
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-024-01965-1
Arch. Rational Mech. Anal. (2024) 248:37

Propagation for Schrödinger Operators with
Potentials Singular Along a Hypersurface

Jeffrey Galkowski & Jared Wunsch

Communicated by A. Figalli

Abstract

In this article, we study the propagation of defect measures for Schrödinger
operators −h2�g + V on a Riemannian manifold (M, g) of dimension n with V
having conormal singularities along a hypersurface Y in the sense that derivatives
along vector fields tangential to Y preserve the regularity of V . We show that the
standard propagation theorem holds for bicharacteristics travelling transversally
to the surface Y whenever the potential is absolutely continuous. Furthermore,
even when bicharacteristics are tangential to Y at exactly first order, as long as
the potential has an absolutely continuous first derivative, standard propagation
continues to hold.

1. Introduction

Let (M, g) be a smooth Riemannian manifold and Y ⊂ M be a smooth hyper-
surface. Let V be real valued and smooth away from Y , with conormal singularities
to Y in the sense that derivatives along vector fields tangential to Y preserve the
regularity of V . In this article, we study propagation of singularities, as measured
by semiclassical defect measures, for the Schrödinger operator

P := −h2�g + V .

Let p = |ξ |2g + V denote the semiclassical principal symbol of P and Hp the
Hamiltonian vector field associated to p. Recall that a sequence of functions uh with
h ↓ 0 has a (not necessarily unique) defect measure μ if along some subsequence
h j ↓ 0

〈Op(a)uh j , uh j 〉L2(M) →
∫

T ∗ M
adμ
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for all a ∈ C∞
c (T ∗M). The standard propagation theorem for defect measures is

that, if V ∈ C∞(M;R),

(−h2�g + V )u = o(h)L2 , ‖u‖L2 = 1,

and u has defect measure μ, then μ is supported in the characteristic set of p
and is invariant under the Hamiltonian flow for p. On the other hand, if V is not
continuous along Y e.g. has a jump singularity along Y , it can be shown that a
positive proportion of the energy may reflect off of Y (see [1], [7, Section 1.2], [5]).
In contrast, Theorem 1.3 below shows that, as long as V is absolutely continuous
at Y , there is no reflection along bicharacteristics transverse to Y .

Before stating our results we introduce some classes of conormal potentials.

Definition 1.1. Let B denote a Banach space of functions on M . We say that V ∈
IB(Y ) if for all k and X1, . . . , Xk smooth vector fields tangent to Y , we have

V ∈ B, X1 . . . Xk V ∈ B.

In this paper, we will mainly focus on the cases B = W k,p for k = 1, 2 and
p = 1,∞. Note that we phrase the hypotheses here in terms of conormal spaces,
the real hypotheses of our main results can be expressed in a weaker formulation in
terms of Fermi normal coordinates with respect to the hypersurface Y : Let (x, y)

be Fermi normal coordinates near Y with x the signed distance to Y . We usually
need only that V is smooth outside a Fermi neighborhood of Y and, for B a Banach
space of functions on R,

V ∈ B(Rx ; C∞(Rn−1
y )).

In our initial formulations, we will give the coordinate-invariant versions of our
theorems using conormal spaces; the weaker hypotheses under which we in fact
prove these results are discussed near the end of this section.

We begin with a discussion of the existence of a bicharacteristic flow with low
regularity assumptions. Here we use heavily the structured nature of the potential;
note that there are recent very strong results in the case of unstructured singular
coefficients in [2].

Let f denote a defining function for the hypersurface Y ,π denote the projection
map π : T ∗M → M , and let H ⊂ T ∗M denote the hyperbolic set

H = {p = 0} ∩ ({ f �= 0} ∪ {Hpπ
∗ f �= 0}),

containing points off Y as well as those points over Y where the bicharacteristic
flow is transverse to Y . Let

G2 = {p = 0} ∩ { f = Hpπ
∗ f = 0, H2

pπ∗ f �= 0}
denote the points over Y where the flow is “glancing to exactly second order.”

Theorem 1.1. If V ∈ I W 1,1, then through every point in H there exists a unique
maximal integral curve of Hp in H. If V ∈ I W 2,1 then through every point in
H ∪ G2 there exists a unique maximal integral curve of Hp in H ∪ G2.
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The integral curves in the hyperbolic region over Y in general satisfy an ODE with
merely L1 coefficients; the solution is an absolutely continuous function of t and
the equation is satisfied weakly. Note that this level of coefficient regularity (L1) is
below that required by the Peano existence theorem (continuity) hence the existence
depends on the structure of the singularities. Once we reach I W 2,1 regularity for V ,
by contrast, the coefficients of the Hamilton vector field are absolutely continuous
hence we have existence by the Peano theorem, but not uniqueness; here again
uniqueness is recovered from the particularities of the singularity structure.

We let ϕt (•) denote the Hamilton flow on eitherH or onH ∪ G2, according to
the regularity of V .

We now turn to results on propagation of defect measure. We begin with a gen-
eral low-regularity propagation result that holds for unstructured singular potentials
(i.e., not yet employing the notion of conormality used above). Note that this result
is also obtainable from the (stronger) results of [2]; we include it here for the sake
of completeness rather than novelty.

Theorem 1.2. Suppose that V ∈ C1(M) is real valued and u satisfies

‖(−h2�g + V )u‖L2 = o(h), ‖u‖L2 � C,

and has defect measure μ. Then suppμ ⊂ {p = 0} and for all a ∈ C∞
c (T ∗M),

μ(Hp(a)) = 0.

Note that at this level of coefficient regularity (continuous), bicharacteristics exist
but may fail to be unique in general, hence our conclusion concerns Hp(a) but
does not address the question of propagation along individual bicharacteristics or
invariance under the (undefined) flow. (In [2], it is shown as a corollary that the
support of μ must indeed be a union of the (non-unique) integral curves.)

In regions of T ∗M where the flow is well defined, Theorem 1.2 yields flow-
invariance of the defect measure; in particular, coupled with Theorem 1.1, it yields
the following result at hyperbolic points and second-order glancing points; here the
strengthened regularity hypothesis on V gives us existence of the flow:

Corollary 1.2. Suppose that V ∈ I W 2,1(Y ) is real valued and u satisfies

‖(−h2�g + V )u‖L2 = o(h), ‖u‖L2 � C,

and has defect measure μ. If B ⊂ {p = 0} is Borel and

inf
0�t�T,ρ∈B

|H2
p(π∗ f )(ϕt (ρ))| + |Hp(π

∗ f )(ϕt (ρ))| + |π∗ f (ϕt (ρ))| > 0,

then

μ(B) = μ(ϕT (B)).

As with the existence theory for integral curves, we can reduce the regularity
assumptions for propagation of singularities to W 1,1 by assuming that the singulari-
ties of V have the structure of a conormal distribution with respect to a hypersurface
and that we restrict our attention to H ⊂ T ∗M .
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Theorem 1.3. Suppose V ∈ I W 1,1(Y ) be real valued and u satisfies

‖(−h2�g + V )u‖L2 = o(h), ‖u‖L2 � C,

and has defect measure μ. Then suppμ ⊂ {p = 0} and for all B ⊂ {p = 0} Borel
and T > 0 such that

inf
0�t�T,ρ∈B

|Hp(π
∗ f )(ϕt (ρ))| + |π∗ f (ϕt (ρ))| > 0,

we have

μ(B) = μ(ϕT (B)).

Recall that the flow ϕt := exp(t Hp) : B → T ∗M is well defined for t ∈ [0, T ] by
Theorem 1.1.

As noted above, the results of this paper are established with weaker hypotheses
on V than the conormal ones stated above. The conormality hypotheses employed
in the statements of the main theorems have the virtue of making invariant sense
on a manifold (independent of metric) and of making contact with the hypotheses
of the prior work [7], where conormality plays an essential role. Here, however,
we can in fact get away with weaker hypotheses as follows (stated locally near
Y = {x = 0} as the theorems are local in nature). Theorem 1.1 holds under the
hypothesis that V ∈ W 1,1(Rx ; C∞(Rd−1

y )) or W 2,1(Rx ; C∞(Rd−1
y )) atH andH∪

G2 respectively. Corollary 1.2 then likewise requires only W 2,1(Rx ; C∞(Rd−1
y )).

