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disease for ten years or more – there is a wide variation in survival between different 

cancer types and only 9.5% of those diagnosed with non-small cell lung cancer will 

survive for ten years or more (2, 3). 

Imaging plays a crucial role in the detection of cancer, assessment of suitability for and 

planning of treatment, and assessment of response to treatment. The Tumour-Node-

Metastasis (TNM) cancer staging system is the globally recognised standard used for 

cancer registration of almost all cancers, in particular non-small cell lung cancer, and it 
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treatment in PCLD as this treatment is associated with reduced  18F-FDG uptake in 
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Glossary of Abbreviations 

General 
Abbreviation Description 

18F Fluorine-18 

18F-FDG 2-deoxy-2-(18F)-fluoro-D-glucose 

18F-FDG-PET/CT 2-deoxy-2-(18F)-fluoro-D-glucose Positron Emission 
Tomography/Computed Tomography 

2D Two-dimensional 

3D Three-dimensional 

BI-RADS Breast Imaging Reporting and Database System 

CT Computed Tomography 

EBUS Endobronchial Ultrasound 

EBUS-TNA Endobronchial Ultrasound-guided Transbonchial Needle 
Aspiration 

EUS-FNA Endoscopic Ultrasound-guided Fine-Needle Aspiration 

FDA–NIH Food and Drug Administration – National Institutes of 
Health (United States) 

GE General Electric Company 

ILD Interstitial Lung Disease 

LVEF Left Ventricular Ejection Fraction 

MDT Multi-Disciplinary Team 

MRI Magnetic Resonance Imaging 

NSCLC Non-small cell Lung Cancer 

PET Positron Emission Tomography 

ROI Region of Interest 

SABR Stereotactic Ablative Radiotherapy 

TNM Tumour-Node-Metastasis Staging System 

TNM8 8th Edition of the TNM staging system 
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Abbreviation Description 

UK United Kingdom 

USA United States of America 

VOI Volume of Interest 

WHO World Health Organization 

Statistical 
Abbreviation Description 

AIC Akaike Information Criterion 

AUC Area Under the Curve 

CI Confidence Interval 

HR Hazard Ratio 

IQR Interquartile Range 

ROC Receiver Operating Characteristic curve 

Histopathological 
Abbreviation Description 

Akt Ak strain Transforming protein and gene (also known as 
Protein Kinase-B) 

ATP Adenosine Triphosphate 

B-Raf B-Rapidly Accelerated Fibrosarcoma kinase protein 

BAI Binary sequencing Alignment Index file 

BAM Binary sequencing Alignment Map file 

BED Browser Extensible Data file 

BRAF B-Rapidly Accelerated Fibrosarcoma kinase gene 

DNA Deoxyribonucleic acid 

dsDNA Double-stranded DNA 

EGFR Endothelial Growth Factor Receptor 

ERK Extracellular signal-related kinase(s) 
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Abbreviation Description 

FFPE Formalin-Fixed Paraffin-Embedded 

GLUT Glucose transporter membrane protein 

HER2 Human Epidermal Growth Factor Receptor 2 

HIF Hypoxia Induced Factor 

IFC Integrated Fluidic Circuit 

IGV Integrative Genomics Viewer software 

ILD Interstitial Lung Disease 

K-Ras Kirsten Rat Sarcoma Virus protein 

KRAS Kirsten Rat Sarcoma Virus gene 

MAPK Mitogen-activated protein kinase(s) 

NSCLC Non-small cell Lung Cancer 

PCR Polymerase Chain Reaction 

PI3K Phosphatidylinositol 3-Kinase protein and its associated 
protein cascade 

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha gene 

Raf Rapidly Accelerated Fibrosarcoma kinase proteins 

SNP Single-Nucleotide Polymorphism 

SOP Standard Operating Procedure 

VEGF Vascular Endothelial Growth Factor 

WT Wild Type 

Diffuse Lung Diseases 
Abbreviation Description 

ARDS Acute Respiratory Distress Syndrome 

COP Cryptogenic Organizing Pneumonia 

COVID-19 Coronavirus Disease 2019 

DLD Diffuse Lung Disease 
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Abbreviation Description 

GGO Ground-Glass Opacity 

ILD Interstitial Lung Disease 

IPF Idiopathic Pulmonary Fibrosis 

LCH Langerhan’s Cell Histiocytosis 

MERS-CoV Middle Eastern Respiratory Syndrome – Coronavirus 

PCLD Post-COVID-19 Lung Disease 

SARS-CoV-1 Severe Acute Respiratory Syndrome – Coronavirus – 1 

SARS-CoV-2 Severe Acute Respiratory Syndrome – Coronavirus – 2 

18F-FDG-PET/CT 
Abbreviation Description 

cimg Image-derived concentration of radioactive tracer 

cinj Whole-body concentration of injected radioactive tracer 

MTV Metabolic Tumour Volume 

NTV Necrotic Tumour Volume 

SUV Standardised Uptake Value 

SUVmax Maximum SUV in a ROI or VOI 

SUVmean Average SUV in a ROI or VOI 

SUVmin Minimum SUV in a ROI or VOI 

TBR Target-to-Background Ratio 

TBRlung Target-to-Background Ratio of lesion to normal lung 

TLG Total Lesion Glycolysis 

TTV Total Tumour Volume 

CT Perfusion 
Abbreviation Description 

ADW Advantage Workstation for Diagnostic Imaging (GE 
Healthcare) 
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Abbreviation Description 

BF Blood Flow 

BV Blood Volume 

CTP CT Perfusion 

CTP4 CT Perfusion 4D: CT Perfusion imaging analysis platform by 
GE Healthcare 

IRF Impulse-Residue Function 

IRF(t0) Time of Arrival 

MTT Mean Transit Time 

PS Permeability Surface Area Product 

SPV Standardised Perfusion Value 

tmax Time to Maximum 

TTP Time-to-Peak 

Textural Analysis 
Abbreviation Description 

GLCM Grey-level Co-occurrence Matrix 

GLRLM Grey-level Run-length Matrix 

mpp Mean of Positive Pixels 

sd Standard Deviation 

SSF Spatial Scale Factor 

TexRAD Texture + Radiology: A proprietary clinical-research texture 
analysis software platform from Feedback Medical Limited 

Scientific Units 
Abbreviation Description 

cm Centimetre 

HU Hounsfield Unit 

kg Kilogram 

kV Kilovolt 
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Abbreviation Description 

mA Milliampere 

MBq Megabecquerel 

mm Millimetres 

ng Nanogram 

pM Picomole 

s Second 
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1 Introduction 
This thesis will investigate quantitative molecular imaging techniques for the 

development of imaging biomarkers in lung disease. Firstly, it addresses focal lung 

disease in the investigation of non-small cell lung caner, and secondly investigate 

diffuse lung disease in patients with SARS-CoV-2 induced lung disease. 

1.1 Lung Cancer 

1.1.1 Epidemiology 
Lung cancer is the third most common cancer in the UK, with approximately 48,500 

new cases every year accounting for 13% of all new cancer cases in 2016–2018 (5). 

Globally it is the largest contributor to new cancer diagnoses, and the largest cause of 

cancer-related death worldwide (6). 

The incidence of lung cancer in the UK has decreased by 9% since the early 1990s, 

although this has mostly been driven by a 34% reduction in males and masks a 32% 

increase in the females. Still one in 13 UK males and one in 15 UK females will be 

diagnosed in lung cancer during their lives. Globally, incidence rates are increasing, 

although they are falling in the developed world due to tobacco control policies (7). 

Incidence rates are highest in people aged 85–89 and 44% of all new lung cancer 

diagnoses occur in people aged 75 or over (5). 

In the UK, 79% of lung cancer cases are thought to be preventable, with 72%–90% 

caused by smoking (1% of these due to second-hand smoke) and 13% by workplace 

exposure (8–10). It is estimated that 86% of all UK lung cancer deaths are caused by 

tobacco smoking (11–13). 

Like most sporadic cancers, it is hypothesized that repeated exposure to carcinogens, 

especially the tar components of cigarette smoke, lead to dysplasia and mutagenesis 

within the lung epithelium and eventually carcinogenesis (14). 

Lung cancers are classified histopathologically by cellular and molecular subtypes using 

the 2021 World Health Organization (WHO) classification system (15). The three main 

subtypes of non-small cell lung cancer are: adenocarcinoma (40%), squamous-cell 
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carcinoma (25%) and large cell carcinoma (10%). Subtypes are determined using 

cytology and immunohistochemistry staining, with immunohistochemistry staining 

playing a pivotal role in most classifications (9, 15). 

1.1.2 Diagnosis and Staging 
Imaging plays a paramount role in the diagnosis, staging and management of lung 

cancer. Once lung cancer is suspected a diagnostic contrast-enhanced CT Chest and 

Abdomen is performed and often following that a whole body 18F-FDG-PET/CT. 

Pathological correlation with image-guided or flexible-bronchoscopic biopsy of the 

primary lung lesion and/or endobronchial ultrasound-guided transbonchial needle 

aspiration (EBUS-TNA) or endoscopic ultrasound-guided fine-needle aspiration (EUS-

FNA) of lymph nodes is also often performed to stage and diagnose disease (16). MRI is 

not routinely used to stage the primary tumour but does play a role in the staging of 

tumours which involve the superior sulcus and are suspected to be Pancoast tumours. 

(Pancoast tumours are tumours which are suspected to have invaded the apical chest 

wall, brachial plexus, first ribs, vertebrae, subclavian vessels or stellate ganglion.) (16)  

Initial clinical staging is then performed using the Tumour-Node-Metastasis (TNM) 

system (4). Following evaluation of the above imaging an initial clinical stage is 

assigned. In Stage I, unless the patient has symptoms, no dedicated brain imaging is 

performed. In Stage II, if curative treatment is planned, a contrast-enhanced CT Brain 

will be performed and followed-up with a contrast-enhanced brain MRI if there are 

suspected brain metastases. Patients with Stage III disease who are planned for 

curative treatment will have a contrast-enhanced brain MRI. Otherwise, in cases where 

are features suggestive of intracranial pathology brain imaging is always performed. 

The above findings inform the clinical stage and will upgrade or downgrade the stage as 

appropriate. 

1.1.3 Treatment 
The first step recommended for treatment of any lung cancer is to advise patients to 

stop smoking as soon as lung cancer is suspected. Not only does smoking increases the 

risk of pulmonary complications after lung cancer surgery, it reduces survival after 
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treatment (17). It is however, recommended not to postpone definitive treatment to 

allow for patients to stop smoking: smoking cessation should therefore be concurrent 

with diagnostics and treatment (16). 

In patients who are well enough and curative treatment is suitable, the main-stay of 

treatment is surgical lobectomy. Patients are assessed for their risk of perioperative 

mortality, their cardiovascular function optimised and re-vascularisation will be 

considered before surgery. Lung function with spirometry and transfer factor will be 

assessed, along with a functional segment count to predict postoperative lung function 

(16). 

