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A B S T R A C T 

Together with larger spectroscopic surv e ys such as the Dark Energy Spectroscopic Instrument (DESI), the precision of large- 
scale structure studies and thus the constraints on the cosmological parameters are rapidly improving. Therefore, one must build 

realistic simulations and robust covariance matrices. We build galaxy catalogues by applying a halo occupation distribution 

(HOD) model upon the FASTPM simulations, such that the resulting galaxy clustering reproduces high-resolution N -body 

simulations. While the resolution and halo finder are different from the reference simulations, we reproduce the reference galaxy 

two-point clustering measurements – monopole and quadrupole – to a precision required by the DESI Year 1 emission line galaxy 

sample down to non-linear scales, i.e. k < 0 . 5 h Mpc −1 or s > 10 Mpc h 

−1 . Furthermore, we compute covariance matrices based 

on the resulting FASTPM galaxy clustering – monopole and quadrupole. We study for the first time the effect of fitting on Fourier 
conjugate (e.g. power spectrum) on the covariance matrix of the Fourier counterpart (e.g. correlation function). We estimate the 
uncertainties of the two parameters of a simple clustering model and observe a maximum variation of 20 per cent for the different 
cov ariance matrices. Ne vertheless, for most studied scales the scatter is between 2 and 10 per cent. Consequently, using the 
current pipeline we can precisely reproduce the clustering of N -body simulations and the resulting covariance matrices provide 
robust uncertainty estimations against HOD fitting scenarios. We expect our methodology will be useful for the coming DESI 
data analyses and their extension for other studies. 

Key words: galaxies: haloes – large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

he study of the large-scale structure of the Universe has significantly 
mpro v ed in the last two decades leading to Baryon Oscillation
pectroscopic Surv e y (BOSS; Alam et al. 2017 ) and e xtended-
OSS (eBOSS; Alam et al. 2021a ) surv e ys. The y hav e published

he largest 3D map of o v er 2 millions galaxies and quasars (Alam
t al. 2021a ). This has allowed the measurement of cosmological 
arameters to a per cent-level precision studying baryonic acoustic 
scillations (BAOs) and redshift–space distortions (RSDs). 
Currently, the Dark Energy Spectroscopic Instrument (DESI; Levi 

t al. 2013 ; DESI Collaboration 2022 ) is a 5 yr long spectroscopic
urv e y that will outperform previous surv e ys by a an order of
agnitude (DESI Collaboration 2016a ), aiming to constrain the 
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osmological parameters with precision at a sub-per cent level. With 
ts 5000 robotically controlled optical fibres (DESI Collaboration 
016b ; Miller et al. 2023 ; Silber et al. 2023 ), DESI will scan a third
f the sky to map 40 millions galaxies (Lan et al. 2023 ) and quasars
Alexander et al. 2023 ). Only after the 5-month surv e y validation
DESI Collaboration 2023a ), DESI has measured the spectra of more
han one million galaxies leading to the recent Early Data Release
DESI Collaboration 2023b ). 

Based on the DESI Le gac y Imaging Surv e ys (Zou et al. 2017 ; Dey
t al. 2019 ; Schlegel et al. in preparation), there are five types of
argets that are selected (Myers et al. 2023 ) on which optical fibres
re assigned (Raichoor et al. in preparation) to measure and analyse
heir spectra (Brodzeller et al. 2023 ; Guy et al. 2023 ; Bailey et al. in
reparation): Milky Way Stars (Allende Prieto et al. 2020 ; Cooper
t al. 2023 ), bright galaxies (Ruiz-Macias et al. 2020 ; Hahn et al.
023 ), luminous red galaxies (Zhou et al. 2020 , 2023 ), emission-
ine galaxies (ELGs; Raichoor et al. 2020 , 2023b ), quasars (Y ̀eche
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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t al. 2020 ; Chaussidon et al. 2023 ). Such a complex system requires
ipelines to optimize the observations (Schlafly et al. 2023 ; Kirkby
t al. in preparation). 

The sub-per cent precision measurements expected from ongoing
nd future surv e ys require careful analyses of the systematic effects.
o this end, the DESI Mock Challenge was launched as a series of
tudies and projects to build and validate the methodology for the
osmological analysis. In particular, one must find the most robust
ay to estimate the uncertainty of the measurements (Chuang et al.

n preparation). To achieve this goal, one needs to create multiple
ealistic simulations of the large-scale structure, which is required to
ower the noise on covariance matrix and to describe accurately the
on-linear scales. 
On the one hand, the full N -body simulations – e.g. [Scinet LIght-

one Simulations ( SLICS) ; Harnois-D ́eraps et al. 2018 ], ( UNIT ;
huang et al. 2019 ), and ( ABACUSSUMMIT ; Maksimova et al. 2021 )
are accurate, but they are computationally expensive. Since it

ecomes impractical with the increase of mapped volume to have
nough full N -body realizations to compute and test covariance
atrices, they are mainly used in testing models and systematic

ffects. Consequently, faster but less accurate techniques have been
eveloped – e.g. ( EZMOCKS ; Chuang et al. 2015 ; Zarrouk et al.
021 ; Zhao et al. 2021 ), ( PATCHY ; Kitaura, Yepes & Prada 2013 ),
nd ( BAM ; Balaguera-Antol ́ınez et al. 2019 , 2020 ; Pellejero-Iba ̃ nez
t al. 2020 ) – to be run multiple times and estimate robustly the
ncertainty. 
In this study, we investigate the possibility to tune FASTPM

atalogues to reproduce the clustering of SLICS reference with the
nal goal of estimating the covariance matrix. In contrast to the other
ast methods, FASTPM uses accelerated particle-mesh (PM) solvers to
volve the dark-matter field, which should provide a higher accuracy
f the large-scale structure. The additional accurac y pro vided by
ASTPM can be important given the unprecedented statistical power
f the DESI surv e y. Therefore, the final FASTPM covariance matrix
ogether with other methods – i.e. BAM , EZMOCK , Jackknife (Zhang
t al. in preparation), analytical models (Xu et al. 2013 ; Wadekar &
coccimarro 2020 ; Wadekar, Ivanov & Scoccimarro 2020 ) – are
ompared to the SLICS reference covariance matrix, in a parallel
ESI Mock Challenge paper (Chuang et al. in preparation). 
Fundamentally similar to full N -body simulations, FASTPM

volves the dark matter field into the cosmic web, the skeleton of
he large-scale structure in the Uni verse (e.g. Mo, v an den Bosch &

hite 2010 ; Wechsler & Tinker 2018 ). After the dark matter haloes
re selected, one must implement galaxy–halo connection models
Wechsler & Tinker 2018 ) to assign galaxies. There are more
mpirically inspired models such as the halo occupation distribution
HOD; e.g. Benson et al. 2000 ; Peacock & Smith 2000 ; Seljak
000 ; White, Hernquist & Springel 2001 ; Berlind & Weinberg
002 ; Cooray & Sheth 2002 ) and subhalo abundance matching (e.g.
ravtsov et al. 2004 ; Tasitsiomi et al. 2004 ; Vale & Ostriker 2004 )

nd more physically inspired ones such as full hydrodynamical
imulations (e.g. Schaye et al. 2010 , 2015 ; Dubois et al. 2014 ;

cCarthy et al. 2017 ; Pillepich et al. 2018 ; Dav ́e et al. 2019 ) or
emi-analytical models (e.g. Guo et al. 2011 ; Gonzalez-Perez et al.
014 ). In this case, we adopt an HOD model as it is one the most
fficient ways to create mock galaxy catalogues. 

Comparisons between the matter power spectra of FASTPM and
ull N -body references have shown deviations by ≈0.5 per cent
t k = 0 . 3 h Mpc −1 (Feng et al. 2016 ) and by ≈20 per cent at
 = 1 h Mpc −1 (Gro v e et al. 2022 ). In addition, Feng et al. ( 2016 )
av e observ ed that the FASTPM halo po wer spectrum can de viate
p to 5 per cent around k � 0 . 5 h Mpc −1 . Lastly, the y hav e noticed
NRAS 527, 11539–11558 (2024) 
hat the FASTPM less massive haloes are not as well matched to the
eference as the higher mass haloes. As a consequence, the purpose of
his paper is to show that using an HOD model to assign galaxies on
ASTPM halo catalogues, one can o v ercome the differences between
he FASTPM and the full N -body simulations and thus reproduce
he reference SLICS galaxy clustering. We note that the vanilla
OD model used in this work may not be sufficient to capture

he physics of galaxy formation, as shown in Chaves-Montero,
ngulo & Contreras ( 2023 ) and Alam, Paranjape & Peacock ( 2024 ).
e vertheless, gi ven the aim of this article, we are only concerned
ith the ability to produce the covariance matrix for two-point
alaxy clustering using FASTPM . We defer the study of other
bservables such as g alaxy–g alaxy lensing, count-in-cell statistics,
nd the Voronoi volume function (Paranjape & Alam 2020 ) to future
ork. 
Furthermore, we compare the impact of different clustering

tatistics and examine the effects of various scales on the HOD
tting. Finally, we calculate covariance matrices for all the studied
cenarios and perform a comparison to understand the influence of
he HOD modelling on the parameter uncertainty estimation. 

In Section 2 , we present the SLICS and FASTPM simulations. The
ethodology that we follow is detailed in Section 3 . We describe our

esults on the HOD fitting performance and the covariance matrix
omparison in Section 4 . In the end, Section 5 concludes the article.