Finally, Theorem 1.3 requires only V ∈ W 1,1(Rx ; C∞(Rd−1
y )).

The organization of this paper is as follows (note that it somewhat diverges
from the order in which the results are stated above): Theorem 1.1 is proved in
Section3 below, with the hyperbolic and glancing versions of the theorem being
respectively Lemmas 3.1 and 3.3. Theorem 1.2, which differs from the other main
results presented here in having unstructured hypotheses on V , follows from the
very general elliptic estimate Lemma 5.2 (to obtain suppμ ⊂ {p = 0}) together
with the propagation result Lemma 8.2 from the last section of the paper. Finally,
Theorem 1.3, dealing with hyperbolic propagation, follows from the elliptic esti-
mate, Lemma 5.2, coupled with the hyperbolic propagation estimate, Lemma 7.3.

Propagation of singularities for operators with conormal singularities has been
studied both for wave equations [4] and in the semiclassical case [7]. In [7], Gannot
and the second author quantify the level (in terms of powers of h) at which singu-
larities do not diffract off of Y under stronger assumptions on the potential V using
sophisticated techniques from microlocal analysis. In contrast, the methods used
in this article use only basic pseudodifferential calculus. We believe that the meth-
ods in this paper could also give the more refined estimates under less restrictive
assumptions on V than those in [7], but we do not pursue this here; instead aiming
to give a relatively simple and accessible proof.

Propagation of singularities for rough metrics without structure assumptions
has recently been investigated in [2], where the authors study the question of null-
controllability of the wave equation for C1 metrics.
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2. Conormal Distributions

We begin by clarifying our hypotheses on conormal regularity of V . As above,
let Y ⊂ M be a smooth, embedded hypersurface and let n = dim M . Following
Hörmander [9, Section 18.2], we recall the definition of conormal distributions
u ∈ I m(M, Y ) if for all N ∈ N and all smooth vector fields L1, . . . L N tangential
to Y ,

L1 . . . L N u ∈ ∞H loc
(−m−n/4)(M).

Wewill not be concerned here with the specifics of the Besov space H loc
(−m−n/4)(M);

rather, we note the equivalent definition (Theorem 18.2.8 of [9]) that u should
be smooth away from Y and that locally near Y , in coordinates x, y in a collar
neighborhood of Y with x a boundary defining function,

u =
∫
R

eixξ a(x, y, ξ) dξ,

where

a ∈ Sm+n/4−1/2(Rn
x,y × Rξ )

is a Kohn–Nirenberg symbol i.e.,

a ∈ Sm(Rn
x,y × Rξ ) ⇐⇒ |∂α

(x,y)∂
β
ξ a(x, ξ)| � Cαβ〈ξ 〉m−|β|.

We now connect this well-known scale of spaces to the spaces of distributions
arising in our hypotheses.

Lemma 2.1. Let k ∈ N. Then, for all ε > 0,

I −n/4+1/2−k−ε(M, Y ) ⊂ I W k,1(Y ) ⊂ I −n/4+1/2−k(M, Y ). (2.1)

Proof. All spaces of distributions above coincide with C∞(M) locally away from
Y , hence we work near Y in local coordinates (x, y). Given u(x, y) let ǔ(ξ, y)

denote the partial Fourier transform in the x variable. Then

u ∈ I W k,1(Y ) �⇒ (ξ∂ξ )
j∂α

y ξ�ǔ ∈ L∞(Rn
x,y × Rξ ) for all � � k, j ∈ N, α ∈ N

n−1.

Thus,

u ∈ I W k,1(Y ) �⇒ ǔ ∈ S−k(Rn × R),

yielding the second inclusion in (2.1).
To get the first inclusion, note that for I −n/4+1/2−k−ε(M, Y ),

F−1(x∂x )
j∂α

y ∂β
x,yu ∈ S−k+|β|−ε

for all j, α, β, hence, if |β| � k,

(x∂x )
j∂α

y ∂β
x,yu(x, y) =

∫
eixξ b(x, y, ξ) dξ
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for some b ∈ S−ε. It now suffices to show the RHS is in L1. To this end, we make
a splitting

∫
eixξ b(x, y, ξ) dξ =

∫
|ξ |<|x |−1−ε

eixξ b(x, y, ξ) dξ

+
∫

|ξ |�|x |−1−ε
eixξ b(x, y, ξ) dξ ≡ W< + W>.

Then |W<| � C |x |−1−ε since the integrand is bounded; this term is thus in L1.
Integration by parts in W> using the vector field x−1Dξ yields a boundary term
O(|x |−1+ε(1−ε)) (also in L1) plus an integral

x−1
∫

|ξ |�|x |−1−ε
eixξ b′ dξ

with b′ ∈ S−1−ε. This latter term is bounded by

Cx−1
∫ ∞

|ξ |>|x |−1−ε
|ξ |−1−ε dξ,

again yielding a term in L1. This establishes the first inclusion in (2.1). ��
Note that the spaces of conormal distributions I W k,1, defined via testing by

vector fields, have the virtue of being manifestly coordinate invariant; the spaces
W k,1((−δ, δ); C∞(Y )), defined locally in normal coordinates, are bigger, and gen-
erally suffice for our needs, but are not defined invariantly in the absence of ametric,
nor globally away from Y .

Lemma 2.2. The inclusion I W k,1(M, Y ) ⊂ W k,1((−δ, δ); C∞(Y )) holds and is
continuous.

Proof. Let u ∈ I W k,1(Y ). Since u is smooth away from Y , we need only work
locally near Y . Let (x, y) be Fermi coordinates near Y and u ∈ I W k,1(Y ). Then,
for each fixed x and for each j � k, and β ∈ N

n−1, the Sobolev emdedding in the
y variables yields

‖∂ j
x ∂β

y u(x, ·)‖L∞
y

� ‖∂ j
x ∂β

y u(x, ·)‖L1
y
+

∑
|α|=n

‖∂α
y ∂

j
x ∂β

y u(x, ·)‖L1
y
,

Integrating in x , we obtain

‖∂ j
x ∂β

y u‖L1
x L∞

y
� ‖∂ j

x ∂β
y u‖L1(M) +

∑
|α|=n

‖∂α
y ∂

j
x ∂β

y u‖L1(M) < ∞,

where the finiteness of the right-hand side follows from u ∈ I W k,1(M, Y ). Since
β is arbitrary and | j | � k is arbitrary, this implies the lemma. ��
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3. On the Bicharacteristic Flow

In this section, we establish lemmas on the bicharacteristic flow that combine
to prove Theorem 1.1.

3.1. The Bicharacteristic Flow in the Hyperbolic Set

We first consider the bicharacteristic flow along trajectories which pass through
the hypersurface, Y , transversally. To do this, we employ normal coordinates with
respect to the hypersurface Y , with x denoting the signed distance to Y and y =
(y1, . . . , yd−1) tangential variables, so that the metric (which we recall is, by hy-
pothesis, everywhere C∞ and nondegenerate) takes the form

g = dx2 + h(x, y, dy) = dx2 + hi j (x, y)dyidy j , (3.1)

with h(x, y, dy) a smooth family in x of metrics on Y . The metric induces a dual
metric on T ∗M given by

ξ2 + hi j (x, y)ηiη j ,

with h•,• the inverse of h in (3.1) and using coordinates in which the canonical
one-form is

ξdx + η · dy.

Then

σh(−h2�g) = ξ2 + hi j (x, y)ηiη j

and

p ≡ σh(P) = ξ2 − r

with

r = −V − hi jηiη j . (3.2)

Hamilton’s equations of motion now read as

ẋ = 2ξ

ξ̇ = ∂r

∂x

ẏ = − ∂r

∂η

η̇ = ∂r

∂y
.

(3.3)

Lemma 3.1. Suppose that V ∈ W 1,1(Rx ; C∞(Rd−1
y )) and let (x0, ξ0, y0, η0) ∈

R
2 × R

2(d−1) with ξ0 �= 0. Then there are unique absolutely continuous functions
(x(t), ξ(t), y(t), η(t)) solving (3.3) for almost every t in a neighborhood of t = 0
with initial data (x0, ξ0, y0, η0).
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Proof. We start by solving an auxiliary system of equations using the Carathéodory
theory of ODEs. We will use x as the independent variable since ẋ = 2ξ �= 0 in a
neighborhood of t = 0. Consider absolutely continuous functions (x(t), ξ(t), y(t),
η(t)) solving the equation (3.3) for almost every t with initial data satisfying ξ �= 0.
As long as ξ �= 0, ẋ = 2ξ �= 0, with x(t) ∈ C1. We may change the independent
variable from t to x and equivalently solve

dt/dx = (2ξ)−1

dξ/dx = (2ξ)−1 ∂r

∂x

dy/dx = −(2ξ)−1 ∂r

∂η

dη/dx = (2ξ)−1 ∂r

∂y
.

