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A B S T R A C T 

In uncomplicated pregnancies, birthweight is inversely associated with adult non-communicable disease 

(NCD) risk. One proposed mechanism is maternal malnutrition during pregnancy. Another explanation 

is that shared genes link birthweight with NCDs. Both hypotheses are supported, but evolutionary per-

spectives address only the environmental pathway. We propose that genetic and environmental associ-

ations of birthweight with NCD risk reflect coordinated regulatory systems between mother and foetus, 

that evolved to reduce risks of obstructed labour. First, the foetus must tailor its growth to maternal meta-

bolic signals, as it cannot predict the size of the birth canal from its own genome. Second, we predict that 

maternal alleles that promote placental nutrient supply have been selected to constrain foetal growth and 

gestation length when fetally expressed. Conversely, maternal alleles that increase birth canal size have 

been selected to promote foetal growth and gestation when fetally expressed. Evidence supports these 

hypotheses. These regulatory mechanisms may have undergone powerful selection as hominin neonates 

evolved larger size and encephalisation, since every mother is at risk of gestating a baby excessively for 

her pelvis. Our perspective can explain the inverse association of birthweight with NCD risk across most 

of the birthweight range: any constraint of birthweight, through plastic or genetic mechanisms, may 

reduce the capacity for homeostasis and increase NCD susceptibility. However, maternal obesity and 

diabetes can overwhelm this coordination system, challenging vaginal delivery while increasing offspring 

NCD risk. We argue that selection on viable vaginal delivery played an over-arching role in shaping the 

association of birthweight with NCD risk.
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LAY SUMMARY Birthweight robustly predicts the risk of adult diseases such as hypertension, type 2 diabetes and cardiovascular disease. 

Potential underlying mechanisms include maternal malnutrition in pregnancy, or common alleles underlying both birthweight variability 

and adult disease risk. Since heavier babies have both better short-term survival and lower adult disease risk, why are most babies born 

with lower birthweights than would maximize these benefits? We argue that all mothers are at risk of gestating a baby that is too large 

to pass through the birth canal, resulting in obstructed labour. This problem increased during the evolution of the genus Homo, as 

neonates evolved larger head size and weight. Natural selection therefore favoured regulatory mechanisms, involving both genetic and 

physiological pathways, that constrain fetal growth and gestation length to match the dimensions of the maternal pelvis. These mecha-

nisms appear to work better for maternal height, correlated with pelvic dimension, than for high maternal adiposity which was rare until 

recent millennia. We argue that selection on viable vaginal delivery played an over-arching role in shaping the association of birthweight 

with NCD risk. Public health interventions to increase birthweight through nutritional supplementation have modest impact, as they may 

trigger the defence mechanisms we describe.

Keywords: obstructed labour; foetal growth; noncommunicable disease; gestation; genetic conflict; DOHaD hypothesis

INTRODUCTION

From the 1980s, adult non-communicable diseases (NCDs) were 
approached using a new life-course perspective. Going beyond 
the heritability of these diseases and their well-known associ-
ations with adult lifestyle, epidemiological studies broke new 
ground by linking variability in birthweight with the risk of car-
diovascular disease, hypertension and type 2 diabetes (T2DM) 
many decades later [1–3]. This indicated a vital contribution of 
development in utero.

The resulting ‘developmental origins of adult health and 
disease’ (DOHaD) paradigm [4], attributing a component 
of NCD risk to early developmental experience, has become 
influential in both biomedical research and public health. 
Experimental research on animals confirms that manipula-
tion of maternal nutrition during pregnancy causes metabolic 
abnormalities in the offspring, with implications for adult 
disease risk [5]. The science of epigenetics offers insight into 
underlying mechanisms [4]. Moreover, birthweight, even if 
not on the causal pathway to disease, is a robust predictor of 
adult NCDs [6].

Initially, most attention focussed on the elevated NCD 
risk associated with low birthweight (<2500 g) and the likely 
mechanism of maternal undernutrition before or during preg-
nancy [1, 3]. However, for uncomplicated pregnancies, the 
association with NCDs is not merely elevated among those 
with low birthweight, but declines in dose–response manner 
across the normal birthweight range [3, 7, 8], suggesting that 
severe maternal undernutrition is not the primary underlying 
mechanism. Moreover, higher birthweight (>4500 g) is also 
associated with elevated NCD risk, especially in females [6, 
9], which may relate to maternal gestational diabetes and its 
association with excess foetal adiposity. A meta-analysis of 
135 studies found that risks for adult T2DM, cardiovascular 
disease and hypertension were lowest for relatively high birth-
weights of 3.5–4.0, 4.0–4.5 and 4.0–4.5 kg, respectively [6]. 
There is thus compelling evidence that birthweight predicts 
adult NCD risk, but the nature of the association is non-linear.

Published in 1999, the alternative ‘foetal insulin’ hypothesis 
proposed that genes underlie the link between poor foetal growth 
and adult T2DM risk [10]. Initially, evidence from monogenic 
disorders of insulin metabolism and genome-wide association 
studies supported the notion of a shared genetic predisposi-
tion to lower birthweight and adult NCDs [11–13]. Subsequent 
work showed that the foetal insulin hypothesis also applies to 
high birthweight, as mutations that promote macrosomia via 
increased foetal insulin secretion are associated with diabetes 
in adulthood [14].

Nevertheless, environmental pathways cannot be discounted 
as, among monozygotic twins, the twin with lower birthweight 
has elevated NCD risk [15]. The DOHaD and foetal insulin 
hypotheses therefore appear complementary, whereby the life-
course aetiology of NCDs, reflecting a reverse J-shaped associa-
tion of birthweight with adult disease risk, has both genetic and 
environmental components. Currently, a comprehensive concep-
tual framework linking these approaches is lacking.

