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Abstract 
 
Data-driven disease progression models are an emerging set of computational tools that 
reconstruct disease timelines in long-term chronic diseases, providing unique insights into 
disease processes and their underlying mechanisms. Such methods combine a priori human 
knowledge/assumptions with large-scale data processing and parameter estimation to infer 
long-term disease trajectories from short-term data. In contrast to “black box” machine 
learning tools, disease progression models typically require less data and are inherently 
interpretable, thereby aiding disease understanding in addition to enabling classification, 
prediction, and stratification. While initially developed by the statistics and machine learning 
communities for neurodegenerative disease applications, the techniques have reached a 
technological maturity level allowing adoption by the wider scientific community for use 
across a range of neuroscience and non-neuroscience applications. Here we place the 
current landscape of data-driven disease progression models in a general framework and 
discuss the enhanced utility of constructing a disease timeline compared to wider machine-
learning tools that construct static disease profiles. We review the insights they have 
enabled across multiple neurodegenerative diseases for applications such as determining 
temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms, 
and uncovering disease subtypes. Finally, we outline key areas for technological 
development and discuss potential pathways and barriers to integrating disease progression 
models in clinical practice and trial settings.  
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Introduction  
 
Neurodegenerative diseases characteristically evolve over timescales of many years with 
long preclinical/prodromal periods. Example neurodegenerative diseases with a long 
preclinical phase include Alzheimer’s disease1, Parkinson’s disease2, frontotemporal 
dementia3, and Huntington’s disease4. Neurodegenerative diseases are commonly 
associated with a stereotypical temporal pattern of disease biomarker changes – a disease 
timeline. This timeline reflects underlying measureable disease processes (biomarkers) that 
define the condition, often being unique to a particular condition or subtype5. Disease 
timelines provide a mechanism for disease classification across different patients and 
disease stages, a window into disease biology, and a framework for cohort selection in 
clinical trials and research. More broadly, many neurological and non-neurological conditions 
evolve over long timescales, often including a preclinical stage, and are associated with a 
stereotypical timeline of disease biomarker changes. Examples include multiple sclerosis6 
and lung diseases such as Chronic Obstructive Pulmonary Disease7. 
 
Mapping the timeline of a neurodegenerative disease would be relatively simple if it were 
possible to obtain densely sampled start-to-end longitudinal measurements from a set of 
individuals known to be on a similar disease trajectory. The reality of chronic illness does not 
afford such luxury. First, the requirement for dense decades-long assessment is impractical 
at scale, even when ignoring preclinical stages. Examinations are usually inconvenient (e.g. 
travelling to a memory clinic or imaging centre), often invasive (e.g. lumbar puncture), and 
expensive. Moreover, even when following a few individuals is possible, earlier technologies 
become outdated and data-consistency is low. Second, many neurodegenerative diseases 
are sporadic and thus cases are difficult to identify prior to symptoms, which may arise many 
years after the pathological process has begun. Measurements thus often undersample the 
important pre-symptomatic phase. Finally, the heterogeneity of typical patient populations 
and complexity of disease mechanisms exacerbate these problems. Studies require large 
cohorts to capture the variability of patient trajectories, and diverse sets of biomarkers to 
inform on the variety of disease processes involved. Real-world patient datasets thus 
comprise predominantly cross-sectional and short-term longitudinal biomarker 
measurements, are sparser towards the beginning of the disease, and are heterogeneous in 
nature.  
 
Data-driven disease progression models are an emerging set of computational tools that 
infer long-term disease timelines from short-term biomarker data. In contrast to classification 
or clustering tools, which construct a static average profile for a (sub)group, data-driven 
disease progression models infer a timeline describing the sequential progression or 
evolution of a disease over time. The timelines inferred by data-driven disease progression 
models have a range of applications and are increasingly being used in research studies to 
provide biological insights into neurodegenerative diseases and as a stratification tool. While 
initially developed for neurodegenerative disease applications, data-driven disease 
progression models have broader applicability across a range of long-term chronic 
conditions and are starting to be adopted for use across a wider range of neuroscience and 
non-neuroscience applications. 
 
In this review, we summarise the current state-of-the-art in data-driven disease progression 
modelling. Our review is structured as follows. We first define the term ‘data-driven disease 
progression model’ and provide a framework for data-driven disease progression modelling, 
broadly segregating disease progression models into phenomenological and 
pathophysiological models: the former aim to capture common trajectories of disease 
biomarkers without considering underlying mechanisms, while the latter aim to explain 
disease timelines in terms of biological and physical processes and characteristics. We 
describe the broader landscape of approaches that motivated and inspired the development 



   
 

   
 

of data-driven disease progression models. We review the state of the art for 
phenomenological and pathophysiological models and summarise the biological insights 
provided to date across multiple neurodegenerative diseases. Finally, we discuss further 
opportunities for technical development and how to realise the full potential of data-driven 
disease progression models as tools for disease understanding and management.  
 
 
Data-driven disease progression models 
 
Definition 
 
Data-driven disease progression models are a family of statistical and machine learning 
tools developed to learn long-term disease biomarker timelines of chronic diseases from 
short-term data without requiring prior knowledge of an individual’s disease stage. This 
enables biomarker changes to be mapped at a fine-grained temporal resolution. 
 
The term ‘data-driven disease progression model’ is inconsistently used in the literature to 
refer to a range of models. For the purposes of our review, we define data-driven disease 
progression models as having two key features: 

1. They construct a data-driven disease timeline. 
A data-driven disease timeline is a generative model of how a disease evolves over 
time that is indexed by a data-driven disease time axis – an inferred model-based 
time axis that measures an individual’s position along an expected average disease 
timeline. This feature enables the inference of timelines with a fine-grained temporal 
resolution. 

2. They are directly informed by measured data. 
The use of in vivo biomarkers ensures quantitative disease timelines that provide 
biological insight, enable patient staging and stratification, and/or provide predictions 
of long-term disease progression. 

 
Current data-driven disease progression models segregate into two broad categories: 
phenomenological and pathophysiological models. Phenomenological models aim to 
capture common trajectories of disease biomarkers without considering underlying 
mechanisms. Pathophysiological models aim to explain disease timelines in terms of 
biological and physical processes and characteristics, such as what determines vulnerability 
to disease and the spread of pathology.  
 
Framework 
 
Figure 1 outlines a framework for data-driven disease progression modelling. Data-driven 
disease progression models use a generative disease progression model and a set of 
constraints informed by human insight to infer a data-driven disease time axis and the shape 
of biomarker trajectories along it. The data-driven time axis is a model-based time axis that 
describes an expected average disease timeline, temporally realigning individuals relative to 
this timeline. This enables short-term data to inform long-term disease trajectories, whilst a 
set of trajectory constraints informed by human insights enable reconstruction from noisy 
medical datasets and ensure interpretability of outputs. In contrast to classical regression 
techniques (see Broader Landscape and Historical Context: Regression below), which 
are inherently limited by the temporal resolution of the disease staging measure used to 



   
 

   
 

position an individual along the time axis, data-driven disease progression models can 
reconstruct disease timelines at a more fine-grained temporal resolution. 
 