(3.4)

Since V ∈ W 1,1(Rx ; C∞(Rd−1
y )), and g ∈ C∞, ∂r/∂y and ∂r/∂η are both in

W 1,1(Rx ; C∞(R
2(d−1)
(y,η) )) while ∂r/∂x ∈ L1(Rx ; C∞(R

2(d−1)
(y,η) )). In particular,

‖∂β

(y,η)∂r/∂x‖L1
x

� Cβ.

Hence, the mean value theorem yields the estimate

|∂xr(x, y0, η0) − ∂xr(x, y1, η1)| � C sup
y,η∈�

|∇y,η∂xr(x, y, η)| ∈ L1(Rx )

for all pairs (y0, η0), (y1, η1) in a fixed neighborhood� of a given (y, η).A fortiori
the same estimates (indeed, better ones) hold for ∂yr, ∂ηr . Hence the hypotheses
of the existence and uniqueness theorem of Carathéodory hold (see [8, Theorem
5.3]) and this theorem shows that there exists a unique solution to the equation with
initial data in (−ε, ε)x × � and that the data-to-solution map is continuous.

Now, we simply define x : (−δ, δ)t → R by the inverse function of t (x),
which exists since t is absolutely continuous with derivative bounded away from
zero. Then the unique solution of (3.3) is given by (x(t), ξ(x(t)), y(x(t)), η(x(t))).
��

3.2. The Bicharacteristic Flow Near Glancing

We now focus on trajectories which encounter Y tangentially. In order to handle
the flow in this setting, we will make some additional assumptions on the potential
V and the surface Y . Indeed, we assume that V ∈ W 2,1(Rx ; C∞(Rn−1

y )) and the
surface Y is (locally) such that for any defining function f : M → R for Y ,

{p = 0, f = 0, Hpπ
∗ f = 0, H2

pπ∗ f = 0} = ∅, (3.5)

where π : T ∗M → M is the canonical projection. The assumption itself deserves a
small comment since a priori H2

p is not well defined. However, since π∗ f depends
only on the position variables in M , HV f ≡ 0 and we interpret H2

pπ∗ f as

H2
pπ∗ f = (H|ξ |2g + HV )(H|ξ |2g π

∗ f ),



Arch. Rational Mech. Anal. (2024) 248:37 Page 9 of 28 37

which is well defined.
We include here an alternate characterization of the condition (3.5) in terms of

the Riemannian geometry of Y .

Proposition 3.2. The curvature condition (3.5) is equivalent to the condition

∇N V /∈ conv(2V k1, . . . 2V kd−1), (3.6)

where N denotes a choice of unit normal to Y , k j are the principal curvatures of
Y , and conv denotes convex hull.

Note that a change of orientation of Y changes the signs of both N and of the
principal curvatures, so that the condition (3.6) is independent of orientation.

Proof. The condition (3.5) is equivalent to the condition that along the projection
to M of the Hamilton flow on the energy surface, we never have x = 0, ẋ = 0,
ẍ = 0.

As the Legendre transform of our Hamiltonian is L(z, ż) = (1/4) |ż|2g − V (z),
the equations of motion in the base read (with ∇ denoting the Levi-Civita connec-
tion)

∇γ̇ γ̇ = −2∇V .

Thus if γ (0) ∈ Y with γ̇ (0) = v ∈ T Y (i.e., ẋ = 0), then (with N = ∇x denoting
the oriented unit normal vector field)

ẍ = ∇v〈γ̇ , N 〉
= 〈∇vγ̇ , N 〉 + 〈v,∇v N 〉
= 〈−2∇V, N 〉 − 〈II(v, v), N 〉,

where we have used the equation of motion (and the fact that v = γ̇ ) in the final
equality, and where II denotes the second fundamental form.

Thus, the condition (3.5) is now equivalent to

〈II(v, v) + 2∇V, N 〉 �= 0 (3.7)

for v = γ̇ ∈ T Y . Now owing to conservation of the Hamiltonian, we have |v|2g =
−4V , hence the equation (3.7) is equivalent to

〈2V II(v̂, v̂) − ∇V, N 〉 �= 0

where v̂ is the unit vector in direction v. The range of 〈II(•, •), N 〉 on the unit
tangent space is the convex hull of the principal curvatures, hence the condition is
that 〈∇V, N 〉 not lie in the convex hull of 2V times these values. ��
Lemma 3.3. Suppose that V ∈ W 2,1(Rx ; C∞(Rn−1

y )) and ρ0 = (x0, ξ0, y0, η0)
satisfies

x0 = 0, ξ0 = 0, (H2
p x)(ρ0) = (Hpξ)(ρ0) �= 0,

then there is a neighborhood of t = 0 such that the solution to (3.3) with initial
condition (x0, ξ0, y0, η0) exists and is unique.
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Proof. First, notice that

(Hpξ)(ρ0) = ∂xr(ρ0) �= 0.

For t > 0, define

R1(t) :=
∫ 2|∂x r(ρ0)|t2

−2|∂x r(ρ0)|t2
sup
y,η

(|∂2x r(s, y, η)|)ds + |t |.

Observe that since r ∈ W 2,1,

lim
t→0

R1(t) = 0. (3.8)

Also note that R1(t) is increasing and strictly positive for t > 0.
Since the right-hand side of (3.3) is continuous, absolutely continuous solutions

to (3.3) exist; it remains to prove uniqueness.
Suppose that ρ(t) := (ρ′(t), ξ(t)) with ρ′(t) = (x(t), y(t), η(t)) is an abso-

lutely continuous solution of (3.3)with (x(0), ξ(0), y(0), η(0)) = (0, 0, y0, η0) =:
ρ0. Then we claim that ρ′(t) ∈ C2, ξ(t) ∈ C1, and

x(t) = ∂xr(ρ0)t
2 + O(t2R1(t)),

ξ(t) = ∂xr(ρ0)t + O(t R1(t))

y(t) = y0 − ∂ηr(ρ0)t + t2

2
(∂2yηr(ρ0)∂ηr(ρ0) − ∂2ηr(ρ0)∂yr(ρ0)) + O(t2R1(t)),

η(t) = η0 + ∂yr(ρ0)t + t2

2
(∂2yηr(ρ0)∂yr(ρ0) − ∂2yr(ρ0)∂ηr(ρ0)) + O(t2R1(t)).

(3.9)

First, observe that

ρ(t) = ρ(0) +
∫ t

0
F(ρ(s))ds,

with F ∈ W 1,1. Therefore, since ρ is continuous ρ̇ ∈ C0, and hence ρ ∈ C1. Next,
observe that since ξ ∈ C1,

ξ(t) = ∂xr(ρ0)t + o(t),

Next, we consider x(t). First observe that

x(t) =
∫ t

0
2ξ(s)ds = ∂xr(ρ0)t

2 + o(t2),

and, since ξ ∈ C1, x(t) ∈ C2.
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We now prove the error estimates in (3.9). Start by observing that

ξ(t) =
∫ t

0
∂xr(ρ(w))dw

= t∂xr(ρ0) +
∫ t

0

∫ w

0
〈∇∂xr(x(s), y(x), η(s)), ρ̇(s)〉 ds dw

= t∂xr(ρ0) +
∫ t

0

∫ w

0
〈∇(y,η)∂xr(x(s), y(s), η(s)), (ẏ(s), η̇(s))〉 ds dw

+
∫ t

0

∫ w

0
∂2x r(x(s), y(s), η(s))ẋ(s) ds dw

= t∂xr(ρ0) +
∫ t

0

∫ w

0
〈∇(y,η)∂xr(x(s), y(s), η(s)), (ẏ(s), η̇(s))〉dsdw

+
∫ t

0

∫ x(w)

0
∂2x r(z, y(s(z)), η(s(z))) dz dw.

