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loop system is guaranteed. It is shown that the corresponding closed-loop system performance
is improved and the effectiveness of the proposed method is demonstrated by a simulation
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1. INTRODUCTION

Sliding mode control (SMC) is known to exhibit robustness
to matched uncertainty in the sliding phase and has been
widely applied in mechatronic systems as in Utkin (1993),
Bartolini et al. (1995), Yao et al. (2018). To enhance
the performance in the reaching phase, Utkin and Shi
(1996) proposed integral sliding mode control (ISMC)
which provides robustness across the whole state space.
The problem of unmatched disturbances has been studied
by Castanos and Fridman (2006), Rubagotti et al. (2010).

Although such ISMC schemes have global robustness, and
render the system robust to external disturbances from
the initial time, the design of the ISMC depends on the
availability of a known mathematical model. This may be
difficult to obtain in practice. In addition, the associated
discontinuous control can be perceived as problematic.

To remove the dependence on the existence of a system
model, researchers have considered the development of a
corresponding data-driven control as in Hjalmarsson et al.
(1998), Chien (1998), Campi and Savaresi (2006), Hou
and Xiong (2019). Among the available approaches, model
free adaptive control (MFAC) is widely used for general
nonlinear discrete-time systems due to its straightforward
computational overhead as well as the attractive features
of self-adaptation of parameters and structure as in Xu
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et al. (2014), Hou and Zhu (2013), Tutsoy et al. (2018).
Corresponding results are now emerging in the area of
model-free adaptive integral sliding mode control (MFA-
ISMC) as in Xia and Zhao (2022). However, the control
performance in these studies can exhibit problems due
to the estimation of the pseudo-partial derivative (PPD)
parameters in the MFAC algorithm, which can produce
undesirable transients during plant operation.

In the sliding mode problem formulation, chattering prob-
lems may result from the use of a potentially high gain
discontinuous control. An effective way to reduce this gain
is to design a disturbance observer. In Su et al. (2021),
an integral sliding mode disturbance observer is suggested
to estimate compound disturbances. In Hwang and Kim
(2020), an extended disturbance observer-based ISMC is
formulated using a Takagi-Sugeno fuzzy model approach.
Wang and Hou (2019) combined integral terminal sliding
mode control with MFAC to improve the performance of
discrete-time systems in the presence of disturbances. In
Xia and Zhao (2022) an ISMC based on a sliding mode
disturbance observer is designed to weaken the influence
of chattering, and the stability of the closed-loop system
is proved.

Motivated by the above literature, an MFA-ISMC algo-
rithm is presented. By reducing potentially large vari-
ations during the estimation of the model parameters,
the control gain is also consequently reduced, and the
control performance of the system is improved. An ISM-
C which integrates a disturbance observer improves the
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∆uMFA(k) =
κξ̂(k)

λ+ ξ̂(k)
2 (yd(k + 1)− y(k)), (8)

where κ ∈ (0, 1] is the step factor.

From (3), (6) and (8) it can be obtained that:

u(k) =u(k − 1) +
κξ̂(k)

λ+ ξ̂(k)
2 (yd(k + 1)− y(k))

− 1

ξ̂(k)
(D̂(k) + p1Ts(k) + p2Tsat(s(k))).

(9)

3.3 Design of the Robust PPD Estimation Algorithm

As the system model is unknown, the time-varying PPD in
(2) needs to be determined. This is achieved by minimizing
the following cost function:

J(ξ(k)) =|∆y(k)−D(k − 1)− ξ(k)∆u(k − 1)|2

+ β
���ξ(k)− ξ̂(k − 1)

���
2

,
(10)

where β > 0 is a positive weighting factor.

By minimizing (10) with respect to ξ(k) and considering
Assumption 4, the estimate is derived as:

ξ̂(k) =ξ̂(k − 1) + Ωk∆u(k − 1)[∆y(k)

− ξ̂(k − 1)∆u(k − 1)− D̂(k − 1)],
(11)

with Ωk = ρk

β+∆u(k−1)2
and

ρk = αiρ0, (12)

where α ∈ (0, 1) and i is the minimal natural number to
ensure the PPD estimate satisfies Assumption 4:

i = min
{
i ∈ N

���|∆ξ̂(k)| < lξ0

}
, (13)

where ∆ξ̂(k) = ξ̂(k) − ξ̂(k − 1). l ∈ (0, 1] and ξ0 are
adjustable parameters.