To understand why adult morbidity and mortality are cor-
related with foetal growth requires an evolutionary perspective. 
For the DOHaD framework, Hales and Barker offered one such 
perspective in their ‘thrifty phenotype’ hypothesis: this concep-
tual approach assumed that to protect their own survival and 
reproductive potential, undernourished mothers reduce placen-
tal nutrient supply and hence the birthweight of their offspring 
[16]. Following this adjustment, the surviving offspring suffers 
elevated NCD susceptibility in later life [16]. An alternative per-
spective is the ‘Predictive Adaptive Response’ hypothesis, which 
assumes that exposure to maternal undernutrition during preg-
nancy drives the foetus not only to reduce its immediate growth 
but also to adjust its metabolic phenotype in anticipation of 
experiencing similar undernutrition in adulthood [17]. Traits 
such as insulin resistance and central body fat are assumed 
to be triggered during foetal development in order to promote 
survival and reproduction in energy-scarce adult environments. 
However, the validity of the PAR hypothesis for long-lived species 
such as humans has been challenged on both theoretical [18, 19] 
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and empirical [20, 21] grounds: in particular, signals of maternal 
nutritional supply during pregnancy are unlikely to be predictive 
of the ecological conditions that will be experienced throughout 
the adult reproductive career [22].

Crucially, an adaptive perspective for the genetic association 
of birthweight with adult NCDs remains lacking. If higher birth-
weights predict both better survival of infants after birth [23], the 
life-course period with the greatest mortality, and lower adult 
NCD risk [24], why would alleles countering both these benefits 
evolve? More broadly, why are the majority of birthweights lower 
than those that both maximize neonatal survival and minimize 
adult NCD risk [6, 23, 25]? Here, we propose a unifying frame-
work for the DOHaD and foetal insulin hypotheses, focussed on 
genetic and physiological mechanisms that reduce the risk of 
obstructed labour.

THE ‘METABOLIC COORDINATION OF 
CHILDBIRTH’ HYPOTHESIS

Both mother and offspring are exposed to a range of mortality 
risks around the time of childbirth [26, 27]. Obstructed labour 
sensu lato refers specifically to the risk that the baby is too big 
to pass down the birth canal, which can impact maternal and 
neonatal mortality through several different mechanisms [28]. 
We propose that, since both mother and foetus are exposed 
to mortality risk from this source [29], both parties may evolve 
genetic and physiological strategies to reduce the risk. Both 
parties gain Darwinian fitness advantages from increased foetal 
growth because birth size is a robust predictor of early survival 
[30–32] and may also benefit the offspring’s reproductive fitness 
[33]. However, without a counterbalancing regulatory system, the 
foetus may grow too large for vaginal delivery.

Our conceptual approach leads to two broad predictions 
about the relationship of alleles with growth and NCD risk. 
First, we predict a relatively low influence of foetal genotype 
on birthweight. While the dimensions of the obstetric pelvis 
are partly heritable [34], they are potentially susceptible to con-
straint during maternal development [35]. Shorter women who 
experienced poor growth have reduced pelvic dimensions and 
an increased risk of obstructed labour [36–38]. Accordingly, the 
foetus cannot interrogate its own genotype to predict the dimen-
sions of its mother’s birth canal and must therefore adjust its 
prenatal growth trajectory to maternal metabolic or epigenetic 
signals [39].

Second, we propose that maternal and foetal alleles may 
contribute to a co-adaptive regulatory system, whereby alleles 
expressed in the mother that raise the capacity for nutritional 
investment may, when expressed in the foetus, restrain its 
growth response. Conversely, alleles expressed in the mother 
that promote dimensions of the birth canal, thereby reducing risk 

of obstructed labour, may also promote foetal growth. Through 
these mechanisms, we argue, the growth of each foetus is tai-
lored to the skeletal capacity of its mother to deliver it.

We therefore propose that selection has favoured a composite 
system of physiological signals and alleles regulating foetal size 
and gestation length (Fig. 1). Addressing both gestation length 
and birth size is central to our argument, as around a quarter of 
foetal weight at 38 weeks typically accumulates in the preceding 
3 weeks [40]. Reducing the length of gestation is one potential 
mechanism that allows a foetus with high growth potential to 
be delivered.

The cost of this regulatory system is that the mechanisms 
that protect the mother and foetus against obstructed labour 
may also elevate the offspring’s susceptibility to adult NCDs. 
According to the ‘capacity-load’ life-course model of NCDs [41], 
any mechanism (whether genetic or facultative) that reduces 
birthweight may also undermine the long-term metabolic capac-
ity for homeostasis that protects against ageing and NCDs. 
Birthweight is a composite marker of muscle and organ devel-
opment in utero and shows multiple dose-response associations 
with organ phenotype [41–46], and hence the capacity for homeo-
stasis in adult life [47–49]. Whether or not those born smaller do 
develop overt disease, however, depends strongly on adult phe-
notype. In contemporary settings, the association of lower birth-
weight with NCD risk is amplified by exposure to high levels of 
‘metabolic load’ in adulthood, relating to factors such as obesity, 
unhealthy diet, sedentary behaviour and smoking [41, 50, 51].

OBSTRUCTED LABOUR AS A SELECTIVE PRESSURE

The evolutionary pressure of obstructed labour in the hominin 
lineage was first highlighted by Washburn [52], building on work 
by Krogman [53]. Washburn suggested that the dimensions of 
the human birth canal had been exposed to antagonistic selec-
tive pressures associated with the emergence of bipedal posture 
and encephalised neonates. His interpretation of this ‘obstetri-
cal dilemma’ was that it resulted in human offspring being born 
at a relatively early stage of development. Subsequent work has 
shown that our gestation is not short compared to other apes 
[54, 55], while there is discussion over whether maternal ener-
getic limits might also explain the typical duration of human 
pregnancy [55, 56]. Nonetheless, maternal pelvic dimensions 
may still be subject to evolutionary constraint [57]. For exam-
ple, the dimensions of the anteroposterior oval outlet and inlet 
are considered to have responded to contrasting selective pres-
sures, associated with pelvic floor support and upright posture, 
respectively [58, 59].