If lobectomy is declined or contraindicated in early-stage non-nodal disease (Stages I–

IIA), radical radiotherapy with stereotactic ablative radiotherapy (SABR) or sublobar 

resection may be considered (16). 

More extensive surgery including extrapleural resection or en-bloc chest wall resection 

may be required for more extensive disease (16). 

In patients with Stage II or III disease in whom surgery is contraindicated or declined 

chemoradiotherapy will be recommended. If, however, chemotherapy is 

contraindicated or not tolerated, then radical radiotherapy alone is not recommended. 

In addition, in surgical patients who have nodal disease or T2b–T4 N0 disease, adjuvant 

chemotherapy will be offered (16). 

1.1.4 Prognosis 

In the UK 21% of all cancer deaths are accounted for by Lung Cancer making it the most 

common cause of cancer death (1, 5). Prognostication is most often performed using 

staging with the Tumour-Node-Metastasis (TNM) system (4), however these stages are 

somewhat coarse and survival within these groups is heterogeneous.  

Whilst there has been substantial improvement in one year survival of non-small cell 

lung cancer from 16% in 1971–72 to 40.6% in 2013–2017, long-term survival remains 

poor with only 16.2% surviving for five or more years (2, 5). 
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The one year survival rate for Stage I disease is 88% vs 19% at Stage IV (3). Five year 

survival for Stage I is 57% vs 3% for Stage IV (3, 5). Survival is significantly higher for 

females than for males at all stages.  

The poor overall survival is partially accounted for by the relatively late presentation of 

disease, with 46.1% of patients having Stage IV at diagnosis. (19.5% Stage I, 7.4% Stage 

II, 20.1% Stage III, 46.1% Stage IV and 6.9% Stage Unknown.) (5, 7) 

1.2 Diffuse Lung Disease 
Diffuse lung disease is used to describe any widespread pulmonary disease process (18, 

19). The typical presentation of patients affected by diffuse lung disease is one of 

breathless with bilateral shadowing present on plain chest radiographs. The severity of 

breathless can be variable, as can the rate of onset, and a typical patient presentation 

may range from the asymptomatic patient with apparently isolated and long-standing 

radiological changes, to acute respiratory failure with rapid progressively worsening 

breathless and ultimately death (18–20). 

The causes of diffuse lung disease are wide and varied — and it is helpful to consider 

these conditions in relation to lung anatomy (18–21). Many of these diseases will 

foremost affect the interstitium of the lung — that is the fibrous framework of 

connective tissue of the lung. These diseases fall under the umbrella terms of Diffuse 

Interstitial Lung Diseases or Interstitial Lung Diseases (ILD) (18, 19). 

Not all diffuse lung diseases primarily affect the interstitium. Whilst the connective 

tissue framework surrounds the bronchovascular bundles centrally — peripherally, it 

forms the interlobular septa, defining and organising the lung into secondary 

pulmonary lobules consisting of lymphatics, venules and acini supplied by a bronchiole 

and pulmonary arteriole centrally. A process that affects the airways, the vasculature or 

airspaces can also cause diffuse bilateral shadowing on radiographs and hence would 

also be considered a diffuse lung disease (18–22). 

Unsurprisingly, this wide variation of presentation, prognosis and underlying physiology 

means that there is a wide range of aetiologies and mechanisms of disease that can 
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cause diffuse lung disease. Therefore when presented with a patient with a diffuse lung 

disease of unknown aetiology determination of that aetiology and the diagnosis in 

order to prognosticate and suggest treatment cannot be made only on radiological 

appearances alone and requires a combined clinicoradiological approach (18, 20, 21). 

Three parameters are most commonly used to narrow the differential diagnosis, guide 

further evaluation and potential treatment. (20, 21) These are:  

1 The tempo of the disease process (acute vs chronic.) 

2 Radiological pattern (on chest radiographs and/or high-resolution CT chest.) 

3 Clinical context. 

1.2.1 Disease Tempo 
The duration and progression of potentially relevant symptoms help a clinician to 

determine the tempo of a pathological process. This may include review of previous 

radiological imaging. Assessment of disease tempo forms part of the initial assessment 

(18, 20). 

Diffuse lung diseases that are acute (less than 4–6 weeks in duration) most commonly 

include infectious causes (e.g. bacterial or viral pneumonias), pulmonary oedema be it 

cardiogenic or non-cardogenic, haemorrhage or aspiration (18, 20). 

Some ILDs may also present acutely, even if the disease process is itself chronic. Most 

commonly these would include hypersensitivity pneumonitis, drug-induced lung 

disease, toxin-related pneumonitis, acute eosinophillic pneumonia and cryptogenic 

organizing pneumonia (18–20). 

Chronic diffuse lung diseases are dominated by ILDs but represent many distinct 

clinicopathological entities with different prognoses, potential treatments and causes. 

The most common ILDs include: Idiopathic pulmonary fibrosis (IPF), sarcoidosis, 

connective tissue disorder associated ILDs, pneumoconioses, chronic hypersensitivity 

pneumonitis and drug-induced lung disease (18–21). 
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 Clearly for patients with a rapidly progressive diffuse lung disease, admission to 

hospital and empirical therapy is likely to be required (18). 

1.2.2 Radiological Pattern 
Bilateral pulmonary infiltrates could be used to describe a wide variety of radiological 

appearances. Closer review of the components of the pattern of opacities, distribution 

and associated findings can help to further narrow down the differential diagnosis. In 

addition to plain chest radiographs, high resolution chest CT is generally required to 

help elucidate this radiological pattern more accurately, especially for opacities other 

than consolidation (18–21). 

Radiological patterns are usually grouped as following:  

 Consolidation, due to alveolar filling with accumulated water, blood, cells, pus, 

or other material. It is characterised by hazy margins, coalescing areas of 

relatively high attenuation which may contain air bronchograms and/or loss of 

definition of borders due to adjacent consolidation effacing normally present 

air/soft-tissue border. (Also known as the silhouette sign) (20, 21). 

 Reticular and linear patterns, where interstitial infiltrates cause a thickening of 

intralobular septae and the appearance of lines, arcs or honeycombing on 

imaging (18–21). 

 Nodules and nodular opacities, ranging in number, size and distribution. This 

runs the gamut from diffuse micronodular opacities in miliary TB to large 

nodules in pneumoconioses (18–21). 

 Cysts due to destruction of lung architecture, as in for example, Langerhan’s cell 

histiocytosis (LCH), pneumocystis, or idiopathic pulmonary fibrosis (IPF) (18–

21). 

 Ground-glass opacities (GGO) refer to hazy increases in lung attenuation but 

not so much that there is effacement of the pulmonary vessels. The mechanism 

here is thought to be partial filling of the alveolar spaces and/or interstitial 

thickening (20, 21). 
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 Septal thickening where interstitial infiltrates cause thickening of the 

interlobular septae. Irregular, beaded and nodular thickening suggest lymphatic 

spread of the tumour or cells as in sarcoidosis. Smooth thickening could imply 

pulmonary oedema (18–21). 

Associated intra-thoracic findings such as pleural effusions or thickening and 

lymphadenopathy as well as extra-thoracic findings help further narrow the differential 

diagnosis. 

1.2.3 Clinical Context 
Further refining of the differential diagnosis requires clinical correlation. Integrating the 

clinical context with the radiological pattern and tempo of disease guides further 

evaluation and helps to focus the differential diagnosis. Some diseases are strongly 

associated with characteristic epidemiological features, e.g. IPF predominantly affects 

middle-aged and older patients whereas lymphangioleiomyomatosis occurs almost 

exclusively in women of reproductive age. Smoking is another factor, as are 

environmental and or occupational exposures (18–20). 

Drugs and pre-existing diseases may provide further clues as to the nature and 

aetiology of a diffuse lung disease. Certain medications such as amiodarone are 

strongly associated with ILD as are connective tissue diseases such as sarcoidosis and 

neurocutaneous syndromes such as tuberous sclerosis (18–20). 

1.2.4 Treatment 
As diffuse lung diseases are an umbrella condition with multiple different aetiologies 

and thence clinical courses there is no unifying treatment and treatment needs to be 

tailored to the specific, often presumed, aetiology (18, 19). 

Patients with bacterial infections will often require antibiotic therapy, and may require 

further imaging following treatment to ensure resolution and that the disease was not 

a super-added infection. Similarly, those with TB and other mycobacterial infections 

require anti-mycobacterial therapy. Patients with viral infections may benefit from anti-

virals, but supportive care alone is likely to be effective as most viral infections are self-

limiting (18, 19). 
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In contrast, patients with auto-immune and suspected inflammatory conditions will 

often benefit from steroid therapy or anti-autoimmune drugs. Antifibrotic therapy is a 

promising new treatment for IPF — however ultimately the only treatment may be 

total lung transplantation (18, 19). 

Neoplastic or paraneoplastic processes will require cancer treatment and cessation of 

smoking. Diseases such as desquamative interstitial pneumonia and LCH may resolve 

completely with cessation of smoking (18, 19). 

1.2.5 Prognosis 
As with treatment, the prognosis of a diffuse lung disease is intimately linked to its 

aetiology. Some diseases like bacterial pneumonia have an established and effective 

treatment and hence whilst some cases may be acutely life-threatening requiring 

multiple organ support or have significant sequelae like a risk of lung abscess, the 

prognosis is good. Others, like IPF, have poorly or only partially effective treatments. 

The only completely effective treatment for IPF appears to be lung transplantation 

which is not suitable for a lot of patients due to underlying co-morbidities and age. 

However, without lung transplantation median survival is only three years (18, 19). 

1.2.6 Coronavirus Disease 2019 (COVID-19) and Post-COVID-19 Lung 
Disease (PCLD) 
Coronavirus Disease 2019 (COVID-19) is a contagious disease caused by the novel 

severe acute respiratory syndrome – coronavirus – 2 (SARS-CoV-2) virus. The first 

known case was identified in Wuhan, China in December 2019 (23) but despite efforts 

at containment, the virus rapidly spread worldwide and a pandemic was declared by 

the World Health Organization (WHO) on 11 March 2020 (24). The disease spread 

rapidly throughout London and the rest of the UK during late February–early March 

2020 (25). 

Coronavirus disease 2019 (COVID-19) has a large variety of clinical symptoms and 

manifestations, but within the lungs it primarily causes a bilateral interstitial 

pneumonia which can become severe with symptoms of dyspnoea, tachypnoea, 
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hypoxia, hypercapnia and the development of acute respiratory distress syndrome 

(ARDS) (23, 26–35). 

The median time from onset of symptoms to admission to intensive care is 10 days, 

however, only up to 5% of unvaccinated patients will require admission to intensive 

care (23, 34–36). The protracted clinical course, in contrast to the rapid course 

expected of viral disease (35, 37), suggests that the acute lung changes and damage 

may a be consequence of inflammation from the adaptive immune response rather 

than from the virus itself (35, 38). 

