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Abstract—With the recent advance of deep learning, a large
number of methods have been developed for prohibited item
detection in X-ray security images. Generally, these methods
train models on a single X-ray image dataset that may contain
only limited categories of prohibited items. To detect more
prohibited items, it is desirable to train a model on the multi-
dataset that is constructed by combining multiple datasets.
However, directly applying existing methods to the multi-dataset
cannot guarantee good performance because of the large domain
discrepancy between datasets and the occlusion in images. To
address the above problems, we propose a novel Dual-Mode
Learning Network (DML-Net) to effectively detect all the pro-
hibited items in the multi-dataset. In particular, we develop
an enhanced RetinaNet as the architecture of DML-Net, where
we introduce a lattice appearance enhanced sub-net to enhance
appearance representations. Such a way benefits the detection
of occluded prohibited items. Based on the enhanced RetinaNet,
the learning process of DML-Net involves both common mode
learning (detecting the common prohibited items across datasets)
and unique mode learning (detecting the unique prohibited
items in each dataset). For common mode learning, we in-
troduce an adversarial prototype alignment module to align
the feature prototypes from different datasets in the domain-
invariant feature space. For unique mode learning, we take
advantage of feature distillation to enforce the student model
to mimic the features extracted by multiple pre-trained teacher
models. By tightly combining and jointly training the dual
modes, our DML-Net method successfully eliminates the domain
discrepancy and exhibits superior model capacity on the multi-
dataset. Extensive experimental results on several combined X-
ray image datasets demonstrate the effectiveness of our method
against several state-of-the-art methods. Our code is available at
https://github.com/vampirename/dminet.

Index Terms—X-ray security image detection, domain discrep-
ancy, occlusion, feature distillation, multi-dataset learning.

I. INTRODUCTION

WITH the popularity of public transportation, security
inspection plays a critical role in protecting public

safety. Security inspection usually adopts X-ray scanners,
based on which the security inspectors can quickly identify the
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Fig. 1: Samples of the representative categories of prohibited
items in OPIXray [4], SIXray [7], and HiXray [8]. There are
some common prohibited items (such as straight knife and
scissor) across the OPIXray and SIXray datasets and some
unique prohibited items in each dataset. Some datasets (e.g.,
SIXray and HiXray) show large differences in color imaging.

prohibited items in the passenger luggage. However, security
inspectors may struggle to accurately detect all the prohibited
items after long-term observation of extensive X-ray security
images without distraction. Although changing shifts can
alleviate this problem, the high cost of human resources is
still not desirable.

To reduce expensive labor costs, a prevailing strategy in
X-ray security checks is to leverage automatic detection tech-
niques to assist security inspectors. Over the past few years,
automatic prohibited item detection in X-ray security images
(also called X-ray security image detection) has attracted
considerable attention. Recently, much progress has been made
in X-ray security image detection due to the rapid development
of deep learning. Many efforts [1]-[6] have been devoted to
designing dedicated models to boost the performance. Wei et
al. [4] develop a De-Occlusion Attention Module (DOAM),
which applies attention maps generated by the appearance
information of prohibited items to address heavy occlusion in
X-ray images. Zhao et al. [S] propose to identify overlapped
objects in high-level feature maps.

In practical applications, different transportation hubs (such
as airports and subways) often use different types of X-ray
scanners. Moreover, each transportation hub is concerned with
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specific threat profiles. For airports, there is a broad range of
prohibited items, especially considering international flights
for the security threat. For subways, the primary prohibited
items are improvised explosive devices and weapons. There-
fore, the data from different hubs can significantly differ.
Accordingly, many public X-ray image datasets [4], [7]-[11]
are often collected under different conditions and target at
detecting different categories of prohibited items. For exam-
ple, the OPIXray dataset [4] consists of different types of
cutters (e.g., straight knife, scissor, folding knife, and multi-
tool knife). The SIXray dataset [7] contains five classes of
prohibited items (e.g., straight knife, plier, gun, and scissor).
The HiXray dataset [8] includes seven classes of prohibited
items (e.g., mobile phone, water bottle, laptop, and portable
charger). Some samples in these datasets are shown in Fig. 1.

The above X-ray image datasets involve only limited cate-
gories of prohibited items. In real-world X-ray security checks,
it is preferable to detect as many prohibited items as possi-
ble. Notably, considering real-world scenarios such as airport
security checks, where a list of prohibited items is essential,
an ideal X-ray security inspection system should recognize all
the items on this list. Therefore, it is necessary to construct
a multi-dataset by combining multiple X-ray image datasets,
thereby enlarging the categories of prohibited items.

Based on the multi-dataset, we can directly apply existing
X-ray security image detection methods. Unfortunately, the
domain discrepancy between datasets can be large since dif-
ferent datasets are captured by different X-ray scanners (which
have significant differences in color imaging, as illustrated in
Fig. 1). In addition, the occlusion in X-ray security images can
be severe, hindering the extraction of target-specific features.
Note that the above two problems are closely related (i.e.,
alleviating the occlusion problem in X-ray security images
is greatly helpful for addressing the problem of domain
discrepancy between datasets). As a result, existing methods
cannot learn effective models and achieve satisfactory detec-
tion accuracy on the multi-dataset due to the problems of
domain discrepancy and occlusion. Hence, it is important to
develop a universal model that can adapt to multiple datasets
and is robust to occlusion.

Till now, some works investigate the problem of multi-
dataset object detection. For instance, Chen et al. [12] use
variational attention to propagate domain-specific knowledge
for multi-dataset learning in crowd counting. Zhou et al. [13]
propose to train a universal object detector on the multi-dataset
via dataset-specific training protocols and losses based on a
shared backbone.

Generally, conventional multi-dataset object detection meth-
ods mainly work on natural images. X-ray security image
detection is intrinsically different from natural image detection
on the multi-dataset. On the one hand, natural image detection
tries to detect all the potential objects, while X-ray security im-
age detection aims to identify only the prohibited items. As a
result, the background clutters or heavy occlusion may greatly
influence the X-ray security image detection performance. On
the other hand, most multi-dataset object detection methods
focus on addressing the label inconsistency problem [13]. In
contrast, multi-dataset X-ray security image detection intends
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to detect the common prohibited items across datasets and
the unique prohibited items in each dataset. These differences
necessitate the development of different learning methods for
multi-dataset X-ray security image detection.

In this paper, we develop a novel Dual-Mode Learning
Network (DML-Net) for multi-dataset X-ray security image
detection. The architecture of DML-Net is based on a novel
enhanced RetinaNet, where we design a Lattice Appearance
Enhanced sub-net (LAE) to enhance appearance representa-
tions. This benefits the detection of occluded prohibited items
that are ubiquitous in X-ray security images.

The learning process of DML-Net involves dual-mode learn-
ing leveraging both common mode learning and unique mode
learning, which are developed to detect the common prohibited
items across datasets and the unique prohibited items in each
dataset, respectively. For common mode learning, we design
an adversarial prototype alignment module to align the feature
prototypes from different datasets in the domain-invariant
feature space. Meanwhile, for unique mode learning, we adopt
feature distillation to enforce the student model to learn from
multiple teachers pre-trained on individual datasets. Based
on the above designs, our method effectively alleviates the
domain discrepancy between datasets while largely reducing
the negative impact of occlusion in X-ray security images.