The framework describes both phenomenological and pathophysiological models. 
Phenomenological models typically use weaker constraints relating only to the expected 
shape of the trajectories. This requires complex fitting strategies that temporally realign 
short-term snapshots to infer the parameters of the long-term biomarker trajectories, as 
Figure 1 illustrates. In contrast, many pathophysiological models are so highly constrained 
that they can use a simple fitting approach that compares an expected trajectory for a set of 
parameters to an average end-stage disease pattern. Those models can be described in the 
framework as aligning the trajectories to a single late stage timepoint. Recent 
pathophysiological models (see last paragraph of Pathophysiological models: Dynamical 
systems models below) use the strategy of phenomenological models of realigning short-
term snapshots along the full disease time course to enable the fitting of more complex (less 
constrained) models. Our framework places the broad spectrum of phenomenological and 
pathophysiological models in a common paradigm. 
 
 

Broader Landscape and Historical Context 
 
Inferring neurodegenerative disease timelines from real-world datasets, which are 
predominantly cross-sectional and short-term longitudinal, presents a technical challenge. 
Here we describe the broader landscape and historical context that inspired the 
development of data-driven disease progression modelling for reconstructing long-term 
progression from short-term data. 

 
Neuropathological staging systems. Neuropathological staging systems8–14 aim to 
reconstruct long-term disease progression patterns from cross-sectional data but are not 
directly applicable to in vivo biomarker data. The Braak and Braak staging system8 
hypothesises that Alzheimer’s disease spreads over the brain from region to region in a 
stereotypical manner and uses this assumption to derive a neuropathological staging system 
from cross-sectional data based on the perceived frequency with which different regions are 
affected across patients. Specifically, if we observe that pathology B is often present without 
pathology A, but only rarely observe A without B, we can infer that the disease usually 
produces B before A. This idea underpins the mathematical construction of the event-based 
model (see Phenomenological models: Discrete models), enabling reconstruction of 
longitudinal progression from entirely cross-sectional data. More generally, the observation 
of sequential progression of neurodegenerative diseases from region to region and the idea 
of reconstructing longitudinal progression from cross-sectional (or short-term longitudinal) 
data inspired a broad range of disease progression models and supported the assumption 
made by most disease progression models of monotonic progression across populations. 
 
Hypothetical biomarker models. Hypothetical models15–17 describe expected timelines of 
Alzheimer’s disease biomarker progression but are not quantitative. For example, Jack et 
al.15,16 describe a hypothesised temporal pattern of in vivo biomarker evolution in Alzheimer’s 
disease based on their review of available data, proposing a model in which amyloid 
biomarkers become abnormal first, followed by neurodegenerative biomarkers and cognitive 
symptoms, with neurodegenerative biomarkers correlating with clinical symptom severity. 
Hypothetical models have been highly influential in framing the debate surrounding the 
expected pattern of Alzheimer’s biomarker changes and etiopathological mechanism. The 
unmet need for quantitative versions of these models, based on observed data, motivated 



   
 

   
 

the development of data-driven disease progression models, and inspired some of their 
design choices. Hypothetical models remain an important method of integrating and 
debating overall research findings and are continually being proposed and updated in 
response to the literature18. 
 
Regression. A simple statistical approach to inferring long-term progression from short-term 
data is to use regression to find an average trajectory across individuals, i.e., to chart an 
individual’s biomarker measurements against their position along the disease time course. 
Classical regression techniques rely on a directly measured empirical disease time axis 
requiring knowledge of an individual’s stage along the disease time axis. This stage is not 
well defined for long-term chronic diseases — especially during the pre-symptomatic phase, 
limiting the temporal resolution of the inferred disease timelines. We highlight that, although 
they are data-driven, classical regression techniques do not meet our definition of a data-
driven disease progression model because they rely on an empirical disease time axis. This 
limits their temporal resolution to the resolution of the disease staging measure used to 
index the disease time axis. Example disease-staging measures that have been used 
include:  

• Chronological age. Biomarker trajectories have been charted relative to chronological 
age19; however, age at onset of neurodegenerative diseases is variable.  

• Clinical staging. Clinical (symptomatic) staging measures have been used to 
approximate disease progression (e.g. 20–25) but are typically crude (e.g. ‘mild’, 
‘moderate’, ‘severe’) and their reliance on cognitive test scores prevents monitoring 
of progression during pre-symptomatic disease stages.  

• Biomarker indexing. Many studies have mapped biomarker patterns relative to a 
single biomarker as a proxy of disease stage26–29, such as charting cortical and 
hippocampal atrophy against a cognitive test score28. However, most biomarkers are 
sensitive only to a particular disease stage and may be non-specific to the disease of 
interest. 

• Expected age-of-onset in dominantly inherited conditions. More fine-grained temporal 
resolution has been mapped for dominantly inherited genetic diseases1,3 where 
parental age-of-onset and/or genetic markers can provide an approximate disease-
stage benchmark. However, such staging systems are imperfect30 and do not 
generalise to sporadic disease.  

• Time-to-conversion. More recently, several observational cohort studies have 
reached a duration long enough to observe conversion between diagnoses in 
moderately sized populations, enabling staging of individuals by time to diagnosis31–

34. However, such studies are limited by the accuracy of time of diagnosis and under 
sample the pre-symptomatic disease phase. 

Imperfect disease staging systems further limit the ability to characterise the heterogeneity of 
neurodegenerative diseases. Clustering is frequently used for this purpose35,36 but requires 
an accurate measure of disease stage to avoid conflating disease subtypes and stages. 
 
 
Phenomenological Models  
 
Phenomenological models (Figure 2) jointly learn disease biomarker trajectories and a data-
driven disease time axis. These disease signatures have direct application for staging and 
stratification (see Applications) through comparison of an individual’s biomarker values to 
model(s) to find the best fitting stage and/or stratum. Phenomenological models also support 
some basic mechanistic insights. For example, if a model indicates that biomarker A 



   
 

   
 

becomes abnormal before biomarker B, one might infer that underlying biological processes 
follow a similar temporal relationship. 
 
We broadly divide phenomenological models into four classes: discrete, continuous, 
spatiotemporal, and subtyping models. Figure 2 provides examples. Table 1 summarises 
the attributes of each class of phenomenological model and compares them to 
pathophysiological models. Phenomenological models are generally designed to take tabular 
data as input, i.e. spreadsheets of per-patient biomarker data sets derived from clinical 
studies, which may be cross-sectional or short-term longitudinal. More complex models, 
such as spatiotemporal models, sometimes work directly with raw data (e.g. image data 
sets) rather than derived biomarkers. Model output typically consists of a set of biomarker 
trajectories along a data-driven disease time axis. Human knowledge constrains the shape 
of those trajectories, e.g., by specifying a parametric functional form or a monotonicity 
constraint. Such constraints are relatively weak compared to the much stronger (a priori) 
constraints used by pathophysiological models. 
 
Discrete Models 
 
Discrete models describe disease progression as transitions through a series of states. Each 
state consists of an expected set of biomarker values, or ranges/distributions of values. 
Simple models (see The event-based model) impose a strict ordering of states, which 
defines the disease time axis as a sequence of disease stages with every subject passing 
through every stage. More complex models (see Extensions to the event-based model 
and Hidden Markov Models) may use a partial ordering of states so that different 
individuals follow different pathways and don’t necessarily transition through every state.  
 
The event-based model. The event-based model37 (Figure 2A) is one of the earliest 
disease progression models. Mathematically, the event-based model describes disease 
progression as an event sequence – a series of irreversible events representing transitions 
of a series of biomarkers from ‘normal’ to ‘abnormal’. Thus, at stage N the first N biomarkers 
are abnormal, while all other biomarkers remain normal. Estimation seeks the probabilistic 
ordering of such events, with a probabilistic model for each biomarker transition. The general 
principle of the event-based model is similar to that used by (heuristic) neuropathological 
staging systems: if we observe abnormality in biomarker A without abnormality in biomarker 
B more often than vice versa, we infer that A typically becomes abnormal before B. 
However, the event-based model formalises this idea within a probabilistic framework, 
acknowledging that there will be a distribution of ‘normal’ and ‘abnormal’ values across the 
population and handling uncertainty. The event-based model formalises the uncertainty in 
the population-level event sequence and uncertainty in the stage of an individual along the 
event sequence. 
  