On CT imaging, COVID-19 typically presents with ground-glass opacities (GGOs) and/or 

bilateral pulmonary consolidation in multiple segmental and subsegmental regions. In 

early stages, changes are often limited to peripheral GGOs and bronchovascular 

thickening (26–29, 31–33). Consolidation and spread to the centre of the lungs occurs 

later (26–28, 30–33) with subpleural sparing and development of organising 

pneumonia occurring even later (26–28, 31–33, 38). The appearance of recovery and 

chronic changes remains poorly described (39). Many other signs such as interlobular 

septal thickening and crazy paving have also been demonstrated (33, 39) however, 

other typical pulmonary infection features: enlarged lymphadenopathy, pulmonary 

nodules, pleural effusions and cavitation are not commonly observed, except as 

features of intercurrent disease e.g. heart failure (26). Lymphadenopathy although not 

a common feature may be associated with prognosis (40). The overall findings are 

similar to those described in Middle Eastern respiratory syndrome – coronavirus 

(MERS-CoV) and severe acute respiratory syndrome – coronavirus (SARS-CoV-1) (26, 

30). 

Patients with COVID-19 may have a prolonged or delayed recovery with a reduced 

transfer factor of the lung for carbon monoxide (DLCO) noted at discharge in >40% 

patients (41) and approximately two-thirds of hospitalised patients have persistent 

symptoms post-COVID-19 with at least one-third suffering respiratory symptoms (42–

45). It is notable that permanent lung damage has been demonstrated following severe 

respiratory disease associated with infection with other beta-coronaviruses such as 
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SARS-CoV-1 and MERS-CoV (44, 46, 47). It may be difficult to determine whether those 

patients who are slow to recover represent a cohort with a novel interstitial lung 

disease, or post-COVID-19 lung disease (PCLD), or whether their slow recovery is due to 

other factors such as fatigue or cardiac inflammation. 

18F-FDG-PET/CT imaging has been shown to have utility in the diagnosis, 

prognostication and management of diffuse lung disease and ILDs like IPF (48–53) 

where it inflammation and fibroblast proliferation have been associated with increased 
18F-FDG avidity. It would be reasonable to hope that, whilst the role of nuclear imaging 

in acute or recovering COVID-19 is minimal (37), there may be a role for 18F-FDG-

PET/CT in the diagnosis and potential management of patients with persistent 

symptoms and the diagnosis of PCLD.  

1.3 Imaging Biomarkers 
A biomarker is a “defined characteristic that is measured as an indicator of normal 

biological processes, pathogenic processes or responses to an exposure or 

intervention, including therapeutic interventions” (54). The FDA–NIH Biomarker 

Working Group definition includes “molecular, histologic, radiographic or physiologic 

characteristics …” (55). Imaging biomarkers can represent some direct measurement of 

some underlying biomarker, but this is not necessarily the case, nor do they have to 

have a putative diagnostic or prognostic use (54–56). 

Before a putative imaging biomarker can be used to guide clinical decisions, there are 

two fundamental translational gaps that they must cross. The so-called “first gap in 

translation” relates to the process of evaluating a putative imaging biomarker and 

assessing if it can be a robust enough and reliable measure to be used in clinical 

research. The “second gap in translation” relates to integrating a proven biomarker into 

patient management and pathways. Many putative biomarkers fail at the second gap 

and many more fail at the first gap. Even if a putative biomarker can be shown to be 

robust and reliable it may be impracticable or too expensive to use in routine clinical 

care; however, these could still play a significant role in clinical research. 
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Examples of currently used imaging biomarkers in clinical care include clinical TNM 

Staging, BI-RADS in breast cancer, left ventricular ejection fraction (LVEF), T-score and Z-

score from DEXA bone density studies, and Deauville scale in lymphoma, amongst 

others.  

An imaging biomarker can be quantitative e.g. SUVmax or categorical e.g. TNM Stage. 

They are considered as distinct entities separate from the underlying modality or 

technique that the measurement is derived from, and a single imaging measurement 

can provide measurements for multiple imaging biomarkers. For example, an 18F-FDG-

PET/CT may provide measurements of the SUVmax, TBRlung, texture measurements and 

clinical stage. 

If a quantitative biomarker is to guide therapy or help diagnose, it will often need to be 

categorized by splitting a biomarker above and below a critical cut-off point. Blood 

glucose in the diagnosis of diabetes mellitus is often the traditional non-imaging 

example; however, imaging biomarker examples include the diagnosis of anthracycline-

induced cardiotoxicity with a reduction of LVEF ≥10% below the lower-limit for normal 

(itself another example of a critical cut-off point) (57). 

Although some imaging biomarkers can be considered to have direct, and sometimes 

indirect, correlated and established histopathological or pathophysiological 

biomarkers, e.g. LVEF, many imaging biomarkers do not and establishing reference 

models (biological or otherwise) can be difficult and not cost-effective. This is 

particularly relevant for cut-offs mentioned above. This can lead to problems with 

validation, repeatability and reproducibility. Technical, biological and clinical validation 

with multicentre and multivendor reproducibility is often deferred, or performed in 

parallel with the development of the biomarker. This lack of reference models also 

means that technical validation and cost-effectiveness needs to be re-evaluated as 

imaging software and hardware improves (58, 59). 

It is the intention of this thesis to predominantly focus on imaging biomarker discovery, 

although, as mentioned above validation and discovery of imaging biomarkers go hand-

in-hand. 
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1.4 18F-FDG-PET 
18F-FDG-PET provides a measure of glucose metabolism as it is actively transported in 

to cells through glucose transporters (GLUTs), and then phosphorylated by hexokinases 

to 18F-FDG-6-phosphate. 18F-FDG-6-phosphate will then accumulate in cells as cannot 

be further metabolised until the 18Fluorine decays into 18Oxygen through emission of a 

positron, or the 18F-FDG-6-phosphate is dephosphorylated by phosphatases (56, 60, 

61). Metabolically active cells, often cancerous cells, will therefore accumulate 18F-FDG. 

Although full metabolism of the glucose is an oxygen dependent process, the initial 

phosphorylation of glucose is not, and hypoxia induces cells to increase expression of 

GLUTs and thus uptake and accumulation of 18F-FDG and 18F-FDG-6-phosphate. In this 

way 18F-FDG uptake is increased in hypoxic and metabolically active cells (56, 62), 

however it is difficult to differentiate between the aerobic and anaerobic induced 

uptake, and tumours with low metabolic rates or low glucose uptake, e.g. mucinous 

adenocarcinomas will have falsely reassuring low 18F-FDG avidity (56). 

In non-small cell lung cancer staging, 18F-FDG-PET/CT is used primarily as means of 

additional assessment of T-stage, to help assess nodal stage and help guide EBUS 

targeting and to help rule out metastatic spread. T-stage is often more clearly 

demonstrated on contrast CT however, in cases of downstream consolidation and lung 

collapse the size of metabolic volume can help more clearly determine T-stage. 

However, the main usefulness lies in nodal staining and distant spread: meta-analyses 

have shown that 18F-FDG-PET/CT has significantly improved sensitivity and specificity 

for nodal metastases and distant metastases over those for CT alone, with the 

exception of brain metastases (16, 63–67). 

The standardised uptake value (SUV) is a semi-quantitative method for assessing 18F-

FDG uptake and thence glucose metabolism (68). The SUV is the ratio of the image-

derived radioactivity concentration (cimg) and the whole body concentration of the 

injected radioactivity (cinj) (56, 69). The maximum SUV (SUVmax) is the maximum voxel 

value of SUV in a volume of interest, often the tumour. As tumours are often much 

more avid than the surrounding normal lung parenchyma, measuring the SUVmax of a 

tumour is generally simple and easily reproducible, making it an observer independent 
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parameter. The SUVmax is therefore the most commonly used parameter in clinical 

practice and was the first parameter considered as prognostic biomarker (69). Various 

prognostic thresholds of SUVmax have been described for primary lung cancer, usually 

ranging from 5–20, but sometimes as low as 2.9 (69–71, 71–76, 76–93), and 5–10 in 

recurrence (76, 78, 94–100). However, consistency of results and predictions relating to 

any particular cut-off across studies has been poor and thus, although the SUVmax is 

commonly used in reporting to help make diagnostic decisions and inform staging, it 

has not directly been incorporated into staging systems like TNM 8 (4, 78, 90, 101–

103). 

It is often argued that SUVmax is a poor representation of the total tumour as it is 

derived from a single voxel, and therefore other measures have been proposed. 

SUVmean is the average SUV value for some region of interest, often the whole tumour 

(78, 81, 85). The SUVmin similarly represents the minimum SUV value within that same 

region of interest. However, these apparently simple definitions omit the difficulties of 

the selection of the region of interest and segmenting the whole tumour. There are 

multiple options for the determination of the region or volume of interest but a 

common option is automatic voxel selection using a thresholding algorithm with a 

relative threshold of 40% of the SUVmax (85, 104, 105). These automatic techniques 

almost completely remove the problem of operator dependence, but these then suffer 

from several other problems. One is that necrotic areas of tumours will often be below 

the threshold and thus not included in the volume of the tumour. Another is that the 

estimated volume of a very avid tumour will be likely too small because the minimum 

threshold could be significantly above the background. A third common problem is that 

the 40% lower threshold boundary for poorly avid tumours is likely to be below the 

soft-tissue background SUV and thus lead to over-estimation of the size of the tumour. 

Alternative options include absolute thresholding with a fixed minimum SUV, and 

manual segmentation, though these also have challenges associated with them. 

The calculated tumour volume has also been proposed as a potential measure. This can 

then be combined with other data to form synthetic measures. The metabolic tumour 

volume (MTV), is the calculated volume of the metabolically active region segmented 
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as described above (78, 85, 102, 104, 104–106) . Total lesion glycolysis (TLG) is a 

synthetic measure formed from the MTV multiplied with the SUVmean of the volume 

(78, 85, 102, 104, 105). Some papers have suggested adding the necrotic tumour 

volume (NTV) to the MTV to obtain the total tumour volume (TTV) in non-surgical stage 

III/IV disease (107). 

1.5 CT Perfusion 
CT perfusion techniques permit the direct quantification of vascular function in a non-

invasive manner. CT perfusion works by monitoring the first-pass of an iodinated 

contrast bolus through the vascular system and monitoring the change in attenuation 

or enhancement of a region or volume of interest (ROI/VOI) over time with a rapid-

sequence of CT images at the same slice location (108). The change in attenuation or 

degree of enhancement of a region can be quantified in Hounsfield units, and is 

proportional to the concentration of iodine within the region of interest, in usual 

practice. Images are then processed to provide time-attenuation data and parameters 

such as enhancement rate can then be extracted. Enhancement rate is an example of a 

semi-quantitative biomarker being an approximate measurement of perfusion. 