Moreover, high levels of maternal mortality in many popula-
tions, partly due to obstructed labour [29], confirm that human 
childbirth is indeed risky. In Ethiopia, for example, approximately 
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Figure 1. Contrasting conceptual models of the role of birthweight in the developmental origins of adult non-communicable disease (NCD). Green text and 

arrows represent environmental mechanisms (phenotypic plasticity), while red text and arrows represent genetic mechanisms. Upper panel: (a) The envi-

ronmental model describing the ‘thrifty phenotype’ hypothesis, which assumes that maternal malnutrition in pregnancy reduces birthweight, and that the 

surviving offspring therefore has elevated susceptibility to NCDs. The long-term effects of maternal phenotype on offspring NCD risk are sometimes termed 

‘programming effects’. The underlying selective pressure is assumed to be maternal-foetal conflict over metabolic resources in pregnancy. (b) The genetic 
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one of every seven maternal deaths has been attributed to 
obstructed labour [28], and even where it does not cause mor-
tality, it may inflict other forms of morbidity on either the mother 
(e.g. obstetric fistula, uterine rupture) or offspring (e.g. neonatal 
asphyxia) that may substantially reduce the fitness of each party. 
Among 4396 women from nine sub-Saharan African countries 
presenting with obstetric fistula for repair, for example, 84% had 
previously delivered a stillborn baby [60]. Untreated by surgery, 
fistula is likely to terminate a woman’s reproductive career.

Inadequate medical services in such settings contribute to the 
high mortality and morbidity burden associated with obstructed 
labour [32], but its risk is also systematically associated with 
maternal physical traits. In diverse populations, maternal short 
stature is associated with an increased risk of obstructed labour 
and birth injuries such as fistula [61–63]. Other studies have 
linked obstructed labour with narrower midplane medio-lateral 
pelvic dimensions and with contraction in the anterior-posterior 
dimension [64, 65]. Importantly, the risks associated with smaller 
pelvic dimensions further depend on the weight and head size of 
the neonate [36, 37].

The ‘cliff edge’ hypothesis offers another perspective on 
obstructed labour, by assuming that childbirth is characterized 
by the interaction of contrasting fitness functions [66]. The dis-
crepancy between pelvic and foetal dimensions demonstrates a 
normal distribution, whereas individual female fitness is char-
acterized by a ‘cliff-edge’ form, where passage through the birth 
canal becomes impossible once foetal size exceeds a threshold 
[66]. On this basis, the phenotypic distribution that maximizes 
population mean fitness is inevitably associated with a propor-
tion of foetuses being too large for natural delivery. We argue 
that this scenario would maintain selective pressure on mecha-
nisms that coordinate foetal and maternal dimensions to reduce 
obstructed labour risk.

Given that both maternal and foetal skeletal traits are relevant 
to obstructed labour, the risk of childbirth complications may 
appear to be fundamentally an anatomical issue. In the imme-
diate term, for example, obstructed labour is solved by surgery 
(caesarean section, symphysiotomy, episiotomy) or by instru-
mental delivery (forceps, vacuum extraction), though these pro-
cedures have their own risks to health and wellbeing [28].

We propose a different perspective: incorporating a meta-
bolic perspective on childbirth allows it to be conceptualized 
as a ‘coordination problem’ [67]. Specifically, we propose that 

selection has favoured the coordination of maternal and foe-
tal metabolic interactions over foetal growth and gestation in 
ways that optimize the compromise over maximizing the fitness 
of each party, which includes the joint interest of minimizing 
obstructed labour risk.

MATERNAL SIGNALS AND FOETAL GROWTH

Over evolutionary time, the threat of obstructed labour might 
be resolved by the ‘genetic coordination’ of maternal and foetal 
size, whereby their shared alleles result in each foetus expressing 
a magnitude of growth appropriate for its mother’s capacity for 
delivery. On average, taller mothers have larger birth canals and 
can deliver larger foetuses [68–70], but the specific role of alleles 
in these associations remains unclear.

Adult size (notably stature) is highly heritable [71], but little is 
known about maternal pelvic dimensions. In a study comparing 
30 monozygotic and 30 dizygotic twin pairs from India, 60–80% 
of the variability in pelvic traits could be attributed to genetic 
factors [34]. However, these estimates may be unreliable as the 
data invalidated some of the assumptions underlying the classic 
twin study design [54]. The association of maternal height alleles 
and pelvic dimensions is also unknown.

Several studies have provided suggestive evidence of genetic 
co-regulation of foetal growth in association with maternal skel-
etal size. Among Indian adolescents and adults, taller women 
and those with broader shoulders tended also to have larger pel-
vic dimensions [72]. Another study of US skeletons found that 
women with large head dimensions had a birth canal shaped 
favourably for delivering large-headed neonates [73]. Despite 
these intra-individual correlations, however, whether maternal 
pelvic dimensions are directly associated with those of the neo-
nate through genetic mechanisms has not been assessed.

Moreover, there are several reasons why the foetus cannot 
interrogate its own genome to determine how large it should 
grow, while being able to pass down the birth canal. First, expo-
sure to adverse conditions in early life (e.g. ecological shocks, 
undernutrition, high burden of infections) may prevent women 
from achieving their genetic potential for pelvic growth. Stunting 
in childhood remains a highly prevalent issue in low- and middle- 
income countries [74], and growth failure in the first year of 
life is strongly associated with short stature in adulthood [75]. 
We assume that throughout human evolution, reducing the 

model describing the ‘foetal’ insulin hypothesis’, which assumes that common alleles contribute to low or high birthweight, and also to the associated adult 

NCD susceptibility. No selective pressure has been proposed for this hypothesis. Lower panel: (c) The combined model, which extends the version presented 

by Hatterlsey and Tooke in the foetal insulin hypothesis [10]. The combined model includes obstructed labour as another selective pressure that underlies 

both genetic and environmental associations of birthweight with NCDs, and assumes that foetal genes can both impact and respond to maternal metabolism.
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allocation of energy to growth was a key component of develop-
mental adaptation to energy scarcity [76]. Second, each foetus 
shares only 50% of its genes with its mother; hence any paternal 
genetic influence could drive higher levels of foetal growth than 
would permit safe delivery. There is evidence that both of these 
mechanisms increase the risk of obstructed labour.