Extensions to the event-based model. A range of enhancements have been developed 
enabling the use of the event-based model in a broader range of applications. Initially, the 
event-based model was demonstrated in genetically inherited diseases, requiring a well-
defined control population. Young et al.38 developed a mixture modelling approach enabling 
broader application to sporadic disease datasets. The original event-based model assumed 
parametric distributions. Firth et al.39 proposed a kernel density mixture modelling approach, 
facilitating application to non-parametric data, such as cognitive test scores. The event-
based model describes events as the transition from a ‘normal’ to an ‘abnormal’ level. Young 
et al. introduced z-score40 and ordinal41 versions, modelling the transitions of biomarkers 
between different scores for continuous (e.g. regional brain volumes) and ordinal (e.g. 
neuropathological or clinical ratings) data respectively. Huang et al.42 and Venkatraghavan et 
al.43 each developed versions of the event-based model that use a generalised Mallows 
model to describe a distribution of event orderings, capturing greater variability in the 
population-level event sequence than the original event-based model. The event-based 



   
 

   
 

model assumes that each event in the sequence occurs at a distinct stage, recent 
extensions enable modelling of sets of events that occur simultaneously44,45. The event-
based model describes an ordinal disease time axis comprising discrete stages with arbitrary 
duration. Du et al.46 reformulate the event-based model to have a continuous time axis with 
an arbitrary timescale, similar to pseudotime approaches (see Continuous Models: 
Pseudotime approaches below). Wijeratne et al.47,48 developed an event-based modelling 
approach that incorporates short-term longitudinal data to enable estimation of the absolute 
timescale of the time axis (see Hidden Markov Models section below). 
 
Hidden Markov Models. Hidden Markov Models are a classical machine learning approach 
that has been adapted for the task of disease progression modelling. Hidden Markov Models 
describe the temporal evolution of a set of states, modelling the expected series of future 
states under the assumption that each state depends only on the previous state. The use of 
Hidden Markov Models for disease progression modelling is challenging as they learn many 
parameters and have no natural time directionality (individuals can move from/to any state 
from any other). Hidden Markov Models have been adapted for disease progression 
modelling by using short-term longitudinal data to impose time directionality and restricting 
the number of states to ten or fewer49,50. The event-based model can be thought of as a 
Hidden Markov Model with a monotonicity constraint that enables the inference of the states 
(stages) from purely cross-sectional data. The recently introduced temporal event-based 
model47,48 incorporates ideas from Hidden Markov Modelling into the event-based model to 
infer the time between events using short-term longitudinal data. 
 
Continuous Models 
 
Continuous models describe biomarker trajectories as a continuous function of a data-driven 
disease time axis. Continuous models can be estimated from cross-sectional data to derive 
timelines with an arbitrary timescale (see Pseudotime approaches below). However, in 
practice most use short-term longitudinal data to reconstruct timelines with an absolute 
timescale (see Differential equation models and Latent-time regression approaches 
below). The current literature includes three key approaches: differential equation models 
that typically estimate biomarker trajectories independently; and pseudotime approaches 
and latent-time regression models that jointly estimate a set of biomarker trajectories and a 
common time axis. 
 
Differential equation models. Differential equation models model short-term subject-level 
changes as estimates of the derivative of a long-term group-level biomarker trajectory, which 
is inferred by integrating/inverting the model. Mathematically, this takes on the structure of a 
phase plane in physics, i.e., a model of (biomarker) velocity versus position. Velocity and 
position are calculated per individual datum (e.g., patient observation), with the group-level 
model fit inverted into a trajectory. Several differential equation models have been proposed 
between 2011 and 201428,51–54 and were influential in characterising the overall timescale of 
Alzheimer’s trajectories (see Applications), particularly the pre-symptomatic phase. 
However, most phenomenological differential equation models describe the trajectories of 
individual biomarkers separately. Thus, unlike most classes of disease progression model, 
they do not estimate a disease timeline common to all biomarkers and do not provide a 
single disease stage for individuals out-of-the-box. 
 
Pseudotime approaches. Pseudotime approaches55 (also referred to as trajectory 
inference methods) are a set of computational techniques developed by the single-cell 
transcriptomics community to study a variety of cellular dynamic processes (e.g. the cell 
cycle, cell differentiation, cell activation). Pseudotime approaches order cells along a 
trajectory based on similarities in their expression patterns, indexing cells by a disease 
‘pseudotime’, which measures their relative position along the trajectory on an arbitrary 
timescale. Pseudotime approaches have recently been adapted for inferring continuous 



   
 

   
 

data-driven disease timelines from purely cross-sectional data. Saint-Jalmes et al.56 tested 
the performance of a simple pseudotime approach involving principal components analysis 
that showed promise for recapitulating some basic features of more complex models. Iturria-
Medina et al.57–59 developed a contrastive trajectory inference approach for estimating 
disease subtypes and timelines, inspired by pseudotime approaches (see 
Phenomenological models: Disease subtype models).  
 
Latent-time regression approaches. Latent-time regression approaches (Figure 2B) 
jointly estimate a data-driven disease time axis and a set of biomarker trajectories indexed 
along this common time axis. Mathematically, they take on the structure of a multivariate 
mixed-effects model with parametric or nonparametric dependence upon a data-driven 
disease axis. Joint inference of the data-driven disease time axis and biomarker trajectories 
is performed by iteratively fitting a set of biomarker trajectories and temporally realigning 
individuals to improve their alignment with the fitted biomarker trajectories. This process of 
temporally realigning individuals is often referred to as a ‘time-shift’. The Disease 
Progression Score model60 includes group-level sigmoidal biomarker trajectories as a 
function of individual-level disease progression scores that transform chronological age by 
an individual’s rate of progression and age of disease onset. Donohue et al.61 model disease 
trajectories as continuously differentiable monotonic functions, allowing for a Gaussian 
distributed time-shift per individual, and modelling an individualised intercept and slope 
(random effects) for each biomarker. Li et al.62 extended this work to accommodate fixed 
effects and use a Bayesian framework to model uncertainty. Lorenzi et al.63 introduced a 
nonparametric Gaussian process model allowing variable uncertainty along the trajectory. 
Raket et al.64 developed a parameterised mixed-effects model tailored specifically for 
cognitive data. A range of latent-time regression approaches have been proposed to learn 
spatiotemporal image trajectories (see Phenomenological Models: Spatiotemporal 
Models below), many of which naturally handle scalar biomarker data, e.g.65–71.  
 
Spatiotemporal Models 
 
Spatiotemporal models65–70,72–76 (Figure 2C) are typically based on ideas similar to latent-
time regression approaches but operate in a high dimensional space to enable the modelling 
of either full images, shape changes of specific brain regions (such as the shape of the 
hippocampus), or image feature maps (such as maps of cortical thickness on the cortical 
surface). These models emerged from the medical image registration community where 
warping images to a common space is an early step in group analyses77. Multi-modality 
models typically handle combinations of shape changes, feature maps and scalar values. 
Voxel-wise models handle full images but are typically limited to a single modality. 
 