 SI MULATI ONS  

.1 Scinet LIght-Cone Simulations 

he SLICS (Harnois-D ́eraps & van Waerbeke 2015 ; Harnois-D ́eraps
t al. 2018 ) consist of o v er 900 N -body mocks based on noise-
ndependent initial conditions. The large number of realizations is
xploited to estimate the covariance matrices for weak lensing data
Hildebrandt et al. 2017 ; Joudaki et al. 2017 ; Martinet et al. 2018 ;
arnois-D ́eraps et al. 2023 ) and for combinations of weak lensing

nd foreground clustering data (Brouwer et al. 2018 ; van Uitert et al.
018 ). 
The cubic mocks – with L box = 505 Mpc h 

−1 – simulate a flat
 cold dark matter cosmology, described by the cosmology of the
MAP9 + SN + BAO, i.e. ( �m 

, σ 8 , �b , w 0 , h , n s ) = (0.2905, 0.826,
.0447, -1.0, 0.6898, 0.969). They are obtained by running the non-
inear double-mesh Poisson solver CUBEP 3 M (Harnois-D ́eraps et al.
013 ) to gravitationally evolve 1536 3 particles – with a particle mass
 p = 2.88 × 10 9 M � h −1 – on a 3072 3 grid from z = 99.0 up to z =
. 
The dark matter haloes have been selected by applying a spherical

 v erdensity halo-finder (Harnois-D ́eraps et al. 2013 ). Their mass
unction follows precisely the Sheth, Mo & Tormen ( 2001 ) fitting
unction, as shown in fig. 2 of Harnois-D ́eraps et al. ( 2018 ). The
edshift of the halo catalogues included in this study is z =
.041. Lastly, given that some halo catalogues have been cor-
upted at the run time, we are limited to only 139 independent
ocks. 
This study, together with the BAM (Balaguera-Antol ́ınez et al.

023 ) and the DESI covariance matrix comparison paper (Chuang
t al. in preparation), is focused on the DESI ELGs sample. Therefore,
he SLICS haloes have been populated using the HMQ HOD model
resented in Alam et al. ( 2020 ), capable of describing the ELG
alaxies – consult (Alam et al. 2021b ) for a comparison between
ifferent HOD models for ELGs. In addition, the parameters of the
OD model have been set to match the expected linear bias of the
ESI ELG sample. The final product is a set of 139 galaxy catalogues
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hat are used as reference in all the studies mentioned before. More
etails about the SLICS galaxy catalogues production can be found 
n the DESI covariance matrix comparison paper (Chuang et al. in 
reparation). 

.2 F AST PM 

ccelerated PM solvers – such as the FASTPM software (Feng et al. 
016 ) – are able to produce accurate halo populations with respect 
o the full N -body simulations. Thus, they are suitable to accurately
imulate large volumes. 

FASTPM uses a pencil domain-decomposition Poisson solver and 
ourier -space four -point differential kernel to compute the force. 
dditionally, the vanilla leap-frog scheme for the time integration 

s adjusted to account for the acceleration of velocity during a step,
llowing for the accurate tracking of the linear growth of large-scale 
odes regardless of the number of time-steps. 
For the current analysis. we have run FASTPM with two resolu-

ions, resulting in one set of 778 Low Resolution boxes (LR; 1296 3 

articles) and one set of 141 High Resolution (HR; 1536 3 particles) 
atalogues. Both sets output snapshots at the same redshift ( z =
.041), and have the same box side length ( L box = 505 Mpc h 

−1 )
nd cosmology as the SLICS simulations. The particle mass of the 
R simulations is 2.86444 × 10 9 M � h −1 , while the one of LR is
.77 × 10 9 M � h −1 . The resolution of the force mesh is boosted by
 factor of B = 2 compared to the number of particles per side, for
oth LR and HR. Lastly, 40 linear steps have been used to evolve the
ensity field from a = 0.05 to a = 0.96. 
Due to the small number of SLICS galaxy realizations, for 123 

uns of the FASTPM (LR and HR likewise), we use the SLICS
nitial conditions. This plays an important role to reduce the effect 
f the cosmic variance in the clustering statistics and thus in the
OD fitting. SLICS initial conditions have been built on a 1536 3 

egular grid using the Zel’dovich approximation (Zel’dovich 1970 ) 
o displace the particles from the grid positions. Lastly, the initial 
onditions have been downgraded to the LR by cutting in Fourier 
pace the high-frequency modes larger than the Nyquist frequency 
orresponding to the LR field. 

The haloes have been selected from the dark matter field with 
he Friends-of-Friends halo finder in NBODYKIT (Hand et al. 2018 ). 
uring the galaxy assignment process – Section 3.3 – we only use 
aloes with a minimum mass of 5.72 × 10 10 M � h −1 . 
Finally, in Section 3 , when we mention FASTPM , we imply for

implicity both HR and LR. We only make the distinction in the
esults section, i.e. Section 4 . 

 M E T H O D O L O G Y  

.1 Clustering computation 

.1.1 Two-point correlation function 

athematically, the two-point correlation function (2PCF) is a 
ontinuous function that can describe the clustering of galaxies. 
o we ver, gi ven the discrete nature of the galaxy distribution in the
niverse, the 2PCF is measured using discrete estimators. In the case 
f cubic mocks, one can implement the natural estimator (Peebles & 

auser 1974 ): 

( s, μ) = 

D D ( s, μ) 

R R ( s, μ) 
− 1 , (1) 
here DD ( s , μ) and RR ( s , μ) are the data and the random pair counts,
espectively, as functions of the radial distance 

 = 

√ 

s 2 ⊥ 

+ s 2 ‖ , (2) 

nd the cosine of the angle between s and the line of sight 

= 

s ‖ 
s 

. (3) 

n the previous equations, s ⊥ 

and s ‖ are the perpendicular ( ⊥ ) and
arallel ( ‖ ) to the line-of-sight components of s , respectively. While
he DD term is e v aluated directly on the data catalogue, RR is
alculated theoretically. 

In the present analysis, we run PYFCFC 

1 the PYTHON wrapper 
f the Fast Correlation Function Calculator 2 (FCFC Zhao 2023 ) to
stimate the 2PCF. Lastly, we decompose the 2D 2PCF ( ξ ( s , μ)) into
D multipoles ( ξ� ( s )) with the help of the Legendre polynomials
 � ( μ) of order � , as follows: 

� ( s ) = 

2 � + 1 

2 

∫ 1 

−1 
ξ ( s , μ) L � ( μ)d μ. (4) 

.1.2 Power spectrum 

rom the mathematical point of view, the power spectrum P ( k ) is
he Fourier Transform of the 2PCF. Ho we ver, the limited volume of
 surv e y or a simulation creates mode coupling and makes the two
lustering measurements not completely equi v alent. Consequently, 
e compute the power spectrum multipoles P � ( k ) starting from the
ensity field in Fourier space δ( k ), as follows (de Mattia et al. 2021 ): 

 � ( k ) = 

2 � + 1 

V 

∫ 
d �

4 π
δ( k ) δ( −k ) L � ( ̂ k · ˆ η) − P 

noise 
� , (5) 

here the unit vector ˆ k represents the direction of k and ˆ η is the
lobal line-of-sight unit vector, chosen as the z-axis of the cubic
imulations. Finally, given the finite galaxy number density n̄ g , the 
onopole shot-noise is computed as 

 

noise 
0 = 

1 

n̄ g 
, (6) 

hile for the higher order multipoles, the shot-noise is zero. 
In practice, we harness the versatility of POWSPEC 

3 described in 
hao et al. ( 2021 ) through its PYTHON wrapper 4 to calculate the power
pectra and their multipoles starting from the galaxy catalogues. We 
stimate the density field on a grid of size 512 3 , by applying the
loud-in-cell (Sefusatti et al. 2016 ) particle assignment scheme on 
he catalogues of galaxies. Lastly, we exploit the grid interlacing 
echnique (Sefusatti et al. 2016 ) to reduce the alias effects at small
cales. 

In the current analysis, we show the monopole ( � = 0), quadrupole
 � = 2), and hexadecapole ( � = 4) for both the 2PCF and the power
pectrum. 

.1.3 Bi-spectrum 

he power spectrum and the 2PCF are two-point clustering statistics, 
ut higher order statistics are necessary to characterize more precisely 
MNRAS 527, 11539–11558 (2024) 
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Table 1. A summary of some of the most important and possibly confusing 
notations and their meaning. 

Notation Meaning 

N 

cov 
mocks = 123 The number of FASTPM and SLICS pairs 

that share the same initial conditions. 
These catalogues have been used 
to compute C s , equation ( 19 ), part of  diff . 

N 

fit 
mocks = 20 The number of FASTPM and SLICS pairs for which 

we have computed the clustering during the HOD 

fitting described in Section 3.3.1 and Section 3.3.2 . 
 diag Equation ( 16 ): Diagonal matrix used during 

the first step of the HOD fitting, see Section 3.3.1 . 
σn g Estimation of the galaxy number density noise 

used in  diag . 
Standard deviation of 139 SLICS mocks, 
divided by 

√ 

139 . 
 diff Equation ( 20 ): Difference covariance matrix used during 

the second step of the HOD fitting, see Section 3.3.2 . 
σ ′ 

n g 
Estimation of the galaxy number density noise 
used in  diff . 
Standard deviation of 139 SLICS mocks, 

divided by 
√ 

N 

fit 
mocks . 

 χ Equation ( 22 ): The covariance matrix used to compute 
the χ2 

ν , equation ( 21 ). It is not used for fitting. 

Table 2. The limits of the uniform prior distributions included in the HOD 

fitting. Note that M 0 from equation ( 10 ) is M 0 ≡ κ × M min . M � denotes the 
solar mass. 

Name log M min 
M � σ log M 

log M 1 
M � κ α v disp 

Min 11.6 0.01 9 0 0 0.7 
Max 13.6 4.01 14 20 1.3 1.5 
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he galaxy distributions. In this study, we also look at the three-point
lustering statistics, namely the bi-spectrum B ( k 1 , k 2 , k 3 ), the Fourier
air of the three-point correlation function (e.g. Bernardeau et al.
002 ): 

D ( k 1 + k 2 + k 3 ) B( k 1 , k 2 , k 3 ) = 〈 δ( k 1 ) δ( k 2 ) δ( k 3 ) 〉 . (7) 

The three vectors k 1 , k 2 , k 3 are chosen to form a triangle whose
wo of the three sides are fixed ( k 1 = 0.1 ± 0.05 and k 2 = 0.2 ± 0.05),
ut the angle θ12 between k 1 and k 2 is varied from 0 to π . In practice,
e compute the monopole of the bi-spectrum on a grid of size 512 3 .