If ξ̂(k) ≤ ϖ or |∆u(k − 1)| ≤ ϖ or sign(ξ̂(k)) ̸=
sign(ξ(k)):

ξ̂(k) = ξ̂(k − 1), (14)

where ϖ is a small positive number.

The following two improvements are made to enhance the
performance of the PPD estimator with respect to Hou
and Zhu (2013), Xia and Zhao (2022). Improvement 1: if

ξ̂(k) ≤ ϖ or |∆u(k − 1)| ≤ ϖ or sign(ξ̂(k)) ̸= sign(ξ(k)),

then ξ̂(k) = ξ̂(k−1) rather than ξ̂(k) = ξ̂(1). Improvement
2: ρk is an online variable parameter determined by the

size of ∆ξ̂(k), while in Hou and Zhu (2013), Xia and Zhao
(2022), ρk = ρ0 is a constant. Based on this, the MFA-
ISMC algorithm is shown in Algorithm 1.

Remark 3. In Improvement 1, when ξ̂(k) ≤ ϖ, it follows

ξ̂(k) = ξ̂(k−1), then ξ̂(k) > ϖ is always guaranteed, which
avoids the problem of singularity in the control.

Remark 4. In Improvement 2, an exponential adjustment
method is presented. ρk is a soft coefficient to adjust the

rate of change of ξ̂(k) when
���∆ξ̂(k)

��� > ξ0, thus ensuring

that ∆ξ̂(k) satisfies Assumption 4. The proposed improved
robust PPD estimation algorithm has better adjustment
ability as well as high computational efficiency. The core
idea of the robust PPD algorithm is to improve the

resulting control effort by reducing the non-smoothness of
the estimated parameters. The effect of the improvement
will be verified by later numerical simulations.

4. STABILITY ANALYSIS

In this section, the convergence of the disturbance obser-
vation error and the PPD observation error, the stability
of the closed-loop system and the boundedness of the
tracking error are discussed.

4.1 Convergence Analysis

Theorem 1. Consider the system (1) which is assumed to
satisfy Assumptions 1 - 4. The disturbance observer (5)
and the PPD estimation algorithm (11) - (14) ensure that
both the disturbance observation error and the PPD esti-
mation error converge to the following bounded domains:���D̃(k)

��� ≤ 2D̄,
���ξ̃(k)

��� ≤ τ

1− r1
, (15)

where τ = ξ̄ + D̄ρ0√
β
, r1 =

���1− ρk∆u(k−1)2

β+∆u(k−1)2

���.

Proof. Define the disturbance observation error as D̃(k) =

D(k)− D̂(k). From (5),
���D̃(k)

��� =
���D(k)− D̂(k)

���
= |D(k)−D(k − 1)| ≤ 2D̄.

(16)

From (16), the disturbance observation error is bounded.

Let the PPD estimation error be ξ̃(k) = ξ(k)− ξ̂(k). Then:

ξ̃(k) =ξ(k)− ξ̂(k − 1)− ρk∆u(k − 1)

β +∆u(k − 1)
2

×
[
∆y(k)− D̂(k − 1)− ξ̂(k − 1)∆u(k − 1)

]

=

(
1− ρk∆u(k − 1)

2

β +∆u(k − 1)
2

)
ξ̃(k − 1) + ξ(k)

− ξ(k − 1)− ρk∆u(k − 1)

β +∆u(k − 1)
2 D̃(k − 1).

(17)

Let
���1− ρk∆u(k−1)2

β+∆u(k−1)2

��� = r1, then 0 ≤ r1 < 1.

global robustness of the system and reduces chattering.
The convergence of the disturbance observation error, the
PPD estimation error, and the stability of the closed-
loop system are proved mathematically. Simulation results
show the effectiveness of the proposed algorithm and the
improvement in the system performance.