Multi-modality models. Schiratti et al.65–67 were the first to develop a spatiotemporal model 
with a time-shift, inspired by earlier work (e.g. 72,73) introducing time reparameterisations in 
other spatiotemporal modelling contexts. Schiratti et al. proposed a range of spatiotemporal 
models that were later formalised into a single framework68 estimating parameters for the 
time-shift of an individual, the rate of progression of an individual, and the relative positioning 
of each biomarker along the data-driven disease time axis. Whilst theoretically applicable to 
complex image data, the demonstrations of these models were restricted to scalar 
biomarkers. Koval et al.70 adapted this framework to develop the ‘Disease Course Mapping’ 
approach, which has been demonstrated on combinations of scalar biomarkers, vertex-wise 
data, and shape data (see example in Figure 2C). Louis et al.69 proposed a method that 
uses a deep generative network to learn trajectories in a low-dimensional space and then 
map them to the observation space. Abi Nader et al.76 developed a spatiotemporal version of 
the Gaussian process model of Lorenzi et al.63 
 



   
 

   
 

Voxel-wise models. Bilgel et al.74 and Marinescu et al.75 each developed voxel-wise latent-
time regression approaches that reconstruct high resolution disease progression patterns 
within a single modality. The approach of Bilgel et al.74 accounts for spatial correlation 
between neighbouring voxels, producing a smooth spatial map of disease progression. In 
contrast, the approach of Marinescu et al.75 uses weaker spatial constraints, clustering 
together vertices with common progression dynamics regardless of their spatial proximity. 
This approach offers the potential to identify smaller localised changes but may be more 
sensitive to noise in the images.  
 
Disease subtype models 
 
These models (Figure 2D) relax the assumption made by earlier phenomenological models 
of a single common disease timeline by combining ideas from clustering and disease 
progression modelling to estimate distinct data-driven disease timelines for multiple 
subgroups.  
 
Discrete disease subtyping models. The Subtype and Stage Inference (SuStaIn)40 
algorithm aims to estimate both disease subtype and timeline simultaneously. The original 
SuStaIn implementation combines a discrete disease progression model (z-score event-
based model) with clustering to estimate simultaneously a set of disease subtypes, the set of 
biomarker trajectories defining each subtype, and a data-driven (ordinal) disease time axis. 
This information can subsequently assign individuals to a subtype and stage. More recent 
developments and applications demonstrate flexibility of the SuStaIn algorithm to use 
alternative disease progression models40,41,78 and to incorporate longitudinal data to estimate 
the absolute timescale of each subtype timeline79.  
 
Continuous disease subtyping models. Contrastive trajectory inference57–59 is a 
continuous disease subtyping model for cross-sectional data based on pseudotime 
approaches that learns disease subtypes with distinct timelines on an arbitrary timescale. 
Contrastive trajectory inference consists of three steps: feature selection, dimensionality 
reduction using contrastive principal components analysis, and pseudotemporal ordering to 
obtain individual disease scores. This pseudotime describes an individual’s distance from a 
control population in the contrasted principal components space, with a minimal spanning 
tree being computed to group together subgroups of individuals that share a common 
trajectory. Similarly, filtered trajectory recovery46 is a continuous extension to the event-
based model and SuStaIn that enables recovery of disease subtypes with distinct timelines 
with an arbitrary timescale. Alternative continuous disease subtyping models80,81 use short-
term longitudinal data to estimate an absolute timescale for each subtype timeline. SubLign80 
is a two-stage algorithm that first learns individual-level time series by using a deep 
generative model to disentangle temporal variation in the data due to disease severity at 
baseline from spatial variation due to subtype, and then clusters these individual-level time 
series using k-means clustering to obtain a subtype identity for each individual. Poulet and 
Durrleman81 developed a clustering extension to Disease Course Mapping70 based on 
mixture modelling, jointly estimating subtypes and a non-linear mixed effects model for each 
subtype. 
 
 
Pathophysiological Models  
 
Pathophysiological models (Figure 3 and Figure 4) describe expected disease timelines in 
terms of underlying pathophysiological processes and patient characteristics. The models 
estimate the characteristics of assumed pathophysiological processes that generate disease 
timelines that best predict observed biomarker measurements, typically focussing more on 
biological hypothesis-testing and insight than on disease phenomenology. 



   
 

   
 

Pathophysiological models can provide evidence for/against competing hypotheses about 
disease mechanisms. 
 
This section first discusses the concepts of pathogen appearance and spreading, which are 
central to all classes of pathophysiological model. We then review the state of the art in 
pathophysiological modelling, broadly dividing pathophysiological models into network 
models, dynamical systems models, and models of mechanistic combinations (which can 
include network models and dynamical systems models).  
 
Table 1 summarises the attributes of each class of pathophysiological models, contrasting 
them with phenomenological models. Pathophysiological models typically take as input a 
model or approximation of a topological property of the brain, such as a connectivity map82  
or gene-expression map e.g.83 (often based on an average template from healthy controls), 
which is assumed to drive or mediate pathophysiology according to human knowledge or 
hypotheses. Leveraging relatively strong a priori constraints, a model outputs a set of 
expected biomarker trajectories along a data-driven disease timeline, together with 
estimates of any pathophysiological parameters tuned by the model. Network models have 
very high constraints, with the expected pathology pattern being entirely defined by 
connectivity metrics. The constraints in a dynamical systems model are slightly weaker but 
still high, typically estimating only a few key parameters of a pathophysiological process. 
Models of mechanistic combinations aim to describe the relative effects, and possibly 
interactions, of multiple mechanisms simultaneously. Their constraint level varies according 
to the number of mechanisms and pathophysiological parameters per mechanism; however, 
we describe a typical model as being moderately constrained. 
 
Appearance and spreading 
 
Pathophysiological models are often used to model the appearance and/or spread of 
pathology in and between brain regions. Figure 3 illustrates this conceptually, showing how 
characteristics of the brain connectivity network can be linked to the appearance and spread 
of pathology. Appearance mechanisms (Figure 3, upper rows) include “hub vulnerability” 
(Figure 3, first row), where the stress of high usage increases disease susceptibility84–86; and 
“hub sparing” (Figure 3, second row), where low usage/connectivity increases disease 
susceptibility87,88. Spreading mechanisms (Figure 3 lower rows) include prion-like pathology 
diffusion from an epicentre (Figure 3 third row), which can be constrained along white-
matter fibres89–91 and influenced by the orientation of white matter fibres92, or 
unconstrained93 (Figure 3 fourth row).  
 
Network models 
 
Network models implement mechanistic hypotheses by associating brain network properties 
with disease progression timelines. Models typically use functional or structural connectivity 
matrices from (often healthy) functional MRI or diffusion MRI tractography82,94–101, based on 
the observation that the pathways of protein propagation largely overlap with functional or 
structural brain networks13,88,102, but may also use other estimates of brain connectivity 
networks103,104. The seminal study of Zhou et al.82 aimed to test various mechanistic 
hypotheses of neurodegenerative pathology – transneuronal or “prion-like” spread102,105,106, 
nodal stress85,86,107, trophic failure108, and shared vulnerability87,109–112  – via graph theory 
metrics of the brain’s functional connectivity. Mathematically, hub vulnerability was modelled 
using network centrality/segregation metrics, which are high/low in brain hubs and low/high 
in isolated regions, respectively. Pathology appearance and spreading was modelled using 
graph distance from an epicentre. Each hypothesised mechanism produces a competing 
expected disease timeline, the evidence for which is evaluated by comparison with late-



   
 

   
 

stage atrophy severity patterns in Alzheimer’s disease. The authors found that network 
distance had the strongest evidence, supporting prion-like spreading from an epicentre.  
 