First, the impact of childhood undernutrition on the obstetric 
pelvis was already recognized in the late 19th century. In the UK, 
the majority of caesarean sections in this period were attributed 
to rickets, which deforms the shape of the birth canal [77]. Less 
severe malnutrition may also reduce some dimensions of the 
pelvis. Figure 2 illustrates a 7 mm (~6%) deficit in the average 
conjugate diameter of women delivering in a UK hospital in 
the mid-1930s compared to subsequent years [78]. The author 
attributed this difference, which was not replicated for the trans-
verse diameter, to early childhood exposure to undernutrition at 
the end of World War 1, when food intake was substantially con-
strained by the combination of high prices, harvest failures and 
a maritime blockade [79]. Even if his explanation is incorrect, the 
data clearly indicate the impact of some kind of ecological stress 
on pelvic dimensions. Shorter tibia length, a marker of childhood 
growth that is especially sensitive to environmental influences 
[80], has been associated with smaller dimensions of the obstet-
ric pelvis in nulliparous South Asian women [69].

Second, the possibility that paternal alleles may drive foetal 
growth beyond the level compatible with safe delivery is demon-
strated by studies of parents with contrasting body size. In a UK 
cohort, greater discrepancy in parental heights increased the 
odds of emergency caesarean section [81]. Likewise, in a study of 
inter-ethnic unions, the parental combination of Asian mothers 
(on average, relatively shorter) and white European fathers (on 

average, taller) was associated with increased odds of caesarean 
section, compared to same-ethnicity couples with more similar 
heights [82]. This increased risk may be mediated by birthweight 
effects, as the pairing of Asian mothers with European fathers 
results in larger neonates than the pairing of two Asian parents 
[83–85].

These two mechanisms interact: numerous studies have 
shown that shorter women have smaller pelvises [68, 86, 87], 
that place them at increased risk of obstructed labour and emer-
gency caesareans [38, 61, 88]. However, as demonstrated in a 
Guatemalan cohort, the odds of shorter mothers needing a cae-
sarean further increase in association with larger neonatal head 
circumference [36]. Similarly, a study in Israel showed that the 
risk of cephalo-pelvic disproportion was associated with a high 
neonatal head girth relative to maternal pelvic dimensions [37].

Notably, the component of neonatal size that has been linked 
with adult NCDs is birthweight, whereas the component most 
often linked with obstructed labour is neonatal head circumfer-
ence, as reflected in the term ‘cephalopelvic disproportion’. In 
Box 1, we show that these neonatal traits are closely associated, 
indicating that both would be subject to the selective pressure of 
obstructed labour.

UNTANGLING THE GENETIC REGULATION OF 
FOETAL GROWTH

With so many different factors impacting foetal growth, under-
standing exactly how it is regulated is complex. A new generation 
of genetic studies is shedding new light, first by improving our 
ability to discern causal associations of metabolic traits with foe-
tal outcomes and second by providing the capacity to differenti-
ate the effects of foetal versus parental alleles [96].

Recent Mendelian Randomization studies have clarified the 
parental genetic contributions to birth size. In a study of 3485 
mother/infant pairs from Scandinavian birth cohorts, fetally 
expressed alleles were correlated with birthweight and length, 
whereas maternal height alleles did not impact birth size through 
intra-uterine mechanisms [96]. To the extent that the foetus 
inherits alleles associated with taller maternal height, therefore, 
it is already larger at birth.

However, studies show that only ~30% of birthweight variance 
is typically attributed to foetal alleles (Supplementary Table S1). 
This is consistent with our argument that an unmodulated influ-
ence of foetal genotype on birth size would be risky, given that 
the growth of the maternal pelvis could potentially be disrupted 
by environmental constraints such as undernutrition or recur-
rent infections during the mother’s early life [12]. The low heri-
tability of body size through foetal life and infancy compared to 
later ages (Supplementary Fig. S1), which also applies to head 
circumference [92, 93], demonstrates the suppression of genetic 

Figure 2. Variability in mean conjugate and transverse diameters of the pel-

vis, obtained by radiology, in 640 primigravid women presenting for delivery 

in Moreton-in-Marsh District Hospital, UK between 1934 and 1943. Mean 

length of the conjugate diameter was significantly reduced among women 

who were likely to have been exposed during early childhood to malnutrition 

at the end of World War 1, whereas mean length of the transverse diameter 

was relatively unaffected. Based on data from Nicholson [78].
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influence on the foetal growth trajectory and its corresponding 
sensitivity to environmental (i.e. maternal) influences.

Contrasting with foetal alleles, maternal metabolism is a 
well-established determinant of foetal growth in mammals in gen-
eral [97, 98], including humans [99]. Mendelian Randomization 
studies have associated a maternal haplotype-based genetic 
score for pre-pregnancy body mass index (BMI) with offspring 
birthweight, whereas the foetal genetic score was unrelated  
[100, 101]. Maternal BMI also showed a non-transmitted mater-
nal effect on birthweight [100], while alleles associated with 
higher maternal fasting plasma glucose were likewise associ-
ated with larger offspring birthweight [100, 101]. The findings for 
plasma glucose clearly demonstrate a causal effect of maternal 
substrate on foetal growth, but the BMI data merit a more cau-
tious interpretation.