The remainder of the paper is organized as follows. The
system description and basic assumptions are formulated
in Section 2. The proposed MFA-ISMC algorithm is pre-
sented in Section 3. In Section 4, the stability analysis of
the system is validated. A simulation example is presented
to demonstrate the proposed approach in Section 5. Con-
cluding remarks appear in Section 6.

2. SYSTEM DESCRIPTION AND BASIC
ASSUMPTIONS

Consider a class of uncertain single-input single-output
(SISO) discrete-time systems given by:

y(k + 1) = f [y(k), · · · , y(k − ky), u(k), · · · , u(k − ku),
d(k), · · · , d(k − kd)]

(1)
where f(·) is an unknown nonlinear function and u(k),
y(k) and d(k) represent the input, output and uncertainty
respectively. ky, ku and kd are unknown.

It is assumed that the following assumptions hold.

Assumption 1. The system (1) satisfies the generalized
Lipschitz condition so that |∆y(k + 1)| ≤ b |∆u(k)| for
any fixed k, |∆u(k)| ̸= 0, b ∈ R+ (R+ denotes the
positive numbers), where ∆y(k + 1) = y(k + 1) − y(k),
∆u(k) = u(k)− u(k − 1).

Assumption 2. The partial derivatives of f(·) with respect
to u(k) and d(k) are continuous.

Assumption 3. The external disturbance d(k) satisfies
|∆d(k)| ≤ d̄ ∈ R+, where ∆d(k) = d(k)− d(k − 1).

Lemma 1. (from Xia and Zhao (2022)) Suppose that As-
sumptions 1, 2 and 3 hold. Then there exists a bounded
parameter ξ (k) ∈ R (R denotes the set of real num-
bers), when |∆u(k)| ̸= 0, such that system (1) can be
transformed into the following Compact Form Dynamic
Linearization (CFDL) representation:

∆y(k + 1) = ξ(k)∆u(k) +D(k), (2)

where ξ(k) is an unknown parameter denoted as the PPD,
D(k) is the external disturbances acting on the system.

Assumption 4. The PPD parameter satisfies the condi-
tions that |ξ(k)| ̸= 0, |ξ(k)− ξ(k − 1)| < ξ̄ ∈ R+, and
considering the physical meaning of ξ(k), the sign of ξ(k) is
invariant. In this work, it is considered that ξ(k) > 0. D(k)
satisfies the boundedness condition |D(k)| ≤ D̄ ∈ R+. ξ̄
and D̄ are unknown parameters.

Remark 1. The constraints in Assumption 4 ensure that
the slowly time-varying parameter ξ(k) is greater than
zero, which means that the system is controllable and
singularity problems are avoided.

The expected output of the system is expressed by yd(k),
and the output tracking error is denoted by e(k) = y(k)−
yd(k). In this work, the control objective is to design an
ISMC scheme using only the input and output information
from the system (1), so that the tracking error converges
to a bounded range.

3. ALGORITHM FRAMEWORK

3.1 Design of the Integral Sliding Surface

In this scheme, the controller is divided into two parts:

u(k) = uISM (k) + uMFA(k), (3)

where uISM (k) is the discontinuous ISMC and uMFA(k)
is the model-free adaptive controller which controls the
nominal system.

The integral sliding surface for (2) is defined by:




s(k) =e(k)− e(0) + h(k)

h(k) =h(k − 1)− ξ̂(k − 1)∆uMFA(k − 1) + ∆yd(k)

h(0) =0

,

(4)
where s(k) is the sliding surface, h(k) is the integral term,

ξ̂(k − 1) is the estimate of ξ(k − 1) and ∆uMFA(k −
1) = uMFA(k)− uMFA(k − 1).

Remark 2. In this work, uISM (k) is a non-smooth con-
trol to eliminate the effects of matched disturbances and
ensure that the control drives the system trajectory to
the sliding mode. The component uISM (k) is determined
from ξ(k)∆uISM (k) + D(k) = 0, where ∆uISM (k) =
uISM (k) − uISM (k − 1). uMFA(k) is a high-level control
which defines the dynamic performance of the nominal
system. The sliding mode dynamics are given by ∆y(k +
1) = ξ(k)∆uMFA(k).