There is little-to-no intracellular absorption of iodinated contrast media and excretion 

is primarily via glomerular filtration. Thus, the pharmacokinetics of iodinated contrast 

media can be considered a multi-compartment model consisting of intravascular and 

extravascular spaces with contrast flowing between these spaces. Model parameters 

associated to flow within and into the intravascular space can be used as biomarkers 

assessing luminal vessels and microvessel density. Model parameters associated to 

flow into and out of the extravascular phase can be used as biomarkers assessing 

vascular permeability. This makes these agents well suited to the study of vascular 

changes within solid lesions, such as tumours (109, 110) and in tumours these 

pathological markers are associated with tumour angiogenesis, which is essential for 

tumour growth and metastasis. Morphologically, tumour angiogenesis is characterized 

by proliferation of blood vessels and capillaries, but this pathological growth involves 

the creation of malfunctioning and leaky vessels with irregular blood flow. Thus, 
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angiogenesis is associated with increased microvessel density and increased vascular 

permeability, and thence with the parameters associated with the intra-vascular and 

extra-vascular compartments. 

These pharmacokinetics allow for three data analysis approaches (110–114): 

 Model-independent approaches using the Fick principle (essentially 

conservation of mass) either through gradient/slope estimation or 

deconvolution. (This is essentially a 1-compartment model.) 

 Compartmental modelling e.g. Patlak or Logan plot based analysis. 

 Distributed parameter modelling of perfusion and capillary permeability. 

Each approach has its own assumptions and, with those, its own sources of error, and 

there is no consensus on technique between manufacturers and providers of 

commercially available software (111, 112, 115, 116). Each approach also has different 

recommended acquisition protocols, and measurements acquired by different 

approaches are not interchangeable (112, 115, 116). 

One assumption within basic two-compartment models is that there is a single supply 

of blood to the intravascular compartment(s). This assumption is clearly not correct 

within the liver, where the portal venous system provides a second supply, however, it 

is increasing recognised within lung lesions that lung lesions can have both pulmonary 

and bronchial arterial supply (117–123). In the liver, because of the inherent delay to 

portal enhancement, the two components of liver enhancement can be quantified 

separately using splenic enhancement to split the time-attenuation curve into arterial 

and portal venous phases, or through estimating the arterial input function of the 

portal vein and the aorta separately. Similarly, in the lung, one can use peak 

enhancement of the left atrium as the dividing line between pulmonary circulation and 

the bronchial circulation, or use ROIs taken from the pulmonary artery and aorta to 

estimate arterial input functions for the pulmonary arterial and bronchial arterial input 

respectively (119, 123). The effect on this dual input on the estimated parameters 

depends on the approach taken and the size of the tumour. In lung lesions, the 
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bronchial arterial input is usually dominant, and it becomes more dominant in larger 

tumours. The results of single-input analysis techniques will tend to estimate the 

bronchial arterial perfusion with the pulmonary perfusion acting as a cause for error in 

those estimates. Gradient/slope methods allow for the pulmonary arterial input to be 

essentially ignored and thus should be less badly affected by the dual-arterial supply 

(110, 121).  

Another consideration is the effect of motion on the study. Not only is there the 

problem of patient movement, respiratory motion can be significant. CT perfusion 

acquisition can last up to a minute and lung cancer patients are often unable to hold 

their breath for that long. Clearly, if a lesion moves in and out of the VOI during the 

study the time-attenuation curves will be affected, and consequently any parameter 

estimated from these will also be affected. Several papers have shown improvements 

in reproducibility and using motion correction to re-register, translate and adjust the 

VOI to match the tumour timepoint-by-timepoint (124–127). Such corrections are 

complicated by the need to take account of the anisotrophy in scaling between intra-

axial movement and inter-slice movement, even if they elide more complex effects like 

partial volume effects and non-rigid transformations. However, motion correction 

software for lung lesions is poorly available and most centres do not have access to it 

(124). The effect of respiratory motion can however be reduced without software by 

noting that its effect is greatest on lesions lying most inferior within the lungs: 

mechanisms such as external binding, therefore, help reduce this by physically 

restricting motion (124). 

Partial volume effects and stochastic noise are common problems with all functional 

imaging techniques. Partial volume effects are greatest for small structures and at 

tissue interfaces. Some suggest that ROIs should therefore be placed inside the 

boundaries of arteries or organs of interest; however whilst this is practicable for 

regions used for arterial input, this is unlikely to be the case for tumours. Image 

processing techniques such as region thresholding and blood-air fraction correction 

techniques may be used to exclude voxels most likely to be affected by these or to 

correct for the partial volume effects. The effect of stochastic noise, also known as 
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photon noise, can be reduced using reconstruction filters, higher radiation doses 

and/or by choosing larger regions of interest. Beam hardening is another artefact that 

requires consideration. High concentrations of contrast, calcium, external metalwork, 

and pacemakers or other implantable devices can all cause significant artefact.  

The biomarkers derived from parameters of CT perfusion models can be considered as 

falling into two major groups: semi-quantitative and physiologic (110, 128). The semi-

quantitative biomarkers consist of parameters which can be measured directly from 

the time-attenuation curves, e.g. peak enhancement, enhancement rate, time-to-peak, 

and area under the curve (AUC). These require minimal processing, but also represent 

a synthesis of intra- and extra-vascular components, and of cardiac-output. They are 

thus considered estimates, hence “semi-quantitative” rather than “quantitative”. 

Physiologic biomarkers require more processing and are calculated from fitting one of 

the models above. These parameters themselves also fall into two major groups: those 

that (predominantly) measure intravascular components and those that measure 

extravascular components. Parameters measuring predominantly intravascular 

components consist of blood flow or perfusion (arterial/portal, bronchial/pulmonary 

arterial or comparisons thereof e.g. perfusion index), blood volume, mean transit-time. 

Permeability and permeability surface area products can be considered to be 

measuring the extra-vascular component (110, 129). The correlation and association 

between these CT perfusion biomarkers and the histopathological biomarkers of 

angiogenesis such as VEGF staining, luminal vessel number, area or perimeter, or 

microvessel density, appears complex, although blood flow has been shown to be 

correlated with luminal vessel area and perimeter (130–133). The complexity of the 

relationship between measured flow and microvessel density and other markers of 

angiogenesis should not be surprising as angiogenesis in cancer is disordered and 

associated with necrosis (128, 132–136). 

CT perfusion biomarkers have been shown to differ between lung adenocarcinomas 

and squamous cell carcinomas (125, 133, 137, 138), and can be used to monitor anti-

angiogenesis chemotherapy in unresectable lung cancer (139–142). Blood flow and 

standardized perfusion value (SPV) have also been shown to be associated with 
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regional lymph node metastasis (130, 143, 144). Dual-input perfusion CT biomarkers 

have been associated with predicting response to chemotherapy in advanced non-

small cell lung cancer (NSCLC) (121, 145) and response to stereotactic ablative 

radiotherapy (SABR) (146). CT perfusion biomarkers have been shown to be predictive 

in differentiating between benign and malignant pulmonary nodules (126, 147–149). 

Permeability has been shown to predict survival in NSCLC (150), however later studies 

have shown that CT perfusion does not add significant information for initial staging as 

compared to 18F-FDG-PET/CT (151). 

1.6 Texture Analysis 
Texture analysis is an image processing method to acquire additional quantitative 

information about a tumour’s heterogeneity as reflected by the distribution of voxel 

values within an imaged volume, and provide biomarkers that try to represent the 

perceived texture of the volume similar to if one were to touch the object, i.e. does it 

appear smooth or rough, does it have a coarse or fine appearance, does it have a 

regular repeating pattern or is it irregular, and is there a directional or spatial bias. 

Texture analysis as part of imaging processing has a long history and different authors 

have adapted its definition as per their field of application and there are multiple 

methods of generating biomarkers (152–166). A common thread throughout all these 

techniques is that the visual texture of a subject volume or region of interest is related 

to intensity variation, spatial organisation (e.g. is there a repeating pattern, are there 

edges, is the peak/minimum intensity centred) and directionality/isotropy/anisotropy 

(e.g. do the patterns repeat in a particular direction, are edges more defined in one 

direction than another, is there symmetry about some axis or not). The methods of 

parameter extraction can be loosely grouped in to four (somewhat overlapping) 

groups: model-based, geometrical and structural, statistical and histogram metric, and 

signal processing (also known as transform or filtration) methods (163). 

1.6.1 Model-Based Approaches 
By modelling the region or volume of interest as a random distribution or other such 

model, biomarkers can be extracted that best describe this model. At the simplest 
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level, we can consider extracting the (first-order statistics) mean and standard 

deviation of the voxel intensities within a region of interest as attempting to loosely fit 

the distribution of the intensities (irrespective of location) to a normal distribution. 

More commonly, however, the models suggested will try to take account of the 

neighbourhoods of voxels. Common models include: autoregressive models (159, 163, 

166), markov random field models or other random fields including Gibbs (159, 165), 

and Fractal models (159, 162, 164). 

Autoregressive models treat the region of interest as a sequence of voxels where the 

probability that a voxel has some intensity is dependent on (some number of) the 

previous voxels in the sequence, usually in a linearly-dependent way. Autoregressive 

models may be further modified with a moving average component.  

Markov random fields involve determining the probability that a voxel has a particular 

intensity as given the intensities of its neighbours (165). Gibbs random field models are 

similar but use a different sampling model, and with some caveats Gibbs random field 

models have corresponding Markov random field models, and vice versa. (See the 

Hammersley-Clifford theorem, also known as the Fundamental theorem of random 

fields.) 

Fractal models most often use the box-counting (possibly cube-counting) algorithm to 

determine a measure of the fractal dimension across the region of interest. For a 2D 

ROI the value will be between 1 and 2, with higher values representing more 

coarseness and lower values more smoothness and self-similarity. 

1.6.2 Geometrical and Structural Approaches 
These approaches can be thought of a subset of the model-based approach. 

The region of interest is considered to be constituted of repeating primitives which are 

laid out according to certain placement rules or other criteria. The layout pattern then 

gives a measure or description of the texture of the region, similar to the way tiles 

tessellate the plane. These approaches tend to only be appropriate for textures with a 

regular structure, and become non-optimal for images with irregular texture. However, 
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it is worth noting that techniques like this have been successful for assessing the 

texture of interstitial lung disease on diagnostic CT imaging (167). 

1.6.3 Statistical and Histogram Metric Approaches 
Statistical approaches to determining texture are based on the distribution and spatial 

orientation of grey-levels in images using various statistical computations. In general 

these characteristics can be further categorized in to first-order, second-order and 

higher-order statistics, depending on whether a statistic takes account of how a voxel’s 

intensity relates to its neighbours (159). First-order statistics do not directly account for 

interactions between voxel intensity and neighbours: these include statistics and 

histogram metrics like the mean of the voxel intensities, standard deviation, skewness 

and entropy. 