.2 FASTPM HOD model 

he galaxy population and its associated clustering covariance matrix
an potentially be influenced by halo properties beyond just mass, as
hown in Alam et al. ( 2024 ). None the less, such effects are expected
o be small for large volume surv e ys such as DESI and hence we plan
o address them in future work. Additionally, the FASTPM haloes are
ess accurate than the ones from an N -body simulation, thus we do
ot expect that the final HOD model and parameters maintain the
ame physical interpretation. 

As a consequence, we can adopt the simple five-parameter HOD
odel described in Zheng et al. ( 2005 ) to assign galaxies to the

ASTPM halo catalogues, as long as the resulting clustering and
ovariance matrix match the reference. Nevertheless, in future work
ne can study more complex and more adapted models for the studied
LG sample. 
The current model assumes that each halo can host at most one

entral galaxy with a probability B(1) = 〈 N cen 〉 ( M h ) dependent on
he halo mass M h , where B( x) denotes the Bernoulli distribution and 

 N cen 〉 ( M h ) = 

1 

2 

[
1 + erf 

(
log M h − log M min 

σlog M 

)]
(8) 

ith erf the error function: 

rf ( x) = 

2 √ 

π

∫ x 

0 
e −u 2 d u. (9) 

og M min is the halo mass at which the probability to host a central
alaxy is one-half and σ log M 

controls the steepness of the transition
rom a probability of one to zero. Lastly, the positions and velocities
f the central galaxies are precisely the values of their parent haloes.
In contrast, the number of satellite galaxies n sat per halo is sampled

rom a Poisson distribution P( n sat |〈 N sat 〉 ( M h )) with the mean 

 N sat 〉 ( M h ) = 

(
M h − M 0 

M 1 

)α

, (10) 

here M 0 is a minimum halo mass threshold below which haloes
annot host satellite galaxies; M 0 and M 1 indicate the halo mass at
hich one halo hosts on average one satellite galaxy, and α is the
ower-la w inde x. Furthermore, the positions and v elocities of the
atellite galaxies follow the Navarro–Frenk–White (NFW; Navarro,
renk & White 1996 ) density profile. 
In the interest of adjusting the smaller scales and the quadrupole,

e introduce a velocity dispersion factor ( v disp ) for the velocity
arallel ( ‖ ) to the line of sight (i.e o Z in the current case) of the
atellite galaxies, in addition to the five HOD parameters: 

 

sat, new 
‖ = 

(
v 

sat, old 
‖ − v halo 

‖ 
)

× v disp + v halo 
‖ , (11) 

here v halo 
‖ is the velocity parallel to the line of sight of the satellites’

arent halo. Finally, the six free parameters are fitted so that the
esulting FASTPM clustering matches the SLICS one. 
NRAS 527, 11539–11558 (2024) 
.3 HOD fitting 

e w ould lik e to draw the attention of the reader to Table 1 . It
ontains a summary of important symbols related to the HOD fitting.

With the aim of finding the best-fitting FASTPM clustering, we run
n HOD Optimization Routine ( HODOR 

5 ). It uses the HALOTOOLS

Hearin et al. 2017 ) package to define and apply the HOD model
nd PYMULTINEST (Buchner et al. 2014 ), the PYTHON wrapper of

ULTINEST (Feroz & Hobson 2008 ; Feroz, Hobson & Bridges 2009 ;
eroz et al. 2019 ), to sample the six HOD parameters. 
MULTINEST is a sampler based on Bayes’ theorem that provides

he maximum likelihood (best-fitting) parameters, as well as the pos-
erior probability distribution of parameters alongside the Bayesian
vidence. Bayes’ theorem combines prior knowledge about the �
arameters of a model M with information from the data D to
alculate the posterior probability density of the � parameters: 

 ( � | D, M) = 

p ( D| �, M) p ( � | M) 

p ( D| M) 
, (12) 

here p ( � | M ) is the prior distribution of � of the model M , p ( D | � ,
 ) is the likelihood, and p ( D | M ) is a normalizing factor called
ayesian evidence. 
The uniform prior distributions that we impose on all six pa-

ameters are shown in Table 2 . Furthermore, we approximate the

https://github.com/Andrei-EPFL/HODOR
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Figure 1. The two-step HOD fitting process that is detailed in Section 3.3 . 

Figure 2. Monopole and quadrupole error bars: left panels – 2PCF; right 
panels – power spectrum. Black – estimated uncertainty for the entire DESI 
surv e y (Y5); dotted black – estimated uncertainty for the Year 1 (Y1) 
DESI surv e y; blue – square root of the  diag ’s terms; dashed orange –
square root of the  diff ’s diagonal terms, divided by 

√ 

20 , N 

fit 
mocks = 20; 

dashed red – standard deviation of the differences between the best-fitting 
FASTPM clustering (from the second HOD fitting step, one HOD fitting 

scenario) and SLICS ( N 

fit 
mocks realizations), further divided by 

√ 

N 

fit 
mocks ; grey 

– standard deviation of N 

fit 
mocks SLICS clustering realizations, further divided 

by 
√ 

N 

fit 
mocks . We emphasize that the Y5 and Y1 errors are estimated by 

scaling the SLICS covariance to the ef fecti ve volumes of 24 and 8 Gpc 3 h −3 , 
respectively. 
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ikelihood by a multi v ariate Gaussian: 

( D| �, M) = L ( � ) ∼ e −χ2 ( � ) / 2 , (13) 

ith the chi-squared: 

2 ( � ) = v T C 

−1 v , (14) 

here v is the difference between the data and model vectors v =
 data − S model ( � ), and C is the covariance matrix. 
The purpose of a covariance matrix C is to estimate the noise

n the data, in the context of a noise-free model. Nevertheless, the
eculiarity of this study is that both the model ( S model ( � ), FASTPM )
nd the data ( S data , SLICS ) are affected by noise. Due to the small
olume of the SLICS and FASTPM boxes, the cosmic variance 
omponent of the noise would be larger than the expected precision
f ongoing surv e ys such as DESI. Therefore, the simulations have
een run with matching initial conditions. In this case, the rele v ant
oise component is no longer the cosmic variance but rather the
ccumulated noise due to gravitational evolution while starting 
ith exactly the same initial conditions. Thus, the mock covariance 

stimated by SLICS or FASTPM substantially o v erestimates the error
or our fittings, see Fig. 1 . 

Mathematically, since one computes the difference vector v = S data 

S model ( � ) to estimate the χ2 , one needs to estimate the covariance
atrix of v , i.e. C ( v ): 

 ( v ) = C ( S data ) + C ( S model ) 

− C 

×( S data , S model ) − C 

×( S model , S data ) , (15) 

here C 

× represents the cross covariance matrix (Gubner 2006 ) 
etween the data and the model vectors. In the more common case
f independent data and model vectors and noise-free model, one 
btains C ( v ) = C ( S data ). None the less, in our case, the FASTPM
lustering model has positively correlated noise with the SLICS 

lustering – given the matching initial conditions – hence C ( S model )
 0 and C 

× = 0. 
Consequently, in order to more appropriately estimate the noise –

.e. an estimation of C ( v ) – we perform a two-step HOD fitting as
chematically shown in Fig. 2 : 

(i) we fit the monopole and quadrupole of the 2PCF [ ξ 0 , ξ 2 ] and
he galaxy number density n g using a diagonal covariance matrix 
  diag ) and thus obtain an initial-guess (IG) best-fitting FASTPM
alaxy catalogues (IG- FASTPM ), see Section 3.3.1 ; 

(ii) we compute the differences [ � 0 , � 2 ] between the clustering
monopole, quadrupole) of the IG best-fitting FASTPM and the SLICS 

alaxy catalogues; we use these differences to calculate a new 

ovariance matrix (  diff ) with which we perform again the fitting,
ee Section 3.3.2 . 

In both cases, we use 20 FASTPM (F) and 20 SLICS (S) halo boxes
 N 

fit 
mocks = 20) – sharing the same initial conditions – for the purpose

f additionally decreasing the noise. None the less, the average n̄ S g is
omputed using 139 realizations, while the average n̄ F g is calculated 
sing the 20 realizations included in the HOD fitting. There are
hree main reasons behind this discrepancy: first, it quickly becomes 
 xpensiv e to apply galaxies using HOD to more than 20 FASTPM
imulations; secondly, the number of SLICS reference simulations 
as to be the same as for FASTPM , so that the cosmic variance is
educed in the clustering by the shared initial conditions; thirdly, 
he noise in the galaxy number density is not reduced by the shared
nitial conditions, thus one needs more realizations to estimate a 
practically) noiseless SLICS reference galaxy number density. The 
MNRAS 527, 11539–11558 (2024) 
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Table 3. The fitting ranges for the HOD fitting process described in 
Section 3.3.2 : k ∈ [0 . 02 , k max ] h Mpc −1 and s ∈ [ s min , 50] Mpc h −1 . N 

� 
bins 

is the number of bins per multipole � . 

Name Large Medium Small 

k max [ h Mpc −1 ] 0.5 0.4 0.3 
N 

� 
bins 24 19 14 

s min [ Mpc h −1 ] 0 5 10 
N 

� 
bins 10 9 8 
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alaxy number density is an important constraint as it go v erns the
hot-noise which has a significant role in the covariance matrix. 

.3.1 The first step 

nitially, we perform the HOD fitting on the monopole and the
uadrupole of the 2PCF, together with the galaxy number density.
ence, the data vector S data is formed by concatenating their

espectiv e av erages for the SLICS (S) mocks: S data = [ ̄ξS 
0 , ̄ξ

S 
2 , ̄n 

S 
g ].

imilarly, the model vector S model is determined from the FASTPM
F) boxes: S model = [ ̄ξF 

0 , ̄ξ
F 
2 , ̄n 

F 
g ]. 