In summary, our main contributions are given as follows:

« We propose DML-Net to accurately learn a universal
prohibited item detector on the multi-dataset. In DML-
Net, we develop dual-mode learning, consisting of com-
mon mode learning and unique mode learning, to address
the domain discrepancy and category differences between
datasets. To the best of our knowledge, we are the first to
investigate multi-dataset X-ray security image detection.

e We design LAE to enhance the feature representations
of X-ray security images. In particular, LAE explores the
potential of rich combinations of edge and texture feature
maps, enlarging the representation space of the model. In
this way, the occlusion problem can be greatly relieved,
facilitating dual-mode learning.

« We extensively evaluate DML-Net on different combina-
tions of popular X-ray image datasets. Without any whis-
tles and bells, DML-Net consistently outperforms several
state-of-the-art methods. This clearly demonstrates the
superiority of our method on the multi-dataset.

The remainder of this paper is organized as follows. First,
we briefly review the related work in Sec. II. Then, we present
the details of our proposed DML-Net method in Sec. III. Next,
we evaluate the performance of DML-Net and compare DML-
Net with several state-of-the-art methods in Sec. IV. Finally,
we conclude our work in Sec. V.

II. RELATED WORK

In this section, we briefly review deep learning-based meth-
ods for X-ray security image detection and multi-dataset object
detection, which are closely related to our method.

A. X-Ray Security Image Detection

With the rapid development of deep learning, a large number
of X-ray security image detection methods [4], [5], [14]-[18]
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have been proposed to learn effective feature representations of
prohibited items and improve the detection accuracy. Jaccard et
al. [14] first develop a deep learning scheme for the detection
of small metallic threats in X-ray cargo images and validate
the superior performance of Convolutional Neural Networks
(CNNs) over traditional methods. Later, Akcay et al. [15]
introduce CNN to detect prohibited items in X-ray security
images. They employ a transfer learning paradigm, where the
detector is first pre-trained on the natural image classification
dataset and then fine-tuned on the domain-specific X-ray
image dataset.

Due to the characteristics of security inspection, occlusion,
which is prevalent in X-ray security images, poses a great
challenge for detection. Wei et al. [4] propose DOAM, which
combines different appearance information of prohibited items
to generate an attention map, to address the heavy occlusion
problem. Zhao et al. [5] introduce a label-aware mechanism
to tackle the object overlapping problem. This mechanism
models the relationship between feature channels and labels,
and then refines the features according to the assigned labels.
Wang et al. [16] present a selective dense attention network to
detect the prohibited items hidden in messy objects. A dense
attention module and a dependency refinement module are
introduced to extract discriminative features. Wang et al. [18]
propose a material-aware cross-channel interaction attention
module, which takes advantage of the material information to
handle the inter-class occlusion.

Existing X-ray security image detectors are usually designed
based on the general object detectors (such as YOLO series
[19], RetinaNet [20], and FCOS [21]) on a single X-ray image
dataset. However, many existing X-ray image datasets [4],
[71, [8] involve only limited categories of prohibited items
because of different capturing conditions and objectives. This
heavily prevents these X-ray security image detection methods
from real-world applications, which require to detect various
prohibited items. Moreover, simply applying these methods
to a multi-dataset cannot achieve satisfactory results due to
the significant domain discrepancy between datasets [22], [23]
and the severe occlusion in images. In this paper, we are
concerned with the little-studied but important task of training
a universal detector to effectively identify all the prohibited
items in the multi-dataset. Hence, our method can easily
adapt to the multi-dataset captured from various scenarios in
practical applications.

B. Multi-Dataset Object Detection

Multi-dataset learning, which aims to learn a universal
model from multiple datasets, has received increasing attention
in various computer vision tasks, including depth estimation
[24]-[26], stereo matching [27], [28], pedestrian detection
[29], [30], semantic segmentation [31], [32], and object de-
tection [33]-[37]. In this subsection, we mainly review multi-
dataset object detection.

To perform multi-dataset object detection, it is common
practice to merge different semantic classes across datasets.
Perrett et al. [33] concatenate labels from different datasets.
However, they do not explicitly consider the domain discrep-
ancy and category differences between datasets. Later, Wang et

al. [38] design a universal object detector, which is capable of
operating over multiple domains. They propose a new family
of adaptation layers to compensate for domain shift. However,
such a detector works only on small datasets and does not
fully model the semantic relationship between datasets. Yao
et al. [34] develop the dataset-aware losses for multi-dataset
training. Zhou et al. [13] propose to train a detector on
multiple large-scale datasets. They integrate dataset-specific
outputs into a common semantic taxonomy. But this method
requires dataset-specific training protocols, making it difficult
to apply to the X-ray image datasets. Wang et al. [39] propose
UniDectector to recognize a large number of categories in the
open world without any finetuning. Chen et al. [40] introduce
a scalable multi-dataset detector (ScaleNet) to learn across
multiple datasets in a unified semantic label space.
Generally, the above methods focus on multi-dataset object
detection on natural images. X-ray security images are signif-
icantly different from natural images due to different sensing
techniques. In addition, X-ray image detection targets identi-
fying only the prohibited items while natural image detection
aims to detect all the objects of interest. Therefore, directly
employing existing multi-dataset object detection methods on
X-ray security images cannot guarantee desirable performance.
In particular, the relationship between the common mode
and the unique mode, which is critical for multi-dataset X-
ray security image detection, is not well modeled in existing
methods. In this paper, we develop an effective multi-dataset
object detection method tailored for X-ray security images.

III. METHODOLOGY

In this section, we first give an overview of our proposed
DML-Net in Section III-A. Then, we describe the key compo-
nents of DML-Net from Section III-B to Section III-E. Finally,
we summarize the overall training of our method in Section
III-F.

A. Overview

Suppose that the multi-dataset is represented as D =
{D1,Ds, ...,Dk}, where Dy, denotes the k-th X-ray image
dataset and K is the total number of datasets. In this paper,
we suppose the requisite number of datasets is at least two (i.e.,
K > 2). For the k-th dataset Dy, its label space is represented
as Ly, which consists of the labels for the common prohibited
items across datasets and the labels for the unique prohibited
items in Dy. Given a mini-batch By, that is randomly selected
from Dy, an input image in By, is denoted as X € REXWxC|
where H, W, and C represent the height, width, and channel
number of the input image, respectively.