Here s : [0, x(t)] → [0, t] is the inverse of the map x : [0, t] → [0, x(t)].
Therefore, for |t | small enough, since ρ ∈ C1 and |x(w)| = |∂xr(ρ0)|w2 + o(w2),

∣∣ξ(t) − t∂xr(ρ0)
∣∣ � Ct R1(t). (3.10)

Furthermore,

x(t) =
∫ t

0
2

∫ s

0
∂xr(ρ(w))dwds

= t2∂xr(ρ0) +
∫ t

0
2

∫ s

0

∫ w

0
〈∇∂xr(x(s′), y(s′), η(s′)), ρ̇(s′)〉ds′dwds.

Therefore, arguing as above and again using that ρ ∈ C1,
∣∣x(t) − t2∂xr(ρ0)

∣∣ � Ct2R1(t).

For y(t) we write

y(t) = y0 −
∫ t

0
∂ηr(ρ(s))ds

= y0 − ∂ηr(ρ0)t +
∫ t

0

∫ w

0
∂2yηr(ρ(s))∂ηr(ρ(s))

− ∂2xηr(ρ(s))2ξ(s) − ∂2ηr(ρ(s))∂yr(ρ(s)) ds dw.

As ∂yr, ∂ηr, ∂2yηr, ∂2ηr ∈ C1, ∂2xηr ∈ C0, ξ ∈ C1, one then easily checks that y ∈ C2,
and that the equation for y(t) in (3.9) holds. The argument for η(t) is identical.
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We are now in a position prove the uniqueness of our solution. Suppose that
ρ1(t) = (ρ′

1(t), ξ1(t)) and ρ2(t) = (ρ′
2(t), ξ2(t)) solve (3.3) with ρ1(0) = ρ2(0) =

(0, y0, η0, 0), Then

|ξ̇1 − ξ̇2|(t) � |∂xr(ρ′
1(t)) − ∂xr(ρ′

2(t))|

�
∫ 1

0
∂2x r(ρ′

1(t)s + (1 − s)ρ′
2(t))(x1(t) − x2(t))ds

+
∫ 1

0
〈∇(y,η)∂xr(ρ′

1(t)s + (1 − s)ρ′
2(t)), (y1, η1)(t) − (y2, η2)(t)〉ds

�
( ∫ 1

0
|∂2x r(ρ′

1(t)s + (1 − s)ρ′
2(t))|ds + C

)
|ρ′

1(t) − ρ′
2(t)|

(3.11)

Next, observe that, since |∂(∂yr, ∂ηr)| � C ,

|ρ̇′
1(t) − ρ̇′

2(t)| � 2|ξ1(t) − ξ2(t)| + |(∂yr, ∂ηr)(ρ′
1(t)) − (∂yr, ∂ηr)(ρ′

2(t))|
� 2|ξ1(t) − ξ2(t)| + C |ρ′

1(t) − ρ′
2(t)|.

In particular, for 0 � t < 1,

|ρ′
1(t) − ρ′

2(t)|e−Ct

� 2
∫ t

0
e−Cs |ξ1(s) − ξ2(s)|ds

� 2
∫ t

0
e−Cs

∫ s

0

∫ 1

0

(
|∂2x r(ρ′

1(w)s′ + ρ′
2(w)(1 − s′))| + C

)
|ρ′

1(w)

− ρ′
2(w)| ds′ dw ds

� C
∫ 1

0

∫ t

0

∫ s

0

(
|∂2x r(ρ′

1(w)s′ + ρ′
2(w)(1 − s′))| + C

)
|ρ′

1(w)

− ρ′
2(w)|w−2R−1

1 (w)w2R1(w)dw ds ds′

� C‖|ρ′
1(·)

− ρ′
2(·)|(·)−2R−1

1 (·)‖L∞(0,t)

∫ 1

0

∫ t

0

∫ s

0

(
|∂2x r(ρ′

1(w)s′ + ρ′
2(w)(1 − s′))| + C

)
w2

R1(w)dw ds ds′.
(3.12)

for thefinal inequality, note that (3.9) implies that‖|ρ′
1(·)−ρ′

2(·)|(·)−2R−1
1 (·)‖L∞(0,t)

� C < ∞. Now change variables, replacing w by z = s′x1(w) + (1 − s′)x2(w);
let w(z) denote the inverse map. We further split ρ′ = (x, ρ′′), i.e., ρ′′ = (y, η).
Since

inf
s′∈[0,1]

|s′ ẋ1(w) + (1 − s′)ẋ2(w)| � c|w|,
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we obtain∫ t

0

∫ s

0

(
|∂2x r(ρ′

1(w)s′ + ρ′
2(w)(1 − s′))|w2R1(w) dw ds

=
∫ t

0

∫ x(s)

0

(
|∂2x r(z, ρ′′

1 (w(z))s′ + ρ′′
2 (w(z))(1 − s′))| |w(z)|2R1(w(z))

|s′ ẋ1(w(z)) + (1 − s′)ẋ2(w(z))| dz ds

� Ct R1(t)
∫ t

0

∫ x(s)

0
|∂2x r(z, ρ′′

1 (w(z))s′ + ρ′′
2 (w(z))(1 − s′))| dz ds

� Ct2[R1(t)]2.
Using this in (3.12) shows that for 0 � t < 1,

|ρ′
1(t) − ρ′

2(t)|t−2R−1
1 (t) � C0‖|ρ′

1(·) − ρ′
2(·)|(·)−2R−1

1 (·)‖L∞(0,t) R1(t).

(3.13)

Hence (3.13) and (3.8) implies that

lim
t→0+ |ρ′

1(t) − ρ′
2(t)|t−2R−1

1 (t) = 0. (3.14)

Let

t0 := inf{t > 0 : R1(t) > C−1
0 },

and suppose there is 0 < t∗ < t0, with |ρ′
1(t∗) − ρ′

2(t∗)| > 0 (t0 < ∞ by (3.8)).
Then, since ρ′

1, ρ
′
2 are continuous and (3.14) holds, there is 0 < tm � t∗ such that

0 < ‖|ρ′
1(·) − ρ′

2(·)|(·)−2R−1
1 (·)‖L∞(0,t∗)

= |ρ′
1(tm) − ρ′

2(tm)|t−2
m R−1

1 (tm)

� C0‖|ρ′
1(·) − ρ′

2(·)|(·)−2R−1
1 (·)‖L∞(0,tm ) R1(tm)

� C0‖|ρ′
1(·) − ρ′

2(·)|(·)−2R−1
1 (·)‖L∞(0,t∗) R1(t∗).

Dividing by ‖|ρ′
1(·) − ρ′

2(·)|(·)−2R−1
1 (·)‖L∞(0,t∗), we obtain

1 < C0R1(t∗),
which is a contradiction, since R1(t∗) < C−1

0 .
Thus, ρ′

1(t) = ρ′
2(t) on [0, t0] and hence, from (3.11), we have ρ1(t) = ρ2(t)

for t ∈ [0, t0]. An identical argument applies for t ∈ [−t0, 0]. ��

4. Semiclassical Preliminaries

4.1. Defect Measures

We recall here the notion of a defect measure. Let hn → 0 and {u(hn)}∞n=1 ⊂
L2(M). For a Radon measure μ on T ∗M , we say that μ is a defect measure for the
family {u(hn)} if there exists a subsequence hnk such that, for all a ∈ C∞

c (T ∗M),

lim
j→∞〈Op(a)u(hnk ), u(hnk )〉L2(M) =

∫
a dμ. (4.1)

We now recall the following fact about existence of defect measures (See [10,
Theorem 5.2]):
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Lemma 4.1. Suppose that supn ‖u(hn)‖L2 < ∞. Then there is a subsequence
nk → ∞ and a positive Radon measure μ such that u(hnk ) has defect measure μ.

Remark 4.2. By Lemma 4.1, defect measures exist for bounded families; they have
no reason in general to be unique, however. Our results are formulated to apply to
any defect measure associated to a family of solutions to the Schrödinger equation.
By Lemma 4.1, though, we may as well pass to a subsequence which is pure in the
sense that (4.1) holds. We will do this freely from now on, henceforth restricting
our attention to the pure subsequence.

Moreover, to ease notation below,wewill often go further and drop the sequence
notation entirely to simply say that u has defect measure μ, leaving the sequence
implicit.