Considering that the computing time of clustering measurements
cales with the maximum separation, we need a large enough
pper limit to constrain rele v ant parameters, but small enough to
eep a reasonable e x ecution time for model e v aluation during the
OD fitting. Additionally, since we are interested in capturing

he non-linear effects, the lower limit is set to 0. Consequently,
he monopole and the quadrupole of the 2PCF are e v aluated for
 ∈ [0 , 50] Mpc h 

−1 , with a bin size of 5 Mpc h 

−1 . Thus, s is an array
ontaining 10 elements ( s 1 , . . . , s 10 ). 

As previously argued, in the first step, there is no appropriate noise
stimation. Therefore, we can use an approximate covariance matrix
hat enables us to proceed to the second step and calculate a more
uitable one. In this regard, we create a diagonal covariance matrix: 

 diag = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

σ 2 
1 

. . . 
σ 2 

10 

σ 2 
1 

. . . 
σ 2 

10 

σ 2 
n g 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (16) 

here the first 20 elements are defined as follows: 

i = 

3 

s 2 i 

, i = 1 , . . . , 10 . (17) 

his selection of the diagonal covariance matrix is based on an
xamination of the s 2 σ SLICS ( s ) values, where σ SLICS ( s ) represents the
tandard deviation of the SLICS 2PCF. Notably, the highest value
s approximately three; hence, we initially approximate all values as
hree for simplicity. 

The last element σn g is computed as the standard deviation of 139

LICS galaxy number densities, divided by 
√ 

139 , so that it estimates
he uncertainty corresponding to the average of 139 realizations. The
trong constraint on the n g impro v es the fitting time, as HODOR
nitially e v aluates the goodness-of-fit based only on the ̄n F g and ̄n S g , and
oes not compute the clustering if ̄n F g is 10 σ away from the reference.
dditionally, the lack of covariance terms in the covariance matrix

hould, as well, decrease the convergence time. 
Finally, we apply the best-fitting HOD model to all N 

cov 
mocks = 123

ASTPM halo boxes that share the initial conditions with the SLICS
ocks to obtain the IG- FASTPM . 

.3.2 The second step 

o examine the influence of smaller scales on the HOD fitting, we
ompute the following for both SLICS and FASTPM : 

(i) the power spectrum for k ∈ [0 . 02 , k max ] h Mpc −1 , with a bin
ize of 0 . 02 h Mpc −1 , 
NRAS 527, 11539–11558 (2024) 
(ii) the 2PCF for s ∈ [ s min , 50] Mpc h 

−1 , with a bin size of
 Mpc h 

−1 , 

where the values of k max and s min are presented in Table 3 .
onsequently, we create the data and model vectors as follows: 

(i) S data = [ P̄ 

S 
0 , P̄ 

S 
2 , ̄n 

S 
g ] and S model = [ P̄ 

F 
0 , P̄ 

F 
2 , ̄n 

F 
g ]; 

(ii) S data = [ ̄ξS 
0 , ̄ξ

S 
2 , ̄n 

S 
g ] and S model = [ ̄ξF 

0 , ̄ξ
F 
2 , ̄n 

F 
g ]. 

In order to estimate the noise in the context of shared initial
onditions between SLICS and FASTPM , we use the N 

cov 
mocks galaxy

oxes of both SLICS and IG- FASTPM , along with their corresponding
lustering measurements (power spectrum or 2PCF). Furthermore,
e introduce � 

P 
�, IG = P 

F 
�, IG ( k) − P 

S 
� ( k) and � 

ξ
�, IG = ξF 

�, IG ( s) − ξS 
� ( s)

s well as the generic vector � 

IG ( x ) = [ � 0, IG , � 2, IG ] to express the
ifference between the SLICS and the IG- FASTPM galaxy clustering
hat share the initial conditions. Here, the variable x represents either
 or s . 

Taking advantage of the previous definitions, we further define a
atrix M with the following elements: 

 ij = � 

IG 
i ( x j ) − �̄ 

IG ( x j ) , i = 1 , 2 , ..., N 

cov 
mocks , x j ∈ [ x min , x max ] , 

(18)

here � 

IG 
i denotes the vector corresponding to the i -th ( SLICS ,

G- FASTPM ) pair, �̄ 

IG represents the mean vector over all ( SLICS ,
G- FASTPM ) pairs, and [ x min , x max ] defines the interval of points
nvolved in the fitting, see Table 3 . Starting from this matrix and its
ranspose, we calculate the sample covariance matrix C s as follows: 

 s = 

1 

N 

cov 
mocks − 1 

M 

T M . (19) 

Lastly, we calculate the σ ′ 
n g 

as the standard deviation of 139 SLICS

alaxy number densities, divided by 
√ 

N 

fit 
mocks – so that it estimates

he uncertainty corresponding to the average of N 

fit 
mocks realizations –

nd we attach it to the C s to obtain the final covariance matrix used
n the HOD fitting: 

 diff ≡
(

C s 0 
0 σ ′ 2 

n g 

)
. (20) 

ote that while the error estimate for the clustering is based on the
ifference in clustering due to matched initial condition, the error of
he number density is directly computed from the SLICS realizations,
s we aim to constrain the absolute number density, which has strong
ffect on the final clustering covariance. 

.3.3 Goodness-of-fit 

n this section, we define a reduced χ2 – χ2 
ν – that expresses the

oodness-of-fit for the average of N 

fit 
mocks FASTPM galaxy clustering

ealizations with respect the SLICS reference, i.e. the n g is not
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Table 4. The fitting ranges – k ∈ [0 . 02 , K] h Mpc −1 and s ∈ 

[ S, 200] Mpc h −1 used in the clustering fitting described in Section 3.4 . 

K [ h Mpc −1 ] 0.1 0.15 0.2 0.25 

S [ Mpc h −1 ] 15 20 25 30 
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6 This would be the noise level in a hypothetical case where SLICS and 
FASTPM would not share the initial conditions. 
7 The DESI Year 5 error is estimated by rescaling σ 20, SLICS to match the Y5 
ELG sample volume, which is assumed to be 24 Gpc 3 h −3 . 
8 The DESI Year 1 error is estimated by rescaling σ 20, SLICS to match the Y1 
ELG sample volume, which is assumed to be one-third of the Y5 volume. 
9 A simple calculation reveals that one would need 192 SLICS realizations to 
meet the DESI Y5 precision requirements. 
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ncluded: 

2 
ν = N 

fit 
mocks ×

� 

T  

−1 
χ � 

ν
, (21) 

here � denotes the difference between FASTPM and SLICS 

lustering – monopole and quadrupole – and ν = N bins − N params , 
ith 

(i) N params = 6 – the number of free parameters; 
(ii) N bins = 2 × N 

� 
bins – the length of the � 

IG ( x ) vector, see Table 3 .

The  

−1 
χ is the unbiased estimate of the inv erse co variance matrix

Hartlap, Simon & Schneider 2007 ): 

 

−1 
χ = C 

−1 
s 

N 

cov 
mocks − N bins − 2 

N 

cov 
mocks − 1 

, (22) 

here C s is defined in equation ( 19 ). Sellentin & Heavens ( 2016 )
nd Perci v al et al. ( 2022 ) have sho wn that this correction may not
e the optimal choice for accurately determining the uncertainty of 
he parameters. Ho we ver, since our main focus is on obtaining the
est-fitting clustering and assessing its goodness-of-fit, it remains a 
easonable correction. 

Finally, as we fit the average of N 

fit 
mocks realizations, we must scale

he covariance matrix C s by a factor of 1 /N 

fit 
mocks . As a consequence,

he N 

fit 
mocks factor appears in equation ( 21 ). 

.4 Co v ariance matrix comparison 

iven that the main goal is to have a robust estimation of the
ncertainty on the cosmological parameters, we want to compare 
he constraining power of the covariance matrices. To this end, we 
t the 123 individual SLICS clustering (monopole and quadrupole) 
ith the following models: 

 

� 
model ( k) = b � × P̄ 

� 
123 , SLICS ( k) (23) 

nd 

� 
model ( s) = b � × ξ̄ � 

123 , SLICS ( s) , (24) 

here P̄ 

� 
123 , SLICS ( k) and ξ̄ � 

123 , SLICS ( s) are averages of the 123 realiza-
ions and b � denotes the two free parameters. 

Moreo v er, the co variance matrices are computed similarly to 
he equation ( 22 ), but using 778 LR FASTPM realizations. The
tting is performed using PYMULTINEST , for different fitting ranges 
 k ∈ [0 . 02 , K] h Mpc −1 and s ∈ [ S, 200] Mpc h 

−1 , see Table 4 ) for
he purpose of comparing the effect of the covariance matrices at 
ifferent scales. The largest fitting intervals are chosen so that they 
o v er the nominal scales included in the BAO and RSD analyses, i.e.
 ≈ 0 . 2 h Mpc −1 and S ≈ 20 Mpc h 

−1 (e.g. Tamone et al. 2020 ; de
attia et al. 2021 ). Finally, the sho wn v alues are the average ( b � )

nd standard deviation ( σb � ) of the marginalized posterior p ( b � ) and
ovariance ( R [ b 0 , b 2 ]) of the posterior distribution of b 0 and b 2 , p ( b 0 ,
 2 ). By construction, the values of b � should be one. 
The main reason why we perform such a simplified test is to

 v oid the systematic errors that can arise due to the modelling.
onsequently, the comparison between the quoted σb � and R [ b 0 , b 2 ]

hould be directly related to the differences in FASTPM covariance 
atrices. We, nevertheless, reckon that these comparisons do not 
ho w ho w the errors on the parameters of a realistic BAO/RSD
odel would behave. 