Due to the large domain discrepancy between datasets and
the occlusion in images, naively training an existing X-ray
security image detection method on the multi-dataset may
lead to poor performance. To address the problems of domain
discrepancy and occlusion, we develop DML-Net to detect
all the prohibited items in the multi-dataset. The overview of
DML-Net is given in Fig. 2. Specifically, based on RetinaNet
[20], we develop an enhanced RetinaNet as the backbone,
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Fig. 2: Overview of DML-Net for multi-dataset X-ray security image detection. The architecture of DML-Net is based on
a novel enhanced RetinaNet. The learning process of DML-Net leverages dual-mode learning: common mode learning and
unique mode learning. For common mode learning, APA is developed for feature alignment in the domain-invariant feature
space. For unique mode learning, feature distillation is used to enforce the student model to learn from multiple teacher models.

where we design and incorporate a Lattice Appearance En-
hanced sub-net (LAE) into RetinaNet to tackle the occlusion
problem in X-ray security images. Based on the enhanced
RetinaNet, the overall learning process of DML-Net involves
common mode learning and unique mode learning, which
are proposed to detect the common and unique prohibited
items, respectively. For common mode learning, we introduce
an Adversarial Prototype Alignment module (APA) to align
the feature prototypes from different datasets in the domain-
invariant feature space. For unique mode learning, we leverage
feature distillation to enforce the student model to learn from
multiple teacher models. Here, each teacher model is pre-
trained on a single dataset.

Overall, DML-Net is a simple yet effective method for
multi-dataset X-ray security image detection. On the one hand,
DML-Net introduces LAE to mitigate the occlusion problem
in X-ray security images. Such a way largely facilitates dual-
mode learning and thus benefits the detection task. On the
other hand, DML-Net develops dual-mode learning to explic-
itly consider the domain discrepancy and category differences
between datasets. Thus, our method effectively exploits the
knowledge from different X-ray image datasets to train a
universal detector.

In the following, we introduce the enhanced RetinaNet,
common mode learning, unique mode learning, the total loss,
and the overall training of our method.

B. Enhanced RetinaNet

1) RetinaNet: RetinaNet [20] is a mainstream one-stage
object detection method, which not only shows impressive

Fig. 3: Two occluded training images in the OPIXray dataset.

performance for general object detection but also maintains
high inference efficiency. Notably, RetinaNet introduces a fo-
cal loss to handle the class imbalance problem by emphasizing
the importance of hard examples.

Generally speaking, RetinaNet involves three components:
a base network and two task-specific subnetworks. The base
network involves a ResNet architecture to extract features at
different stages, and a Feature Pyramid Network (FPN) to
extract a multi-scale convolutional feature pyramid with a top-
down pathway and lateral connections. Specifically, given an
image X € Bj, we denote the features extracted by the last
four residual blocks of ResNet as C4(X), C2(X), C5(X),
and C4(X) (corresponding to the outputs of conv2, conv3,
conv4, and conv5 in ResNet, respectively), while we define
the corresponding multi-scale features extracted by FPN as
P = {H(X)}l]\il. Here, M (M=4) is the number of multi-
scale features. Meanwhile, the two task-specific subnetworks
are designed to perform object classification and bounding box
regression in a convolutional fashion.
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Fig. 4: The network architecture of LAE. In the figure, ‘Conv’ and ‘BN’ denote a convolutional layer and a batch normalization
layer, respectively. ‘ReLU’ and ‘Sigmoid’ denote a ReLU activation function and a Sigmoid function, respectively.

2) Lattice Appearance Enhanced Sub-Net (LAE): In real-
world applications, prohibited items are frequently overlapped
by other objects. As a result, the appearance of prohibited
items is not prominent due to occlusion. This results in the
poor detection performance of traditional object detection
methods since the feature representations of prohibited items
are inferior. Some training examples are illustrated in Fig. 3.
We can see that the appearance of prohibited items is greatly
affected due to occlusion. In this paper, inspired by the
lattice filter [41], we develop LAE to effectively enhance the
appearance information of prohibited items, greatly alleviating
the occlusion problem in X-ray security images and thus
promoting dual-mode learning.

The network architecture of LAE is shown in Fig. 4. LAE
mainly consists of an edge-aware module, a texture-aware
module, and a convolutional block to enhance appearance
representations from the perspectives of both edge and texture.

Technically, the input image X is first fed into the edge-
aware module, which contains an edge detection block, a
weight learning block, and a lattice structure. The edge
detection block adopts the Sobel operator to generate two
edge images (E; and E,) along the horizontal and vertical
directions, respectively. Then, the edge images E; and E,, are
combined to obtain the final edge image E. Next, we fuse
the original image X and its corresponding edge image E
via a lattice structure. At the same time, the weight learning
block, which contains a 1 x 1 convolutional layer followed
by a Sigmoid function, takes the X-ray image as the input
and adaptively generates two weighting tensors (denoted as
W, € RIXWXL and W, € RIXWXL) for the lattice
structure. Note that the lattice structure allows the potential
of various combinations of inputs [41], greatly enlarging the
representation space of the model in an efficient manner.
Mathematically, the above process can be formulated as

Li =c(E®X® $(W2)),

Ly = o(X & E @ o(W))), W

where L; € RTXWXC and Ly € REXWXC denote the output

feature maps of the lattice structure in the edge-aware module;
o(-) represents the nonlinear ReLU activation function; ‘®’
means the element-wise multiplication operation; ‘@’ indi-
cates the element-wise addition operation; ¢(-) represents the
broadcast operation, where the weights are broadcast along the
channel dimension.

The output of the edge-aware module is given as

Fram = L1 @ Lo, ()

where Fpay € RIXWXC represents the enhanced edge
feature map.

From the edge-aware module, both Fr4ps and E pass
through the texture-aware module, which mainly involves a
Region Information Aggregation (RIA) block [42], a weight
learning block, and a lattice structure, to effectively improve
the texture representations. On the one hand, the feature map
Fran generated from the edge-aware module is first fed
into a RIA block (consisting of an average pooling operation
and an extension operation) to aggregate the local information
and generate a texture feature map Frr4. Meanwhile, F g 4/
is also used to generate two weighting tensors (denoted as
W3 € REXWX1 and W, € REXWX1) by the weight learning
block. On the other hand, the edge image E is fed into a
convolutional block (including a 3x3 convolutional layer, a
batch normalization layer, and a ReLU activation function) to
extract the edge feature map F . Subsequently, the two feature
maps are combined in the lattice structure. The above process
can be given as

Ls =0(Fg ®Frra ® ¢(Wy)),

Ly =0(Fpia ® Fg ® ¢(W3)),
where Lz REXWXC and Ly € REXWXC denote the output
feature maps of the lattice structure in the texture-aware

module.
The output of the texture-aware module is given as

Fran = L3 @ Ly, 4

where Fray € RIXWXC represents the enhanced texture
feature map.

(3)
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Unlike natural image detection which relies heavily on both
edge and texture cues, X-ray security image detection is more
dependent on the edge than the texture of the X-ray images.
Based on this observation, instead of directly combining the
enhanced edge and texture feature maps, we leverage the
enhanced texture feature map to generate an attention map
and impose the attention map on the enhanced edge feature
map. Therefore, we employ a convolutional block (consisting
of a 1x1 convolutional layer, a batch normalization layer, and
a Sigmoid function) on Fr 45, and obtain an attention map
AT € RIXWXC That s,

AT = 7(BN(Conv(Fran))), 5)

where 7(-), BN(-), and Conv(-) represent the Sigmoid func-
tion, the batch normalization layer, and the convolutional layer,

respectively.
Finally, the output of LAE is formulated as
Frag = AT ® Fpan, (6)
where Fp s € REXWXC is the final feature map, which is

used as the input of RetinaNet.