3.2 Design of the Disturbance Observer based MFA-ISMC

Only relying on the robustness of the ISMC to overcome
the disturbances may involve using a high gain switching
control. For some systems this can be undesirable. In this
work, a disturbance observer is designed to reduce the high
gain of the discontinuous control element and hence reduce
the chattering effects.

D̂(k) =D(k − 1)

=∆y(k)− ξ̂(k − 1)∆u(k − 1).
(5)

The initial observation is set to D̂(0) = 0.

For ξ̂(k) ̸= 0, the ISMC is designed as:

∆uISM (k) = − [D̂(k) + p1Ts(k) + p2Tsat(s(k))]

ξ̂(k)
, (6)

where p1 > 0, p2 > 0, sat(s(k)) =




1 s(k) > ∆̄
s(k)

∆̄
|s(k)| ≤ ∆̄

−1 s(k) < −∆̄

is the saturation function of s(k), ∆̄ is the boundary layer.

The MFAC is obtained by minimizing the cost function:

J(uMFA(k)) =|yd(k + 1)− y(k + 1)|2

+ λ|uMFA(k)− uMFA(k − 1)|2,
(7)

where λ > 0 is the regularization coefficient.

To design the controller for the nominal system, take the
derivative of uMFA(k), and then set it to zero, to obtain:
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∆uMFA(k) =
κξ̂(k)

λ+ ξ̂(k)
2 (yd(k + 1)− y(k)), (8)

where κ ∈ (0, 1] is the step factor.

From (3), (6) and (8) it can be obtained that:

u(k) =u(k − 1) +
κξ̂(k)

λ+ ξ̂(k)
2 (yd(k + 1)− y(k))

− 1

ξ̂(k)
(D̂(k) + p1Ts(k) + p2Tsat(s(k))).

(9)

3.3 Design of the Robust PPD Estimation Algorithm

As the system model is unknown, the time-varying PPD in
(2) needs to be determined. This is achieved by minimizing
the following cost function:

J(ξ(k)) =|∆y(k)−D(k − 1)− ξ(k)∆u(k − 1)|2

+ β
���ξ(k)− ξ̂(k − 1)

���
2

,
(10)

where β > 0 is a positive weighting factor.

By minimizing (10) with respect to ξ(k) and considering
Assumption 4, the estimate is derived as:

ξ̂(k) =ξ̂(k − 1) + Ωk∆u(k − 1)[∆y(k)

− ξ̂(k − 1)∆u(k − 1)− D̂(k − 1)],
(11)

with Ωk = ρk

β+∆u(k−1)2
and

ρk = αiρ0, (12)

where α ∈ (0, 1) and i is the minimal natural number to
ensure the PPD estimate satisfies Assumption 4:

i = min
{
i ∈ N

���|∆ξ̂(k)| < lξ0

}
, (13)

where ∆ξ̂(k) = ξ̂(k) − ξ̂(k − 1). l ∈ (0, 1] and ξ0 are
adjustable parameters.

If ξ̂(k) ≤ ϖ or |∆u(k − 1)| ≤ ϖ or sign(ξ̂(k)) ̸=
sign(ξ(k)):

ξ̂(k) = ξ̂(k − 1), (14)

where ϖ is a small positive number.

The following two improvements are made to enhance the
performance of the PPD estimator with respect to Hou
and Zhu (2013), Xia and Zhao (2022). Improvement 1: if

ξ̂(k) ≤ ϖ or |∆u(k − 1)| ≤ ϖ or sign(ξ̂(k)) ̸= sign(ξ(k)),

then ξ̂(k) = ξ̂(k−1) rather than ξ̂(k) = ξ̂(1). Improvement
2: ρk is an online variable parameter determined by the

size of ∆ξ̂(k), while in Hou and Zhu (2013), Xia and Zhao
(2022), ρk = ρ0 is a constant. Based on this, the MFA-
ISMC algorithm is shown in Algorithm 1.

Remark 3. In Improvement 1, when ξ̂(k) ≤ ϖ, it follows

ξ̂(k) = ξ̂(k−1), then ξ̂(k) > ϖ is always guaranteed, which
avoids the problem of singularity in the control.