 RESULTS  

ne of the challenges of HOD fitting is addressing the high precision
mposed by large volume surv e ys such as DESI because it requires
rohibitiv ely man y large volume simulations. Fig. 1 illustrates this
ssue as a comparison between σ 20, SLICS , 6 the noise corresponding 
o the average of N 

fit 
mocks = 20 SLICS clustering realizations, and the

xpected DESI Y5 7 and Y1 8 errors of the ELG sample. It is obvious
hat N 

fit 
mocks SLICS realizations do not reach the required precision. 9 

In order to o v ercome this issue, we employ the no v el matched
nitial conditions simulations ( SLICS and FASTPM ). In this case, the
ffect of the cosmic variance on the clustering difference is mostly
emo v ed. Therefore, as discussed in Section 3.3 , the rele v ant error
stimate is given by the covariance matrix of the clustering difference
etween the two simulations. Given the fact that we use N 

fit 
mocks pairs

o perform the HOD fitting, the covariance matrix must be rescaled
y N 

fit 
mocks . The square root of the diagonal of the resulting covariance

atrix is illustrated with an dashed orange line in Fig. 1 . One can
bserve that the matched initial conditions significantly reduce the 
oise to values below σ 20, SLICS . 
Furthermore, we w ould lik e to highlight that the precision depicted

y the dashed orange line is either better than or equal to DESI
1 precision up to k ≈ 0 . 25 h Mpc −1 . Consequently, the results
resented in this paper are precise enough with respect to the
equirements of further DESI Y1 analyses. None the less, it might
e necessary to readdress this study for the full DESI sample, to
ccount for e ven lo wer noise levels. For this, one could use the 1800
BACUSSUMMIT (Maksimova et al. 2021 ) N -body 0 . 5 Gpc h 

−1 cubic
oxes. 
In addition, Fig. 1 illustrates the comparison between σ DIFF and 

he square root of the diagonal elements of  diff . In this context,
DIFF represents the standard deviation of the differences between the 
est-fitting FASTPM (obtained from the second HOD fitting step) and 
LICS clustering, further divided by 

√ 

N 

fit 
mocks . Ideally, an iterative 

OD fitting process should be performed to ensure a robust  diff ,
ut the close agreement between σ DIFF and the diagonal elements of 
 diff suggests that  diff has approximately converged after a single 

teration. A more detailed argument in support of the convergence of
 diff is presented in Section A . 
As pointed out in Section 3.3 , it is important that the FASTPM

alaxy catalogues reproduce the SLICS shot-noise. Examining the 
ASTPM galaxy number densities of all HOD fitting cases, we 
bserved that the largest deviation, | ̄n S g − n̄ F g | /σ ′ 

n g 
, is approximately 

 . 5 σ , but most values are below 0 . 2 σ . This strongly supports that
he galaxy number density is well constrained and that it is safe to
efine a χ2 

ν without including n g – see equation ( 21 ). 
Furthermore, the values of the χ2 

ν are subject to uncertainties 
ue to the finite number of realizations used to estimate the co-
ariance matrix and the limited number of HOD realizations per 
MNRAS 527, 11539–11558 (2024) 
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M

Figure 3. The average of 20 SLICS (reference-black) and 20 FASTPM (model-colours) clustering realizations and the tension ( σDIFF is shown in Fig. 1 ) 
between them: left: power spectrum and right: 2PCF. FASTPM mocks share the white-noise through the initial conditions with the SLICS ones. The fitting has 
been performed: (1) on the monopole and quadrupole of the power spectrum; (2) for three different fitting ranges, see Table 3 ; (3) using HR (dashed) and LR 

(continuous) FASTPM realizations. The O x -axis of the 2PCF panels has a linear scale from 0 to 50 Mpc h −1 and a logarithmic scale abo v e this limit. 
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alo catalogue. The most significant uncertainty, ≈27 per cent, arises
rom the limited number of HOD realizations. The remaining values
re below 20 per cent, see Section B for more details. The χ2 

ν is
imply used as a metric to e v aluate the goodness-of-fit. For this
eason it is important to consider that it is affected by a large
ncertainty when comparing its magnitude to the expected value
f one. 
The primary focus of this paper is to investigate the limits of

he FASTPM capabilities to model the non-linear scales captured by
 -body simulations. Furthermore, we study the effect of fitting to

uccessively more non-linear scales and either Fourier or configura-
ion space statistics on the FASTPM covariance matrix. 

.1 Power spectrum fitting 

ig. 3 shows the results of the HOD fitting performed on the power
pectrum for three different k intervals, defined in Table 3 . The
econd, third, and fifth rows display the difference in the clustering
caled by the difference error. We remind the reader that this error
NRAS 527, 11539–11558 (2024) 
s smaller than the expected one for the given volume, due to the
atched initial conditions between the two simulations, see Fig. 1 . 
The best-fitting monopoles and quadrupoles are within ±1 σ for
ost scales. Moreo v er, the results for the HR FASTPM – presented
ith dashed line – are only marginally better than the ones for LR

ASTPM . Given the modest difference between the performances of
he two resolutions, we believe that the LR FASTPM is precise enough
o describe the two-point clustering to non-linear scales for a DESI
LG-like galaxy sample, within the estimated DESI Y1 error bars,
ee Fig. 1 . 

Considering that we only fit the first two even multipoles, there
s no guarantee that the third one would match the reference.
evertheless, the fifth row of Fig. 3 illustrates that fitting the
onopole and quadrupole to smaller scales impro v es the agreement

f the he xadecapole. F or instance, fitting on the large interval pushes
he � = 4 multipole within ±2 σ for k < 0 . 4 h Mpc −1 , whereas for

edium and small intervals, the hexadecapole is placed within ±2 σ
nly for k < 0 . 3 h Mpc −1 or k < 0 . 2 h Mpc −1 , respectively. 
Due to the fact that the power spectrum is affected by the window

unction, it is not obvious that a good matching in Fourier space
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Figure 4. The χ2 
ν as defined in Section 3.3.3 . We compute χ2 

ν : (1) for different intervals (see O y and O x axes) of the clustering statistics (left panels: power 
spectrum; right panels: 2PCF); (2) for different fitted clustering (upper panels: power spectrum, see Section 4.1 ; lower panels: 2PCF, see Section 4.2 ); (3) for 
different fitting ranges (see Table 3 ). 
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ranslates as a good matching in Configuration space. Thus, we 
ompute and display the corresponding 2PCF in the right-hand 
ide of Fig. 3 . Most monopoles and quadrupoles agree within ±2 σ
ith SLICS for separations larger than 20 Mpc h 

−1 . This suggests
hat it is possible to obtain a reasonable 2PCF abo v e a certain

inimum separation, even when performing HOD fitting on the 
o wer spectrum. Ho we ver, fitting on the medium and large intervals,
he 2 σ matching goes down to a separation of 10 Mpc h 

−1 . 
In contrast, for separations smaller than 5 Mpc h 

−1 , the non-linear 
ffects become dominant, making it difficult to replicate the velocity 
eld. This is why increasing the fitting range up to k max = 0.5 can

mpro v e the monopole but not the quadrupole. Lastly, the 2PCF
e xadecapole e xhibits a bias of o v er 3 σ for s < 50 Mpc h 

−1 in all
ix cases. 

After a more qualitative description of the results, we present 
he χ2 

ν values in the upper panels of Fig. 4 . Generally, the HR
ASTPM produces lower χ2 

ν values than the LR, as expected from 

ig. 3 . Ho we ver, χ2 
ν [ P (0 . 02 , k max )] � 1, which reiterates that by

tting the monopole and quadrupole of the power spectrum up to 
he three k max values, one can achieve a good match with the SLICS
eference, within the DESI Y1 precision even with LR. In addition, 

2 
ν [ ξ (20 , 50)] � 2 for the small fitting interval of the LR power
 m  
pectrum, reinforcing the fact that one can get a reasonable 2PCF
bo v e a certain minimum separation threshold when the fitting is
erformed on the power spectrum. 
Additionally, we can observe the behaviour of χ2 

ν when it is 
stimated on different intervals than those used for the fitting. When
he fitting is performed on the large interval, the χ2 

ν � 1 for all
maller intervals, regardless of the resolution. However, fitting on 
he medium interval shows that the difference between HR and LR
ecomes more significant for k > 0 . 4 h Mpc −1 (see also Fig. 3 ): the
2 
ν � 2 for LR, while for HR, it is close to one. These findings imply

hat fitting up to k ≤ 0 . 4 h Mpc −1 is satisfactory for HR FASTPM ,
hereas smaller scales play a more significant role in LR. 
Furthermore, fitting on the small interval shows that although 

2 
ν [ P (0 . 02 , 0 . 3)] � 1, it is much larger for k > 0 . 3 h Mpc −1 , indi-
ating strong clustering divergence beyond that value (see Fig. 3 ).
herefore, both LR and HR benefit from considering the clustering 

nformation contained in smaller scales k > 0 . 3 h Mpc −1 . 

.2 2PCF fitting 

hen the HOD fitting is performed on the power spectrum, the
inimum 2PCF χ2 

ν is χ2 
ν [ ξ (10 , 50)] ≈ 2. While this translates to
MNRAS 527, 11539–11558 (2024) 
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Figure 5. Same as Fig. 3 , but the fitting is done on the monopole and quadrupole of the 2PCF. 
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 2 σ agreement down to the separation of 10 Mpc h 

−1 between
ASTPM and SLICS 2PCF, we test whether fitting directly the 2PCF
an impro v e the results. Therefore, in this section, we analyse the
utcomes of the HOD fitting performed on the 2PCF monopole and
uadrupole, for s ∈ [ s min , 50] Mpc h 

−1 , see Table 3 . 
Fig. 5 presents the monopole, quadrupole, and hexadecapole

f the 2PCF computed for s ∈ [0 , 200] Mpc h 

−1 as well as the
ensions between the FASTPM and SLICS . The FASTPM cluster-
ng typically falls within 2 σ of the reference for scales larger
han 50 Mpc h 

−1 and is largely unaffected by the fitting scenario.
o we ver, the HR monopoles are consistently closer to the reference

han LR monopoles by approximately 0.5 σ at scales larger than
150 Mpc h 

−1 . 
Including the smallest scales (large interval) in the HOD fitting, we

bserve a 1 σ to 2 σ agreement with the reference for s < 10 Mpc h 

−1 

n both the monopole and quadrupole. Ho we ver, at intermediate
cales s ∈ [10 , 50] Mpc h 

−1 , the monopole is significantly biased,
xhibiting a deviation of 3 σ . In contrast, for the medium and
mall scenarios, we notice that the tensions for the monopole and
uadrupole at intermediate scales drop to 1 σ , while the smallest
cales can get biased by more than 3 σ . Nev ertheless, the y match
etter the reference than the power spectrum HOD fitting case.
astly, the hexadecapole does not depend on the resolution or the
NRAS 527, 11539–11558 (2024) 
tting range and is strongly biased for s < 60 Mpc h 

−1 , showing no
mpro v ement compared to the power spectrum fitting. 