Subsequent studies based on functional connectivity reported similar findings that favour the 
“prion-like spreading hypothesis” over other network-based mechanistic hypotheses96–98. 
Others use tractography-based structural connectivity94,95, which estimates physical 
connections (rather than functional correlations) between brain regions along which 
pathogens could spread but draw similar conclusions on the prion hypothesis in Alzheimer’s 
disease. Indeed, it has been observed that the strength of resting-state functional 
connectivity closely correlates with structural connectivity strength113, indicating that 
functional networks are neuronal in origin. These studies mostly use the same set of network 
metrics originally proposed by Zhou82, except for one96 who used a participation coefficient 
between subnetworks, which might correlate with metabolic activity114. 
 
Dynamical systems models 
 
Dynamical systems models aim to emulate biophysical spatiotemporal processes of protein 
appearance, spreading, and clearance in neurodegenerative diseases. These models 
typically encode protein dynamics in the kinetic parameters of a system of differential 
equations92,115–124. Mathematically, dynamical systems models estimate a timeline that is 
completely driven by the dynamics inferred from an underlying set of differential equations, 
and thus mostly differ from each other in the type of differential equations used (e.g. diffusion 
systems or reaction diffusion systems). As with network models, most such models use brain 
connectivity estimates from imaging as a substrate for mediating prion-like protein 
spreading. However, the differential structure of the models potentially introduces additional 
temporal complexity: whereas network models produce a timeline corresponding to a fixed 
pattern of pathology that simply increases steadily in intensity over time, dynamical systems 
models can produce patterns that change over time, i.e. pathology levels in one region may 
overtake those in another (as, for instance, the timeline induced by reaction-diffusion 
systems). Early dynamical systems models, such as in the network diffusion model shown in 
Figure 4 (a), considered pathology spreading from only a single epicentre — enforcing 
“prion-like” spreading by means of simple linear diffusion models between connected 
regions116,119,120. Iturria-Medina et al.118 combine terms for appearance and clearance of 
pathogenic proteins with spreading in their epidemic spreading model (Figure 4(b)). They 
demonstrate qualitatively the model’s ability to reconstruct both amyloid118 and tau125 
deposition patterns in Alzheimer’s disease. Later models capture more complex 
mechanisms such as saturation of protein accumulation92,115,117,121–124 by incorporating ideas 
from reaction-diffusion processes. Such models show compelling prediction of pathology 
timelines in Alzheimer’s disease, consistent with observations, e.g., that tau pathology 
directly precedes atrophy and predicts its topography126. Recent approaches also use 
imaging techniques to inform models in ways that go beyond structural/functional 
connectivity networks. For example, Weickenmeier et al.92,121 (Figure 4(c)) use a fibre-
orientation map from diffusion tensor MRI as a substrate for their reaction-diffusion model of 
pathology spreading, rather than using derived estimates of brain connectivity.  
 
Most dynamical system models assume a single epicentre common to all patients, although 
the heterogeneity of neurodegenerative conditions suggests the initial location of pathology 
appearance may vary. Moreover, appearance may not be limited to a single location or 
region. Garbarino and Lorenzi115,122 acknowledge that pathology epicentre likely varies 
among individuals and personalise individual epicentres to a measured early time-point. 
Similarly, Torok et al.127 invert the network diffusion model116 to wind back the clock from 
patterns observed in individual patients and show that the most likely single epicentre varies 
substantially across individuals. Vogel et al.125 used the epidemic spreading model from118 to 
identify distinct epicentres corresponding to each of four subtypes of tau accumulation in 
Alzheimer’s disease, but constrain investigation to a single epicentre region for each 



   
 

   
 

subtype. Identification/optimisation of multi-region epicentres remains a compelling 
challenge for future work. 
 
While all pathophysiological models describe disease timelines, inference and evaluation of 
pathophysiological models tends to compare only end-stage predictions of pathology with 
observed late-stage pathology patterns from individual patients or cohorts. This is 
reasonable for simple network models where time only increases the intensity of a consistent 
pattern. However, for more complex dynamical systems models, the temporal evolution of 
the pattern contains rich information for parameter estimation and model evaluation. Recent 
studies95,96,115,117,122,124,128 have moved towards learning pathophysiological models based on 
their ability to predict the full timeline of the disease rather than just late-stage pathology. 
This can be achieved by using phenomenological disease progression models as the 
observed timelines that pathophysiological models aim to capture115,122. 
 
Mechanistic combinations 
 
Most applications of network models have focused on evaluating the ability of each 
individual network-metric to explain observed data with the goal of identifying the single 
mechanism that best explains observed pathology patterns. Similarly, dynamical system 
models have mostly enforced the prion-like spread hypothesis via network proximity. Both 
network and dynamical systems models can be extended to model mechanistic 
combinations, aiming to infer a disease timeline that depends on the relative contribution of 
multiple mechanisms. Garbarino et al.94 (see Figure 4(d)) suggest that a combination of 
hypothetical mechanisms likely contributes to timelines observed in any particular disease or 
individual. Mathematically, the solve a constrained regression problem to infer a set of 
network metric weightings that combine to define a disease-specific, or even individual, 
“topological profile” that represents a combination of hypothetical appearance/spreading 
mechanisms. Iturria-Medina et al.128–130 explicitly modelled multiple interacting processes 
(amyloid pathology; atrophy; vascular pathology; glucose metabolism) within a dynamical 
multimodal network model, mathematically based on control theory of dynamical systems. 
Fitting the model to patient data suggests vascular dysregulation as an early instigating 
event in the Alzheimer’s pathological cascade. Weickenmeier et al.121 coupled a reaction-
diffusion dynamical system model for the propagation and accumulation of toxic proteins 
with a mechanical atrophy model for toxin protein-indeced atrophy and showed that the 
resulting model reproduces typical protein deposition and atrophy patterns found in 
neurodegenerative diseases. More recently, Lee et al.101 proposed a network flow-based 
connectivity model for the mechanisms of interaction of amyloid and tau in Alzheimer’s 
disease, which recapitulates the topographical dissimilarity between early amyloid and tau 
deposition. He et al.131 couple various candidate models of appearance and propagation to 
identify profiles similar to Garbarino et al.94 and group subjects by similar profile. 
 
 
Applications 
 
Data-driven disease progression models offer unique potential for impact in fundamental 
disease understanding and clinical applications. Figure 5 shows highlights from the 
literature, but this section discusses both past work and future aspirations.  
 
Biological insight and novel treatment strategies  
 
Early motivators for data-driven disease progression models included understanding the 
sequence of changes in a neurodegenerative condition, particularly Alzheimer’s disease. 
Such biological insight can inform treatment strategies and have clinical impact. Work to 
date has generated knowledge regarding how sequences vary among conditions, how 



   
 

   
 

trajectories of multi-modal biomarkers relate on a common timeline, and data-driven 
verification of qualitative hypothetical models.  
 
Pathology accumulation timescales. Differential equation models (Figure 5A) were 
instrumental in understanding timescales via trajectories of cognitive decline51,132,133 and 
pathology accumulation in sporadic28,52–54,134 and familial135 Alzheimer’s disease. In 
particular, differential equation models52,53 (Figure 5A) provided the first quantitative 
estimates of the timescales over which β-amyloid accumulates in Alzheimer’s disease, 
estimating up to 19 years for the transition from early abnormality to a level typical of 
symptomatic patients. 
 