Note that DOAM developed in [42] also leverages an
RIA block and the Sobel edge detector to enhance feature
representations. However, the differences between LAE and
DOAM are significant. We specifically introduce two lattice
structures in LAE to largely enlarge the representation space
of the model, where the feature maps from different branches
can boost the representations of each other in a mutual way.
Moreover, we adaptively fuse the information from the original
image and the edge image (or the texture feature map and
the edge feature map) based on a weight learning block.
Such a way can emphasize relevant information and suppress
irrelevant information in the feature maps. Note that DML-Net
is optimized by minimizing the detection loss, enabling LAE
to enhance the appearance representations of prohibited items.
Therefore, compared with DOAM, LAE has better feature
learning capability. In a word, the design of LAE is beneficial
for addressing the occlusion problem, thus facilitating effective
dual-mode learning on the multi-dataset.

C. Common Mode Learning

As we mentioned previously, there exists large domain
discrepancy between X-ray image datasets. For example, the
color imaging in the SIXray dataset and the OPIXray/HiXray
datasets is substantially different (see Fig. 1). Hence, prohib-
ited items belonging to the same category may have essentially
different feature distributions across different datasets. As a
result, naively training models on the multi-dataset cannot
achieve promising results for these common prohibited items.

In this subsection, we develop APA to align the feature
prototypes from different datasets in the domain-invariant
feature space. To achieve this, we take advantage of adversarial
learning to obtain a domain-invariant feature space, based
on which we can explicitly align the feature prototypes of
common prohibited items across datasets. In this way, the
common prohibited items from different datasets are enforced
to have similar feature distributions. Therefore, we can largely
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reduce the domain discrepancy, thus benefiting the detection
of the common prohibited items in multiple datasets.

More specifically, we first play an adversarial game between
a feature extractor fg. (i.e., the enhanced RetinaNet) and
a domain discriminator fg,. Here, the domain discriminator
fo, (consisting of three fully-connected layers and a Sigmoid
function) is designed to estimate the probability of a sample
X coming from the mini-batch By. fe, takes the feature map
generated by the feature extractor fg, as the input and outputs
a probability distribution vector (i.e., fo, classifies the input
feature map into one of K classes). By adversarial learning, we
can extract domain-invariant features by confusing the domain
discriminator. The adversarial loss in B, is defined as

(.f@D7f@G) = %in%aXEi:dv(f@vaec)? (7)
where
1
El;dv(f(')pvf(—)(;) = EX;FyTIng@)D(f@G(X))a (8)

and y is a one-hot vector; y[i] = 1 if ¢ = k, and 0 otherwise;
B denotes the size of the mini-batch Bj.

To facilitate model training, a Gradient Reversal Layer
(GRL) [43] is used between the feature extractor and the do-
main discriminator. Note that GRL has no learning parameters,
and can serve as a simple identity function during the forward
propagation while reversing the sign of the passing gradient
in the back-propagation. Therefore, based on GRL, a domain-
invariant feature space can be effectively learned.

Adversarial learning is leveraged to reduce the domain dis-
crepancy. However, the distances between the same-category
samples from different datasets can still be large, increasing
the difficulty of identifying the common prohibited items in the
multi-dataset. Therefore, we further adopt prototype alignment
to explicitly minimize the feature prototype distances between
common prohibited items across different datasets. Mathemat-
ically, for a category of common prohibited item ¢ € Ly in
the mini-batch By, we iteratively calculate the prototype in an
average-moving manner [44],

Pk.c — aPk.c + (1 - a)qX,cv (9)

where py . denotes the prototype of the prohibited item from
the c-th category in By; qx,. denotes the feature map at the
spatial position indicated by the anchor (which corresponds to
the ground-truth bounding box with the label c in the image
X; « is a momentum coefficient (which is set as 0.999 in all
our experiments).

Based on the above, we define the prototype alignment loss
as

1 K K
£p'ro = m Z Z Z 1] o5 ,c*sz,cHF’

k1=1 ka=1,ko k1 €Lk, NLi,
(10)

where C' is the category number of common prohibited items
and || - ||r represents the Frobenius norm.

By minimizing the prototype alignment loss £,,,, the fea-
ture distributions of prohibited items from the same category
are aligned across datasets. Thus, the domain discrepancy
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between different datasets is further reduced and the discrim-
ination between common prohibited items is enhanced.

The detection loss £F .,
items in By is defined as

for the common prohibited

C
1 [Cx|

Eke -com — T[] ECS [ Cl 7/iom +
det B‘CX' XeBk; [ (f@c( X) Y ) (]1)

£TEg(f@R(C§()7 biom)7

where Cx denotes the anchor bag (which includes the top few
anchors according to the IoUs between the anchors and the
ground-truth boxes) of common prohibited items in the image
X; Cg( represents the i-th anchor in Cx; |Cx| represents the
number of anchors; L. and L,.4 denote the focal loss and
the smooth L loss, respectively; fo.(-) and fo,(-) denote
the classification subnetwork and the regression subnetwork,
respectively; g . and b}, respectively represent the anchor

label and the ground-truth bounding box w.r.t. C&.

D. Unique Mode Learning

Generally, each X-ray image dataset often involves its
unique prohibited items. To train a universal detector on the
multi-dataset, we also develop unique mode learning to detect
the unique prohibited items in each dataset.

Suppose that we have a set of teacher models
(MIP MDD MY and a student model M. Here,
M,E represents the k-th teacher model, which is pre-trained
to detect the unique prohibited items in the dataset Dj. Both
the teacher and student models adopt the enhanced RetinaNet
as the network architecture. As indicated in [45], intermediate
feature representations from the teacher models provide rich
information to improve the training of the student model.
Inspired by the above observations, we take advantage of
multi-scale feature distillation to effectively transfer the
knowledge from multiple teachers to the student.

Technically, given an image X € Bj, we first feed X
into M and ./\/lik), and olk)tain a set of multi-scale features
{PM:(X)}M, and {PlM§ )(X) M from FPN. Then, we
enforce the student model M, to mimic the feature maps
obtained by its corresponding teacher model Mik) pre-trained
on Dy. Therefore, the feature distillation loss £% . in By is
defined as

i

M
1 ) M
Lhi= o 3 SITEM ) - B 0,
XeBy =1
(12)

where T(-) denotes the feature transformation operation (we
use the up-sampling operation) that resizes the feature map of
the student model to that of the teacher model at the [-th layer
and || - ||r denotes the Frobenius norm.

By optimizing £* .. the rich information in the multi-scale
feature maps can be transferred from the k-th teacher model
to the student model. This is helpful in detecting the unique

prohibited items in the k-th dataset.

The detection loss £k for the unique prohibited items

det-uni
in By is defined as
1 [Ux|
ﬁke uni — B 1 Ec s > Ul ) ;nz +
det B‘uxlxék; l (f@c( X) Y ) (]3)

ﬁrey(f(—)R(Ugﬁ)v bini)’

where Ux denotes the anchor bag of unique prohibited items
in the image X; Uy represents the ¢-th anchor in Ux; |Ux]|
represents the number of anchors; ¥, and b}, ; respectively

represent the anchor label and the ground-truth bounding box
w.rt. Ug.