4.2. Tangential Operators

When analyzing our operators in the hyperbolic region, we will have cause
to use a family of tangential pseudodifferential operators which we define here.
For a concise treatment of semiclassical pseudodifferential operators, semiclassical
wavefront set, and microsupport, we refer the reader to [6, Appendix E].

Definition 4.3. Given W a normed space of functions on R, we write

W�m
T := {W(Rx ;�m(Rd−1

y ))}.
WeletW�

comp
T denote those families A(x)whereWFh(A(x)) lies in afixed compact

subset of T ∗
Ry for all x .

For symbols a ∈ W(R; Sm(R2(d−1)), let

OpT(a)u(x, y) = 1

(2πh)d−1

∫
e

i
h 〈y−y′,η〉a(x, y, η)u(x, y)dηdy.

We also define the symbol map σT : W�m
T → W(R; Sm(R2(d−1))) by

σT(A)(x, y, η) = σ(A(x))(y, η).

We will require the following result about composing tangential operators with
ordinary semiclassical pseudodifferential operators with compactly supported sym-
bols.

Lemma 4.4. Let a ∈ C∞
c ((−ε, ε); C∞

c (T ∗
R

d−1)) and χ ∈ C∞
c (T ∗M). Then

OpT(a)Op(χ) ∈ �
comp
h

and this operator has principal symbol aχ .

Proof. This result follows from writing

OpT(a) = Op(a(x, y, η)),

where we view a as a constant symbol in the ξ variable (dual to x). The composition
is then an ordinary composition of pseudodifferential operators with symbols in
S(1) as in [10, Section 4.4]. ��
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5. Technical Estimates

5.1. Elliptic Estimates

We start by giving elliptic estimates when the potential V is only continuous.

Lemma 5.1. Let P = −h2�g + V with V ∈ C0, and p = |ξ |2g + V . Then for all

A ∈ �2
h (M) with WFh(A) ⊂ {p �= 0}, there is C > 0 such that for all u ∈ L2(M)

with lim suph→0 ‖u‖L2 < ∞,

lim sup
h→0

‖Au‖L2 � C lim sup
h→0

‖Pu‖L2 .

Proof. Since V ∈ C0, there is Vε ∈ C∞ such that

lim
ε→0+ ‖Vε − V ‖C0 = 0.

Indeed, one can constructVε locally as follows.Let {χi }N
i=1 ⊂ C∞

c (M)be apartition
of unity on M with suppχi ⊂ Ui and (ψi : Ui → R

d , Ui ) a coordinate system on
M . Then, let φ ∈ C∞

c (Rd) with
∫

φ = 1, define φε(x) := ε−dφ(ε−1x), and put

Vε :=
∑

i

[
(χi V ) ◦ ψ−1

i ∗ φε

] ◦ ψi

Now, let Pε = −h2�g + Vε. Then, for A with WFh(A) ⊂ {p �= 0}, we have
for ε small enough WFh(A) ⊂ {|pε| = ||ξ |2g + Vε| > c > 0} and hence, by the
standard elliptic estimate [6, Theorem E33],

lim sup
h→0

‖Au‖L2 � C lim sup
h→0

‖Pεu‖L2

� C lim sup
h→0

‖Pu‖L2 + C lim sup
h→0

‖(V − Vε)u‖L2

� C lim sup
h→0

‖Pu‖L2 + C‖V − Vε‖C0 lim sup
h→0

‖u‖L2 .

Since the left-hand side is independent of ε > 0, this implies the lemma after
sending ε → 0. ��

Before stating our next lemma, we recall that a pure sequence is one along
which 〈Op auh, uh〉 converges to μ(a) for a unique defect measure.

Lemma 5.2. Suppose that V ∈ C0, ‖u‖L2 � C and Pu = (−h2�g + V )u =
o(1)L2 . Then there is χ ∈ C∞

c (T ∗M) such that

‖Op(1 − χ)u‖H2
h

= o(1). (5.1)

Furthermore, if uh is a pure sequence with defect measureμ, then suppμ ⊂ {p = 0}
and

μ({p = 0}) = lim
h→0

‖u‖2L2 .
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Proof. Let χ ≡ 1 near {p = 0}. Then, we apply Lemma 5.1 with A = Op(〈ξ 〉2(1−
χ)) to obtain (5.1).

To see that suppμ ⊂ {p = 0}, let a ∈ C∞
c (T ∗M) with supp a ⊂ {p �= 0}.

Then, by Lemma 5.1

‖Op(a)u‖L2 � C‖Pu‖L2 + o(1) = o(1).

In particular,

|μ(a)| = | lim
h→0

〈Op(a)u, u〉| � C lim sup
h→0

‖Op(a)u‖L2 = 0.

Finally, to see that μ({p = 0}) = limh→0 ‖u‖L2 , observe that, by (5.1)

lim sup
h→0

‖u‖2L2 = lim sup
h→0

〈u, u〉 = lim sup
h→0

〈Op(χ)u, u〉 = μ(χ).

Similarly,

lim inf
h→0

‖u‖2L2 = μ(χ)

and hence, limh→0 ‖u‖2
L2 = μ(χ) which implies the final claim. ��

5.2. L∞L2 Estimates

In this section and the following, we discuss the factorization of semiclassical
operators in the hyperbolic set near the interface Y and its consequences; for related
computations we also refer the reader to [3, Section 2].

To begin, we explore the consequences for energy estimates of having any
operator in factorized form. In this section, we consider two (potentially different)
factorized operators ϒ±:

ϒ+ = (h Dx − �0)(h Dx + �0) + hE+,

ϒ− = (h Dx + �0)(h Dx − �0) + hE−.
(5.2)

Here E−, E+ ∈ L1
�1

T and �0 ∈ L∞
�1

T, with a real valued principal symbol. In
practice, the operators ϒ± will be nearly equal.

Lemma 5.3. Suppose that �0(x) is elliptic on WFh(u(x)) for all x ∈ (−2ε, 2ε).
Then there is C > 0 such that

‖h Dx u‖L∞((−ε,ε)x )L2
y
+ ‖u‖L∞((−ε,ε)x )L2

y

� C(‖u‖H1
h

+ h−1(‖ϒ+u‖L2 + ‖ϒ−u‖L2)).
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Proof. Suppose that ϒ±u = f± and put

v± = (h Dx ± �0)u (5.3)

so that

(h Dx ∓ �0)v± = f± − hE±u.

For χ ∈ C∞
c ((−2ε, 2ε)), equal to 1 on (−ε, ε),

(h Dx ∓ �0)χ(x)v± = χ f± + [h Dx , χ ]v± − hχ E±u.

Therefore,

‖χ(x)v±(x)‖2L2
y

= −ih−1
∫ ∞

x
h Ds‖χ(s)v±(s)‖2L2

y
ds

= h−1
∫ ∞

x
2 Im〈±�0χ(s)v±(s), χ(s)v±(s)〉L2

y

+ 2 Im〈χ f±(s), χ(s)v±(s)〉L2
y

+ 2 Im〈i−1hχ ′(s)v±(s), χ(s)v±(s)〉
− 2 Im〈hχ(s)E±u(s), χ(s)v±(s)〉L2

y
ds

� C‖v±‖2L2 + Ch−2‖ f±‖2L2

+ C
∫ ∞

x
g(s)(‖χ(s)v±(s)‖2L2

y
+ ‖χ(s)u(s)‖2

H1
h,y

)ds,

where g(s) ∈ L1
loc, and where we have used the fact that �0 has real principal

symbol in our estimate of the corresponding term above. Considering v+ − v− and
using ellipticity of �0 on WFh(u(x)), we have

‖χ(x)u(x)‖2
H1

h,y
� C(‖χ(x)v+(x)‖2L2

y
+ ‖χ(x)v−(x)‖2L2

y
+ O(h∞)‖u(x)‖L2

y
)

� C(‖v+‖2L2 + ‖v−‖2L2 + O(h∞)‖u‖H1
h

+ Ch−2(‖ f+‖2L2 + ‖ f−‖2L2

+ C
∫ ∞

x
g(s)(‖χ(s)v+(s)‖2L2

y

+ ‖χ(s)v−(s)‖2L2
y
+ ‖χ(s)u(s)‖2

H1
h,y

)ds.

