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Abstract

In this work the transfer of a passive scalar (temperature) from a circular cylinder (radius R) in a planar Poiseuille flow (height
2h) is investigated with numerical simulations. The study varies the channel half-height to cylinder radius ϵ = h/R, the inertial
parameter Λ = (UcR/ν)(h/R)2 and the Péclet number Pe = UcR/α, where Uc is the midplane velocity, ν is the kinematic viscosity
and α is the thermal diffusivity. There has been significant amount of work for ϵ ≫ 1, therefore this work will focus on the range,
0.03 ≤ ϵ ≤ 1, which has been chosen to show the effect of geometry and inertia on the flow features and the subsequent transfer.
As ϵ is decreased the Nusselt number increases and this behaviour is explained with velocity and temperature profiles.

Particularly for ϵ = 0.03, the local Nusselt number has a significant vertical variation (in the z-direction) when Λ and Pe are
increased past certain values. For Λ ≪ 1 and Pe > 103 this is due to the non-uniform incident flow present in the Hele-Shaw
cell while for Λ = O(1), it is the secondary flow that is induced at the sides of the cylinder. For these latter flows the transfer in
the midplane is reduced relative to near the side walls, due to the triple turning point radial velocity profile adjacent to the circular
cylinder. For Λ ≤ 1, the Nusselt number is only a function of Pe. However, for Λ > 1, the secondary flow results in a slightly
increased Nusselt number.
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Nomenclature

General symbols

G Far-field pressure gradient

h Half-height of the channel

L Length of domain

Lv Length of midplane recirculation region

Nu Global Nusselt number

Nuθ Local Nusselt number

p Non-dimensional fluid pressure

p̃ Dimensional fluid pressure

Pe Péclet number based on Uc and on cylinder radius R

P̄e Péclet number based on Ū and cylinder diameter 2R

Pr Prandtl number

R Cylinder Radius

R̄e Reynolds number based on Ū and cylinder diameter 2R

r Non-dimensional radial coordinate

T Non-dimensional fluid temperature

T̃ Dimensional fluid temperature

u = {u, v,w} Non-dimensional fluid velocity

ũ Dimensional fluid velocity

Uc Channel centreline velocity

Ū Average channel horizontal velocity

uθ Dimensionless tangential velocity

ur Dimensionless radial velocity

W Width of domain

x = {x, y, z} Non-dimensional Cartesian coordinate

x̃ Dimensional Cartesian coordinate

Greek Symbols

α Fluid thermal diffusivity

∆r,∆z,∆θ Mesh size in the respective direction

δg Geometric boundary layer thickness

δα Thermal boundary layer thickness

ϵ Ratio of half-height of the channel to radius

θ Azimuthal coordinate

θv Midplane separation angle

Λ Inertial parameter

µ Fluid dynamic viscosity

ν Fluid kinematic viscosity
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ρ Fluid density

Subscripts

∞ Value at inlet

S Value at cylinder surface

Superscripts

∗ Stretched coordinate system

1. Introduction

Motivated by a variety of applications including heat ex-
changers and coastal vegetation there have been many stud-
ies on forced convection past single cylinders (Nakamura et al.
2004), tandem cylinders (Mahir & Altac 2014) and multiple
cylinders grouped in an array (Klettner 2020). For vertically
and laterally unbounded forced convection past bluff bodies
many correlations have been proposed which usually correlate
the Nusselt number with the Reynolds number and the Prandtl
number (e.g. Knudsen & Katz 1958; Churchill & Bernstein
1977). These correlations usually scale with approximately the
square root of the Reynolds number to reflect the thinning of
the boundary layer thickness with an increase in the Reynolds
number (Batchelor 1967). For low Reynolds number steady
flows, Dennis et al. (1968) investigated the two-dimensional
heat transfer from a cylinder using the Oseen equations for the
fluid flow.

There has been a significant amount of research on the flow
past a confined cylinder due to its relevance in microfluidics
mixing (Zhang et al. 2019) and as forced convection is the dom-
inant form of cooling in these applications (Renfer et al. 2013).
When ϵ ≈ 1 there will be a non-uniform incident Poiseuille flow
where the confinement can have a significant affect on the flow
characteristics. For example vortex shedding can be suppressed
when the confinement and/or Reynolds number is sufficiently
small (Zhang et al. 2019). The effect of these geometric and
flow conditions was only studied hydrodynamically; the effect
on the transfer was not considered.

