin1[[q1]] - lin0[[q0]];
(* Calculate the ‘‘gradient’’ quantile *)
mc = Map[ (lin[[#]] /. {c__ + x m__} -> {c, m}) &,
Array[# &, Length[lin]] ];
mc2 = Map[Last, mc];
G = FindQuantile[mc2, q][[1, 1]];
EQ = B + x mc2[[G]]

]

FindQuantile[arr_, q_] :=
Module[{arrS, tgt, pos},

arrS = Sort[arr];
tgt = arrS[[Ceiling[q Length[arr]]]];
pos = Position[arr, tgt]

]
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