E. Total Loss

Based on the above formulations, the total loss of DML-Net
is given as

Ejoint = £det + /\l‘c'pro + /\2£adv + /\3£uniy (14)
where Lget = Laet-com + Ldet-uni denotes the joint de-
tection loss, in which Lietcom = 1/K Zle Eget’wm and

Laetuni = 1/K Zszlﬁljet_um denote the detection losses
for the common prohibited items and the unique prohibited
items, respectively; Lo40 = 1/K Zszl E’;dv and Lyni =
1/K S5 £k . are the joint adversarial loss and the joint
feature distillation loss, respectively; A;, A2, and Ag are the
weighting parameters.

In the total loss, we leverage multiple loss items (a joint
detection loss (containing the detection losses for common
prohibited items and unique prohibited items), a prototype
alignment loss, a joint adversarial loss, and a joint feature
distillation loss) to optimize the model. Every loss item is im-
portant to ensure the excellent performance for the challenging
multi-dataset detection task. In particular, the joint detection
loss is optimized to localize both the common and unique
prohibited items. The joint adversarial loss is leveraged to re-
duce the domain discrepancy. The prototype alignment loss is
designed to optimize the distances between the same category
samples from different datasets. Both the joint adversarial loss
and the prototype alignment loss are designed for common
mode learning. Finally, the joint feature distillation loss is em-
ployed to transfer the knowledge from multiple teacher models
to the student model for unique mode learning. By minimizing
the total loss, DML-Net can effectively learn discriminative
feature representations for prohibited item detection on the
multi-dataset.

E Overall Training

We give the overall training procedure of DML-Net in Algo-
rithm 1. Generally, the learning process of DML-Net contains
both common mode learning and unique mode learning based
on the enhanced RetinaNet. Common mode learning focuses
on the detection of common prohibited items across datasets
while unique mode learning focuses on the detection of unique
prohibited items on each dataset. Finally, a universal detector
can be effectively trained.
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Algorithm 1: Overall Training of DML-Net

Input: An enhanced RetinaNet M; a domain discriminator
fop; multiple training datasets D = {D1, D,
..., Dk }; a set of pre-trained teacher models
{M,E”, M§2)7 e MEK)}; total training epochs E.
1 fore< 11t F do
2 Shuffle {Dk}kkzl into {Nk}kkzl mini-batches;
3 SetNerlek;
4 Set b <+ 1;
5 while b < N do
6 for k < 1 t0 K do
7
8

Select a mini-batch of images B from Dy;
Feed 13), into M and its corresponding teacher
Mik) and obtain a set of multi-scale features;
9 Compute the detection loss for the common
prohibited items according to Eq. (11);
10 Pass the multi-scale features through fe,, and
compute the adversarial loss according to
Eq. (8):
11 Update the prototypes of the common
prohibited items according to Eq. (9);
12 Compute the detection loss for the unique
prohibited items according to Eq. (13);
13 Compute the feature distillation loss for the
unique prohibited items according to Eq. (12);
14 end
15 Compute the prototype alignment loss according to
Eq. (10);
16 Compute the total loss according to Eq. (14);
17 Update M, fe,, by stochastic gradient descent;
18 b~ b+ K;
19 end
20 end

Output: A well-trained detector M.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness of our proposed DML-Net method. First,
we introduce public X-ray image datasets and implementation
details in Section IV-A. Then, we perform ablation studies in
Section IV-B. Finally, we compare our DML-Net method with
several state-of-the-art methods in Section IV-C.

A. Datasets and Implementation Details

1) Datasets: To demonstrate the effectiveness of our DML-
Net, we use three widely-used X-ray image datasets (including
OPIXray [4], SIXray [7], and HiXray [8]) and perform ex-
periments on the combinations of these datasets. Specifically,
the OPIXray dataset involves a total of 8,885 X-ray images
with five prohibited items (including folding knife, straight
knife, scissor, utility knife, and multi-tool knife). The SIXray
dataset consists of 8,929 X-ray images with five prohibited
items (including gun, straight knife, wrench, plier, and scissor).
Compared with the OPIXray and SIXray datasets, the HiXray
dataset is a larger X-ray image dataset. HiXray contains 45,364
high-quality X-ray images of seven prohibited items (including
portable charger, mobile water bottle, laptop, mobile phone,
tablet, cosmetic, and metallic-lighter). In this paper, we aim
to train a universal detector on the X-ray image multi-dataset.
Therefore, we adopt different combinations of these datasets
to construct the multi-datasets.
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TABLE I: Ablation studies for LAE on the OPIXray+SIXray
dataset.

Methods | mMAP mAP;; mAPz;
SSD 37.7 757 33.8
SSD+DOAM 409 799 36.0
SSD+LAE 43.1 824 37.3
YOLOvV3 425 842 38.2

YOLOvV3+DOAM | 43.6 852 39.0
YOLOvV3+LAE 448 864 39.9

FCOS 43.6 814 40.0
FCOS+DOAM 44.7 827 41.0
FCOS+LAE 463  84.1 423
RetinaNet 46.1 835 45.0

RetinaNet+DOAM | 47.3  84.6 45.9
RetinaNet+LAE 48.7 86.3 47.0

2) Implementation Details: In our DML-Net, the ResNet-
50 followed by FPN is used in our backbone network. We
implement our method based on PyTorch and conduct all the
experiments on an NVIDIA RTX 3090 GPU. We use the
stochastic gradient descent optimizer with a momentum of 0.9.
For unique mode learning, a set of teacher models are pre-
trained on each individual dataset, where the training epochs
are set as 120. The training epochs of the student model are
also set as 120 for all the datasets. The batch size is uniformly
set as 4. The weighting parameters A;, A2, and A3 in Eq. (14)
are set as 0.5, 0.5, and 1.0, respectively.

Following [42], we adopt Average Precision (AP) and mean
Average Precision (mAP) to measure the performance in each
category and all the categories, respectively. We also use
mAP;5o and mAP75, which represent the mAP computed at
the IoU thresholds of 0.50 and 0.75, respectively.

B. Ablation Studies

In this section, we perform ablation studies to evaluate
the influence of the key components of DML-Net on the
final performance. The OPIXray+SIXray dataset is used for
evaluation, where the common prohibited items are the scissor
and the straight knife.

1) Influence of LAE: We incorporate LAE into four popular
object detection methods (including SSD [46], YOLOv3 [47],
FCOS [21], and RetinaNet [20]), where we add LAE into the
backbones of these methods. For a fair comparison, we also
evaluate the performance obtained by combining DOAM [4]
with these object detection methods. The comparison results
are given in Table L.