Second-order and higher-order statistics involve the creation of matrices that take 

account of the local environments of voxels such as a grey-level co-occurrence matrix 

(GLCM) (152, 155) or grey-level run-level matrix (GLRLM) amongst others (154, 156, 

160, 163). Various statistics can be derived from these matrices including: contrast, 

correlation, energy, homogeneity, entropy (a different kind of entropy to above) and 

maximum probability (155). 

Many of these approaches also involve some quantisation of the voxel intensities and 

have some inherent choice of directionality — in fact for GLCM and GLRLM methods, 

both quantisation into a number of grey-levels and a choice of direction is required. 

The GLCM(g, d) for some number of grey-levels g and direction d is a 2D matrix (size 

g×g) such that the value (i,j) is the probability (or number of times) that there is pair of 

adjacent voxels in the ROI in the d direction with the grey-levels (i,j) respectively. The 

GLRLM(g,d) for some number of grey-levels g and direction d on a ROI with maximum 

width w in direction d is a 2D matrix (size g×w) where value (i,j) is the probability of (or 

count of the number of times of) a run in direction d of adjacent voxels v1,v2,…,vj all 

with the same intensity i. (The choice of whether these matrices use a probabilities or 

counts is dependent on implementation.)  
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Further, regions of interest may be pre-thresholded to remove or exclude too high or 

too low intensities preventing them from creating too much bias in the calculated 

biomarkers. 

The number of options and choices here result in families of second-order statistics, 

and even first-order statistics, and can hinder reproducibility of results reported in 

papers. 

1.6.4 Signal Processing (Transform and Filtration) Approaches 
Using filters such as the Laplacian of Gaussian (band-pass filter) or Gaussian, discrete 

Fourier transformations, or wavelet filtering, one can transform the raw voxel 

intensities removing (possibly parts of) high or low frequency data, or, in the case of 

Fourier transformation transforming into frequency data. High-pass filters, such as the 

Laplacian, will tend to sharpen resulting images, enhancing edges and fine texture. 

Low-pass filters (such as the Gaussian) will tend to blur images smoothening out edges 

and thus highlighting rougher texture. Filters can be tuned to enhance or blur on 

different scales, with wider filters meaning that any particular transformed voxel 

intensity is affected by a larger number of its neighbours: thus a wider filter will 

necessarily tend to have a blurring effect, reducing higher frequency data and 

enhancing lower frequency data. 

The resulting transformed intensity maps can then be further analysed with any of the 

above techniques, and in particular, any first-order statistic derived from these maps 

could be considered a second-order or higher-order statistic. 

1.6.5 TexRAD: Combined Signal Processing (Filtration) and Statistical Approach 
TexRAD (Feedback Medical Ltd., https://fbkmed.com/texrad-landing-2/, 

London/Cambridge, UK) is a proprietary clinical research texture analysis software 

platform which uses a combined filtration-histogram and statistical based approach.  

Images are segmented on the platform manually or automatically, with voxels being 

further thresholded in a target dependent way. In lung CT, voxels within the ROI are 

thresholded by Hounsfield unit to avoid including air, calcification and bone. Images are 

passed through Laplacian of Gaussian spatial band-pass filters of varying radii as 
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represented by the spatial scale factor (SSF) and first-order statistics are then 

calculated for the ROI on these filtered images. By varying the radius of the filter from 

2, 3, 4, 5, to 6mm, finer (higher frequency) to coarser (lower frequency) textural 

features are highlighted. A SSF radius of 0 is used to designate no filtering and statistics 

derived from the conventional image directly. 

Texture biomarkers derived from this filtration-histogram and statistical approach used 

in TexRAD have been shown to be correlated with survival, response and histology in a 

number of cancers and have been shown to correlate with 18F-FDG-PET SUVmax and CT 

Perfusion biomarkers (150, 161, 161, 161, 168–183).  
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2 Methodology 

2.1 Introduction 
The majority of this thesis (Chapters 3–6) investigates biomarkers in Lung Cancer. This 

chapter discusses the common methodology for these chapters. Chapter 7 will discuss 

its own methodology, but the 18F-FDG-PET/CT imaging protocol and analysis is similar. 

2.2 Lung Cancer Patient Population 
This study was performed with the approval of the local medical ethics committee and 

all the enrolled patients gave their written informed consent to be in the study group 

after being apprised of the potential benefits and contraindications to CT perfusion and 
18F-FDG-PET/CT. 484 patients with suspected lung cancer were recruited to the study 

from August 2006 until December 2021. If a patient developed a metachronous lung 

cancer later only the initial lung cancer was considered. If a patient was considered for 

recruitment multiple times only the initial scan was considered.  

Of these 484 patients, 475 patients 18F-FDG-PET/CT imaging, the other nine patients 

were excluded. 

Due to the inherent bias caused by pre-selecting patients who were thought likely to 

have non-small cell lung cancer, patients who were found not to have non-small cell 

lung cancer (NSCLC) on biopsy or on imaging were excluded from further analysis, 

leaving 293 patients. 

2.3 18F-FDG-PET/CT Imaging Protocol 
Patients were fasted for at least six hours and blood glucose levels were recorded prior 

to 18F-FDG injection in all patients. Imaging was performed 60 minutes after 

intravenous injection of 5 MBq/Kg 18F-FDG. Images were acquired from mid-thigh to 

the vertex of the skull, in the supine position with the arms raised above the head, 

using a GE Discovery 710 PET/CT scanner (GE Healthcare, Chicago, USA). A low-dose CT 

scan (120 kV, 30–200 mA modulated, and 0.8s rotation time and 40 collimation) was 

performed at the start of imaging to provide attenuation correction and an anatomical 

reference. PET data was in 3D mode with scan duration of two minutes per bed 
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position. A standard technique (random, scatter and attenuation) and an iterative 

reconstruction (matrix size 256x256, VUE Point FX 3D with two iterations, 24 subsets) 

corrected the emission data. 

2.4 18F-FDG-PET/CT Image Analysis 
Images were processed using a standard protocol on a dedicated imaging workstation 

(Carestream Vue PACS Version 12.1.5.7014) and reviewed by two combined 

radiologist/nuclear medicine physicians in consensus. Both attenuation and non-

attenuation corrected images were reviewed visually to determine the presence of 

attenuation corrected image artefacts from high density areas (48, 184). Staging was 

performed as per TNM8 guidelines (4)  and it should be noted that it is this radiological 

staging that is used, rather than the formal multi-disciplinary team (MDT) or pathology 

derived staging as these staging determinations were not generally available. In 

addition, the following 18F-FDG-PET/CT biomarkers were then extracted:  

2.4.1 Tumour SUVmax 
The area of most intense pulmonary 18F-FDG uptake was identified and measured to 

obtain the maximum standardised uptake value (SUVmax). 

2.4.2 Tumour SUVmean 
The lesion surrounding the most intense pulmonary was automatically segmented 

using a 40% threshold algorithm. The mean standardised uptake value (SUVmean) was 

then extracted. 

2.4.3 Tumour SUVmin 
On the axial slice containing the SUVmax a region of interest (ROI) was drawn around the 

tumour and the minimum SUV found within that was used as the SUVmin. 

2.4.4 Normal Vessel SUVmax 
Using up to a 1cm diameter spherical volume of interest (VOI) the SUVmax of blood 

within the aorta or other normal vessel was measured to provide a normal 

background. The wall of the vessel was avoided. 
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2.4.5 Normal Lung SUVmax, SUVmean and SUVmin 
On axial slices at or near the level of the level of the carina, a 1cm diameter spherical 

VOI of morphologically normal lung parenchyma on the co-registered CT was selected. 

The SUVmax and SUVmean were then measured and the SUVmin in a similar fashion to 

above. 

2.4.6 Tumour Target-to-Background Ratio (TBRlung)  
The lung target-to-background ratio (TBRlung) was calculated as follows (TBRlung = 

SUVmax/SUVmin) (48, 49). 

2.4.7 Tumour Dimensions 

The largest dimensions of the tumour in the axial plane were measured in centimetres. 

2.5 CT Perfusion Population 
Of the 293 patients with non-small cell cancer (NSCLC) who had 18F-FDG-PET/CT 

imaging described in Section 2.2, 131 patients had contraindications to CT perfusion or 

CT perfusion imaging failed. This left 162 patients who were eligible for study as part of 

the CT perfusion population. 

2.6 CT Perfusion Imaging Protocol 
All CT Perfusion scans were performed on an integrated PET/CT scanner combining PET 

with a 64-MDCT scanner (Discovery VCT, GE Healthcare). The 18F-FDG-PET/CT study was 

used to localize the lung tumour and perfusion CT was performed immediately after 

PET acquisition. The covered z-axis scan length was 4 cm to cover the whole tumour 

using the following acquisition parameters: 120 kV, 50 mAs, two second interval for 20 

frames, and then a five second interval for 22 frames. The total imaging time was 150 

seconds. The contrast media was injected into an antecubital vein by a dual head pump 

injection device (Stellant D, Medrad,USA). The CT perfusion study commenced 

immediately after IV administration of 50 ml of contrast agent (iohexol; 350 mg/mL 

iodine; Omnipaque, GE Healthcare) at 5 mL/s followed by a 50 mL saline chaser at 5 

mL/s. All patients were instructed to breath shallowly and consistently in order to avoid 

excessive lung motion. 
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2.7 CT Perfusion Image Analysis 

CT Perfusion Images were processed using a CT perfusion 4D software available on a 

dedicated imaging workstation (ADW volume 4.6 GE Healthcare, USA). Tumours were 

segmented and CT Perfusion analysis was performed by a radiographer with over 10 

years’ experience of tumour-segmentation and CT perfusion analysis. No automatic 

motion correction is performed by this software but images were reviewed for motion 

artefacts. CT perfusion 4D uses kinetic modelling is based on time-concentration curves 

from a reference arterial ROI and tissue VOI to calculate the impulse residue function 

(IRF) through deconvolution. The IRF represents the time-concentration curve that 

would have been obtained had there been a perfect injection of contrast agent with 

duration of one unit of time: also known as an impulse. This deconvolution method 

makes the assumption that the concentration of contrast material in the tissue is 

linearly dependent on the input arterial concentration when blood flow is constant. If 

this assumption holds then the c(t), the concentration at time t within some tissue, is 

the result of the convolution of a(t), the concentration within the artery at time t with 

the impulse residue function IRF(t) (113, 185). The following biomarkers were 

extracted: 

2.7.1 CTP4 Average 
The CTP4 average is the average Hounsfield unit (HU) value of the volume of interest 

(VOI) across the study (185). 

2.7.2 CTP4 Base 
The CTP4 base is the average HU of the VOI in the base image (185). 

2.7.3 CTP4 Time to Peak (TTP) 
Time-to-peak is the time between the last image where there was no enhancement in 

the VOI and the image which has the maximal value before the first post-enhancement 

images. This uses the raw time curve data directly. TTP is computed and measured in 

seconds. 
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2.7.4 CTP4 Positive Enhancement Integral 
The Positive Enhancement Integral is the sum of the difference between voxel HU value 

within the VOI at each time point and the voxel pre-enhancement HU value. 