Quantitative support for hypothetical models. Event-based models of sporadic38,43 and 
familial135 Alzheimer’s disease provided quantitative support for hypothetical models15,136 of 
the Alzheimer’s cascade, along with patient staging tools (Figure 5C). They confirmed that 
accumulation of β-amyloid and tau (quantified using CSF or PET imaging) precede brain 
atrophy (from MRI) and cognitive decline. Event-based models have further been used to 
demonstrate predence of new biomarkers to existing ones137. Similarly, self-modelling 
regression approaches32,61–63,66,70,74,138,139 among others have produced data-driven 
biomarker trajectories (and staging tools) for Alzheimer’s disease61, Parkinson’s 
disease50,140, and Huntington’s disease141 that broadly reflect the ordering of changes in 
hypothetical and anecdotal models, although the precise trajectories of change vary among 
methods and data sets. 
 
Fine-grained intra-modality models. Fine-grained insights can be yielded from intra-
modality models, e.g., regional imaging biomarkers or sets of cognitive test scores. 
Compelling early image-based results in familial disease37 led to applications in a wide 
variety of sporadic and familial diseases, e.g., Huntington’s disease142, Parkinson’s 
dementia143, progressive multiple sclerosis144,145, frontotemporal dementia40,146, amyotrophic 
lateral sclerosis147–149, progressive supranuclear palsy150, and Creutzfeldt-Jakob disease151. 
Event-based models of cognitive tests39,41 show unique insight into the ordering in which 
specific cognitive abilities decline, which is particularly useful for understanding atypical, 
rarer dementias such as posterior cortical atrophy152.  
 
Subtype characterisation. Subtype models offer new understanding of heterogeneity 
across the full disease timeline. Applications to date are mostly within-modality, including: 
highlighting distinct patterns of brain atrophy accumulation in Alzheimer’s disease40,153, 
frontotemporal dementia40,146, multiple sclerosis144, and corticobasal syndrome/progressive 
supranuclear palsy154; patterns of tau and amyloid accumulation in Alzheimer’s disease155,156 
and proteomic subtypes of Alzheimer’s disease157. Image-based data-driven disease 
subtypes are predictive of genotype in frontotemporal dementia40, cognitive decline in 
Alzheimer’s disease155 (Figure 5B middle), treatment response in multiple sclerosis144 
(Figure 5B upper) and may even find value in pre-symptomatic disease40,158 (Figure 5B 
lower). Subtype models have been applied to neuropathological ratings data to develop a 
novel data-driven staging system for TDP-43 pathologies159. 
 
Influence of disease risk factors. Phenomenological models also offer potential new 
understanding of how various risk factors influence disease onset and manifestation. For 
example, Vogel et al.155 showed that rates of disease progression vary among tau subtypes 
and Young et al.160 showed that particular Alzheimer’s subtypes associate with 
cardiovascular/diabetes risk factors. Young et al.40 also showed that image-based subtypes 
in genetic frontotemporal dementia broadly align with mutation groups (providing important 



   
 

   
 

validation of the algorithm), but additionally that the c9orf72 mutation group divides into two 
distinct manifestations of brain atrophy pattern, as does the MAPT mutation group146, which 
can be linked to specific mutations in the MAPT gene. Those models typically look at risk 
factor association post hoc once the model has been constructed. In contrast, the 
spatiotemporal model of Koval et al.70 jointly learns the progression of Alzheimer’s disease 
conditioned on a variety of risk-factor levels to provide a comprehensive picture of how risk 
factors affect progression in Alzheimer’s disease, including earlier and accelerated cognitive 
decline in women.  
 
Mechanistic insight. Pathophysiological models aim to understand mechanisms of disease. 
The notion that computational models trained on collections of macroscopic images might 
reveal which microscopic/molecular processes are at play is compelling. However, 
experiments to date are simplistic and must be interpreted with caution. The prion 
hypothesis102,105,106 emerges strongly from many publications as an essential component for 
pathophysiological models to explain patient data sets. It underpins the demonstration in 
Vogel et al.125 that difference in epicentre is the key difference among manifestations of tau 
pathology in AD. In-vitro experiments161 showing that pathological proteins traverse white 
matter connections locally further support the prion hypothesis, but whether that process 
scales up to longer ranges and significantly influences whole-brain patterns of pathology 
remains an open question. Many dynamical systems models115–120,122,125 assume prion-like 
spreading and convincingly recapitulate pathology patterns, but others, e.g.,92,121 use 
somewhat different spreading models yet also recover convincing patterns. Future 
frameworks for statistically rigorous model comparison and evaluation of evidence, coupled 
with in-vitro and in-vivo validation, will be needed to move such techniques from scientific 
curiosity to serious tools for disease understanding.  
 
Hypothetical treatment strategies. Pathophysiological models can also inform treatment 
strategies, e.g. by being suggestive of when to intervene and on which biomarker target. 
Iturria-Medina et al.’s multifactorial differential equation model128 used simulations to suggest 
that multi-domain interventions would be most effective. The same group developed a 
pathophysiological model for estimating clusters of pseudo-temporal cumulative molecular 
alterations from omics data58,162 that suggested individualised genetic targets for therapies. 
Sanz Perl et al.163 developed a whole-brain perturbational model enabling in silico testing of 
brain stimulation protocols. While this is exciting, much validation and model refinement work 
is required to facilitate translation of suggested hypothetical treatment strategies. 
 
Clinical applications and trials 
 
Ultimately, data-driven disease progression models provide quantitative temporal and/or 
subtype information that can improve individual-level decision-making. This extra information 
can be used for model-based stratification — or covarying short of stratification — in clinical 
applications and trials to identify subgroups of responders or enrich cohorts. 
 
Temporal stratification. Model-based temporal stratification may help in the design and 
interpretation of clinical trials. Figure 5C shows a multimodal event-based model of sporadic 
Alzheimer’s disease providing fine-grained staging of observational ADNI data38 (left), and a 
post hoc prognostic enrichment application of event-based modelling164 (right) on data from 
the MCI clinical trial165 where a subgroup of late-stage participants showed superior 
treatment response. More generally, simulation studies have predicted that fine-grained 
temporal stratification using data-driven disease progression models can enrich clinical trials, 



   
 

   
 

e.g., in Alzheimer’s disease70,139,166, Huntington’s disease141, and genetic frontotemporal 
dementia167.  
  
Subtype stratification. Model-based subtype stratification has demonstrated both 
prognostic and predictive enrichment of clinical trials. Figure 5B shows subtyping using 
SuStaIn40 being predictive of cognitive decline in Alzheimer’s disease155. SuStaIn has also 
been shown to be predictive of treatment response in multiple sclerosis144 and to have 
strong subtype assignment for some individuals even in the preclinical (cognitively normal) 
phase of Alzheimer’s disease40. Shand et al.168 used SuStaIn to predict subtype-specific 
heterogeneity in preclinical Alzheimer’s disease cognitive decline in the A4 trial169, which 
may be a contributing factor to the subsequent null/negative result170. 
  
 
Summary and Future Directions 
 
Summary 
 
Data-driven disease progression models are a novel set of statistical and computational 
tools for estimating data-driven disease timelines from cross-sectional and short-term 
longitudinal data, broadly segregating into phenomenological and pathophysiological 
models. Both phenomenological models and pathophysiological models comprise 
techniques that estimate disease timelines with an arbitrary timescale based on purely 
cross-sectional data or with an absolute timescale by incorporating short-term longitudinal 
data. Across phenomenological models and pathophysiological models, recent 
developments have focussed on increased personalisation of disease timelines, either 
through modelling of disease subtypes, individualised trajectories, or mechanistic 
combinations. Currently a range of phenomenological and pathophysiological models exist 
that have similar outputs but are subtly different in their mathematical structure; direct 
comparison of models is necessary to characterise differences in model performance.  
 