As in the previous subsection, we test the clustering statistics of
he best-fitting FASTPM boxes that were not included in the HOD
tting, i.e. the power spectrum in the Fig. 5 . The first observation

s that these FASTPM power spectra do not fit as well the reference
s the ones from Fig. 3 . On the one hand, for the HR case and
edium and small fitting intervals a ±1 σ matching is possible up

o k = 0 . 4 h Mpc −1 and k = 0 . 3 h Mpc −1 , respectively. On the other
and, the LR FASTPM allows a good matching up to k ≈ 0 . 2 h Mpc −1 

or the same fitting intervals. While the s min = 0 case has a good
atching quadrupole up to k ≈ 0 . 4 h Mpc −1 , its monopole follows

imilar trend to the 2PCF monopole, i.e. the intermediate scales
 ∈ [0 . 25 , 0 . 4] h Mpc −1 are biased and the rest are mostly within
 σ deviation. Lastly, the hexadecapole is within ±2 σ up to k ≈
 . 3 h Mpc −1 for the large fitting interval and up to k ≈ 0 . 2 h Mpc −1 

or the other cases. 
A quantitati ve e vidence that directly fitting the 2PCF yields

uperior matching of the 2PCF compared to fitting the power
pectrum is displayed in Fig. 4 . The majority of the χ2 

ν values in
he lower right panel are lower compared to those in the upper right
anel. Furthermore, fitting on the small interval ( s min = 10), the
2 
ν ≈ 1, indicating that the 2PCF is in good agreement with the
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Figure 6. A comparison between the average SLICS bi-spectrum and the average FASTPM bi-spectrum. The averages are computed from the 20 realizations 
used during the HOD fitting. The left panel shows the results from fitting the power spectrum, as in Fig. 3 . The right panel displays the results from fitting the 
2PCF, as in Fig. 5 . The shaded area denotes ±2 σ deviation. The bi-spectra are computed for k 1 = 0 . 1 ± 0 . 05 h Mpc −1 and k 2 = 0 . 2 ± 0 . 05 h Mpc −1 , with the 
θ angle between k 1 and k 2 varying from 0 to π . 
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LICS reference abo v e a certain minimum separation. The almost 
onstant χ2 

ν for the large fitting interval in the lower right panel of
ig. 4 is explained by the discrepancy at the intermediate scales of

he monopole for the large fitting interval in Fig. 5 . Lastly, as in
he previous fitting scenario, the HR FASTPM generally provides 
 lower χ2 

ν than the LR. In contrast, only the HR simulations can
rovide a χ2 

ν < 2 to both the 2PCF and the power spectra, and only
hen fitting with the medium and small intervals to 2PCF. Although 
ot shown in the aforementioned figure, it is important to note that
2 
ν [ P (0 . 02 , 0 . 2)] = 2 . 4 for the 2PCF small interval LR case. 

.3 Bi-spectrum comparison 

he two-point clustering covariance matrix is directly related to the 
ri-spectrum, i.e. the four-point clustering, ho we ver this is difficult 
o tune. None the less, Baumgarten & Chuang ( 2018 ) have shown
hat for similar two-point clustering, the corresponding covariance 

atrices – at scales of s < 40 Mpc h 

−1 – are sensitive to changes in
he bi-spectrum. Consequently, even though we do not include the 
i-spectrum into the HOD fitting, we aim to understand its behaviour 
hen incorporating various scales of the two-point clustering in the 
OD fitting. 
Fig. 6 compares the average bi-spectrum of the 20 best-fitting 

ASTPM boxes with the one computed on the corresponding SLICS 

oxes, for 2 k 1 = k 2 = 0 . 2 h Mpc −1 configuration as done by Baum-
arten & Chuang ( 2018 ). These scales are chosen because they are
ensitive to BAO and RSD, the primary scientific case of DESI. It is
vident that by increasing the fitting range to include smaller scales, 
he FASTPM bi-spectrum changes to the extent that for k max = 0.5,
he tension ranges from 1 σ to 2 σ . In contrast, when fitting the 2PCF
he resulting bi-spectrum is more biased, i.e. the lowest deviation 
s ≈5 σ , for s min = 0 case. In addition, we have checked multiple
onfigurations of the bi-spectrum with k i ∈ [0 . 01 , 0 . 21] h Mpc −1 and
 = 1 or 2 and observed that for k max = 0.5 and s min = 0, the
 v erall agreement between the FASTPM and SLICS is around 1 and
 per cent, respectively . Lastly , there is no significant impro v ement
n terms of the goodness-of-fit between the HR and LR. 

In the previous sections, we compare the HR and LR FASTPM with
LICS using the two-point clustering of the 20 cubic mocks included 
n the HOD fitting. The HR simulations perform better than LR
o model the extremely non-linear scales, such as k ≈ 0 . 5 h Mpc −1 

nd s ≈ 0 Mpc h 

−1 . In contrast, at mildly non-linear scales ( k ≈
 . 3 h Mpc −1 , s ≈ 10 Mpc h 

−1 ) that are more rele v ant to BAO and
SD analyses (e.g. Tamone et al. 2020 ; de Mattia et al. 2021 ), LR and
R show similar performance. Moreo v er, Fig. 6 suggests that the bi-

pectrum does not depend strongly on the resolution. Nevertheless, 
he computing cost of HR is significantly higher than for LR and
iven the small difference in precision, we argue it is optimal to use
R FASTPM for further analyses. 
Furthermore, in Fig. 7 , we compare the average bi-spectra –

omputed from 778 LR FASTPM realizations – corresponding to 
he six HOD fitting cases, see Table 3 . In this and the next figures,
e choose the k max = 0.5 case as reference because 
MNRAS 527, 11539–11558 (2024) 
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Figure 8. The correlation matrices and the standard deviations computed 
using 123 realizations of the monopole and quadrupole of the power spectrum 

(left) and 2PCF (right). In the first row, the upper triangular matrices display 
the correlation matrices of the FASTPM k max = 0.5 case, while the lower 
triangular ones show the SLICS correlation matrices. The second row of 
panels contains the differences between the SLICS and FASTPM correlation 
matrices. The third-row panels illustrate the ratios between the standard 
deviations. The shaded regions denote 2 and 5 per cent limits. 
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Figure 9. The correlation matrices and the standard deviations computed 
using 778 realizations of the monopole and quadrupole of the power spectrum 

(left) and 2PCF (right). Given the similarity between some correlation 
matrices, only three out of six different HOD fitting cases – see Table 3 – are 
presented here. Ho we ver, all cases can be found in Appendix C . The reference 
case corresponds to k max = 0.5. The upper triangular matrices display the 
correlation matrices, while the lower triangular ones show the differences 
between the correlation matrices and the reference one. The bottom panels 
illustrate the ratios between the standard deviations. The shaded regions 
denote 2 and 5 per cent limits. 
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(i) Fig. 4 shows that the best-fitting power spectrum provides χ2 
ν ≈

; 
(ii) Fig. 6 implies that the corresponding bi-spectrum is the closest

o the SLICS reference. 

One can notice that s min = 0 bi-spectrum is at most 5 per cent
ifferent than the reference, while the rest can reach 15 per cent
iscrepancies. The k max = 0.3 and k max = 0.4 cases are 1 to 2 per cent
ifferent from each other and similarly for s min = 5 and s min = 10. 

.4 Co v ariance matrix comparison 

aving studied the behaviour of the bi-spectra with respect to the
cales introduced into the HOD fitting, we now want to understand
he resulting impact on the two-point clustering covariance matrices.
irst, Fig. 8 compares the k max = 0.5 and SLICS correlation
atrices and standard de viations. Gi ven the limited number of

ealizations used to estimate the correlation matrices, it is difficult
o assess the importance of the dif ferences. Ne vertheless, there
eems to be more significant differences at very small scales for
he 2PCF and important differences at almost all scales for the
ower spectrum. Numerically, the standard deviations deviate by
ore than 7 to 10 per cent from the SLICS case for s < 10 Mpc h 

−1 

nd k > 0 . 35 h Mpc −1 . A more detailed comparison is performed by
huang et al. (in preparation). 
NRAS 527, 11539–11558 (2024) 
Secondly, we compare the correlation matrices and standard
eviations obtained from 778 FASTPM realizations, of the six HOD
tting cases, where k max = 0.5 is the reference. 

.4.1 Power spectrum covariance matrix 

ig. 9 presents the correlation matrices and the corresponding
tandard deviations σ � for the monopole and quadrupole of the power
pectrum. The following pairs ( k max = 0.4, k max = 0.3), ( s min = 5,
 min = 10), and ( s min = 0, k max = 0.5) hav e v ery similar correlation
atrices, thus we only show three cases. Ho we ver, we introduce all

f them in Appendix C . 
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Figure 10. The average of the 123 fitting parameters ( b � ) obtained from 123 
SLICS clustering realizations, as described in Section 3.4 . The measurements 
performed on the power spectra with k ∈ [0 . 02 , K] h Mpc −1 are shown on the 
left, while those based on the 2PCF with s ∈ [ S, 200] Mpc h −1 are depicted 
on the right. The error bars are computed as the average of 123 σb � , divided 
by 

√ 

123 . Here, σb � represents the standard deviation of the b � posterior 
distribution. The colours correspond to the dif ferent FASTPM cov ariance 
matrices illustrated in Fig. 9 . Due to the similar results, only one value for K 

and S are sho wn here. Ho we ver, all tested values are presented in Appendix C . 
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The similarity to the reference correlation matrix diminishes in 
he following order: s min = 0, k max = 0.4, k max = 0.3, s min = 5,
nd s min = 10. Ho we ver, for the largest scales of the quadrupole
 k < 0 . 15 h Mpc −1 ), the correlation coefficients are practically the
ame for all cases. 