This measures the area under the time intensity curve giving a measurement of the 

degree of positive enhancement from the injection of the contrast. 

2.7.5 CTP4 Mean Slope of Increase 
The mean slope of increase is the average of the change in HU values of voxels in the 

VOI at each time-point (185). 

2.7.6 CTP4 Blood Volume (BV) 
The Blood Volume is computed as the product of the blood flow (BF) and the mean 

transit time (MTT). It estimates the volume of blood in ml per 100g of tissue (113, 185). 

2.7.7 CTP4 Blood Flow (BF) 
The Blood Flow corresponds to the blood flow entering and exiting a volume of tissue 

and is commonly known as perfusion. It is derived from the initial value of the impulse 

residue function and estimates the flow of blood in ml per 100g of tissue per minute 

(113, 185). 

2.7.8 CTP4 Mean Transit Time (MTT) 
Mean Transit Time estimates the average time of contrast agent residence in tissue, 

and thence the mean time taken by blood to pass through the capillary network. It is 

calculated as the first moment (equivalent to the mean) of the impulse residue 

function from the time of arrival. This is the mean time where the time is weighted by 

the impulse residue function (113, 185): 

𝑀𝑇𝑇 =
∑ (𝑡 − 𝑡 ) × 𝐼𝑅𝐹(𝑡)

∑ 𝐼𝑅𝐹 (𝑡)
 

2.7.9 CTP4 Time of Arrival (IRF(t0)) 
The time of arrival is the time in seconds when contrast enhancement first occurs at 

the VOI. 
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2.7.10 CTP4 Time to Maximum (tMax) 
The time to maximum reflects the delay between the contrast bolus arriving in the VOI 

from the referenced arterial ROI. It is calculated as the time to the maximum of the 

impulse residue function. Although this is similar to the time-to-peak (TTP), the TTP 

does not rely on the calculated impulse residue function. 

2.7.11 CTP4 Permeability Surface Area Product (PS) 
The permeability surface area product measures the leakage rate of contrast through 

the capillary walls into the interstitial space from the vascular space. It is computed 

from the IRF and is measured in ml per 100g of wet tissue per minute. (Assuming that 

there are no arterial-venous shunts.)  

2.8 TexRAD Population 
Of the 293 patients with non-small cell cancer (NSCLC) who had 18F-FDG-PET/CT 

imaging described in Section 2.2, TexRAD features could not be extracted from three 

patients due to missing images, leaving 290 patients in the study. 

2.9 TexRAD Image Analysis 
Images were processed using TexRAD (Feedback Medical Ltd., 

https://fbkmed.com/texrad-landing-2/, London/Cambridge, UK), a proprietary clinical-

research texture analysis software platform. Using the 18F-FDG-PET and low-dose CT 

component together, a region of interest was drawn around the tumour at the most 

metabolically active slice on both the 18F-FDG-PET images and the CT images. On the 

CT images, voxels within the region of interest were thresholded by Hounsfield Unit to 

exclude air (< −50HU) and exclude calcifica on and bone (> 200HU). PET and CT images 

were then passed through Laplacian of Gaussian spacial band-pass filters of varying 

radii as represented by the spatial scale factor (SSF), and first-order statistics and 

histogram metrics were calculated for the ROI on these filtered images. By varying the 

radius of the filter from 2, 3, 4, 5 to 6mm, finer (higher frequency) to coarser (lower 

frequency) textural features are highlighted. An SSF radius of 0 is used to designate no 

filtering, with statistics derived from the conventional image directly. All segmentation 

was performed by a radiologist with over 4 years’ of experience with tumour 



 

47 

delineation. An initial 50 cases were discussed with the software vendor and the 

radiographer with over 10 years’ of experience with tumour delineation using TexRAD. 

The following biomarkers were extracted: 

2.9.1 Mean intensity (mean) 
The average brightness or intensity of the voxels in the ROI on the filtered/non-filtered 

image. 

2.9.2 Standard Deviation (sd) 
A measure of the variation in intensities from the mean intensity. If the intensities were 

plotted on frequency histogram, the standard deviation would be a kind of 

measurement of the width of the peak around the mean of that histogram. A higher 

standard deviation implies that there is a wider range of intensities and thus reflects 

heterogeneity. 

2.9.3 Shannon Entropy (entropy) 
TexRAD calculates the Shannon Entropy of the intensity histogram. This gives a 

measure of the randomness and inherent unpredictability of the intensity of a 

particular voxel in the ROI. A ROI that was homogeneous in intensity would have an 

entropy of 0, and entropy increases as the variability in intensity increases. It is thus 

another measure of heterogeneity, but whilst standard deviation is dependent on the 

magnitude of the difference to the mean, entropy is magnitude independent. 

2.9.4 Mean of Positive Pixels (mpp) 
This is the average intensity of positive intensity voxels in the ROI before and after 

filtering. In the unfiltered CT images this gives an impression of the average density of 

the solid component. In the filtered images it can be thought of providing a measure of 

the number of features in the ROI. This is because the Laplacian of Gaussian filter tends 

to convert edges in the unfiltered image to a positive and a negative component with 

magnitude related to how sharp that edge it, (the filter can be thought of as measuring 

the sum of the rate of change of the rate of change in the intensity in the unfiltered 

image). Thus the mean of positive pixels will measure the average “positive” edge in 

the ROI. 
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2.9.5 Histogram Skewness (skewness) 
Skewness is a measure of the asymmetry of the intensity histogram about its mean. If 

one considers a normal distribution, the distribution is symmetrical about the mean, 

and thus a histogram that represents such a distribution or one that approaches a 

normal distribution will have a skewness that is zero or is close to zero. However, most 

distributions are non-normal and thus non-symmetrical about their means. 

Distributions with a positive skew have a tail that is skewed to the right (and higher 

intensities), and negative to the left (and lower intensities.) In unimodal distributions, 

positive skew (tends to) translate to the mean being greater than the mode, with 

negative skew the mean being lower than the mode. Thus a positive skew reflects 

bright objects on a dark background and negative dark objects on a bright background. 

In plain CT images a positive skew could reflect sufficient denser tissue within fat, air or 

necrosis. In filtered images, the relationship and interpretation with the CT image is 

more difficult but a similar interpretation of the filtered images can be used. 

2.9.6 Histogram Kurtosis (kurtosis) 
In distribution terms kurtosis represents the weight of the tails of the distribution in 

comparison to the rest of the distribution. Often thought of as representing 

peakedness, higher kurtosis corresponds better to a greater extremity of outliers. 

Images with higher kurtosis will have increased tissue contrast whereas lower kurtosis 

will have reduced contrast. 

2.10 Histology Population 
Of the 293 patients with non-small cell cancer (NSCLC) who had 18F-FDG-PET/CT 

imaging described in Section 2.2, only patients who had surgery and 

immunohistochemistry staining were included. Results from mutation analysis, when 

successful, were also included. 

2.11 Immunohistochemistry 
Formalin-fixed paraffin-embedded (FFPE) tumour samples were obtained from the 

surgical specimens of those treatment-naïve patients who received primary surgery 

(i.e. without neoadjuvant therapies) after imaging was performed. 
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The FFPE specimens were cut at a thickness of 4 µm using Leica Microtome RM2235. 

Slides were stained on the Leica Bond Max Auto-stainer using Bond Polymer Refine 

Detection Kit. Epitopes for CA-IX were exposed by antigen retrieval solution ER1 (Leica) 

for 30 minutes. Epitopes for HIF-1α and CD105 were exposed by antigen retrieval 

solution ER2 (Leica) for 20 minutes. Epitopes for VEGF were exposed by antigen 

retrieval solution ER2 for 20 minutes. GLUT1 did not require antigen retrieval. 

Non-specific endogenous peroxidase activity was blocked by incubation with 3-4% 

hydrogen peroxide included in the kit. 

Following this, antibodies were diluted in Leica Bond Diluent. Staining protocol of 15 

minutes primary antibody, eight minutes post primary and eight minutes polymer was 

used for GLUT-1, VEGF, CD105 and CAIX. Staining protocol of 30 minutes primary 

antibody, 20 minutes post primary and 20 minutes polymer was used for HIF-1α. Slides 

were incubated for 10 minutes in substrate chromogen, 3,3’-Diaminobenzidine 

tetrahydrochloride hydrate (DAB) and counterstained with haemotoxylin for 2 minutes. 

Afterwards, slides were removed from the Bond-max and rehydrated by immersion in 

increasing concentrations of ethanol (70%, 90% and 100%). Finally, slides were 

immersed in xylene three times prior to cover-slipping. 

CD105 was used to quantify microvascular density. Under low magnification of CD-105 

stained sections the four most vascular areas in each patient sample were identified. 

In these areas, on a field of 0.62 mm² (200x on an Olympus microscope), vessels with a 

clearly defined lumen or with a well-defined linear vessel shape that was not a single 

endothelial cell were counted (186–188). 

The presence and density of white cells was used to assess if there was inflammation 

present. Scores for other proteins were based on staining intensity and percentage of 

positively-stained cells. The intensity was score from 0–3 (no staining, weak, medium, 

strong), and the extent of staining was scored from 0–4 (<5%, 5–25%, 26–50%, 51–

75%, >75%) (112). 
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2.12 Mutation Analysis 
Additional FFPE samples were collected from the pathological specimens as above. 

DNA was extracted following the Standard Operating Procedure (SOP) for Qiagen 

QIAamp DNA FFPE Tissue kit. Quantification was performed using a Qubit dsDNA BR 

assay kit. Samples that had a concentration below the minimum concentration range 

for the Qubit dsDNA BR assay kit were ran on a Qubit dsDNA HS assay kit. 

Following quantification tests, samples were diluted in nuclease free water to 10ng. 

Sequencing libraries were produced using a Fluidigm Access Array integrated fluidic 

circuit (IFC) chip. This allows multiplexing of up to 48 samples with 48 primer pairs into 

a single reaction. 

Before samples were loaded on to the chip, a pre-amplification step was performed 

using a ROCHE fast-start high-fidelity polymerase chain reaction (PCR) kit. Primer mix 

was added to amplify the specific targets: this contained forward and reverse primer 

for each target at a concentration of 100pM. 

Pre-amplification master mix was combined with 10ng of sample and run on a thermal 

cycler. Samples were then treated with Exosap-IT (Applied Biosystems) according to the 

manufacturer’s SOP and protocol. 

Samples were then loaded onto the Fluidigm IFC chip and processed. The samples 

were then tagged and barcoded using custom barcodes. 

The barcoded samples were cleaned using AMPure XP beads (Beckman) and quantified 

with an Agilent High Sensitivity D1000 ScreenTape assay before being diluted to 100pM 

for sequencing. 