Remark 4. In Improvement 2, an exponential adjustment
method is presented. ρk is a soft coefficient to adjust the

rate of change of ξ̂(k) when
���∆ξ̂(k)

��� > ξ0, thus ensuring

that ∆ξ̂(k) satisfies Assumption 4. The proposed improved
robust PPD estimation algorithm has better adjustment
ability as well as high computational efficiency. The core
idea of the robust PPD algorithm is to improve the

resulting control effort by reducing the non-smoothness of
the estimated parameters. The effect of the improvement
will be verified by later numerical simulations.

4. STABILITY ANALYSIS

In this section, the convergence of the disturbance obser-
vation error and the PPD observation error, the stability
of the closed-loop system and the boundedness of the
tracking error are discussed.

4.1 Convergence Analysis

Theorem 1. Consider the system (1) which is assumed to
satisfy Assumptions 1 - 4. The disturbance observer (5)
and the PPD estimation algorithm (11) - (14) ensure that
both the disturbance observation error and the PPD esti-
mation error converge to the following bounded domains:���D̃(k)

��� ≤ 2D̄,
���ξ̃(k)

��� ≤ τ

1− r1
, (15)

where τ = ξ̄ + D̄ρ0√
β
, r1 =

���1− ρk∆u(k−1)2

β+∆u(k−1)2

���.

Proof. Define the disturbance observation error as D̃(k) =

D(k)− D̂(k). From (5),
���D̃(k)

��� =
���D(k)− D̂(k)

���
= |D(k)−D(k − 1)| ≤ 2D̄.

(16)

From (16), the disturbance observation error is bounded.

Let the PPD estimation error be ξ̃(k) = ξ(k)− ξ̂(k). Then:

ξ̃(k) =ξ(k)− ξ̂(k − 1)− ρk∆u(k − 1)

β +∆u(k − 1)
2

×
[
∆y(k)− D̂(k − 1)− ξ̂(k − 1)∆u(k − 1)

]

=

(
1− ρk∆u(k − 1)

2

β +∆u(k − 1)
2

)
ξ̃(k − 1) + ξ(k)

− ξ(k − 1)− ρk∆u(k − 1)

β +∆u(k − 1)
2 D̃(k − 1).

(17)

Let
���1− ρk∆u(k−1)2

β+∆u(k−1)2

��� = r1, then 0 ≤ r1 < 1.
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Fig. 1. Tracking performance of the system

where d(k) = 30 sin(0.001kπ). In this system, the sampling
period is T = 0.01s. The expected output trajectory is
yd(k + 1) = 5× (−1)round(k/2500).

The initial conditions of the system and the control pa-
rameters are defined in Table 1 and Table 2 respectively.

Table 1. Initial conditions

u(0) y(0) y(1) ∆y(1) e(0) s(0) ξ̂(0) D̂(0)

0 0 0 0 -5 0 0.5 0

Table 2. Control parameters

ξ̂(k) uISM (k) uMFA(k)

β 2 ∆̄ 0.02 κ 0.25
ρ0 1.1 p1 20 λ 0.01
α 0.57 p2 0.6
l 1
ξ0 0.008
ϖ 1× 10−5

The response of the system with the proposed control is
shown in Figs. 1-6. From Fig. 1 and Fig. 2, the tracking
error converges to a bounded range. The control signal is
shown in Fig. 3. It can be seen from Fig. 4 that, when
the expected output of the system changes, the system
model makes some adjustments, and the PPD estimation
parameters change significantly. The improved algorithm
proposed in this paper avoids sudden changes when the
system is adjusted, so the system behavior is smoother
and the tracking accuracy is improved. It is clear that
the sliding variable s(k) in Fig. 5 and the disturbance

observation error D̃(k) in Fig. 6 converge to a bounded
domain.

Fig. 7 and Fig. 8 compare the results of different PPD
algorithms. The original PPD algorithm in Xia and Zhao
(2022) is denoted by PPDO. The robust PPD estimation
proposed in this paper is denoted by PPDN . It can be seen
from Fig. 8 that the estimate obtained by the proposed
algorithm fluctuates less. As a consequence, the tracking
performance of the proposed PPD algorithm in Fig. 7 is
better than that obtained using the original algorithm.