The standard deviations in the lowest panels show similar trends. 
he s min = 0 case is within 2 per cent of the reference case. The k max =
.4 and k max = 0.3 cases o v erestimate the σ � ( k ) by approximately
 per cent for k < 0 . 27 h Mpc −1 and by ≈5 per cent for smaller
cales. Nevertheless, these two cases are consistent with each other 
ithin 1 to 2 per cent. In contrast, s min = 5 and s min = 10 can
 v erestimate the σ � ( k ) by ≈2 to 5 per cent for k < 0 . 27 h Mpc −1 and
y 10 to 20 per cent for smaller scales. These two cases are also
onsistent with each other for most scales, except for the quadrupole 
 > 0 . 3 h Mpc −1 . These findings are in agreement with the trends
bserved in the bi-spectrum comparison in Fig. 7 . 
In order to quantify the differences between the covariance ma- 

rices we adopt the method described in Section 3.4 and thus obtain
he results displayed in Figs 10 and 11 . The first one reveals that
one of the six covariance matrices bias the two fitting parameters, 
egardless of the fitting range. We only present here the results of
ne fitting range; ho we ver all cases can be found in Appendix C . 
Examining the uncertainty on b 0 in Fig. 11 , we observe that

ncluding the smaller scales the discrepancy between the error 
stimates of the six covariance matrices increases, as we expect from
ig. 9 , reaching a maximum of ≈20 per cent larger error estimation
or the s min = 10 covariance at K = 0 . 25 h Mpc −1 . Moreover, each
f the pairs ( k max = 0.4, k max = 0.3), ( s min = 5, s min = 10), and ( s min =
, k max = 0.5) provide coherent estimations of the uncertainty, which 
s consistent with the observations on the correlation matrices and 
tandard deviations. Lastly, a 5 per cent consensus between all six
ovariance matrices is achieved when we fit the power spectra on the
 ∈ [0 . 02 , 0 . 1] h Mpc −1 . 

The agreement between covariance matrices on σb 2 is much 
etter than σb 0 . Given the error bars, the six methods estimate the
ncertainty with a 2 per cent tolerance with each other for all K 

alues. 
Finally, all six covariance matrices provide values of R [ b 0 , b 2 ] that

re consistent at the level of 5 per cent, given the error bars and up to
 = 0 . 2 h Mpc −1 . For K = 0 . 25 h Mpc −1 , the largest discrepancy is

hown by s min = 10 case which underestimates the value of R [ b 0 , b 2 ]
y almost 50 per cent. The other cases underestimate R [ b 0 , b 2 ] by
0 to 20 per cent. 

.4.2 2PCF covariance matrix 

omparing the correlation matrices obtained from 778 2PCF in 
ig. 9 , one can observe that the largest differences occur at the
mallest scales s < 30 Mpc h 

−1 . Similarly to the power spectrum
orrelation matrices, the same pairs of cases show resembling be- 
aviours at all scales. Equi v alent qualitati ve comments can be made
bout the ratios of the standard deviations. None the less, all cases
re within ≈2 per cent from each other for s > 30 Mpc h 

−1 , while at
maller scales, the differences can get larger than ≈20 per cent. 

Following the method described in Section 3.4 , we obtain the
esults shown in Figs 10 and 12 . The first figure pro v es that
ll six covariance matrices provide unbiased measurements of b � 
arameters. 
Resembling the power spectrum fitting case, the six estimations 

f σb 0 in Fig. 12 are in better agreement when the smallest scales are
ot included in the 2PCF fitting; ho we v er for S ≥ 20 Mpc h 

−1 the y
re all within ≈5 per cent from each other. The largest discrepancy is
round 10 per cent and occurs between s min = 0 and s min = 10 for S =
5 Mpc h 

−1 . The values of σb 2 are all consistent within ≈2 per cent,
iven the error bars. Interestingly, including the smaller scales, the 
 [ b 0 , b 2 ] values are more coherent, such that all discrepancies are
ithin 5 per cent, given the error bars and for S < 30 Mpc h 

−1 . In
ontrast, when S = 30 Mpc h 

−1 the s min = 10 and s min = 5 provide
alues R [ b 0 , b 2 ] that are approximately 10 per cent larger than the
eference, but nevertheless consistent within the error bars. 

The covariance matrix obtained through fitting the power spectrum 

r the 2PCF can be different on highly non-linear scales, therefore
n analysis using such scales needs to be more careful with the
ovariance matrix estimation. In contrast, in the quasi-linear regime 
 s � 20 Mpc h 

−1 ; k � 0 . 2 h Mpc −1 ) the differences are not statisti-
ally significant (see e.g. s min = 0 and k max = 0.5 cases), thus one can
se either space to obtain the covariance matrices and apply them to
oth analyses. 

 C O N C L U S I O N S  

e have implemented an HOD model to assign galaxies on the
ASTPM halo cubic mocks, such that the resulting clustering –
onopole and quadrupole – matches the SLICS reference one. In 

rder to remo v e the cosmic variance, we have used 20 SLICS
alaxy catalogues and 20 halo FASTPM mocks (low-resolution or 
igh-resolution) that share the initial conditions with the SLICS 

imulations. Given the shared white noise, the standard covariance 
atrix is obsolete, thus we have performed a two-step HOD fitting: 

(i) use a simple diagonal covariance matrix to get IG best-fitting 
ASTPM galaxy mocks; 
MNRAS 527, 11539–11558 (2024) 
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Figure 11. The averages of 123 σb � and 123 R [ b 0 , b 2 ] – the standard deviation of the b � posterior distribution and the covariance between b 0 and b 2 , respectively, 
detailed in Section 3.4 – obtained from 123 SLICS power spectra fitted on k ∈ [0 . 02 , K] h Mpc −1 . In order to estimate the error bars, we split the 778 FASTPM 

realizations in six distinct sets of 123 realizations and compute for each set u a covariance matrix  

u 
123 , FASTPM 

with which we fit the 123 SLICS clustering 
realizations. Having obtained 123 values of σu 

b � 
per set, we compute their average σ̄ u . Finally, the error bars are the standard deviation of the six σ̄ u divided by √ 

6 . The different colours stand for the different FASTPM covariance matrices exhibited in Fig. 9 . The k max = 0.5 represents the reference, i.e. all values ( σb � 

and its error bars) are scaled by the σb � corresponding to k max = 0.5 case. This is why all brown squares have the value of one. The shaded areas delineate the 2 
and 5 per cent regions with respect to the reference. 

Figure 12. Same as Fig. 11 , but the fitting is performed on 123 SLICS 2PCF and s ∈ [ S, 200] Mpc h −1 . 
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(ii) compute the covariance matrix of the 123 realizations of the
ifference between the IG- FASTPM and the SLICS clustering, and
se it to perform the final HOD fitting. 

The final HOD fitting has been performed on three different fitting
anges for both power spectrum k ∈ [0 . 02 , k max ] h Mpc −1 and 2PCF
 ∈ [ s min , 50] Mpc h 

−1 : ( k max = 0.5, k max = 0.4, k max = 0.3) and
 s min = 0, s min = 5, s min = 10), respectively. 

On the one hand, the HR FASTPM generally performs better than
he LR at modelling the SLICS clustering. On the other hand, LR is
lso able to provide a χ2 

ν ≈ 1 for k max = 0.5, k max = 0.4, k max = 0.3,
nd s min = 10. The k max = 0.5 case is one of the most valuable as it
dditionally offers 2 σ matching: 

(i) power spectrum hexadecapole for k < 0 . 4 h Mpc −1 ; 
(ii) 2PCF monopole and quadrupole for s > 10 Mpc h 

−1 ; 
NRAS 527, 11539–11558 (2024) 
(iii) bi-spectrum. 

Nevertheless, fitting the 2PCF with s min = 10 produces a 1 σ
atching power spectrum monopole and quadrupole for k � 0.2,

ut a strongly biased bi-spectrum. In a similar way as the power
pectrum, one must include the smallest scales to better reproduce
he SLICS bi-spectrum, i.e. for s min = 0 the bi-spectrum tension
rops from 20 σ to 5 σ . As a general remark, the power spectrum
exadecapoles can be slightly tuned by changing the values of k max 

r s min , but the 2PCF hexadecapole is practically independent on the
tting range. 
The fact that there is no HOD fitting case that provides both

ower spectrum and 2PCF 1 σ matching with the reference might
aise the question whether one needs two sets of catalogues for
he DESI analysis. Therefore, it could be interesting for future
tudies to perform a joint fitting of both Fourier and Configuration
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lustering statistics to test for possible impro v ements in modelling 
on-linear scales. Future studies could test also the necessary level 
f agreement between the FASTPM and the full N -body reference 
n order to have a similar behaviour when observational systematic 
ffects are included. None the less, for the purpose of this article,
n the second part of the study, we have exposed and compared the
esulting covariance matrices. 

First, we have briefly shown with the 123 FASTPM realizations 
which share the initial conditions with SLICS – that the standard 

eviations of the k max = 0.5 case agree within 5 per cent with the
LICS reference case for s > 10 Mpc h 

−1 and k < 0 . 35 h Mpc −1 .
econdly, we have focused on the 778 LR FASTPM realizations 
orresponding to the six best-fitting cases, where k max = 0.5 is
onsidered the reference. 