When ϵ ≪ 1 and the inertial parameter Λ ≪ 1 vertical con-
finement results in the presence of a geometric boundary layer
that is confined to adjacent to the cylinder surface (with a radial
extent of O(h)), (Thompson 1968; Guglielmini et al. 2011).
When Λ > O(ϵ), a secondary flow is induced adjacent to the
cylinder on the windward side. As the inertial parameter is fur-
ther increased to O(1) this boundary layer thickness remains
relatively constant (Klettner & Smith 2022). For this physi-
cal set up the Prandtl number is not instructive in determining
the ratio of the thermal and momentum thicknesses, as is usu-
ally the case for inviscid/viscous boundary layers in unbounded
flows, which makes the correlations above not appropriate for
these geometric conditions.

Gorin et al. (1995) performed laboratory experiments and
theoretical work for the mass transfer from a circular cylinder
(with ϵ = 0.031). Λ and the Péclet number where simultane-
ously increased and were compared to an analytical solution to

Figure 1: Schematic of planar Poiseuille flow (with maximum velocity Uc) past
a cylinder (radius R), highlighted in grey, between two flat plates separated by
a distance 2h. The origin for the Cartesian and cylindrical polar coordinate
system is the cylinder centre in the midplane. The span W is taken to be very
large in this study. The temperature of the incident flow is T∞ = 0 while on
the cylinder surface TS = 1. Note that in the top figure, ẑ is pointing out of
the page and in the bottom figure ŷ is pointing into the figure. Figure modified
from Klettner & Smith (2022).

a simplified depth-averaged convection-diffusion equation. In-
vestigation of the vertical variation of flux from the cylinder
surface was not possible in the experiments or the theoretical
analysis.

Choi et al. (2006) used conformal mapping techniques and
numerical methods to investigate the absorption of a passive
scalar in two-dimensional potential flows. The flux from the
cylinder surface and the wake were studied in detail. In the
wake, two regimes were identified namely, a ‘diffusive’ cloud
for low Péclet number and a narrow wake as the Péclet number
was increased above 60. The importance of this was discussed
in the context of coating fibres in a gas flow. A further applica-
tion of this set up can be found in the dissolution of a body in
the steady flow of a Hele Shaw cell (Ladd et al. 2020), which
can be used as a prototype for reactive transport at the pore
scale. Here, the reaction is treated constant across the cross
section which is appropriate if the reaction time is small. How-
ever there might be flow situations when this assumption is not
appropriate and a vertical variation in the dissolution (due to the
vertical variation in the transfer) might be important.

As can be seen from the literature there is a significant
amount work on the forced convection past cylinders. The gap
in the literature is a study of the flow features and subsequent
transfer when ϵ ≤ 1. Therefore the purpose of this work is to
study the forced convection past a circular cylinder for ϵ ≤ 1
and varying Λ and the Péclet number. Three-dimensional nu-
merical simulations allow the study all aspects of this problem
including the vertical variation of the thermal transfer. The pa-
per is organised as follows; the problem and governing equa-
tions and diagnostics are presented in §2. The numerical meth-
ods are reviewed in §3. Numerical results are presented in §4
and §5 and conclusions are given §6.
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2. Problem definition and governing equations

This section outlines the governing equations for flow and
temperature in a confined channel (adapted from Klettner &
Smith 2022). In this work we investigate the forced convec-
tion of a plane Poiseuille flow (with midplane velocity Uc) of
a fluid (with a density and kinematic viscosity of ρ and ν re-
spectively) past a circular cylinder of radius R (see figure 1).
The midplane velocity is defined as Uc = −Gh2/(2µ) where µ
is the dynamic viscosity and G is the far-field pressure gradient
(which generates the plane Poiseuille flow), h is half the gap
height and ϵ = h/R. The nondimensional governing equations
for a steady, incompressible, Newtonian fluid are the continuity
equation

∇ · u = 0, (1)

the momentum equation

Λ(u · ∇)u = −∇p + ϵ2∇2u, (2)

and the advection-diffusion equation for the temperature, T ,

∇ · (uT ) =
1

Pe
∇ · (∇T ). (3)