Thus, since ‖v±‖L2 � C‖u‖H1
h
, all together, we have

‖χ(x)u(x)‖2
H1

h,y
+ ‖χ(x)v+(x)‖2L2

y
+ ‖χ(x)v−(x)‖2L2

y

� C(‖u‖2
H1

h
+ Ch−2(‖ f+‖2L2 + ‖ f−‖2L2)

+ C
∫ ∞

x
g(s)(‖χ(s)v+(s)‖2L2

y
+ ‖χ(s)v−(s)‖2L2

y
+ ‖χ(s)u(s)‖2

H1
h,y

)ds.
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Hence, by Grönwall’s inequality, for all x ,

‖χ(x)u(x)‖2
H1

h,y
+ ‖χ(x)v+(x)‖2L2

y
+ ‖χ(x)v−(x)‖2L2

y

� C(‖u‖2
H1

h
+ h−2(‖ f+‖2L2 + ‖ f−‖2L2))e

C‖g‖L1 ,

and we obtain the desired pointwise estimate on u for x ∈ (−ε, ε), where χ = 1.
The estimate on h Dx u now follows, since

‖h Dx u(x)‖L2
y

� C(‖u(x)‖H1
h,y

+ ‖v+(x)‖L2
y
).

��

6. Estimates for the Schrödinger Equation

We now consider defect measures for solutions to Schrödinger equations with
low regularity, conormal potentials. In particular, we assume that V ∈ W 1,1((−2ε,
2ε); C∞(Y )) and use Fermi normal coordinates relative to {x = 0} so that in the
notation of (3.2),

P = (h Dx )
2 − r(x, y, h Dy) + h

(
a(x, y)h Dx + r ′(x, y, h Dy)

)
,

with r ∈ I W 1,1({x = 0}; S2(T ∗
R

d−1)), r ′ ∈ C∞(Rx ; S1(T ∗
R

d−1)), and a ∈ C∞.
Now conjugate by e

i
2

∫ x
0 a(s,y)ds to obtain

ϒ := e
i
2

∫ x
0 a(s,y)ds Pe− i

2

∫ x
0 a(s,y)ds = (h Dx )

2 − r(x, y, h Dy) + hã(x, y, h Dy),

with ã ∈ C∞(Rx ; S1(T ∗
R

d−1)).

Lemma 6.1. Let V ∈ W 1,1((−2ε, 2ε); C∞(Y )). Suppose that χ ∈ C∞
c ((−2ε, 2ε);

C∞
c (T ∗

R
d−1)) with supp(χ) ⊂ {r > 0}. Then there is � ∈ W 1,1

�1
T satisfying

ϒ OpT(χ) = (h Dx − �)(h Dx + �)OpT(χ) + hE+ OpT(χ) + O(h∞)W1,1
�−∞
T

= (h Dx + �)(h Dx − �)OpT(χ) + hE− OpT(χ) + O(h∞)W1,1
�−∞
T

,

with E± ∈ L1
�T and the symbol � satisfying

σ(�)χ = √
r(x, y, η)χ(x, y, η).

Proof. Let χ̃ ∈ C∞
c ((−2ε, 2ε); C∞

c (T ∗
R

d−1))with χ̃ ≡ 1on suppχ and supp χ̃ ⊂
{r > 0}. Put � = OpT(

√
r χ̃) ∈ W 1,1

�
comp
T . Then,

(h Dx − �)(h Dx + �) = ((h Dx )
2 − �2 + [h Dx ,�])

= (h Dx )
2 − OpT(r χ̃2) + O(h)W1,1

�
comp
T

+ [h Dx ,�].

Now, since � ∈ W 1,1
�1

T,

[h Dx ,�] ∈ hL1
�1

T.
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Next, observe that, since χ̃ ≡ 1 on suppχ ,

ϒ OpT(χ) = [(h Dx )
2 − OpT(r χ̃2)]OpT(χ) + O(h∞)W1,1

�−∞
T

In particular,

ϒ OpT(χ) = (h Dx − �)(h Dx + �)OpT(χ) + hE+ OpT(χ) + O(h∞)W1,1
�−∞
T

,

with E+ ∈ L1
�1

T.
An identical argument shows that

ϒ OpT(χ) = (h Dx + �)(h Dx − �)OpT(χ) + hE− OpT(χ) + O(h∞)W1,1
�−∞
T

,

with E− as claimed. ��
Lemma 6.2. Suppose that X ∈ C∞

�0
T with WFh(X) ⊂ {r > 0}. Then

‖h Dx Xu‖L∞((−ε,ε)x )L2
y
+ ‖Xu‖L∞((−ε,ε)x )H1

h,y
� C(‖u‖L2 + h−1‖Pu‖L2).

Proof. First, observe that σ(ϒ) = ξ2 − r(x, y, η) is elliptic for |(ξ, η)| large
enough. Therefore, by Lemma 5.1 there is χ ∈ C∞

c (T ∗
R

d) such that

‖Op(1 − χ)v‖H2
h

� C(‖v‖L2 + ‖ϒu‖L2).

In particular,

‖v‖H2
h

� C(‖v‖L2 + ‖ϒv‖L2 + ‖Op(χ)v‖H2
h
) � C(‖v‖L2 + ‖ϒv‖L2). (6.1)

Now, let X̃ = e
i
2

∫ x
0 a(s,y)ds Xe− i

2

∫ x
0 a(s,y)ds ∈ C∞

�0
T andobserve thatWFh(X̃) =

WFh(X) ⊂ {r > 0} ⊂ ell(�), hence, there is χ ∈ C∞
c ((−2ε, 2ε); C∞

c (T ∗
R

d−1))

with χ ≡ 1 on WFh(X̃) and suppχ ⊂ {r > 0}. In particular,
X̃v = OpT(χ)X̃v + O(h∞)C∞

�−∞
T

v.

Consequently, Lemma 6.1 now implies that X̃v satisfies equations

ϒ X̃v = (h Dx − �)(h Dx + �)X̃v + hE+ X̃v − R+v

= (h Dx + �)(h Dx − �)X̃v + hE− X̃v − R−v,

with

R± = O(h∞)W1,1
�−∞
T

.

Now let

ϒ+ = (h Dx − �)(h Dx + �) + hE+,

ϒ− = (h Dx + �)(h Dx − �) + hE−.

Thus

ϒ±(X̃v) = ϒ(X̃v) + R±v,
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hence Lemma 5.3 implies that for all N ∈ N,

‖X̃v‖L∞
x H1

h,y
� C(‖X̃v‖H1

h
+ h−1‖ϒ X̃v‖L2 + hN ‖v‖L2)

� C(‖v‖H1
h

+ h−1‖X̃ϒv‖L2)

� C(‖v‖L2 + h−1‖ϒv‖L2).

Put v = e
i
2

∫ x
0 a(s,y)dsu so that ϒv = e

i
2

∫ x
0 a(s,y)ds Pu and note that, since

a ∈ L1((−ε, ε); C∞(Rd−1)),

‖Xu‖L∞
x H1

h,y
� C‖X̃v‖L∞

x H1
h,y

� C(‖v‖L2 + Ch−1‖ϒv‖L2)

� C(‖u‖L2 + Ch−1‖Pu‖L2).

In addition, since a ∈ L∞((−2ε, 2ε); C∞(Rd−1)),

‖h Dx Xu‖L∞
x H1

h,y
� C(‖h Dx X̃v‖L∞

x H1
h,y

+ h‖X̃v‖L∞
x H1

h,y
)

� C(‖v‖L2 + Ch−1‖ϒv‖L2)

� C(‖u‖L2 + Ch−1‖Pu‖L2). ��

7. Defect Measures for the Schrödinger Equation

In this section we continue to assume V ∈ W 1,1((−2ε, 2ε); C∞(Y )).Our main
result here is Lemma 7.3, which, together with the elliptic estimate in Lemma 5.2,
establishes Theorem 1.3.

We now suppose that Pu = o(h)L2 , ‖u‖L2 � C and study defect measures for
u. Recall again that a pure sequence is one along which 〈Op auh, uh〉 converges to
μ(a) for a unique defect measure.