RetinaNet achieves higher accuracy than SSD, YOLOV3,
and FCOS. This shows the superiority of RetinaNet for X-ray
security image detection. Moreover, compared with DOAM-
based methods, LAE-based methods give higher mAP, mAPs,
and mAP75. LAE can greatly enhance appearance representa-
tions and improve the detection performance on X-ray security
images. Among all the variants, RetinaNet+LAE achieves the
best mAP, mAP5(, and mAP75. This is mainly due to the fact
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Fig. 5: Visualization of (a) input images, (b) ground-truths, and
(c) the feature maps generated by LAE. The first and second
rows show the results on OPIXray, while the third and fourth
rows show the results on SIXray.
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Fig. 6: Visualization of (a) input images, (b) ground-truths,
and the detection results obtained by (c) RetinaNet, (d) Reti-
naNet+DOAM, and (e) RetinaNet+LAE. The first and second
rows show the results on OPIXray, while the third row shows
the results on SIXray.

that RetinaNet+LAE effectively relieves both the occlusion
problem (by using LAE) and the class imbalance problem
(by using the focal loss). Note that the above problems are
ubiquitous in the X-ray image datasets.

To further illustrate the advantage of LAE, we show some
visualization results in Fig. 5. Specifically, we visualize the
feature maps obtained by LAE. LAE effectively enhances
the appearance of prohibited items, especially the occluded
ones. Therefore, the heavy occlusion problem can be greatly
alleviated, thus improving the detection performance.

Fig. 6 shows the detection results obtained by RetinaNet,
RetinaNet+DOAM, and RetinaNet+LAE. RetinaNet fails to
detect some occluded pliers and straight knives, while Reti-
naNet+DOAM cannot detect some prohibited items in the
complex background. In contrast, most prohibited items can
be correctly identified by RetinaNet+LAE. The above results

909 N 892%
90% 86.3% 87.2% 87.0%

80%

70%

60%

50%

40%

30%

RetinaNet+LAE

Common+LAE Unique+LAE DML-Net

= mAP,s w mAPg, = mAP

Fig. 7: Performance comparisons between different variants of
DML-Net on the OPIXray+SIXray dataset.

TABLE II: Ablation studies for the common mode learning
on the OPIXray+SIXray dataset.

Methods | mMAP mAP;y mAP;

RetinaNet+LAE | 48.7  86.3 47.0
Unique+LAE 494 870 473
DML-Net_Adv | 50.3 88.2 48.8
DML-Net_Pro 50.2  88.0 48.7
DML-Net 514 89.2 49.3

validate the effectiveness of LAE, which enhances the appear-
ance information by two lattice structures.

2) Influence of Unique Mode Learning: We evaluate the
variant (denoted as Common+LAE) of DML-Net, which is
trained by removing the feature distillation loss and keeping
only the detection loss for unique mode learning. The results
are given in Fig. 7.

We can observe that the Common+LAE method results in
1.9%, 2.0%, and 1.9% drops (in terms of mAP, mAP5o, and
mAP75, respectively) from DML-Net. This is mainly because
the performance of Common+LAE greatly drops for detecting
the unique prohibited items.

Moreover, we evaluate another variant (denoted as
Unique+LAE) of DML-Net, which is trained by mainly using
unique mode learning and removing common mode learning
(except for the detection loss for the common prohibited
items). The Unique+LAE method obtains 0.7% higher mAP
than RetinaNet+LAE. This further demonstrates the effective-
ness of unique mode learning.

3) Influence of Common Mode Learning: We evaluate some
variants of our method: 1) enhanced RetinaNet (denoted as
RetinaNet+LAE); 2) Unique+LAE; 3) DML-Net with only
adversarial learning in common mode learning (denoted as
DML-Net_Adv); 4) DML-Net with only prototype alignment
in common mode learning (denoted as DML-Net_Pro); 5)
DML-Net which is based on LAE and dual-mode learning.
The evaluated results are given in Table II.

Among all the variants, RetinaNet+LAE gets the worst per-
formance. This is because it ignores the domain discrepancy
between datasets. DML-Net_Adv performs slightly better than
DML-Net_Pro. This can be ascribed to the fact that adversarial
learning is helpful in obtaining a domain-invariant feature
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TABLE III: Ablation studies for the different weighting parameters on the OPIXray+SIXray dataset.

(a) Influence of A;.

(b) Influence of Ao.

(¢) Influence of As.

A1 | mAP  mAP;; mAPz; A2 | mAP  mAPs5; mAPr; A3 mAP mAP;; mAPz;
00| 503 882 488 00| 502 80 487 00 495 872 474
05| 514 892 493 05| 514 892 493 05 506 885 483
10| 51.0 87 490 10| 509 87  49.1 1.0 514 892 493
15| 508 885 489 15| 506 884 489 15 512 889 491
20| 506 884 488 20| 504 881 487 20 509 885 487

TABLE IV: Detection performance comparisons in terms

of mAP (%) and AP (%) on the OPIXray+SIXray dataset.

Prohibited Items
Methods mAP Common Classes Unique Classes on | Unique Classes on
a OPIXray SIXray
L

e 5 | & & & §

5 Z s 5 K 5 &

¥ § |¥ 5 5§ § £
RetinaNet 46.1 | 37.6 46.7 341 337 327|664 573 608
RetinaNet+DOAM | 47.3 | 38.7 47.9 347 349 337|675 589 622
SSD 37.7 | 275 385 304 299 321 | 613 36.7 453
SSD+DOAM 409 | 323 44.6 340 31.6 36.0 | 63.2 38.6 47.1
YOLOV3 425 | 314 45.7 31,5 328 321 | 634 484 548
YOLOvV3+DOAM | 43.6 | 31.2 47.9 339 335 347|627 503 54.6
FCOS 43.6 | 30.1 49.6 279 29.1 292 | 658 555 623
FCOS+DOAM 447 | 31.1 50.7 28.7 29.6 304 | 67.1 56.8 63.6
YOLOvV7 45.1 | 332 479 326 343 337|641 503 572
YOLOv7+DOAM | 47.3 | 34.1 49.0 338 356 351|654 528 574
LA 48.0 | 358 49.2 36.5 36.6 337|699 592 634
Unified 353 | 329 41.3 343 37.6 335|337 365 324
UniDet 359 | 332 429 352 350 340|358 374 340
Unidetector 40.7 | 29.9 45.2 213 399 346 | 563 473 51.0
DML-Net (ours) 514 | 46.5 55.7 373 375 355|709 617 659

1 ‘SKnife’, ‘FKnife’, ‘UKnife’, and ‘MTKnife’ represent ‘straight knife’,

space. DML-Net outperforms both DML-Net_Adv and DML-
Net_Pro, validating the importance of APA. Moreover, DML-
Net obtains better performance than Unique+LAE. These
results show the effectiveness of common mode learning for
handling the domain discrepancy problem on the multi-dataset.

4) Influence of Different Weighting Parameters: In this
subsection, we illustrate the influence of different weighting
parameters in Eq. (14) on the final performance.

We first fix Ay = 0.5 and A3 = 1.0 and vary the value of
A1 from 0.0 to 2.0. The results are shown in Table III. From
Table III(a), we can observe that when A is set to 0.0 (which
indicates that the prototype alignment loss is not used during
model training), DML-Net gets the lowest mAP. Moreover,
DML-Net gives the best performance when A; = 0.5. Next,
we fix A\; = 0.5 and A3 = 1.0 and change the value of A,
from 0.0 to 2.0. As shown in Table III(b), DML-Net achieves
the best results when A2 = 0.5 while obtaining the worst
performance when Ay = 0.0. This verifies the effectiveness of
adversarial learning used in DML-Net. Finally, we fix A\; =

‘folding knife’, ‘utility knife’, and ‘multi-tool knife’, respectively.