To non-dimensionalise the system the following variables have
been used u = ũ/Uc, x = x̃/R and p = −2 p̃/(GR) = p̃Λ/ρU2

c .
Here the inertial parameter isΛ = (UcR/ν)(h/R)2 and the Péclet
number is Pe = UcR/α where α is the thermal diffusivity. To
non-dimensionalise the temperature T = (T̃ − T̃∞)/(T̃S − T̃∞)
where T̃∞ and T̃S are the upstream and cylinder surface tem-
perature respectively. Additionally to make comparisons with
a uniform two-dimensional incident flow, a Reynolds number
is defined as R̄e = 2ŪR/ν where Ū = Uc/1.5 and an associ-
ated Péclet number P̄e = R̄e.Pr, where the Prandtl number is
Pr = ν/α.

In this work we will be considering heat transfer, however
similar expressions can also be obtained in terms of mass trans-
fer. In terms of thermal transfer, the local Nusselt number is
defined as

Nuθ =
2R

(TS − T∞)
∂T
∂n
, (4)

where n is the normal into the surface of the cylinder and the
associated Nusselt number is

Nu =
1

4πRh

∫
S

NuθdS , (5)

where S is the surface of the cylinder. To highlight flow features
present in the geometric boundary layer adjacent to the circular
cylinder (when ϵ ≪ 1), stretched coordinates are used, where
r∗ = (r − 1)/ϵ where r = r̃/R and x∗ = x/ϵ.

2.1. Choice of parameters

The governing equations highlight that the transfer from a
cylinder will depend on the geometry (ϵ), flow (Λ) and transfer
(Pe) characteristics. This study will focus on 0.03 ≤ ϵ ≤ 1,
as these display different flow features as Λ is increased. We

restrict the increase in Λ such that all flows are steady (Tuck-
erman et al. 2014; Klettner & Smith 2022). In Section 4, air
and water are studied for different Reynolds numbers (range
1.3 ≤ R̄e ≤ 106.7) and 0.25 ≤ ϵ ≤ 1. In Section 5, the confine-
ment is fixed to ϵ = 0.03 and the inertial parameter is varied in
the range 0.001 < Λ < 5 and The Péclet number is varied in the
range of 1.1 < Pe < 1.1 × 105.

3. Numerical methods

Numerical simulations of (1-3) were carried out with the
open-source computational fluid dynamics toolbox Open-
FOAM using a finite-volume method (Weller et al. 1998).
Three-dimensional structured meshes were generated in
blockMesh. The flow-field and temperature solvers were sim-
pleFoam and scalarTransportFoam respectively, which is ap-
propriate for these steady, laminar flows. All schemes are
second-order-accurate; the Gauss linear numerical scheme is
used for the gradient and divergence operators for the veloc-
ity and pressure fields; the Gauss linear corrected numerical
scheme is used for the diffusive terms while for temperature the
Gauss linearUpwind scheme is used. Simulations are carried
out until a convergence criteria of 10−6 is obtained.

The cylinder is placed in the middle of a domain of length
L = 200R and width W = 100R, such that the flow at the sides is
not affected by the cylinder (a schematic of the set-up is shown
in figure 1). The cylinder and the top and bottom plates have the
no-slip condition applied, while the sidewalls have the no-flux
condition. The inlet condition is that of Poiseuille flow (with
the flow from left to right) and the outlet condition is p = 0.
The temperature at the inlet and the cylinder are T∞ = 0 and
TS = 1, respectively. A zero gradient boundary condition for
the temperature is ∂T/∂z = 0 at z = ±ϵ.

The finest mesh used for these calculations had a resolu-
tion in the vertical direction ∆z/h = 2/71 and radial direc-
tion ∆r/h = 1/50 (close to the cylinder), respectively. De-
tailed mesh independence and validation for the flow-field in
a Poiseuille flow past a single cylinder and the transfer of a pas-
sive scalar in a uniform incident flow past a single cylinder (in
a vertically unbounded flow) have been presented in Klettner &
Smith (2022) and Klettner (2020), respectively. An additional
mesh independence study for the transfer of a temperature past
a circular cylinder in a Hele-Shaw cell is shown in the Appendix
A.