6. CONCLUSION

In this paper, a MFA-ISMC algorithm is proposed for
a class of nonlinear discrete-time systems. The use of a
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Fig. 4. PPD estimation ξ̂(k)
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���ξ̃(k)
��� ≤r1

���ξ̃(k − 1)
���+ |ξ(k)− ξ(k − 1)|

+

�����
ρk∆u(k − 1)

β +∆u(k − 1)
2

�����
���D̃(k − 1)

���

≤r1

���ξ̃(k − 1)
���+ ξ̄ + 2D̄

ρ0

2
√
β

=r1

���ξ̃(k − 1)
���+ τ,

(18)

lim
k→∞

���ξ̃(k)
��� ≤r1 lim

k→∞

���ξ̃(k − 1)
���+ τ

≤r1

(
r1 lim

k→∞

���ξ̃(k − 2)
���+ τ

)
+ τ

≤ · · ·

=
τ

1− r1
.

(19)

From (19), the PPD estimation error is bounded.

4.2 Stability Analysis

Theorem 2. Consider the system (1), which satisfies As-
sumptions 1 - 4, the disturbance observer (5) and the
PPD estimation algorithm (11) - (14), then the control
algorithm (9) can drive the system dynamics to maintain a
sliding motion for all time and the tracking error converges

to a bound dependent on D̃(k)− ξ̃(k)

ξ̂(k)
D̂(k).

Proof. From (4),

s(k + 1)− s(k) =e(k + 1)− e(k) + h(k + 1)− h(k)

=ξ(k)∆u(k) +D(k)− ξ̂(k)∆uMFA(k)

=ξ(k)∆uISM (k) +D(k)− ξ̃(k)∆uMFA(k)

=− ξ(k)

ξ̂(k)
[D̂(k) + p1Ts(k) + p2Tsat(s(k))]

+D(k)− κξ̂(k)ξ̃(k)

λ+ ξ̂(k)
2 [yd(k + 1)− y(k)],

(20)
then:

s(k + 1) =

(
1− ξ(k)

ξ̂(k)

(
p1T +

p2Tsat(s(k))

s(k)

))
s(k)

+ ξ̃(k)
κξ̂(k)

λ+ ξ̂(k)
2 e(k) + D̃(k)− ξ̃(k)

ξ̂(k)
D̂(k)

=(1− r2)s(k) + r3e(k) + r4,
(21)

where r2 = ξ(k)

ξ̂(k)

(
p1T + p2Tsat(s(k))

s(k)

)
, r3 = κξ̂(k)ξ̃(k)

λ+ξ̂(k)
2 ∈

(0, 1), r4 = D̃(k) − ξ̃(k)

ξ̂(k)
D̂(k). Considering Assumption 4,

it can be seen that r2 > 0, then the maximum value of r2

is ξ(k)

ξ̂(k)

(
p1T + p2T

∆̄

)
. Thus reasonable choice of p1 and p2

can ensure r2 ∈ (0, 1) is always satisfied.

In this work, it is assumed that the reference trajectory
yd(k + 1) = const, so that ∆yd(k + 1) = 0. Then:

e(k + 1) =y(k + 1)− yd(k + 1)

=∆y(k + 1) + y(k)− yd(k + 1)

=ξ(k)∆u(k) +D(k) + y(k)− yd(k + 1)

=ξ(k)[
κξ̂(k)

λ+ ξ̂(k)
2 (yd(k + 1)− y(k))

− 1

ξ̂(k)
(D̂(k) + p1Ts(k) + p2Tsat(s(k))]

+D(k) + y(k)− yd(k + 1),

(22)

From (22),

e(k + 1) =[1− κξ̂(k)ξ(k)

λ+ ξ̂(k)
2 ]e(k)−

ξ(k)

ξ̂(k)
[D̂(k) + p1Ts(k)

+ p2Tsat(s(k))] +D(k)

=[1− κξ̂(k)ξ(k)

λ+ ξ̂(k)
2 ]e(k)

− ξ(k)

ξ̂(k)
[p1Ts(k) + p2T

sat(s(k))

s(k)
]s(k)

+ D̃(k)− ξ̃(k)

ξ̂(k)
D̂(k)

=[1− κξ̂(k)ξ(k)

λ+ ξ̂(k)
2 ]e(k)− r2s(k) + r4

=(1− r5)e(k)− r2s(k) + r4,
(23)

where r5 = κξ̂(k)ξ(k)

λ+ξ̂(k)
2 ∈ (0, 1).