Since Baumgarten & Chuang ( 2018 ) have shown that the bi-
pectrum computed with a configuration that includes the BAO 

nd RSD effects – i.e. 2 × k 1 = k 2 = 0 . 2 h Mpc −1 – affects the
o variance matrix, we hav e compared the six bi-spectra and checked
ow this comparison reflects into the two-point clustering covariance 
atrices. Lastly, we have examined the constraining power of these 

ovariance matrices using a simplified clustering model with two 
caling parameters, i.e. b 0 and b 2 for the monopole and quadrupole. 
e have focused on fitting intervals similar to the ones used 

n standard BAO and RSD analyses i.e. K � 0 . 20 h Mpc −1 and
 � 20 Mpc h 

−1 (e.g. Tamone et al. 2020 ; de Mattia et al. 2021 ). 
The s min = 0 bi-spectrum is at most 5 per cent different than

he k max = 0.5, while the other cases can reach a discrepancy of
5 per cent. Ho we ver, each of the pairs ( k max = 0.4, k max = 0.3) and
 s min = 5, s min = 10) yields similar bi-spectra. These observations
re in a good agreement with a qualitative description of the shown
orrelation matrices and the standard deviations. 

Quantitati vely, the po wer spectrum standard deviations of s min = 

 and ( k max = 0.4, k max = 0.3) are within 2 per cent from the
eference for k < 0 . 5 h Mpc −1 and k < 0 . 27 h Mpc −1 , respectively.
urthermore, the 2PCF standard deviations of all cases are within 
 per cent from the reference for s > 30 Mpc h 

−1 . 
Using the simplified clustering model, b 0 and b 2 are measured 

ccurately for both power spectrum and 2PCF using all six covariance 
atrices. The six estimations of σb 0 from the power spectrum fitting 

p to K = 0 . 20 h Mpc −1 are scattered within at most 20 per cent
rom the reference, whereas the values of σb 2 are within 2 per cent
greement, given the error bars. Lastly, the covariances between b 0 
nd b 2 are scattered within 5 per cent from the reference. 

In contrast, the estimations of σb 0 from the 2PCF fitting down 
o S = 20 Mpc h 

−1 are found within 5 per cent from each other.
imilarly to the power spectrum case, the σb 2 values agree at the 

evel of 2 per cent. Given the error bars, the covariances between b 0 
nd b 2 are consistent at the level of 5 per cent. 

Lastly, analysing individual cases in the following pairs of HOD 

tting cases: ( s min = 0, k max = 0.5), ( k max = 0.4, k max = 0.3), ( s min = 5,
 min = 10), one can observe that each pair provides similar uncertainty
stimation σb � , irrespective of the level of matching between the 
ASTPM and SLICS tw o-point clustering. In order w ords, it seems
hat the estimations of the uncertainties are closer when the bi-spectra 
computed for 2 × k 1 = k 2 = 0 . 2 h Mpc −1 – are more similar. The
ost striking case is the 2PCF for s min = 0, which is more than 2 σ

ifferent than the k max = 0.5 2PCF, for s < 40 Mpc h 

−1 , but the 2PCF
tandard deviations and the σb � estimations are practically identical. 

In conclusion, one can use an HOD model on the low-resolution 
ASTPM halo catalogues to tune the galaxy clustering such that 
t matches the SLICS reference down to certain minimum scales. 
dditionally, the HOD fitting intervals can have an impact on the 
nal FASTPM -based covariances. This influence is observed as a 
catter in the uncertainty estimation of up to 20 per cent for power
pectrum and 5 per cent for 2PCF at the scales interesting for BAO
nd RSD analyses. Nevertheless, more accurate analyses could be 
erformed in the future using actual BAO and RSD models and a
arger sample of mocks, such as ABACUSSUMMIT . 
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tting process. 
Fig. A13 illustrates that the magnitude of the errors estimated
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ν
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Figure A13. The ratios between the standard deviations computed on the differences of N 

cov 
mocks = 123 (LR FASTPM , SLICS ) clustering pairs and the square 

root of the diagonal of  diff , i.e.  

ii 
diff . The colours denote the HOD fitting scenarios in the second HOD fitting step, see Table 3 . While the left panels include 

monopole and quadrupole of the 2PCF, the right ones display the power spectrum. 

Figure A14. The χ2 
ν as defined in Section 3.3.3 , but using different covariance matrices. We compute χ2 

ν : (1) for the six best-fitting FASTPM cases, three cases 
for the power spectrum in the left panel (see Section 4.1 ), and three cases for the 2PCF in the right panel (see Section 4.2 ); (2) with the six difference covariance 
matrices obtained after the second HOD fitting step (the coloured dots). The black points show the best-fitting χ2 

ν for the six cases that also appear in Fig. 4 . 
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he  diff is a good approximation of the noise in the difference of

he ( FASTPM , SLICS ) clustering, thus a hypothetical third step HOD
ould not drastically change the best-fitting FASTPM compared to 

he ones after the second step. 

PPENDIX  B:  U N C E RTA I N T Y  O F  T H E  

OODNESS-OF-FIT  

n this section, we are studying the uncertainty introduced by 
he covariance matrix and the finite number of HOD realizations 
er FASTPM halo catalogue in the values of χ2 

ν , as defined in
quation ( 21 ). The results are summarized in Table B1 . 
1 Co v ariance matrix induced uncertainty 

ue to the fact that we have only N 

cov 
mocks = 123 SLICS and FASTPM

ealizations that share the same initial conditions, we are bound 
o use the JackKnife (JK) method to estimate the uncertainty 
ntroduced by the covariance matrix. Additionally, the HOD fit- 
ing is computationally e xpensiv e ( ≈6000 CPU-hours), thus we
re not able to perform hundreds of HOD fittings with different
ovariance matrices. Consequently, after obtaining one set of best- 
tting HOD parameters, we computed the χ2 

ν with the same best- 
tting FASTPM clustering, but with N 

cov 
mocks different covariance 

atrices. 
MNRAS 527, 11539–11558 (2024) 
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Table B1. The values of the χ2 
ν and their uncertainties introduced by the 

covariance matrix (Eqs. B1 and B2 ) and the finite number of HOD realizations 
per FASTPM halo catalogue (Eqs. B3 and B4 ). The estimations have been 
performed on the LR (1296 3 ) FASTPM galaxy catalogues and on both the 
2PCF and the power spectrum for the three specific fitting ranges defined in 
Table 3 . 

P ( k ) ξ ( s ) 

Large 
χ2 

ν from Fig. 4 1.15 16.94 
χ̄2 

ν, HOD ± σχ, HOD 1.38 ± 0.26 17.03 ± 1.65 
χ̄2 

ν, JK ± σχ, JK 1.16 ± 0.31 16.97 ± 2.68 

Medium 

1.00 2.16 
1.13 ± 0.23 2.19 ± 0.42 
1.00 ± 0.19 2.16 ± 0.32 

Small 

1.50 1.59 
1.50 ± 0.29 1.68 ± 0.41 
1.51 ± 0.25 1.59 ± 0.26 
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Figure C15. Upper triangular matrices: correlation matrices of the power 
spectrum monopole and quadrupole, for the fitting cases defined in Table 3 . 
Lower triangular matrices: the difference between the shown correlation 
matrix and the reference one, i.e. k max = 0.5. 
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The covariance matrices –  

i 
χ , with i from 1 to N 

cov 
mocks – are

stimated using equation ( 22 ), but with only N 

cov 
mocks − 1 clustering

ealizations. Furthermore, we compute χ2 ,i 
ν, JK for each  

i 
χ , as defined

n equation ( 21 ) and we calculate the mean χ̄2 
ν, JK and the variance

2 
χ, JK : 

¯ 2 
ν, JK = 

1 

N 

cov 
mocks 

N cov 
mocks ∑ 

i= 1 

χ
2 ,i 
ν, JK , (B1) 

2 
χ, JK = 

⎡ 

⎣ 

N 

cov 
mocks − 1 

N 

cov 
mocks 

N cov 
mocks ∑ 

i= 1 

(
χ

2 ,i 
ν, JK − χ̄2 

ν, JK 

)2 

⎤ 

⎦ . (B2) 

2 HOD induced uncertainty 

uring the HOD fitting, for each FASTPM halo catalogue we create
 single galaxy realization, in order to reduce the optimization time.
s a consequence, we introduce additional noise in the HOD fitting
rocess, which is not considered in the covariance matrix. 
With the aim of estimating the effect of this noise on the χ2 

ν , we
ompute 100 galaxy realizations for a given set of best-fitting HOD
arameters and per FASTPM halo catalogue. Furthermore, using the
0 galaxy realizations corresponding to the halo catalogues used in
he HOD fitting process and the same covariance matrix, we compute

2 ,i 
ν, HOD as in equation ( 21 ), where i = 1,..., 100. Finally, we calculate

he mean and the standard deviation of the 100 χ2 ,i 
ν, HOD values: 

¯ 2 
ν, HOD = 

1 

100 

100 ∑ 

i= 1 

χ
2 ,i 
ν, HOD , (B3) 

2 
χ, HOD = 

[ 

1 

100 − 1 

100 ∑ 

i= 1 

(
χ

2 ,i 
ν, HOD − χ̄2 

ν, HOD 

)2 
] 

. (B4) 
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PPENDI X  C :  C OVA R I A N C E  MATRI X  

O M PA R I S O N  

nalysing Figs C15 and C16 one can observe that the ( s min = 5,
 min = 10) and ( k max = 0.3, k max = 0.4) pairs hav e v ery similar
orrelation matrices. Consequently, we only show k max = 0.3 and
 min = 10 in the main text. 

Figs C17 and C18 show the results of fitting the clustering with
he simplified model detailed in Section 3.4 . Since most results are
onsistent with the expected value of one, we only display the values
or K = 0 . 25 h Mpc −1 and S = 20 Mpc h 

−1 in the main text. 
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Figure C16. Same as Fig. C15 , but for 2PCF. 
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olours stand for the different FASTPM covariance matrices exhibited in Fig. C15 . 
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 , obtained from 123 SLICS power spectra fitted on k ∈ [0 . 02 , K] h Mpc −1 . 
σb � is the standard deviation of the b � posterior distribution. The different 
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Figure C18. Same as Fig. C17 , but the fitting is performed on 123 SLICS 2PCF and s ∈ [ S, 200] using the covariance matrices exhibited in Fig. C16 . 
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