4. Results for air and water for 0.25 ≤ ϵ ≤ 1

Due to their practical importance, in this section the ther-
mal transfer and hydrodynamics for air and water, in the range
of 0.25 ≤ ϵ ≤ 1 with varying Reynolds number is studied.
In Figure 2 the present numerical simulations are compared to
the correlation by Churchill and Bernstein (1977) and the two-
dimensional numerical computations of Dennis et al. (1968).
For reference, results for ϵ = 0.03 are also shown (which will
be the focus of the subsequent section). As anticipated, for sim-
ilar flow conditions, the transfer is greater for water than air as
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Figure 2: Variation of the Nusselt number with Reynolds number for (a) Pr = 0.71 and (b) Pr = 6.9. The current numerical simulations are shown for ϵ = 1 (□),
ϵ = 0.5 (+), ϵ = 0.25 (∗) and ϵ = 0.03 (⋄). The filled symbols represent the two-dimensional simulations by Dennis et al. 1987 (•). The correlation by Churchill
and Bernstein (1977) is shown as a dashed line. Note the difference in the ordinate scales.

the Prandtl number is an order of magnitude greater for water
(Churchill & Bernstein 1977). It is evident that the correlation
and also the two-dimensional results are quite different to the
confined flow cases studied here, which is the focus of this sec-
tion.

4.1. Variation with Re
For both air and water, for a fixed ϵ, the higher the Reynolds

number the higher the Nusselt number. To investigate this fur-
ther the azimuthal variation of the midplane local Nusselt num-
ber and contour plots of the midplane temperature for air and
ϵ = 1 for increasing Reynolds number are presented in figure
3. To show the vertical variation of the transfer, three lines are
plotted in figure 3(a, c, e), namely, the transfer close to the top
wall (red lines), in the midplane (blue lines) and the average
(dashed lines). This vertical variation in the local Nusselt num-
ber is due to the non-uniform incident flow on the cylinder, with
higher transfer anticipated to be in the midplane as this is where
the maximum velocity occurs.

Figure 3(a, c, e) shows that for an increase in R̄e, the local
Nusselt number at the front of the cylinder (θ = π) increases
and scales approximately with P̄e−1/3. This higher transfer for
higher Reynolds numbers is due to the stagnation point flow;
for higher Reynolds numbers the horizontal velocity is greater
closer to the cylinder (with a steeper deceleration towards the
front stagnation point) which leads to a thinner thermal bound-
ary layer and an associated higher transfer (see figure 4a). Note
that this trend is observed for all ϵ as shown in figures 4(b, c).
Qualitatively this can be seen in the midplane contour plots of
the temperature which show the progression from a ‘diffusive
cloud’ for low Reynolds numbers (figure 3b), to the convec-
tion dominated flow shown in figure 3( f ). The difference to the
potential flow work by Choi et al. (2005) is the formation of
a recirculation region for a sufficiently high Reynolds number,
which broadens the wake significantly. To highlight the flow
features present, streamlines are also shown with the black and

green streamlines indicating streamlines starting from in front
of and behind the cylinder, respectively. The effect this recir-
culation region has on the local Nusselt number can be seen in
figure 3(e) where the local Nusselt number no longer decreases
monotonically towards the rear stagnation point.

Two metrics used to characterise recirculation regions are the
length of the midplane wake Lv which is defined as the dis-
tance from the rear stagnation point to the stagnation point in
the wake and θv the midplane separation angle (measured from
the rear stagnation point as seen in figure 1) which is the an-
gle where the wall shear stress is zero. In figure 5(a, b) the
metrics from the present numerical simulations are compared
against the two-dimensional numerical simulations from Ra-
jani et al. (2009) and the experimental data from Coutanceau &
Bouard (1977) which are only in the steady flow regime (up to
R̄e ≈ 50). For Lv, a linear increase was found but with a milder
slope (than the two-dimensional case) and the slope also de-
creases for decreasing ϵ. Similarly for θv, the trend is shifted
to higher Reynolds numbers for increasing ϵ. Note that for
ϵ = 0.25, no recirculation regions were present for the Reynolds
numbers investigated.