Historically, BMI has been widely used as a proxy for body fat-
ness [102], however, many other components of body size and 
composition also correlate with BMI [103, 104]. In a Brazilian 
cohort, the association of maternal BMI with birthweight disap-
peared once pelvic dimensions were accounted for [105]. Another 
study of French women linked the maternal conjugate diame-
ter with the suboccipito-bregmatic diameter of the foetal head 
[106]. The implication is that signals shaping foetal nutrition and 
growth may be driven by maternal anatomy as well as metabo-
lism. This interpretation is supported by several historical cohort 

studies that linked reduced maternal pelvic dimensions both with 
shorter maternal height and with lower birthweight and elevated 
adult NCD risk in the offspring [70] (Supplementary Table S2).  
Collectively, this evidence indicates that the pelvic constraint 
of foetal growth contributes to the inverse association of birth-
weight with adult NCD risk.

While birth size may be the primary ‘axis of flexibility’ in foetal 
growth relevant to obstructed labour, gestation length is also rel-
evant. Since birthweight and head circumference increase with 
gestation, taller mothers who are likely to have larger pelvic dimen-
sions may tolerate longer gestations. Consistent with extensive 
epidemiological evidence on this issue (Supplementary Table S3) 
[107], recent Mendelian Randomization studies demonstrated 
positive relationships of the maternal height genetic score with 
gestation length [96, 100]. Whereas the height genetic score of 
both parents was associated with birthweight, neither paternal 
nor foetal scores were related to gestation length. This indicates 
a unique causal effect of maternal height on the duration of preg-
nancy [96] that we argue may be at least partially explained by the 
positive association of maternal height with pelvic dimensions 
[68, 69, 108]. Moreover, a meta-analysis of 37 studies found that 
maternal short stature is a risk factor for spontaneous preterm 
delivery, suggesting that precocious childbirth might, in part, 
be triggered to prevent obstructed labour among mothers with 
reduced height and pelvic dimensions [109].

Box 1. The association of neonatal weight and head circumference, and its sig-
nificance for childbirth complications

The DOHaD hypothesis emerged from pioneering studies that linked adult NCD risk with birthweight [1–3, 6]. In contrast, the 
component of neonatal size most strongly associated with the risk of obstructed labour is the foetal head [89], through high 
birthweights are also an established risk factor for emergency caesarean section [61, 90]. Detailed studies indicate that the two 
anthropometric traits are closely related. In an Australian cohort, for example, the correlation of neonatal head circumference and 
weight was 0.70, while multiple regression analyses confirmed that it was one of the two strongest anthropometric predictors of 
birthweight alongside chest girth [91].

Similar to birthweight, the influence of foetal alleles on neonatal head circumference appears relatively low [92]. In the Medical 
Birth Registry of Norway, for example, an analysis of over 77,000 families found that foetal genetic factors explained only 31% and 
27% of the variance in birthweight and head circumference, respectively, while maternal genetic factors explained 22% and 19%, 
respectively [93]. Even though adult head circumference has high heritability [92], the trajectory of foetal head growth, therefore, 
is primarily determined by maternal metabolic signals.

Since head circumference is less commonly measured than birthweight, its contribution to both short-term and long-term 
risks may not have been fully appreciated. In an Israeli study of over 26,000 singleton deliveries, large head circumference was 
a stronger predictor of unplanned caesarean delivery than was high birthweight [94]. Similarly, in their early studies, Barker and 
colleagues noted inverse associations of adult cardiovascular mortality risk with both birthweight and neonatal head circumfer-
ence [95]. However, one reason why birthweight may be especially effective in predicting adult NCD risk is that other organs and 
tissues buffer the foetal brain from nutritional stress, as recognized in the thrifty phenotype hypothesis [16]. Moreover, at higher 
levels of foetal size, greater weight may encompass many individual traits that impede delivery, including head and abdominal 
circumferences and shoulder width.
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The evidence reviewed above indicates two key issues. First, 
while there is some influence of the foetal genotype on growth, 
the magnitude of the effect is modest, and foetal growth is pri-
marily regulated by maternal metabolic signals. Second, some 
of these signals relate to maternal physical dimensions, as well 
as directly to placental fuel transfer, and these signals generate 
causal effects on both gestation length and foetal size. We now 
consider in more detail how the mother and foetus interact, to 
coordinate foetal growth with the mother’s capacity to deliver.

FOETAL TRADE-OFFS

All other things being equal, any foetal allele from either parent 
that promotes growth inherently increases obstructed labour 
risk, particularly for alleles with large magnitude of effect. The 
hypothesis that selection acts against such large-effect alleles 
is broadly supported by genome-wide association studies. 
Although a very small number of fetally expressed alleles have 
been reported to increase birthweight by up to 90 g [110–112], 
such large effects are extremely rare and the typical magnitude 
of effect of ‘birthweight alleles’ is 20–30 g [12, 113]. Importantly, 
however, such alleles are also associated with shorter gestation, 
indicating that a foetal trade-off between growth and gestational 
length ameliorates obstructed labour risk [100].

As highlighted by Haig, some of these growth-promoting alleles 
generate effects on birth size by actively manipulating maternal 

metabolism (increasing maternal blood pressure and insulin resis-
tance to force more nutrients across the placenta) while the mother 
responds with antagonistic signals that constrain nutrient transfer 
[114]. This ‘tug-of-war’ is assumed to have evolved to help the foetus 
contest a limited nutrient supply [114].

However, if the mother is well-nourished, or cannot maintain 
fuel homeostasis, or has alleles raising fasting plasma glucose 
and blood pressure, foetal size could increase to a degree that 
increases obstructed labour risk. We propose that selection has 
acted on the foetal genome to defend against this scenario. 
Consistent with this prediction, Mendelian Randomization stud-
ies show that if alleles promoting maternal fasting plasma glu-
cose are present in the foetus, they are associated with reduced 
birthweight [100]. The underlying mechanisms require further 
elucidation, but the existing data indicate a ‘see-saw’ interac-
tion, whereby maternal alleles that upregulate fuel transfer and 
promote foetal growth are balanced by defensive effects when 
expressed in the foetus. Paternal insulin resistance is also asso-
ciated with lower birthweight, suggesting that alleles that may 
favour weight gain in later life suppress growth when expressed 
in foetal life [100, 115].