0.5 and A2 = 0.5 and vary the value of A3 from 0.0 to 2.0.
The results are given in Table III(c). From Table III(c), DML-
Net gives the best results when A3 = 1.0. When A3 = 0.0, the
joint feature distillation loss is not used and DML-Net gets
the worst results in terms of mAP, mAPso, and mAP75 among
all the variants.

C. Comparisons with State-of-the-Art Methods

In this section, we evaluate our proposed DML-Net on
different multi-datasets. We compare our proposed DML-Net
with several state-of-the-art object detection methods (SSD
[46], YOLOv3 [47], FCOS [21], and YOLOV7 [48]), X-ray
security image detection methods (LA [5] and DOAM-based
methods [4], including SSD+DOAM, YOLOvV3+DOAM,
FCOS+DOAM, YOLOv7+DOAM) and representative multi-
dataset object detection methods (Unified [49], UniDet [13],
and Unidector [39]) on several combinations of X-ray image
datasets. For all the competing methods, we report their results
by running the source codes provided by their original papers.
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1

2

3

4 TABLE V: Detection performance comparisons in terms of mAP (%) and AP (%) on the SIXray+HiXray dataset.

5

6 Prohibited Items

7 Methods mAP Unique Classes on SIXray Unique Classes on HiXray

8 =2

9 £ § § . &’: ] & g ) g £

10 s £ 5 £ £15 F £ £ 3 : %

> 2 g & £ 32 |§ £ =& & =8 § =

12 RetinaNet 532 | 51.7 57.7 683 60.1 629|534 529 705 625 662 262 59

13 RetinaNet+DOAM | 54.1 | 529 593 699 614 639 | 543 536 714 629 668 266 64

14 SSD 44.1 | 42.0 432 629 385 468 | 484 456 643 562 610 176 2.6

15 SSD+DOAM 454 | 442 445 641 395 483|495 466 658 574 626 189 39

16 YOLOV3 450 | 414 484 61.8 500 543 | 441 455 639 542 59.1 15.0 2.7

17 YOLOV3+DOAM | 46.2 | 429 495 633 512 554|453 462 648 554 599 165 3.8

18 FCOS 52.1 | 52.8 60.0 67.2 569 64.1 | 543 53.1 632 609 651 245 30

19 FCOS+DOAM 53.7 | 541 614 685 583 654|559 547 649 628 675 262 42

20 YOLOvV7 472 | 456 50.1 648 524 57.1 | 465 480 651 554 612 181 32

21 YOLOvV7+DOAM | 48.6 | 46.9 523 65.7 535 579|473 487 662 562 620 199 5.1

22 LA 544 | 543 60.7 70.8 59.7 639|559 563 719 623 664 252 59

23 Unified 37.1 | 322 43,0 351 358 324|419 408 545 542 50.1 19.6 5.7

24 UniDet 38.6 | 352 432 36.0 37.1 339|434 41.0 589 543 51.7 207 72

25 Unidetector 452 | 423 553 56.0 482 489|552 533 587 485 489 205 7.0

26 DML-Net (ours) 60.6 | 61.7 679 742 645 68.0 | 629 646 79.7 689 724 284 134

27

o8 1 ‘SKnife’, ‘charger’, ‘bottle’, ‘phone’, and ‘lighter’ represent ‘straight knife’, ‘portable charger’, ‘mobile water bottle’, ‘mobile phone’, and ‘metallic-

lighter’, respectively.

29

30

31

32

33

;g TABLE VI: Detection performance comparisons in terms of mAP (%) and AP (%) on the OPIXray+SIXray+HiXray dataset.

36

37 Prohibited Items
Methods mAP | Common Classes on | Unique Classes on | Unique Classes on Unique Classes on

38 OPIXray and SIXray OPIXray SIXray HiXray

39 . 2 - : g

40 £ 3 - g 8 = &5 2 3z £ &

a1 £ 3 ¥ £ §l5 2 £ § F £ § ¢ 3

42 RetinaNet 46.2 | 364 452 332 326 319|652 563 60.1 | 527 519 69.8 61.6 654 256 438

43 RetinaNet+DOAM | 47.0 | 37.5 46.2 346 342 328|662 578 613|534 522 703 61.6 652 261 55

44 SSD 403 | 41.8 424 29.7 292 312 | 60.1 358 447|475 445 638 553 60.1 169 2.0

45 SSD+DOAM 42.0 | 433 432 332 304 35.1| 621 38.1 463 |48.6 453 646 56.6 61.7 18.1 3.2

46 YOLOv3 41.0 | 37.3 448 30.7 31.6 314 | 612 476 53.1 |43.0 444 63.1 53.1 578 142 23

47 YOLOV3+DOAM | 42.7 | 42.0 488 328 328 339 | 61.7 494 538|447 454 640 54.1 588 157 32
FCOS 462 | 51.9 59.1 27.1 279 283 | 645 547 614|532 522 624 595 643 238 24

48 FCOS+DOAM 477 | 533 60.3 279 285 295|666 560 628|548 538 64.1 622 668 256 3.7

49 YOLOvV7 43.1 | 389 46.2 338 346 338|630 385 462|451 463 657 569 581 174 4.1

50 YOLOV7+DOAM | 45.2 | 414 50.7 36.1 352 354|638 403 469|469 474 666 57.8 59.0 192 59

51 LA 474 | 346 48.1 352 351 324|703 58.1 623|547 553 707 614 632 239 5.1

52 Unified 359 | 32.6 407 340 36.1 326|335 354 317|413 399 542 53.1 498 188 55
UniDet 37.8 | 33.7 439 346 385 333|370 352 343|429 403 59.6 533 53.0 199 7.1

53 Unidetector 40.2 | 28.8 443 219 372 328|552 472 494|547 520 57.8 481 482 199 6.1

54 DML-Net (ours) 52.7 | 42.7 547 381 389 359|724 627 672|612 629 776 672 711 26.6 114

35 1 ‘SKnife’, ‘FKnife’, ‘UKnife’, ‘MTKnife’, ‘charger’, ‘bottle’, ‘phone’, and ‘lighter’ represent ‘straight knife’, ‘folding knife’, ‘utility knife’, ‘multi-tool

56 knife’, ‘portable charger’, ‘mobile water bottle’, ‘mobile phone’, and ‘metallic-lighter’, respectively.