4.2. Variation with ϵ
To show the effect of varying ϵ, the data in figure 2 has been

replotted in figure 6. For low Reynolds numbers, figure 6 shows
that the Nusselt number for all the cases is approximately con-
stant, which is to be anticipated as the system is diffusion dom-
inated (P̄e ≈ 0.5). To investigate the effect of decreasing ϵ and
keeping R̄e constant, on the Nusselt number, the case of air and
R̄e = 53.3 is chosen. The azimuthal variation of the midplane
local Nusselt number for ϵ = 1 and 0.25 are plotted in figure
7(a) which shows that there is a greater transfer at the front
stagnation point for ϵ = 1 but a lower transfer towards the rear
of the cylinder. Figure 7(b) shows the variation of the horizontal
velocity and temperature on the midplane front stagnation point
line and it can be seen that the horizontal velocity is greater (on
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Figure 3: The (a, c, e) variation of the local Nusselt number (at different elevations) and (b, d, f ) contour plots of the midplane temperature are shown respectively
for air for ϵ = 1 and R̄e = (a, b) 13.3, (c, d) 53.3 and (e, f ) 106.7. The lines in (a, c, e) represent z∗ = 0 (blue lines) and z∗ = 0.87 (red lines) while the black dashed
lines are the average local Nusselt number. In (b, d, f ) streamlines, are shown in black and green, originating from in front of and behind the cylinder, respectively.
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Figure 4: Midplane horizontal velocity variation on the front stagnation line for (a) ϵ = 1, (b) ϵ = 0.5 and (c) ϵ = 0.25 for R̄e = 13.3 (red line), 53.3 (blue line) and
106.6 (black line). The two-dimensional unbounded irrotational velocity profile for flow towards a circular cylinder is shown in a dashed black line.
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Figure 5: Variation of the (a) midplane length of the recirculation region and (b) the separation angle for different Reynolds numbers and vertical confinement. The
current numerical simulations are shown for ϵ = 1 (□) and ϵ = 0.5 (+). The other symbols represent the experiments by Coutanceau & Bouard (1977) (△) and
two-dimensional simulations by Rajani et al. (2009) (◦).
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Figure 6: Variation of the Nusselt number with ϵ for (a) air and (b) water for different Reynolds numbers, R̄e = 0.67 (□), 13.3 (◦), 53.3 (⋄) and 106.7 (*).
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approach to the cylinder) for ϵ = 1 leading to a higher gradi-
ent in the temperature at the front stagnation point. Towards
the rear of the cylinder the radial variation of the midplane tem-
perature at θ = π/4 is plotted in figure 7(c), together with the
tangential velocity. For ϵ = 0.25 the gradient of the velocity is
much steeper than for ϵ = 1 as there is a recirculation region
present for ϵ = 1 (see figure 3d). Hence there is a steeper gra-
dient in the temperature here and a higher transfer at the rear of
the cylinder for ϵ = 0.25. The integral effect is a greater transfer
for ϵ = 0.25. To investigate the effect of reducing ϵ further, a
study of ϵ = 0.03 will be presented.

5. Variation of Λ and Pe for ϵ = 0.03

In this section the effect of varying Λ and Pe on the Nus-
selt number will be presented, while keeping ϵ = 0.03. These
trends are then analysed further by considering the variation of
the local transfer in the azimuthal and vertical directions on the
cylinder surface. The variation of the local Nusselt number are
then explained by studying the structure of the flow-field, par-
ticularly the secondary flow induced adjacent to the cylinder at
increased Λ. Note that these secondary flows only occur for
ϵ ≤ 0.5 at sufficiently high Λ.

5.1. Nusselt number

In figure 8, the variation of the Nusselt number withΛ and Pe
are shown. As Λ is increased to approximately unity (and the
Péclet number is in the range 1 < Pe ≤ 103), the Nusselt num-
ber does not significantly increase. A measure of the thermal
boundary layer thickness δα ∼ RPe−1/2 and for the geometric
boundary layer thickness is δg ∼ Rϵ such that δg/δα ∼ ϵPe1/2.
Therefore if Pe and ϵ is fixed, then increasing inertia (Λ) will
not affect the thickness of either the thermal or the geometric
boundary layer thickness, or the resulting transfer. As will be
shown in the subsequent analysis, inertia plays a role in gen-
erating a secondary flow within the geometric boundary layer
when Λ is increased past O(ϵ), which does affect the transfer.
For Λ = 5 there is a slight increase in the Nusselt number for
all Pe considered.