Similar balancing associations are evident for alleles associated 
with maternal blood pressure and demonstrate effects for both ges-
tation and birth size [100]. Across the normotensive range, higher 
maternal blood pressure is associated with higher birthweight [116]. 
However, Mendelian Randomization studies have shown that when 

Figure 3. Hypothesized genetic regulatory systems that enable coordination of foetal growth with maternal anatomical capacity for delivery. Maternal alleles 

may, when expressed in the foetus, either promote or impede foetal growth and gestation length, depending on whether the alleles also promote the size of the 

maternal birth canal. Variability in placental growth may mediate these interactions.
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fetally expressed, blood pressure alleles of both parents are associ-
ated with reduced birthweight [100, 101]. Fetally expressed maternal 
blood pressure alleles are also associated with shorter gestation 
[100, 117]. In one study, for example, the foetal expression of alleles 
associated with a 1 z-score increase in maternal blood pressure was 
associated with 94 g lower birthweight and 2.3 days shorter gesta-
tion [100]. At a mechanistic level, the negative effect of maternal 
blood pressure alleles on birthweight may be mediated by reduced 
placental growth [118].

Collectively, these findings indicate that selection has favoured 
a metabolic coordination system involving gene expression and 
function, whereby maternal alleles that raise the capacity to invest 
in the foetus produce a larger baby but nevertheless reduce the 
risk of obstructed labour by shortening gestation. If expressed 
in the foetus, moreover, the same alleles further defend against 
obstructed labour by reducing both birth size and gestation (Fig. 3).  
These defensive effects might also demonstrate gene x environ-
ment interactions, and be mediated by components of mater-
nal phenotype such as parity and nutritional status. Accordingly, 
associations of foetal alleles with birthweight might be different 
in contemporary compared to ancestral populations.

Among the factors that might impact the selective pressures 
driving maternal-offspring coordination, foetal sex merits partic-
ular attention. On average, boys weigh around 100g more than 
girls at birth, and also have larger head size [119]. On this basis, 
for any given size of the maternal pelvis, boys would be predicted 
to face a riskier delivery compared to their female siblings. That 
foetal sex influences maternal metabolic health during preg-
nancy is already well-established [120], but its association with 
childbirth complications has received less attention. In Box 2, we 

review evidence for the greater risks of obstructed labour faced 
by sons and their mothers.

Such coordination systems to facilitate childbirth do not dis-
count the possibility of maternal-offspring conflict over nutri-
tional investment, as described by Trivers and Haig [114, 129]. 
Indeed, the pre-existence of such conflict in hominins may have 
increased the strength of selection on the mechanisms that 
reduce the risk of obstructed labour [130], in particular as the 
Homo genus evolved neonates with larger brains and bodies 
[54]. ‘Arms races’ associated with imprinted genes may also have 
increased the risk of overshoots in foetal growth (high or low 
birthweight) [131], with further implications for both obstructed 
labour and NCD risk. However, in many contemporary settings, 
the main source of high birthweight is now maternal obesity and 
diabetes, as discussed further below.

IMPLICATIONS

Our approach repositions the birthweight-NCD association as a 
long-term collateral cost of mechanisms that initially benefit mater-
nal and offspring fitness by preventing obstructed labour. The 
‘risk’ alleles (higher fasting plasma glucose, blood pressure) are 
strategies to upregulate maternal investment, potentially selected 
through ancestral exposure to undernutrition. However, we propose 
that their expression in mothers with plentiful metabolic substrate, 
especially among those with impaired pelvic growth, resulted in 
selection for counterbalancing defence mechanisms that constrain 
gestation or birthweight. Our perspective has major implications for 
how we understand the developmental origins of adult disease, and 
what interventions might help address it.

Box 2. The childbirth risks associated with sons

Perhaps because it is non-modifiable, foetal sex is rarely considered as an independent risk factor for obstructed labour or its 
associated mortality and morbidity costs. However, the available evidence demonstrates that sons carry increased risks of adverse 
outcomes for both themselves and their mothers. Compared to daughters, sons have a higher risk of macrosomia, shoulder dys-
tocia, cephalo-pelvic disproportion and emergency caesarean [121–126]. In addition to caesareans and shoulder dystocia contrib-
uting to immediate maternal mortality risk, mothers of sons may also pay long-term costs, relating to their increased likelihood 
of obstetric fistula [121].

Given these costs, there must be counter-balancing fitness pay-offs to mothers for delivering larger sons. The Trivers-Willard 
hypothesis assumes that larger sons will achieve disproportionately greater Darwinian fitness compared to larger daughters [127], 
and that this benefit to maternal inclusive fitness could explain the modest sexual dimorphism in birth size. In contemporary 
populations, however, maternal obesity and diabetes are amplifying the excess costs of sons, and the high birthweights that dis-
proportionately affect males can often be resolved only by surgical intervention [125].

However, sons might also mitigate these costs, by increased sensitivity to maternal signals. For example, in high-income set-
tings with higher birthweights, males are more likely to be born preterm than females [128], though a range of other factors may 
also contribute.
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First, through this lens, the intergenerational transmission 
of NCD risk can be seen primarily not as a direct consequence 
of foetal exposure to unhealthy environments, but rather as the 
by-product of the coordination strategy. The heritability of the 
‘trade-off package’ that balances foetal growth against obstructed 
labour risk results in NCD risk also being heritable, without adult 
NCDs themselves (typically occurring later in life and impacting 
fitness through compromising grandparental rather than paren-
tal investment [132]) being strongly exposed to selection.

Second, in contrast to much DOHaD research, we place less 
emphasis on overt maternal undernutrition or pathology as 
the primary developmental driver of NCDs, and more on sta-
ble components of maternal phenotype relevant to childbirth. 
Undoubtedly, both maternal undernutrition and placental dys-
function, likewise maternal infection, can impact foetal growth 
[5]. However, there is increasing awareness that these factors 
may have been given too much emphasis in DOHaD research, 
and that more stable components of maternal phenotype deserve 
greater attention [105, 106]. While already recognized in this con-
text on the basis of historical cohort studies (Supplementary 
Table S2) [70], the obstetric pelvis merits further research.