From (21) and (23):[
s(k + 1)
e(k + 1)

]
=

[
1− r2 r3
−r2 1− r5

] [
s(k)
e(k)

]
+

[
r4
r4

]
. (24)

Let A =

[
1− r2 r3
−r2 1− r5

]
, then the eigenvalues of matrix

A are:

λA1 =1 +
−(r2 + r5) +

√
(r2 + r5)

2 − 4r2(r5 + r3)

2
,

λA2 =1 +
−(r2 + r5)−

√
(r2 + r5)

2 − 4r2(r5 + r3)

2
.

(25)
It can be clearly observed that λA1 ∈ (0, 1). For r2, r3, r5 >
0, it is clear that (λA2)max < 1. While (λA2)min > 1−(r2+
r5) ∈ (−1, 1), so the values of λA1 and λA2 are in the unit

circle. It follows that

[
s(k + 1)
e(k + 1)

]
converges to a bound

which is dependent on r4.

5. SIMULATION EXAMPLE

Consider the system described by:

y(k + 1) =
2.5y(k)y(k − 1)

1 + y(k)
2
+ y(k − 1)

2

+ 0.7 sin(0.5(y(k) + y(k − 1)))

× cos(0.5(y(k) + y(k − 1)))

+ 1.2u(k) + 1.4u(k − 1) + d(k)

1 ≤ k ≤ 11000,

(26)
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Fig. 1. Tracking performance of the system

where d(k) = 30 sin(0.001kπ). In this system, the sampling
period is T = 0.01s. The expected output trajectory is
yd(k + 1) = 5× (−1)round(k/2500).

The initial conditions of the system and the control pa-
rameters are defined in Table 1 and Table 2 respectively.

Table 1. Initial conditions

u(0) y(0) y(1) ∆y(1) e(0) s(0) ξ̂(0) D̂(0)

0 0 0 0 -5 0 0.5 0

Table 2. Control parameters

ξ̂(k) uISM (k) uMFA(k)

β 2 ∆̄ 0.02 κ 0.25
ρ0 1.1 p1 20 λ 0.01
α 0.57 p2 0.6
l 1
ξ0 0.008
ϖ 1× 10−5

The response of the system with the proposed control is
shown in Figs. 1-6. From Fig. 1 and Fig. 2, the tracking
error converges to a bounded range. The control signal is
shown in Fig. 3. It can be seen from Fig. 4 that, when
the expected output of the system changes, the system
model makes some adjustments, and the PPD estimation
parameters change significantly. The improved algorithm
proposed in this paper avoids sudden changes when the
system is adjusted, so the system behavior is smoother
and the tracking accuracy is improved. It is clear that
the sliding variable s(k) in Fig. 5 and the disturbance

observation error D̃(k) in Fig. 6 converge to a bounded
domain.

Fig. 7 and Fig. 8 compare the results of different PPD
algorithms. The original PPD algorithm in Xia and Zhao
(2022) is denoted by PPDO. The robust PPD estimation
proposed in this paper is denoted by PPDN . It can be seen
from Fig. 8 that the estimate obtained by the proposed
algorithm fluctuates less. As a consequence, the tracking
performance of the proposed PPD algorithm in Fig. 7 is
better than that obtained using the original algorithm.

6. CONCLUSION

In this paper, a MFA-ISMC algorithm is proposed for
a class of nonlinear discrete-time systems. The use of a
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algorithms
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Fig. 8. Comparison of PPD estimates

disturbance observer reduces the gain of the discontinuous
control, thereby reducing chattering. Two improvements
have been made to the PPD algorithm to enhance the
control performance of the system. The core idea is to
prevent unnecessary fluctuations on the estimated param-
eters. The simulation results verify the effectiveness of the
improved algorithm.
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