Phenomenological and pathophysiological models have evolved separately with distinct 
aims; phenomenological models have direct application for staging, stratification, 
prognostication, differential diagnosis and other classification and prediction tasks, whilst 
pathophysiological models evaluate the evidence for different candidate disease 
mechanisms or infer key parameters that govern disease mechanisms. Phenomenological 
models are more technologically mature than pathophysiological models; many contributions 
in the literature include open-source software tools (for a summary see171), and have been 
replicated across multiple datasets. Comparatively, pathophysiological models are in earlier 
stages of technological development and as such their outputs should be treated with 
greater caution. The ability to perform classification and prediction tasks and greater 
technological maturity of phenomenological models gives them direct applicability to clinical 
trial and healthcare settings. However, pathophysiological models offer more detailed 
biological insights that can inform treatment and prevention strategies and may ultimately 
prove to be a more powerful framework for integrating data across scales to build 
individualised models, thus achieving greater predictive power as well as providing tailored 
biological insights.  
 
Future technical directions 
 
Current data-driven disease progression models have a range of limitations, highlighting key 
areas for future technical development. 



   
 

   
 

 
Feature learning. Most current models depend on a pre-specified set of input features, 
limiting the richness with which disease timelines can be inferred, and potentially missing 
relationships between, e.g., distal brain areas. Feature learning, i.e., simultaneous 
estimation of features and their timelines could replace pre-defined disease features (e.g. 
regional brain volumes, pre-selected genetic variants) with more salient, potentially 
diffuse/multi-modal, feature sets to define trajectories. Marinescu et al.75 provides an early 
demonstration of how this might be achieved and deep learning approaches such as Yang et 
al.172 hold significant promise. 
 
Incorporating treatment effects. As treatments become available for neurodegenerative 
diseases173,174, the ability to model and predict treatment effects becomes vital. Future work 
could relax the assumption of monotonic trajectories to model treatment response, either 
through careful consideration of the use of longitudinal data or interventional studies to 
exploit and learn causal effects e.g.175.  
 
Omics-based models. Integration of omics information57–59 could increase the biological 
insight provided by both phenomenological and pathophysiological models. To date, 
associations between disease progression models and genetics have predominantly been 
identified post-hoc, e.g.146,176. Future models could directly consider genetic variants as fixed 
effects to infer how genetic risk factors influence progression patterns or speed of 
progression. More complex models may also be possible, for example using single cell 
omics data to compare hypotheses about disease mechanisms using data from a range of 
different cell types. 
 
Integrative models across scales. Models that integrate multi-omic data across scales 
hold significant promise. Integration with pseudotime methods developed by the single-cell 
transcriptomics community could offer a platform for development of such techniques, as 
demonstrated by Iturria-Medina et al.57–59. Models that describe timelines associating 
functional and anatomic changes with deficits in cognitive subdomains may also be possible 
by combining brain-behaviour models177 with disease progression models. 
 
Age effects. Age is the biggest risk factor for dementia and the aging process may interact 
with neurodegenerative pathologies. The integration of disease progression modelling with 
advanced models of aging such as ‘brain age’ models178–180 could offer two key benefits: (i) 
gaining mechanistic insights into the interaction between the aging process and 
neurodegenerative disease and (ii) enabling better discrimination of health and disease 
through normative modelling181.  
 
Multi-morbidity. Multi-morbidity — the co-existence of multiple chronic health conditions — 
is common among elderly populations. Co-morbid conditions could be modelled as a fixed 
effects (or interaction terms) in disease progression models.  
 
Mixed pathology. Mixed pathology — the presence of pathologies consistent with multiple 
neurodegenerative diseases — is highly prevalent in elderly populations. Current disease 
progression models fail to isolate the effects and interactions of each pathology. Future 
models could consider each pathology as a separate component182, enabling the effects of 
individual pathologies on non-specific downstream biomarkers such as brain volume loss 
and cognition to be disentangled.  
 
Wider mechanisms. Pathophysiological models could be adapted to consider a wider range 
of disease mechanisms. Examples include: metabolic alterations, e.g. deficiencies in 
glucose uptake183, systemic mitochondrial dysfunction, oxidative damage and lipid 



   
 

   
 

metabolism184,185; dysfunction of cerebral vasculature186–188; neuroinflammation / glial cell 
activation189–191. 
 
Broader neurological and non-neurological applications. Disease progression models 
are increasingly being applied to a wider range of neurological and non-neurological 
conditions beyond primary neurodegenerative diseases. Examples include Multiple 
Sclerosis144,192,193, Schizophrenia194, depression195, osteoarthritis196, eye197, and lung 
disease198. Tailoring disease progression models to these individual application areas 
represents a key area for future model development. 
 
Spectra vs subtypes. Current subtype models assume distinct groups and will “discover” 
subtypes even when variation is more spectral in nature. Recent work in manifold learning 
aims to discriminate these scenarios199 using continuous representations and could be used 
in combination with disease progression modelling to better understand whether subtypes 
are distinct entities or represent points in a landscape of variation.  
 
Evaluation of models. Thorough evaluation of models is key to realising the translational 
potential of disease progression models and offers important future challenges. The vast 
majority of Alzheimer’s disease progression models are built using the publicly available 
Alzheimer’s Disease Neuroimaging Initiative dataset, but external validation is 
increasing155,200–202 with greater availability of external datasets e.g., 203. While evaluation is 
challenging in the absence of a ground truth, strategies include generating a synthetic 
ground truth (e.g., simulated disease timelines70,204), comparing model outputs with known 
biological characteristics (such as genetics40), assessing predictive performance and 
longitudinal consistency (in follow-up data135), and external validation on the ever-increasing 
volume of data available70,92,116,122,144,200–202,205. One key future direction is to benchmark 
models against one another, to better understand which components of disease progression 
modelling are the most beneficial in different applications70,204. This will be advanced through 
further community challenges, such as The Alzheimer’s Disease Prediction Of Longitudinal 
Evolution (TADPOLE) Challenge (https://tadpole.grand-challenge.org)206,207, 
CADDementia208, and others209. Pragmatic investigations should include minimum data 
requirements for model fitting (and downstream insight) to inform the design of resource-
efficient and patient-friendly study protocols in both observational and interventional studies. 
Additionally, model performance in differential diagnosis applications remains under-
explored, in part due to protocol differences between disease studies. 
 
 
Conclusion and Perspectives 
 
The rapidly evolving area of data-driven disease progression modelling offers potentially 
transformational opportunities for applications along two key paths: i) biological 
understanding of disease to inform strategies for prevention or intervention; and ii)  
applications in clinical trials and healthcare. The range of applications in clinical trials and 
healthcare are diverse, including clinical trial design, use in healthcare settings for patient 
diagnosis and prognosis, and use in population health planning and policy making. We will 
continue to learn about the diversity, interaction, pathways, and causes of 
neurodegenerative diseases through coupled advances in understanding of the fundamental 
biology of these diseases, and model precision. The advent of disease modifying therapies 
provides an additional means of refining the models and assessing the impact of 
manipulating the pathological process.  
 