Importantly, our hypothesis would explain why birthweight-NCD 
associations hold across most of the birthweight range: although 
the risk of childbirth complications may be greatest among moth-
ers with the smallest birth canals, any mother is at risk if she 
gestates a bigger foetus than she can deliver, resulting in the evo-
lution of a ‘universal defence mechanism’ to reduce obstructed 
labour risk (Fig. 4). Essentially, every foetus is subject to these 

constraining mechanisms [39], and achieves lower growth than 
would be optimal for both maximizing its survival and minimiz-
ing its NCD risk [6, 24].

Third, although growth faltering often commences in utero 
[133, 134], nutritional interventions during pregnancy have 
limited efficacy in improving birth size [135]. We argue that the 
regulatory mechanisms summarized above prevent nutritional 
supplementation during pregnancy from promoting birth size, 
unless early foetal growth is substantially impaired. This is con-
sistent with small increases in mean birthweight following sup-
plementation, but substantial reductions in small-for-gestational 
age births [135]. An alternative potential strategy for public health 
interventions, to improve foetal growth and lower adult NCD 
risk, could be to promote girls’ pelvic growth during post-natal 
life. Figure 2 indicates that early childhood may be an important 
window for such interventions, which could align with current 
efforts to reduce stunting. Although nutritional interventions 
are often targeted at the first 2 years after birth, there is increas-
ing awareness that height may be able to recover from stunting 
through early childhood [136–138].

Consistent with that, a secular trend in height among moth-
ers and daughters was shown to extend to dimensions of the 
pelvis [35]. Moreover, a recent analysis of data from the early 
20th century in Switzerland found that average maternal height 
increased by ~4 cm over 60 birth years, and that average birth-
weight of their offspring demonstrated an upward trend 28 years 
later [139]. From the opposite perspective, the fact that maternal 
height has shown a negligible increase in sub-Saharan Africa and 

Figure 4. A universal life-course model of the risk of childbirth complications. The risk that the foetus is too large for the mother to deliver may occur in any 

mother, but particularly when pregnancy phenotype is shaped by better nutritional conditions compared to those experienced by the mother in early life. 

Selection is expected to favour a universal defence mechanism against this threat. Public health interventions to improve birthweight and reduce adult risk of 

non-communicable disease (NCDs) may be better targeted at maternal development, to promote pelvic capacity.
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South Asia over the last century [140] may be a major factor con-
straining birthweight trends in these regions, with implications 
for diabetes risk [141].

Finally, our approach helps us understand what happens when 
the regulatory systems that we have proposed do not function 
effectively. Maternal obesity and T1DM, T2DM or gestational 
diabetes mellitus present the foetus with the threat of maternal 
hyperglycaemia. The foetus can defend against this by raising its 
insulin levels, driving increased fat deposition and macrosomia 
[142]. Excess neonatal adiposity then becomes another emerg-
ing risk pathway for NCDs [143, 144], a scenario assumed to 
have been rare until recent historical periods. Where appropriate 
facilities are available, the large birth size associated with mac-
rosomia is typically resolved by caesarean delivery [145, 146], 
negating the selective pressure of obstructed labour. The risk of 
obstructed labour associated with macrosomia may explain why 
foetal fat deposition occurs primarily in the third trimester, and 
accelerates rapidly after birth [147].

The threat to delivery generated by high foetal adiposity 
is particularly apparent in mothers of shorter stature, with 
smaller pelvic dimensions. In India, for example, maternal 
short stature and overweight/obesity show interactive associ-
ations with the risk of caesarean section [126], a pattern rep-
licated in other low- and middle-income countries [148], and 
consistent with the interactive association of maternal short 
stature and large neonatal head circumference [36]. Global 
increases in the demand for caesareans may, therefore, reflect 
the exacerbation of maternal obesity by the poor linear growth 
of mothers in early life [126]. If birthed successfully, the mac-
rosomic foetus experiences long-term health penalties in 
the form of elevated obesity and NCD risk [6]. In an Indian 
birth cohort, it was women with larger pelvic dimensions and 
higher BMI whose offspring had higher NCD risk. These off-
spring were short at birth but had high ponderal index, indi-
cating that their exposure to high maternal fasting plasma 
glucose had simultaneously constrained their somatic growth 
yet promoted excess foetal adiposity [149].

Beyond effects on birth size, maternal hyperglycaemia may 
also have implications for gestation length. A study of moth-
ers with T1DM identified a dose-response association between 
peri-conceptional levels of glycosylated haemoglobin, a marker 
of poor glucose control, and the risk of spontaneous preterm 
birth [150]. Similarly, gestational diabetes mellitus has been 
associated with a 50% increased risk of preterm birth relative 
to non-diabetic mothers [151]. A tendency for higher levels of 
maternal circulating fuel to precipitate earlier delivery would be 
adaptive for the mother in reducing obstructed labour risk, and 
also for the offspring if it survived. This suggests that even if 
high birthweights have become common only recently, they may 
have occurred sufficiently frequently in ancestral populations for 

selection to have favoured protective mechanisms that trigger 
earlier delivery. Nevertheless, high rates of caesarean section 
among mothers with gestational diabetes [61] indicate that these 
defence mechanisms have limited efficacy.

EVOLUTION AND THE DOHAD HYPOTHESIS

Our approach has implications for evolutionary models of the 
DOHaD hypothesis. The thrifty phenotype hypothesis, which 
proposed that maternal undernutrition imposes a trade-off on 
the offspring (early survival vs long-term NCD risk), remains 
well accepted, though as discussed above, the importance of 
maternal undernutrition in driving birthweight-NCD associa-
tions merits re-evaluation [152]. In the Netherlands, research 
has supported both components of the hypothesis—that fam-
ine raises infant mortality more than foetal mortality, indicating 
that thrifty foetal growth enables immediate survival [153], and 
that survivors of in utero exposure to famine have elevated NCD 
risk in adulthood [154, 155], mediated by epigenetic alterations 
[156]. Both alleles and maternal effects may drive birthweight–
NCD associations, though the relative importance of these two 
mechanisms may vary by outcome [12, 100, 157]. However, the 
association of birthweight with NCD risk across the birthweight 
range encompasses large numbers who cannot be considered to 
have been exposed to overt maternal undernutrition.