Lemma 7.1. Suppose that ‖u‖L2 � C, Pu = O(h)L2 , and uh is a pure sequence
with defect measure μ. Then, for a ∈ L1((−ε, ε); C∞

c (T ∗
R

d−1)), with supp a ⊂
{r > 0},

lim sup
h→0

|〈OpT(a)u, u〉| + |〈OpT(a)h Dx u, u〉| � C‖a‖L1
x L∞

yη
. (7.1)

In addition, for a ∈ L1((−ε, ε); C∞
c (T ∗

R
d−1)) with supp a ⊂ {r > 0},

lim
h→0

〈OpT(a)u, u〉 → μ(a), lim
h→0

〈OpT(a)h Dx u, u〉 → μ(aξ).

In particular, if a ∈ L1
x L∞

yη and supp a ⊂ {r > 0} then a, aξ ∈ L1(μ).

Proof. Westart by proving (7.1). Let a ∈ L1((−ε, ε); C∞
c (T ∗

R
d−1)with supp a ⊂

{r > 0}. Fix χ ∈ C∞((−ε, ε); C∞
c (T ∗

R
d−1) equal to 1 on supp a and supported

in {r > 0}; thus OpT(χ)∗ OpT(a)OpT(χ) = OpT(a) + O(h∞)L1
x �−∞

T
. Using

Lemma 6.2 to estimate OpT(χ)u, and Lemma 5.2 to estimate ‖u‖H2
h
, we have
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lim sup
h→0

|〈OpT(a)u, u〉|

� lim sup
h→0

∣∣∣
∫

〈(OpT(χ)∗ OpT(a)OpT(χ)u)(x), u(x)〉L2
y
dx

∣∣∣ + lim sup
h→0

O(h∞)‖u‖2L∞
x L2

y

= lim sup
h→0

∣∣∣
∫

〈(OpT(a)OpT(χ)u)(x), (OpT(χ)u)(x)〉L2
y
dx

∣∣∣ + lim sup
h→0

O(h∞)‖u‖2
H1

h

� lim sup
h→0

∫
‖OpT(a)(x)‖L2

y→L2
y
‖(OpT(χ)u)(x)‖2L2

y
dx

� lim sup
h→0

‖OpT(χ)u‖2L∞
x L2

y

∫
‖OpT(a)(x)‖L2

y→L2
y
dx

� lim sup
h→0

(‖u‖2L2 + h−2‖Pu‖2L2)

∫
‖OpT(a)(x)‖L2

y→L2
y
dx

� C lim sup
h→0

∫
‖OpT(a)(x)‖L2

y→L2
y
dx

� C
∫

sup
y,η

|σ(a)(x, y, η)|dx

� C‖σ(a)‖L1
x L∞

yη
.

Here we have crucially used Lemma 6.2 to estimate OpT(χ)u in terms of u and
Pu.

By the same line of argument (again using Lemma 6.2, as well as the O(h)

bounds on commutators)

lim sup
h→0

|〈OpT(a)h Dx u, u〉|

= lim sup
h→0

∣∣∣
∫

〈(OpT(χ)∗ OpT(a)OpT(χ)h Dx u)(x), u(x)〉L2
y
dx

∣∣∣
+ lim sup

h→0
O(h∞)‖u‖L∞

x L2
y
‖h Dx u‖L∞

x L2
y

� lim sup
h→0

∣∣∣
∫

〈(OpT(a)h Dx Op
T(χ)u)(x),OpT(χ)u(x)〉L2

y
dx

∣∣∣
+

∣∣∣
∫

〈(OpT(a)[OpT(χ), h Dx ]u)(x),OpT(χ)u(x)〉L2
y
dx

∣∣∣
+ lim sup

h→0
O(h∞)‖u‖2

H2
h

= lim sup
h→0

∣∣∣
∫

〈(OpT(a)∗ OpT(χ)u)(x), (h Dx Op
T(χ))u)(x)〉L2

y
dx

∣∣∣
+ lim sup

h→0
Ch‖u‖2L∞

x L2
y

� lim sup
h→0

∫
‖OpT(a)∗(x)‖L2

y→L2
y
‖(h Dx Op

T(χ))u)(x)‖L2
y
‖(OpT(χ)u)(x)‖L2

y
dx

� lim sup
h→0

‖h Dx Op
T(χ)u‖L∞

x L2
y
‖OpT(χ)u‖L∞

x L2
y

∫
‖OpT(a)∗(x)‖L2

y→L2
y
dx
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� lim sup
h→0

(‖u‖2L2 + h−2‖Pu‖2L2)

∫
‖OpT(a)∗(x)‖L2

y→L2
y
dx

� C‖σ(a)‖L1
x L∞

yη
.

This completes the proof of (7.1).
We now prove the rest of the Lemma. By Lemma 5.2, there is χ ∈ C∞

c (T ∗M)

such that (1−Op(χ))u = O(h)H2
h
and hence for a ∈ C∞

c ((−ε, ε); C∞
c (T ∗

R
d−1)),

by Lemma 4.4,

〈OpT(a)u, u〉 = 〈OpT(a)Op(χ)u, u〉 + O(h) → μ(aχ) = μ(a),

〈OpT(a)h Dx u, u〉 = 〈OpT(a)h Dx Op(χ)u, u〉 + O(h) → μ(aχξ) = μ(aξ).
(7.2)

Therefore, by (7.1),

|μ(a)| + |μ(aξ)| � C‖a‖L1
x L∞

yη
.

In particular, by density, if a ∈ L1
x L∞

yη with supp a ⊂ {r > 0}, then a, aξ ∈ L1(μ).
Now, let ψ ∈ C∞

c ((−1, 1)) with
∫

ψ(x)dx = 1, and define ψε(x) :=
ε−1ψ(ε−1x), and let a ∈ L1((−ε, ε); C∞

c (T ∗
R

d−1)) with supp a ⊂ {r > 0}.
Define aε := ψε ∗ a so that aε → a in L1((−ε, ε); C∞

c (T ∗
R

d−1) and, for ε > 0
small enough, supp aε ⊂ {r > 0}.

Then, by (7.1)

lim
ε→0

lim sup
h→0

|〈(OpT(aε) − OpT(a))u, u〉| + |〈(OpT(aε) − OpT(a))h Dx u, u〉| = 0

and by (7.2)

lim
h→0

〈OpT(aε)u, u〉 = μ(aε), lim
h→0

〈OpT(aε)h Dx u, u〉 = μ(aεξ).

Therefore, since

{a ∈ L1
x L∞

yη : supp a ⊂ {r > 0}} ⊂ L1(μ),

we have

lim
h→0

〈OpT(a)u, u〉 = lim
ε→0

μ(aε) = μ(a),

lim
h→0

〈OpT(a)h Dx u, u〉 = lim
ε→0

μ(aεξ) = μ(aξ). ��

We now compute μ(Hpa) for certain special test operators a.

Lemma 7.2. Suppose that ‖u‖L2 � C, Pu = o(h)L2 , and uh is a pure sequence
with defect measure μ. Then for a j ∈ C∞

c ((−ε, ε); C∞
c (T ∗

R
d−1)) with supp a j ⊂

{r > 0},
μ(Hp(a0 + a1ξ)) = 0.
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Proof. First, observe that since, by Lemma 5.2, ‖u‖H1
h

� C ,

|〈[P,OpT(a0) + OpT(a1)h Dx ]u, u〉|
� |〈(OpT(a0) + OpT(a1)h Dx1)u, Pu〉|

+ |〈(OpT(a0) + OpT(a1)h Dx1)Pu, u〉|
� C‖u‖H1

h
‖Pu‖L2 = o(h).

Now, for a ∈ C∞((−ε, ε); C∞
c (T ∗

R
d−1))

ih−1[P,OpT(a)] = 2OpT(∂x a)h Dx − OpT({r, a}) + h OpT(e1) + O(h∞)W1,1
�−∞
T

ih−1[P, h Dx ] = OpT(∂xr) + h OpT(e2)h Dx + O(h∞)W1,1
�−∞
T

for some ei ∈ W 1,1((−ε, ε); C∞
c (T ∗

R
d−1))with supp ei ⊂ supp a. Consequently,

ih−1〈[P,OpT(a0) + OpT(a1)h Dx ]u, u〉
= ih−1〈([P,OpT(a0)] + [P,OpT(a1)]h Dx + OpT(a1)[P, h Dx ])u, u〉
= 〈(

2OpT(∂x a0)h Dx − OpT({r, a0})
)
u, u

〉
+ 〈(

(2OpT(∂x a1)h Dx − OpT({r, a1}))h Dx + OpT(a1)Op
T(∂xr)

)
u, u

〉
+ h〈(OpT(b0) + OpT(b1)h Dx )u, u〉

= 〈(
2OpT(∂x a0)h Dx − OpT({r, a0})

)
u, u

〉
+ 〈(

(−OpT({r, a1}))h Dx + OpT(a1)Op
T(∂xr)

)
u, u

〉
+ 〈

2OpT(∂x a1)(P + OpT(r))u, u
〉

+ h〈(OpT(b0) + OpT(b2)h Dx )u, u〉

with bi ∈ L1((−ε, ε); C∞
c (T ∗

R
d−1)) and supp bi ⊂ {r > 0}.