57

58

59
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1) Results on OPIXray+SIXray: Table IV shows the com-
parison results on the OPIXray+SIXray dataset. We can
observe that conventional object detection methods with
DOAM achieve higher mAP than those without DOAM.
This validates the effectiveness of DOAM for detecting X-
ray security images. Our proposed DML-Net outperforms the
RetinaNet-based, SSD-based, YOLOv3-based, FCOS-based,
and YOLOv7-based methods. This is because DML-Net is
designed for multi-dataset X-ray security image detection by
explicitly modeling the intrinsic relationship between differ-
ent datasets. In contrast, the RetinaNet-based, SSD-based,
YOLOv3-based, FCOS-based, and YOLOv7-based methods
do not fully consider the large domain discrepancy between
datasets, leading to a performance drop. Moreover, our DML-
Net outperforms the Unified, UniDet, Unidetector methods
(which are designed for multi-dataset object detection in nat-
ural images). In particular, DML-Net achieves 10.7% higher
mAP than the Unidector method. For common prohibited
items (such as straight knife and scissor), our DML-Net
increases the AP by 16.6% and 10.5%, respectively. For unique
prohibited items (such as gun), DML-Net improves the AP
by 14.6%. These results show the superiority of dual-mode
learning and LAE.

2) Results on SIXray+HiXray: The comparison results on
the SIXray+HiXray dataset are given in Table V. Note that
there are no common prohibited items between SIXray and
HiXray. Thus, only unique mode learning is employed in
DML-Net. Our DML-Net outperforms the second-best de-
tector LA by a moderate margin (about 6.2% higher mAP).
This can be ascribed to the effectiveness of unique mode
learning and LAE. YOLOV3 has three detection layers, making
it good at detecting natural objects of various sizes. However,
it may struggle with very small or overlapping X-ray items.
YOLOV7 offers better accuracy and speed than YOLOv3.
Note that the RetinaNet method achieves 8.2% and 6.0%
higher mAP than YOLOV3 and YOLOV7, respectively. This is
because YOLOvV3 and YOLOV7 do not address the heavy class
imbalance problem in the X-ray image datasets. In a word,
our DML-Net excels in X-ray prohibited item detection, while
YOLO models are more suited for general object detection.

3) Results on OPIXray+SIXray+HiXray: We further eval-
uate the performance of our method on the OPIXray+SIXray+
HiXray dataset, which is a more challenging multi-dataset than
the previous two multi-datasets. The comparison results are
given in Table VI. Our DML-Net achieves better performance
on the common prohibited items (such as straight knife and
scissor) than the other competing methods. Moreover, DML-
Net also outperforms the other competing methods on all
the unique prohibited items. Hence, our method can improve
the performance of detecting both the common and unique
prohibited items on the multi-dataset.

Some detection results obtained by RetinaNet, Reti-
naNet+DOAM, Unified, and our developed DML-Net are
illustrated in Fig. 8. We can observe that RetinaNet and the
Unified method may fail to detect some occluded prohibited
items. RetinaNet+DOAM gives more accurate detection results
than RetinaNet since DOAM is specifically designed for X-
ray security images. Our DML-Net is capable of detecting
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TABLE VII: The number of parameters (Params), Giga
floating-point operations per second (GFLOPs), training time
(hour), and inference latency (frame per second) obtained
by different methods on the OPIXray+SIXray dataset. All
experiments are conducted on a single NVIDIA RTX 3090
GPU.

Method Params (M) GFLOPs Training Time Latency
RetinaNet 36.19 18.79 1.16 0.0169
RetinaNet+DOAM 36.21 20.94 1.33 0.0182
SSD 24.28 30.69 1.10 0.0120
SSD+DOAM 24.30 32.84 1.16 0.0132
YOLOv3 61.55 19.39 1.35 0.0137
YOLOvV3+DOAM 61.57 21.84 1.53 0.0156
FCOS 32.02 18.29 1.22 0.0186
FCOS+DOAM 32.04 20.44 1.42 0.0196
YOLOvV7 42.56 18.96 1.30 0.0130
YOLOvV7+DOAM 42.58 21.11 1.50 0.0140
LA 37.03 23.54 1.69 0.0212
Unified 40.20 35.67 1.45 0.0235
UniDet 45.49 40.32 2.34 0.0439
Unidetector 46.87 42.58 2.55 0.0526
DML-Net (ours) 36.20 20.65 1.28 0.0177

more prohibited items than other competing methods. By
introducing LAE into RetinaNet, the appearance information
of prohibited items can be enhanced while the negative effect
of background clutters is suppressed, facilitating dual-mode
learning. Meanwhile, dual-mode learning effectively alleviates
the large domain discrepancy and category differences between
datasets, improving the final detection performance on X-ray
security images.

4) Computational Complexity Analysis: We report the num-
ber of parameters, Giga floating-point operations per second,
training time, and inference latency obtained by different
competing methods on the OPIXray+SIXray dataset, as shown
in Table VII. Compared with RetinaNet, the number of
parameters of DML-Net slightly increases, but the perfor-
mance gains are more significant (see Table IV). Besides,
our DML-Net outperforms RetinaNet+DOAM with fewer pa-
rameters (36.20M vs. 36.21M). This demonstrates the effi-
ciency of LAE. Additionally, the training time of DML-Net
is remarkably lower than Unified, UniDet, and Unidetector.
For the inference latency, compared with RetinaNet+DOAM,
SSD+DOAM, YOLOv3+DOAM, YOLOv7+DOAM, and
FCOS+DOAM, our DML-Net achieves similar results. This
can be ascribed to the fact that DML-Net adopts a lightweight
lattice-structure based appearance enhancement module.

5) Failure Case Analysis: Fig. 9 presents some failure
cases of our DML-Net on the OPIXray+SIXray dataset. The
failure cases can be roughly summarized into two aspects:
1) Small item size: For prohibited items with small image
sizes, our method sometimes struggles to detect them. Some
false negative examples are given in the first three columns
of Fig. 9. This is because of the limited information on
small prohibited items, increasing the difficulty of extracting
discriminative features for detection. Hence, DML-Net cannot
accurately detect the small prohibited items. To address this
issue, we can incorporate contextual information (such as local
pixel context or semantic context) in the detection network. 2)
Data limitations: Our method may fail to detect the prohibited
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Fig. 9: Examples of failure cases on the OPIXray+SIXray dataset. The first row shows the original image and the corresponding
ground-truths. The second row gives the detection results obtained by our method.

items when the training data of one prohibited item category
are limited. Some false positive examples are given in the
last two columns of Fig. 9. In such cases, there exists the
severe class imbalance between classes. As a result, the trained
detector tends to focus on the detection of majority classes
while ignoring minority classes. To tackle the issue posed by
data limitations, we can either balance the data distribution
during training or employ more advanced loss functions.

V. CONCLUSION

In this paper, we investigate an under-explored but important
task, which targets training a universal X-ray image detector
on the multi-dataset. To address this task, we propose a
novel DML-Net based on an enhanced RetinaNet. Specifically,
we introduce an enhanced RetinaNet by designing LAE to
enhance appearance representations of prohibited items, miti-
gating the occlusion problem in X-ray security images. Based
on the enhanced RetinaNet, the learning process of DML-
Net involves both common mode learning and unique mode

learning to detect the common and unique prohibited items,
respectively. By tightly combining the dual modes, we signifi-
cantly eliminate the domain discrepancy between datasets and
are able to effectively detect all the prohibited items across
datasets. Extensive experimental results on combined X-ray
image datasets show the superiority of our DML-Net method
in comparison with several state-of-the-art methods.
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