The predictive adaptive response hypothesis offered an alter-
native explanation for birthweight–NCD associations, propos-
ing that metabolic adjustments associated with low birthweight 
would prove adaptive if the adult remained in energy-scarce 
environments [17, 158]. Only if the adult environment showed 
a ‘mismatch’ with foetal experience would NCDs develop [17]. 
However, whether the foetus can accurately anticipate adult con-
ditions has been questioned [19, 159], and studies have failed to 
demonstrate improved survival or reproduction among adults 
in energy-scarce environments who were exposed to foetal 
malnutrition [20, 21, 160]. Instead, studies on humans and ani-
mals tend to support a ‘silver spoon’ hypothesis, whereby off-
spring that receive greater maternal investment in early life have  
better adult outcomes, regardless of the adult environment  
[21, 160, 161].

We offer an alternative evolutionary hypothesis for the 
birthweight-NCD associations that are central to the DOHaD 
framework, by addressing both genetic and environmental 
causes of the association. We shift attention away from short-
term ecological stresses and focus on how foetal growth patterns 
may be shaped by selective pressures related to viable vaginal 
childbirth. We suggest that foetal growth is strongly shaped by 
maternal capital [162], a term that summarizes maternal traits 
that favour investment in the offspring. Small dimensions of 
the birth canal, for example due to maternal stunting, indicate 
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a decrement in maternal capital. Foetal responses to maternal 
undernutrition may therefore reflect only one component of a 
broader system of physiological sensitivity that, together with 
complementary genetic mechanisms, coordinates foetal growth 
under the selective pressure of obstructed labour.

We suggest that the coordination systems described above 
were strongly exposed to selection over hundreds of thousands 
of years during the evolution of the Homo genus, due to increas-
ing neonatal encephalisation. However, a new selective pressure 
occurred much more recently in the last 10,000 years, whereby 
the emergence of agriculture exposed populations to diets high 
in carbohydrate [163]. This relatively brief exposure may have lim-
ited the opportunity for selection to respond, resulting in inade-
quate coordination of foetal growth when mothers achieve high 
weight or fail to regulate their substrate metabolism. As ‘nutri-
tion transition’ introduces new ultra-processed food products 
[164], this metabolic stress increasingly impacts women in the 
global south who already experienced poor growth in early life, 
contributing to escalating rates of caesareans [165].

TESTING THE HYPOTHESIS

Our hypothesis assumes that selection has favoured an 
over-arching regulatory system that regulates foetal growth and 
gestation in association with maternal metabolism and mor-
phology. To test this hypothesis, several questions merit further 
investigation.

First, data on the obstetric pelvis could be incorporated in 
Mendelian Randomization studies examining associations of 
parental and foetal genotypes with birthweight and NCD risk. 
If our hypothesis is correct, then alleles associated with mater-
nal height may also explain variability in pelvic dimensions. 
Moreover, alleles associated with smaller dimensions of the 
obstetric pelvis would be expected to reduce birth size and ges-
tation length, mediated by maternal metabolic signals. The same 
alleles may predict adult NCD risk.

Second, markers of maternal growth constraint in early life 
may predict smaller pelvic dimensions and shorter gestation, as 
well as lower birthweight in the offspring. Short adult stature has 
been associated with the risk of preterm birth [166], but specific 
links of stunting in early life with pelvic dimensions remain to 
be evaluated. Such associations would indicate the sensitivity of 
pelvic and foetal growth to environmental drivers of obstructed 
labour, mediated by maternal growth patterns in early life.

Third, we predict that secular increases in maternal height 
would drive corresponding increases not only in birthweight but 
also in gestation length. This hypothesis is difficult to test, as 
other trends would need to be taken into account, for example, 
maternal age, BMI, gestational diabetes and smoking, as well as 
medical practices. In 2020, the global regions with high levels of 

child stunting (southern Asia and sub-Saharan Africa) accounted 
for 56% of global live-births but ~65% of all preterm births [167]. 
Therefore, it is plausible that success in reducing stunting might 
eventually increase gestation lengths.

CONCLUSIONS

Nutritional scarcity was likely a key selective pressure throughout 
human evolution. The theory of ‘parent-offspring conflict’ has 
been used to understand how mother and foetus compete for 
scarce metabolic substrates [114]. Here, we highlight a comple-
mentary issue that may also have been a crucial selective pres-
sure, by considering how successful vaginal delivery requires 
defence against excessive nutritional investment in the foetus.

We suggest that a substantial component of variability in birth 
size represents the outcome of dynamic materno-foetal inter-
actions that evolved to balance foetal growth against childbirth 
complications. This perspective helps explain both why inverse 
birthweight-NCD associations are evident across the majority 
of the range of birthweight, and why interventions intended to 
increase birthweight through nutritional supplementation have 
modest impact, as they may simply trigger the defence mecha-
nisms we have described. We do not discount a causal role for 
maternal undernutrition, infection or pathology in NCD risk, 
rather, we argue that those stresses may interact with more fun-
damental regulatory systems for coordinating foetal growth that 
operate in every mother–foetus dyad.

Our hypothesis offers an evolutionary explanation for the 
combined genetic and environmental associations of birth-
weight with NCDs. Any constraint on birthweight is expected, 
through its effects on homeostatic traits, to undermine pro-
tection against NCDs in later life [41]. We hope our approach 
may interest scientists from diverse fields, including physiol-
ogy, genetic epidemiology, human evolution and anthropol-
ogy, and help promote inter-disciplinary research on maternal 
and child health.
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