Using Lemma 7.1, together with the fact that ‖u‖H1
h

� C , we obtain

0 = lim
h→0

ih−1〈[P,OpT(a0) + OpT(a1)h Dx ]u, u〉
= μ(2∂x a0ξ − {r, a0} − {r, a1}ξ + a1∂xr + 2∂x a1(p + r))

= μ(Hp(a0 + a1ξ)),

and the lemma is proved. ��
Finally, we extend the previous lemma to any test function a ∈ C∞

c (T ∗M).

Lemma 7.3. Suppose that ‖u‖L2 � C, ‖Pu‖L2 = o(h), and u has defect measure
μ. Then for all a ∈ C∞

c (T ∗M) supported close enough to {x = 0} with supp a ⊂
{r > 0},

μ(Hpa) = 0.
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Proof. Define

ae := 1
2 (a(x, ξ, y, η) + a(x,−ξ, y, η)),

ao := 1
2ξ (a(x, ξ, y, η) − a(x,−ξ, y, η)).

Then ae, ao ∈ C∞
c (T ∗M) and both are even in ξ . Moreover,

a = ae + aoξ.

Since ae, ao are even in ξ , there are ãe, ão ∈ C∞
c (T ∗M) such that

ae/o(x, ξ, y, η) = ãe/o(x, ξ2, y, η).

Finally, put

be/o(x, y, η) := ãe/o(x, r(x, y, η), y, η).

Then, be/o ∈ W 1,1((−ε, ε); C∞
c (R2n−1

ξ,y,η )) and be/o = ae/o on {p = 0}.
Now note that by Taylor’s theorem (initially treating r as an independent vari-

able),

ãe/o(x, ξ2, y, η) = ãe/o(x, r(x, y, η), y, η)

+ (ξ2 − r(x, y, η))ge/o(x, ξ2, y, η, r(x, y, η))

= be/o(x, y, η) + (ξ2 − r(x, y, η))ge/o(x, ξ2, y, η, r(x, y, η))

with ge/o smooth in all its arguments. Hence

a = ãe(x, ξ2, y, η) + ξ ão(x, ξ2, y, η)

= be(x, y, η) + ξbo(x, y, η) + pg(x, ξ2, y, η, r(x, y, η)),

Hence, we have

Hpa|p=0 = [Hp(be + boξ)]|p=0.

Therefore, since suppμ ⊂ {p = 0} by Lemma 5.2, this implies

μ(Hpa) = μ(Hp(be + boξ)),

and hence the lemma follows from Lemma 7.2. ��
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8. Propagation for C1 Potentials
We now focus on the simpler case when V ∈ C1. In this case, it is not neces-

sary to use special factorization structure, and one can apply directly the standard
arguments for invariance of defect measures. Although the results in this section
can be obtained from [2], we give a simple self contained proof in the semiclassical
setting. This, in conjunction with the elliptic estimate of Lemma 5.2, will establish
the propagation estimate of Theorem 1.2.

Lemma 8.1. Suppose that a ∈ C∞
c (T ∗M). Then there is C > 0 such that for all

V ∈ W 1,∞,

‖[Op(a), V ]‖L2→L2 � Ch‖V ‖W 1,∞ .

Proof. First, observe that we may work locally since for χ, φ ∈ C∞(M), with
suppχ ∩ suppφ = ∅, for any N , there is CN > 0 such that

‖χ Op(a)ψ‖L2→L2 � CN hN ,

and hence

‖[χ Op(a)ψ, V ]‖L2→L2 � Ch‖V ‖L∞ � Ch‖V ‖W 1,∞ .

Therefore, after decomposing using a partition of unity we may replace a by
χ̃ Op(a)χ for some χ, χ̃ ∈ C∞

c (M) with suppχ ∩ supp(1 − χ̃ ) = ∅, and χ̃

supported in a coordinate patch.
In local coordinates, the kernel of [χ̃ Op(a)χ, V ] is given in local coordinates

by

K (x, y) := 1

(2πh)d

∫
e

i
h 〈x−y,ξ〉χ̃ (x)ã(x, ξ)χ(y)(V (y) − V (x))dξ,

for some ã ∈ C∞
c (T ∗

R
d). Then, integrating by parts once in ξ , we obtain

K (x, y) := 1

i(2πh)d

∫
e

i
h 〈x−y,ξ〉 〈y − x, h∂ξ ã(x, ξ)〉

|x − y|2 χ̃ (x)χ(y)(V (y) − V (x))dξ.

Then, integrating by parts with L := h+〈x−y,Dξ 〉
h+h−1|x−y|2 , we obtain

K (x, y) := 1

i(2πh)d

∫
e

i
h 〈x−y,ξ〉( h + 〈y − x, Dξ 〉

h + h−1|x − y|2
)N

〈y − x, h∂ξ a(x, ξ)〉
|x − y|2 χ̃ (x)χ(y)(V (y) − V (x))dξ,

In particular,

|K (x, y)| � Ch1−d 〈h−1|x − y|〉−N |V (y) − V (x)|
|x − y| � Ch1−d 〈h−1|x − y|〉−N ‖V ‖W 1,∞

So that

sup
x

∫
|K (x, y)| + sup

y

∫
|K (x, y)| � Ch‖V ‖W 1,∞ .

The Schur test for L2 boundedness then implies the lemma. ��
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Lemma 8.2. Let V ∈ C1. Then if u ∈ L2(M) solves

‖(−h2�g + V )u‖L2 = o(h)L2 , ‖u‖L2 � C < ∞,

and has defect measure μ. Then for all a ∈ C∞
c (T ∗M),

μ(Hpa) = 0.

Proof. Let {χi }N
i=1 ⊂ C∞

c (M) be a partition of unity on M with suppχi ⊂ Ui

and (ψi : Ui → R
d , Ui ) a coordinate system on M . Then, let φ ∈ C∞

c (Rd) with∫
φ = 1, define φε(x) := ε−dφ(ε−1x), and put

Vε :=
∑

i

[
(χi V ) ◦ ψ−1

i ∗ φε

] ◦ ψi

Then,

‖Vε‖C1 � C, lim
ε→0

‖Vε − V ‖W 1,∞ = 0.

Let pε = |ξ |2g + Vε. Then for a ∈ C∞
c (T ∗M) real valued, we have

0 = lim
h→0

2h−1 Im〈Pu,Op(a)u〉
= lim

h→0
−ih−1(〈Op(a)∗ Pu, u〉 − 〈P Op(a)u, u〉

= lim
h→0

−ih−1(〈Op(a)Pu, u〉 − 〈P Op(a)u, u〉
= lim

h→0
ih−1〈[P,Op(a)]u, u〉

= lim
ε→0

lim
h→0

ih−1〈[−h2�g + Vε,Op(a)]u, u〉 + ih−1〈[V − Vε,Op(a)]u, u〉.

Notice that

lim
h→0

ih−1〈[−h2�g + Vε,Op(a)]u, u〉 = lim
h→0

〈Op(Hpε )u, u〉 = μ(Hpε ).

For the second term, observe that by Lemma 8.1

|ih−1〈[V − Vε,Op(a)]u, u〉| � C‖V − Vε‖W 1,∞ ,

and hence

lim
ε→0

lim
h→0

ih−1〈[V − Vε,Op(a)]u, u〉 = 0.

All together, we have shown that

0 = lim
ε→0

μ(Hpε a)

On the other hand, by dominated convergence,

lim
ε→0

μ(Hpε a) = μ(Hpa),

which completes the proof. ��
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