5.2. Local Nusselt number for Λ ≪ 1 and Pe ≤ 102

The variation of the local Nusselt number around the cylin-
der is shown in figure 9. To highlight the vertical variation, the
blue line is the midplane transfer, the red line is the transfer
close to the side walls (z∗ = 0.87) and the dashed line is the
depth-averaged local Nusselt number. In figure 9(a, d, g) the
local Nusselt number for Λ = 10−3, 1, 5 for Péclet number of
1.1-111 are shown respectively. There is no vertical variation
in the local Nusselt number for this range of Λ and Pe. As is to
be anticipated the highest surface flux is from the front stagna-
tion point and this decreases with distance along the cylinder.
However in figures 9(b, c), the inertial parameter has been kept
constant at Λ = 10−3 and these show a vertical variation in the
local Nusselt number as the Péclet number has been increased
from 103 to 104. The local Nusselt number is greater at the mid-
plane than at z∗ = 0.87 which is due to the increased convection

at the midplane (while simultaneously diffusive effects being
stronger closer to the side walls) resulting in a thinner thermal
boundary layer (at the midplane). With azimuthal distance from
the front stagnation point, cross stream diffusion results in the
local Nusselt number being equal downstream of the front stag-
nation point; this occurs at θ/π = 1/2 (for Pe = 1.1 × 103) and
θ/π = 1/4 (for Pe = 1.1 × 104).

5.3. Local Nusselt number for Λ ≥ 1 and Pe ≥ 103

In the following discussion only numerical simulations for
Pe = 1.1 × 104 will be described, although the trends are sim-
ilar for Pe = 1.1 × 103. When Λ is increased from 10−3 to 5
and Pe = 1.1 × 104 the flux is increasingly higher in the mid-
plane (than close to the side walls), at the front stagnation point
(figure 9 c, f , i). Figure 10 shows midplane radial velocity and
temperature profiles close to the front stagnation point. As Λ
increases the radial velocity decelerates closer to the circular
cylinder resulting in an increased convection of the tempera-
ture towards the cylinder boundary, leading to a thinner thermal
boundary layer (figure 10b) and an increased flux.

For Λ ≥ 1 and Pe = 1.1 × 104 the flux drops significantly in
the midplane with azimuthal distance around the cylinder (away
from the front stagnation point) while it increases close to the
side walls (figure 9 f , i). To show why this development oc-
curs contour plots of the temperature in planes normal to the
cylinder surface (z∗-r∗) are shown at four different angles be-
tween 1 > θ/π > 1/2 in figure 11(e-h). Therefore although the
boundary layer thickness does not change significantly, the ef-
fect of inertia is to set up a secondary flow within the boundary
layer. This secondary flow at higher Λ, due to increased cen-
trifugal forces in the midplane, results in two counter rotating
vortices forming adjacent to the circular cylinder. Streamline
plots in planes perpendicular to the cylinder surface (using ur

and uz) are shown in figure 11( f , g). Close to the cylinder, on
the windward side, the radial velocity has a triple turning point
structure, with a radial outward flow in the midplane and a ra-
dial inflow close to the sidewalls. As Λ increases this veloc-
ity profile becomes more pronounced; figure 12 shows vertical
profiles of the radial velocity at r∗ = 1 for increasing Λ. These
contour plots also show how this azimuthally developing sec-
ondary flow affects the transfer. The radial velocity field then
results in an increased convection of the temperature away and
toward the cylinder surface in the midplane and close to the
side walls, respectively. The modification of the temperature
boundary layers can be seen in figure 11(e-h) for Λ = 5.