Sequencing samples were loaded on to an Ion One Touch 2 Emulsion PCR machine as 

per manufacturer’s SOPs and protocols. Quality control was performed using an Ion 

Sphere Quality Control kit to ensure that 10–30% of the spheres were loaded. Quality 

control results outside of this range required repeat loading. 

Following sequencing, Binary sequencing Alignment Map and Index (BAM and BAI) files 

were downloaded from the sequencing server and loaded into the Integrative 
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Genomics Viewer (IGV) software. A Browser Extensible Data (BED) file was generated 

containing the location of the targeted regions that were sequenced. Mutations were 

manually called following assessment of sequencing depth, mutation frequency (with a 

minimum of 8%) and homopolymer association. 

2.13 Statistics and Data Analysis 
Patient demographic data was extracted and compared to look for statistical biases. 
18F-FDG-PET/CT, CT perfusion and TexRAD biomarkers were compared with Survival in 

univariate and multivariate Cox proportional hazards regressions using R 3.6.3 (189), 

and the survival package (190, 191). Graphs were created using ggplot2 package (192, 

p. 2). The tidyverse family of packages were used for general data analysis (193). 

Receiver operator curve analysis was performed using the survivalROC package (194). 

In chapter 6, statistical analysis was run on IBM SPSS Statistics Version 22.0 (Armonk, 

NY:IBM Corps) and R 3.6.3. Spearman’s rank correlations and Mann Whitney tests were 

performed to assess for correlations between the immunohistochemical and mutation 

markers with imaging biomarkers. For each genetic mutation/wide-type subgroup 

(HER2, EGFR, KRAS, BRAF, any mutation); entropy_ct_ssf_2 & 18F-FDG-PET SUVpeak, 

TBRlung, SUVmean, and SUVmax were compared with survival in univariate and 

multivariate Cox proportional hazards models to significantly stratify patients with 

good or poor prognosis. Difference in survival was assessed using the Log-rank test. 

Synergistic value of a combination of entropy_ct_ssf_2 and a 18F-FDG uptake 

parameter was further evaluated as a prognostic marker within the different genetic 

subgroups.  

2.14 List of total biomarkers studied 

2.14.1 18F-FDG-PET quantitative biomarkers 

 Tumour SUVmax 

 Tumour SUVmean 

 Tumour SUVmin 

 Normal Vessel SUVmax 
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 Normal Lung SUVmax, SUVmean and SUVmin 

 Tumour Target-to-Background Ratio (TBRlung) 

 Tumour Dimensions 

2.14.2 CT Perfusion quantitative biomarkers 

 CTP4 Average 

 CTP4 Base 

 CTP4 Time to Peak (TTP) 

 CTP4 Positive Enhancement Integral 

 CTP4 Mean Slope of Increase 

 CTP4 Blood Volume (BV) 

 CTP4 Blood Flow (BF) 

 CTP4 Mean Transit Time (MTT) 

 CTP4 Time of Arrival (IRF(t0)) 

 CTP4 Time to Maximum (tmax) 

 CTP4 Permeability Surface Area Product (PS) 

2.14.3 TexRAD derived biomarkers 
TexRAD analysis uses a combined filtration-histogram and statistical based approach. 

The PET and CT images are passed through Laplacian of Gaussian spatial band-pass 

filters of varying radii represented by the spatial scale factor (SSF) 0, 2, 3, 4, 5 or 6 and 

for both PET and CT  images filtered each SSF the following first-order statistics are 

measured: 

 Mean Intensity (mean) 

 Standard Deviation (sd) 

 Shannon Entropy (entropy) 
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 Mean of Positive Pixels (mpp) 

 Histrogram Skewness (skewness) 

 Histogram Kurtosis (kurtosis) 

Thus the list of TexRAD biomarkers considered is a cross product of the image type (PET 

or CT), the SSF, and a first-order statistic as listed above, e.g. entropy_ct_ssf_2. 
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3 18F-FDG-PET Quantitative Biomarkers in Lung Cancer 

3.1 Abstract 

3.1.1 Purpose 
To examine the correspondence between 18F-FDG-PET biomarkers and survival in non-

small cell lung cancer (NSCLC). 

3.1.2 Methods 
484 patients with suspected lung cancer were recruited to the study. Only patients who 

had 18F-FDG-PET/CTs and were diagnosed with NSCLC were included. 

Histology and Stage were noted and 18F-FDG-PET/CT biomarkers were analysed. 

Kaplan-Meier and Cox proportional hazard survival analysis was performed. Analysis 

was performed using R. 

3.1.3 Findings 

3.1.3.1 Patient Demographics 

Of the 484 patients in the study, 475 had 18F-FDG-PET/CTs. Of these 293 were 

determined to have NSCLC and 133 were determined to be benign. 

Of these 293 patients 162 were Male and 131 were Female. 

3.1.3.2 Age and Surgical Status 

The median survival of the NSCLC patients was 901 days (731–1082 days 95% CI). 

Survival was significantly (albeit weakly) negatively correlated with age at enrolment 

(HR 1.03, 1.01–1.04 95% CI, p=0.002). 

Survival is strongly positively correlated with surgical status (HR 0.22, 0.16–0.31 95% CI, 

p<0.001.) Surgical status has a stronger correlation than age at enrolment in 

multivariate Cox regression where it remains statistically significant, unlike age at 

enrolment. 
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3.1.3.3 Disease Stage 

Increasing disease stage was strongly negatively correlated with survival (p<0.001) and 

multivariate Cox regression combining stage, age at enrolment and surgical status is 

statistically significant. 

3.1.3.4 SUVmax 

The mean SUVmax was 12.4 +/- 7.2. SUVmax was weakly negatively correlated with 

survival, (HR 1.03, 1.01–1.04 95% CI, p=0.002). 

In multivariate Cox regression analysis SUVmax appears independent of age of 

enrolment but not surgery or stage.  

ROC analysis revealed an AUC of 67% revealing that this is poor predictor, however a 

cut-off of SUVmax>7.6 derived from Youden’s index is statistically significant (HR 1.88, 

1.36–2.56 95% CI, p<0.001). 

This cut-off remains statistically significant in multivariate analysis with surgical status 

but not with stage. 

3.1.3.5 TBRlung 
The mean TBRlung was 46.5 +/- 33.8. Lower TBRlung was also associated with survival (HR 

1.01, 1.00–1.01 95% CI, p=0.001). In multivariate Cox regression it remains statistically 

significant with age at enrolment but is not statistically significant when combined with 

surgery or stage. 

ROC analysis revealed an AUC of 69% revealing that it is a poor predictor, however, a 

cut-off of TBRlung>26.2 is a statistically significant predictor of survival (HR 0.46, 0.33–

0.63 95% CI, p<0.001) and in multivariate Cox regression remains statistically significant 

when combined with surgery but not stage. 

3.1.4 Conclusion 
Both lower SUVmax and TBRlung are statistically associated with survival but neither are 

independent of stage. Lower TBRlung is more strongly associated with survival than 

SUVmax.  
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3.2 Introduction 
Lung cancer is the leading cause of cancer-related death worldwide (6), and whilst 

there has been substantial improvement in one-year survival of non-small cell lung 

cancer from 16% in 1971–1972 to 32% in 2010–2011, long-term survival remains poor 

(2). Prognostication of survival is most often performed using staging with the Tumour-

Node-Metastasis (TNM) system (4), however these stages are somewhat coarse and 

survival within these groups is heterogeneous. Curative surgery is often limited to the 

early stages of lung cancer, with chemotherapy and radiotherapy used in more 

advanced stages.  

Although contrast-enhanced CT, MRI and EBUS play a significant role in the diagnosis, 

staging and restaging of lung cancer, the main modality used for the staging and 

restaging of non-small cell lung cancer is now 18F-fluoro-2-deoxy-D-glucose positron 

emission tomography/computed tomography (18F-FDG-PET/CT). 18F-FDG-PET/CT 

provides superior assessment of nodal and extra-thoracic metastasis to that of CT and 

the helps guide EBUS targetting (195).  

18F-FDG-PET provides a measure of the glucose metabolism as it is actively transported 

in to cells through glucose transporters (GLUTs), and then phosphorylated by 

hexokinases to 18F-FDG-6-phosphate. 18F-FDG-6-phosphate will then accumulate in 

cells as it cannot be further metabolised until the 18Fluorine decays into 18Oxygen 

through emission of a positron or it is dephosphorylated by phosphatases (56, 60, 61). 

Metabolically active cells, often cancerous cells, will therefore accumulate 18F-FDG. 

Although full metabolism of the glucose is an oxygen dependent process, the initial 

phosphorylation of glucose is not, and hypoxia induces cells to increase expression of 

GLUTs and thus uptake and accumulation of 18F-FDG and 18F-FDG-6-phosphate. In this 

way, 18F-FDG uptake is increased in hypoxic and metabolically active cells (56, 62), 

however it is difficult to differentiate between the aerobic and anaerobic induced 

uptake, and tumours with low metabolic rates or low glucose uptake, e.g. mucinous 

adenocarcinomas, will have falsely reassuring low 18F-FDG avidity (56). 



 

57 

The coarseness of the staging system coupled with the heterogeneous uptake of 18F-

FDG raises the question of whether semi-quantitative measures such as SUVmax and 

TBRlung can be used to provide additional survival prognostication over that of the 

staging. The aim of this study is therefore to assess if there is a statistically significant 

relationship between 18F-FDG biomarkers and, survival and histological subtype. 
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3.3 Materials and Methods 

3.3.1 Patient Population 
The population of patients is as described in detail in Section 2.2. There were a total of 

293 patients with non-small cell cancer (NSCLC). 

3.3.2 18F-FDG-PET/CT Imaging Protocol 
The imaging protocol is described in detail in Section 2.3. 

3.3.3 18F-FDG-PET/CT Image Analysis 
The analysis protocol is described in detail in Section 2.4. 

3.3.4 Statistics and Data Analysis 
Statistical and data analysis is described in detail in Section 2.13.  
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3.4 Findings 

3.4.1 Patient Demographics 
Of the 484 patients, 475 patients had 18F-FDG-PET/CT imaging and a total of 293 

patients were determined to have NSCLC, (133 were determined to benign.) 

Of these 293 patients 162 were male and 131 were female. The median age at 

enrolment was 69 years (range 63–75 years). 108 (37%) of these patients were Stage I, 

53 (18%) Stage II, 92 (31%) Stage III and 40 (14%) Stage IV. There was no statistically 

significant difference between gender and age at enrolment, SUVmax, or TBRlung. (See 

Table 1.) 

3.4.2 Age and Surgical Status 
The median survival of the NSCLC patients was 901 days (731–1082 days 95% CI). One-

year survival was 74.9% and five-year survival was 34.2%. Survival was significantly 

(albeit weakly) negatively correlated with age at enrolment (HR 1.03, 1.01–1.04 95% CI, 

p=0.002). 