Data-driven disease progression models provide a platform to use human knowledge to 
guide machine-based discovery. This will require a transition from current clinical practice 
where the influence of disease progression models is currently secondary, i.e., model 

https://tadpole.grand-challenge.org/


   
 

   
 

insights guiding and informing systems that are designed by humans. For example, the 
current proposed research A/T/N staging system210 for Alzheimer’s disease has the anatomy 
of an event-based model with subtyping (multiple series of stages each defined by the 
appearance of a symptom or abnormal marker) but was constructed based on heuristic 
human insight rather than being directly data-driven. Similarly, clinical trials have not yet 
used disease progression models directly, with data-driven insights only indirectly informing 
on trial design. In future, disease progression models could directly be used for stratification, 
covarying short of stratification, or prediction of outcomes to inform on optimal clinical trial 
designs.  
 
Realising the potential of data-driven disease progression modelling across these broad 
application areas involves diverse efforts: further technical development of the models 
themselves; continued data collection and validation activities; engagement with the wide 
variety of stakeholders (clinicians, drug developers, medical policy makers, patients, etc.) to 
ensure understanding and enable uptake. Linking together specialists in different disciplines 
will be crucial to enabling the broad range of potential applications. High-quality data for 
training and validation of models is key and may ultimately require coordinated efforts 
between methods developers and clinicians or pharmaceutical companies to collect tailored 
datasets. Long term we envision data-driven disease progression modelling as part of a new 
computational medicine paradigm that brings the kinds of techniques we discuss here centre 
stage in the diagnosis, staging and prognostication of patients with neurodegenerative 
diseases, and in informing therapeutic decision making.  
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Figures 

 
Figure 1. Framework for data-driven disease progression modelling. Typical study datasets 
(top) consist of heterogeneous short-term biomarker trajectories indexed by study visit (BL: 
baseline, V1: visit 1, V2: visit 2). Temporal heterogeneity (differences in the underling 
disease stages of individuals at baseline) is a key unresolved contributor to the observed 
heterogeneity in disease biomarker timelines. Data-driven disease progression models 
(middle left) disentangle temporal heterogeneity by temporally aligning short-term snapshots 
(bottom) to reconstruct long-term trajectories (red, blue, and green trajectories) subject to a 
set of constraints based on human insight (middle right). Disease progression models 
(middle left) simultaneously learn a data-driven time axis (x axis), a set of biomarker 
trajectories (red, blue, and green trajectories) and the alignment of snapshots (boxes).   
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Figure 2. Collage of selected phenomenological Data-Driven Disease Progression Models 
trained on observed data from studies of Alzheimer’s disease, selected to illustrate the 
various model types from discrete (top-left) to continuous (top-right) to spatiotemporal (lower 
left) and subtyping (lower right). Top left: Event Based Model of Young et al.38 showing the 
most likely ordering (vertical axis) and uncertainty (horizontal axis) of a multi-modal set of 
biomarkers in Alzheimer’s disease. Top right: Latent Time Joint Mixed Model of Li et al.62 
showing continuous trajectories for a similar set of biomarkers. Lower left: Alzheimer’s 
Disease Course Map of Koval et al.70 showing estimated trajectories of cognitive decline, 
brain atrophy, brain shape changes, and hypometabolism in Alzheimer’s disease. Lower 
right: Subtype and Stage Inference algorithm of Young et al.40 showing three subtypes of 
Alzheimer’s disease with distinct timelines of regional brain atrophy.   



   
 

   
 

 

 
Figure 3. Simple network illustration of hypotheses that underpin pathophysiological models. 
Each row/model reflects a distinct hypothesis on how pathology appears (top two rows) or 
spreads (bottom two rows) in the brain, emulating hypothetical mechanisms. In network 
models the pathology burden is proportional to regional network properties. The first and 
second rows reflect mechanisms based on connectedness of regions (brain connectivity 
network is shown in black), without any notion of physical spreading. In the first row, the 
more connected, or “hub”-like a region, the more quickly it accumulates pathology; this 
reflects a mechanism in which “wear and tear” makes them vulnerable. The second row 
shows the opposite: the more isolated a region, the more quickly pathology accumulates, 
reflecting a “use it or lose it” mechanism. In the bottom two rows, pathology appears first in 
one “epicentre”. In the third row, pathology burden is proportional to how directly connected 
each region is to that epicentre, reflecting spreading through brain connectivity. Thus 
pathology appears soonest in regions most directly connected to the epicentre. In the fourth 
row, pathology burden is proportional to proximity to the epicentre, reflecting a mechanism 
that does not use the brain connectome, so the most proximal regions accumulate pathology 
most quickly. 
  



   
 

   
 

Figure 4. Examples of pathophysiological models trained on observed data from studies of 
neurodegenerative diseases. (a) Predicted group atrophy patterns of Alzheimer’s disease 
patients at different time-points using the network diffusion model presented in Raj et 
al.116,119 which enforces “prion-like” spread;  (b) Observed vs predicted patterns of tau 
deposition at different time-points from Vogel et al.125  using the epidemic spreading model 
of Iturria-Medina et al.118 (c) Top: MR images of a “typical” Alzheimer’s disease patient; 
middle: simulated toxin protein evolution based on an initial seeding in the brain stem using 
the propagation model of Weickenmeier et al.121; bottom: simulated toxic protein-induced 
atrophy across the coronal slice, again using the model presented in Weickenmeier et al.121. 
(d) Disease progression patterns vs predicted patterns of atrophy severity at different time-
points using the topological profile model of Garbarino et al.94, which identifies a 
characteristic combination of the main mechanisms related to appearance and spread for 
Alzheimer’s subjects. 

 
  



   
 

   
 

Figure 5. Example applications of Data-Driven Disease Progression Modelling 
demonstrating the diversity of insight produced for applications such as providing biological 
insight, disease subtyping, and temporal stratification. Clockwise from top-left: A. Villemagne 
et al.52 provide biological insight into the timeline of amyloid accumulation in Alzheimer’s 
disease using a differential equaion model; B. Vogel et al.155 demonstrate that subtype 
assignments from the Subtype and Stage Inference algorithm40 predict cognitive decline in 
Alzheimer’s disease; C. Young et al. 38 (left) and Oxtoby et al.164 (right) demonstrate that 
temporal stratification into data-driven stages using an event-based model in Alzheimer’s 
disease separates diagnostic groups (left) and predicts treatment response (right).  
 
  



   
 

   
 

Tables 

 
Table 1. Table comparing the typical attributes of current phenomenological and pathophysiological models.

 Phenomenological Pathophysiological 
Discrete Continuous Spatiotemporal Subtyping Network Dynamical systems Mechanistic combinations 

U
til

ity
 Data-driven disease patterns. 

Temporal stratification. 
Progression prognosis. 

+ Enhanced spatial 
localisation of 

disease changes. 

+ Subtype 
stratification. 

Evaluating 
competing 

mechanistic 
hypotheses. 

+ Pathophysiological 
parameter estimates. 

+ Combinations and possibly 
interactions. 

In
pu

t  

Scalar (e.g. spreadsheet). Imaging data. 

Inherited from 
chosen 

phenomenological 
model. 

Brain maps of 
connectivity. 

Brain maps, 
Imaging. 

Inherited from chosen 
pathophysiological model. 

O
ut

pu
t 

Sequence 
of states. Trajectories. 

Expected sequence 
of pathology 

progression for 
evaluation against 
imaging changes. 

Trajectories, 
Pathophysiological 

parameters. 

C
on

st
ra

in
t 

Le
ve

l 

Low. 
e.g., monotonic 

Moderate. 
+ spatial 

constraints  

Very High. 
Connectivity entirely 

defines pathology 
pattern. 

Relatively High. Only 
estimate a few key 
pathophysiological 

parameters. 

Moderate. Varies according 
to the number of 
mechanisms and 

pathophysiological 
parameters for each 

mechanism. 



   
 

   
 

 