6. Conclusions

This work has studied the forced convection past a circular
cylinder in a planar Poiseuille flow for varying Pe and Λ for
0.25 ≤ ϵ ≤ 1 and ϵ = 0.03. For 0.25 ≤ ϵ ≤ 1, for certain ranges
of the Reynolds number, the Nusselt number increased with de-
creasing ϵ. This behaviour was explained with a combination of
hydrodynamic and thermal diagnostics. Future work includes
investigating increasing the Reynolds number such that there is
vortex shedding from the cylinder and seeing the effect this has
on the thermal transfer.
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Figure 7: (a) Azimuthal variation of the midplane local Nusselt number for ϵ = 1 (red line) and ϵ = 0.25 (black line). (b) Streamwise variation of the temperature
for ϵ = 1 (red line) and ϵ = 0.25 (black line) and horizontal velocity for ϵ = 1 (red dashed line) and ϵ = 0.25 (black dashed line) on the midplane front stagnation
line (i.e. θ = π). The potential flow solution is shown with a green line. (c) Radial midplane variation of the temperature for ϵ = 1 (red line) and ϵ = 0.25 (black
line) and horizontal velocity for ϵ = 1 (red dashed line) and ϵ = 0.25 (black dashed line) at θ = π/4. All data for air and R̄e = 53.3.
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Figure 8: The variation of the Nusselt number with (a) Λ and (b) Pe for Λ = 10−3 (◦), 0.1 (⋄), 1 (□) and 5 (△). Pe is increased from 1.1 to 1.1×104 (a darker symbol
indicates a higher Pe).
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Figure 9: Azimuthal profiles of the local Nusselt number for different Pe and Λ = 10−3 for (a, b, c), 1 for (d, e, f ) and 5 for (g, h, i), at a vertical height z∗ = 0 (blue
lines) and z∗ = 0.87 (red lines). The dashed lines are the average local Nusselt number.
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Figure 10: (a) Midplane radial velocity and (b) temperature profile at θ/π = 1 for Pe = 1.1 × 104 for Λ = 10−3 (black lines), 1 (black dashed lines) and 5 (green
lines). Thompson’s (1968) numerical calculations are shown in (◦).
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Figure 11: A contour plot of the temperature in planes normal to the cylinder surface (z∗-r∗) for Pe = 1.1 × 104 and Λ = 1 for (a-d) and 5 for (e-h) and θ/π = 1 for
(a, e), 3/4 for (b, f ), 7/12 for (c, g) and 1/2 for (d, h). In (b, c, f , g) the streamlines show the structure of the secondary flow. The horizontal dashed grey lines are
the midplane profiles shown in figure 10 while the vertical dashed white lines are the vertical profiles shown in figure 12.
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Figure 12: Vertical profiles of the radial velocity for Pe = 1.1 × 104 at r∗ = 1 and θ/π = (a) 3/4 and (b) 7/12 for Λ = 10−3 (black lines), 1 (black dashed lines) and
5 (green lines).

10



For ϵ = 0.03, it is found that for low Pe, the local Nus-
selt number is not sensitive to an increase in Λ up to O(1).
If Λ ≪ 1, a vertical variation of the local Nusselt number is
present at the front stagnation point for Pe ≥ 103, which is due
to the non-uniform incident flow. The secondary flow, starting
at Λ = O(ϵ), results in a radial velocity profile with a triple
turning point, such that there is a thicker and thinner thermal
boundary layer in the midplane and close to the sides, respec-
tively. The surface flux then is significantly increased at the side
walls compared to the midplane.
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Appendix A

These three-dimensional simulations require there to be a
mesh independence in the r, θ and z directions, which this ap-
pendix will document. The most sensitive geometry and flow
parameters that were studied was for ϵ = 0.03 (thin geometric
boundary layer), Λ = 5 (high inertia resulting in a thin tempera-
ture boundary layer at the midplane front stagnation point) and
Pe = 1.1×104 (thin temperature boundary layer) and so a mesh
independence study will be shown for this setup. The metric of
interest that will be used is the local Nusselt number, which is
appropriate as it is the diagnostic used frequently in the work
and also is a function of the gradient of a temperature, and so,
is sensitive to the mesh resolution. It is found that the variation
in the azimuthal direction is not as significant as the variation
in r and z, so the focus will be on these two directions. Figure
13(a) shows the effect of varying the radial resolution close of
the cylinder from ∆r/h = 2/21 to ∆r/h = 51. There is little
variation of the local Nusselt number and the Nusselt number
of the three cases is within 1%. Figure 13(b) shows the effect of
varying the vertical resolution. It can be seen that the vertical
variation is more sensitive than the radial direction and requires
a finer mesh. Close agreement between all the meshes was also
found for these cases.
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Figure 13: Azimuthal profiles of the local Nusselt number for ϵ = 0.03, Pe = 1.1 × 104 and Λ = 5 for the (a) radial and (b) vertical mesh independence study.
Shown are the average local Nusselt number (black symbols), z∗ = 0 (blue symbols) and z∗ = 0.87 (red symbols). In (a) the symbols represent ∆r/h = 2/21 (□),
2/31 (◦) and 2/51 (lines). In (b) the lines represent ∆z/h = 2/21 (□), 2/51 (◦) and 2/71 (lines).

12