Survival is strongly positively correlated with surgical status (HR 0.22, 0.16–0.31 95% CI, 

p<0.001.) Surgical status has a stronger correlation than age at enrolment in 

multivariate cox regression where it remains statistically significant unlike age at 

enrolment. (See Tables 2 and 3.) 

When surgical status is compared with age at enrolment, stage, SUVmax and TBRlung we 

can see that there is a statistically significant difference with all four factors in keeping 

with the decision to operate being a composite marker representing the clinical gestalt 

of patient fitness. (See Table 4.) 

3.4.3 Disease Stage 
Increasing disease stage was strongly negatively correlated with survival (p<0.001) and 

multivariate Cox regression combining stage, age at enrolment and surgical status is 

statistically significant. (See Table 5 and Table 6.) 
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3.4.4 SUVmax 
The mean SUVmax was 12.4 +/- 7.2. Lower SUVmax was significantly but weakly 

correlated with survival, (HR 1.03, 1.01–1.04 95% CI, p=0.002). (See Table 7.) In 

multivariate regression analysis this correlation was stronger than that of Age of 

enrolment but not Surgery or Disease Stage. (See Table 8.) 

Receiver operating characteristic curve analysis suggests that SUVmax has a poor 

accuracy for predicting survival with an area under the curve (AUC) of 66%, however a 

cut-value of SUV 7.6 derived from Youden’s index is statistically significant (HR 1.88, 

1.36–2.56 95% CI, p < 0.001) and, whilst this only has a specificity of 42.4% it has quite 

high sensitivity at 83.4%. (See Figure 1.) This cut-off is, however, only statistically 

significant when restricted to patients who had surgery (See Table 10 and Figure 2) and 

it is not independent of stage. (See Table 11.)  

Given the significant survival differences between those treated with surgery it’s worth 

considering SUVmax ROC analysis within the two sub-groups separately. 

3.4.5 SUVmax in Non-Surgical Patients 
In non-surgical patients ROC analysis suggests that SUVmax 8.9 represents the best cut-

value for maximizing accuracy; however, the AUC is only 51% and the cut-value results 

in a sensitivity of 71.3% and specificity of 19.4%. Unsurprisingly, this does not produce 

a statistically significant difference in survival. 

3.4.6 SUVmax in Surgical Patients 
For surgical patients, ROC analysis suggests that SUVmax 7.4 represents the best cut-

value for maximizing accuracy. This cut-off has a sensitivity of 72.8% and specificity of 

50.0% at median survival. This is statistically significantly associated with survival but is 

not independent of stage. 

3.4.7 SUVmean 
The mean SUVmean was 7.8 +/- 4.7. Lower SUVmean was significantly but weakly 

correlated with survival, (HR 1.04, 1.01–1.07 95% CI, p=0.004). In multivariate 

regression analysis this correlation was stronger than that of age of enrolment but not 

surgery or disease stage. ROC analysis revealed that SUVmean 10.3 represents the best 
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cut-value for maximizing accuracy however the AUC is only 65% which has a sensitivity 

of only 41.7% and specificity of 81.8%. This is a statistically significant predictor of 

survival (HR 0.66, 0.49–0.88, p=0.005) but does not remain statistically significant in 

multivariate Cox regression with either surgical status or stage.  

3.4.8 TBRlung 
The mean TBRlung was 46.5 +/- 33.8. Lower TBRlung was also weakly associated with 

survival (HR 1.01, 1.00–1.01 95% CI, p=0.001). (Table 12.) In multivariate Cox regression 

it remains statistically significant with age at enrolment but is not statistically 

significant when combined with surgery or stage. (Table 13) 

ROC analysis revealed an AUC of 66% revealing that it is a poor predictor, (Figure 3) 

however, a cut-off of TBR ≤ 26.2 is a statistically significant predictor of survival (HR 

0.46, 0.33–0.63 95% CI, p < 0.001) and in multivariate Cox regression remains 

statistically significant when combined with surgery but not stage. (Table 15 and 

Figure 4.) When restricted to Stage I patients the cut-off remains a statistically 

significant prognosticator and is a stronger predictor than largest axial tumour size. 

Most interestingly the predicted cut-off appears to work in the opposite direction for 

Stage II patients in contrast to that of Stage I patients. 
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3.5 Discussion 
This prospective study has demonstrated that 18F-FDG SUVmax, 18F-FDG SUVmean and 18F-

FDG TBRlung are predictive for survival, but they do not provide significant additional 

prognostication power over that of staging. A partition of TBRlung ≤ 26.2 does provide 

significant additional prognostication power over pure surgical status and does provide 

additional prognostication power in Stage I disease, but is not statistically significant for 

higher stage disease. 

The poor additional prognostication for these measures in higher stage disease stands 

in contrast to the findings of other studies (69–72, 74–76, 78, 80, 82, 83, 94–96, 104, 

196). The finding that SUVmax ≤ 7.4 is a statistically significant predictor of survival for 

surgical patients does replicate the findings of other studies (70–72, 77, 82, 94), 

however it is worth noting that there has been no consistently recognised cut-off limit, 

with some of these papers suggesting various cut offs for SUVmax ranging from 5–7 or 

into quintile and quartile groups. Further, the biases inherent in our patient population 

due to recruitment factors may be a reason for the poor ability of SUVmax to predict 

survival in higher stages. Our study population is heavily weighted toward those with 

lower disease stage and likely operable tumours, with a bias towards surgically fit 

patients as compared to the normal population of the lung cancers. These biases mean 

that the survival of our population of Stage II–IV patients is likely to be artificially large 

— especially for the larger tumours. (For example, our one-year survival for all our 

patients and all Stage III patients was 74.9% and 63.4% respectively whereas the 2013–

2017 age standardised one-year survival in the UK is only 40.6% and 48.1% respectively 

(3)). It may also artificially increase the difference in survival between those treated 

with Surgery versus those not, as non-surgical treatment may reflect worse non-

tumoural prognostic factors, e.g. heart disease, fibrosis, and emphysema. 

The lack of the inclusion of SUVmax in the grading guidelines for the 8th Edition of the 

TNM staging system does somewhat suggest that although SUVmax and other markers 

of glycolysis play a significant role in the decisions to stage tumours, their role in 

prognostication remains unproven. 
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TBRlung, a synthetic biomarker combining tumour SUVmax and background lung SUVmin, 

provides a measurement which is highly correlated with the rate of transfer constant 

(Ki) that can be derived from kinetic analysis (197–199). This marker has been shown to 

be highly prognostic in diffuse lung disease (48–51) and demonstrates a sensitive 

marker for disease progression in COVID-19 (see Chapter 7), but pathology in cancer is 

very different from that in these disease. Our findings regarding the discovery of the 

significant cut-off for TBRlung is the first time TBRlung has been applied to lung cancer. In 

particular, the prognostic benefit of TBRlung ≤ 26.2 in Stage I disease is stronger than 

that of the benefit of sub-staging in Stage I disease. Why the TBRlung should be such a 

strong predictor is uncertain, though it may be helping to highlight the inappropriately 

avid smaller lesions that are of more concern and downplay mildly avid slightly larger 

lesions.  
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3.6 Conclusion 
Both lower SUVmax and TBRlung are statistically associated with survival but neither are 

independent of stage. Lower TBRlung is more strongly associated with survival than 

SUVmax. 
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3.7 Tables 
Gender Overall, N = 293 Female, N = 131 Male, N = 162 p-value1 

Age at Enrolment    0.4 

N 293.0 131.0 162.0  

Median (IQR) 69.0 (63.0, 75.0) 68.0 (62.0, 74.0) 70.5 (63.0, 75.0)  

Range 44.0, 96.0 44.0, 90.0 48.0, 96.0  

Surgery 148 (51%) 68 (52%) 80 (49%) 0.7 

Radiological Stage    0.6 

I 108 (37%) 53 (40%) 55 (34%)  

II 53 (18%) 22 (17%) 31 (19%)  

III 92 (31%) 41 (31%) 51 (31%)  

IV 40 (14%) 15 (11%) 25 (15%)  

SUVmax    0.4 

Median (IQR) 11.8 (6.7, 17.2) 11.5 (5.6, 17.2) 12.0 (7.0, 17.4)  

Range 0.5, 40.0 0.5, 33.6 0.8, 40.0  

TBRlung    0.026 

Median (IQR) 41.3 (22.3, 59.0) 35.2 (17.7, 54.8) 43.9 (24.7, 62.5)  

Range 1.6, 210.2 1.6, 173.0 2.7, 210.2  

1Wilcoxon rank sum test; Pearson's Chi-squared test 

Table 1: Patient demographics as compared to gender 

Characteristic HR 95% CI p-value 

Surgery    

No — —  

Yes 0.22 0.16, 0.31 <0.001 

Table 2: Univariate Cox regression of survival versus surgical status 
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Characteristic HR 95% CI p-value 

Age at Enrolment 1.01 1.00, 1.03 0.093 

Surgery    

No — —  

Yes 0.23 0.17, 0.32 <0.001 

Table 3: Multivariate Cox regression of survival versus surgical status and age at 
enrolment 

Surgical Status Overall, N = 293 No, N = 145 Yes, N = 148 p-value2 

Age at Enrolment    0.006 

Median (IQR) 69.0 (63.0, 75.0) 71.0 (64.0, 77.0) 67.0 (62.0, 73.2)  

Range 44.0, 96.0 44.0, 96.0 48.0, 90.0  

Gender    0.7 

F 131 (45%) 63 (43%) 68 (46%)  

M 162 (55%) 82 (57%) 80 (54%)  

Radiological Stage    <0.001 

I 108 (37%) 24 (17%) 84 (57%)  

II 53 (18%) 23 (16%) 30 (20%)  

III 92 (31%) 63 (43%) 29 (20%)  

IV 40 (14%) 35 (24%) 5 (3.4%)  

SUVmax    <0.001 

Median (IQR) 11.8 (6.7, 17.2) 13.9 (9.3, 18.3) 10.1 (5.2, 14.4)  

Range 0.5, 40.0 0.5, 40.0 0.5, 37.9  

TBRlung    <0.001 

Median (IQR) 41.3 (22.3, 59.0) 47.4 (32.0, 70.9) 32.2 (16.5, 52.7)  

Range 1.6, 210.2 2.5, 210.2 1.6, 171.7  

1Wilcoxon rank sum test; Pearson's Chi-squared test 

Table 4: Biomarkers as compared to surgical status 
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Radiological 

Stage 

Overall, 

N = 2931 
Stage I, 

N = 108 

Stage II, 

N = 53 

Stage III, 

N = 92 

Stage IV, 

N = 40 
p-value 

Age at 

Enrolment 
     0.089 

Median (IQR) 69.0 

(63.0, 75.0) 

69.0 

(63.0, 76.0) 

69.0 

(63.0, 76.0) 

71.0 

(64.0, 74.2) 

66.0 

(57.8, 72.0) 
 

Range 44.0, 96.0 49.0, 96.0 52.0, 90.0 44.0, 88.0 47.0, 80.0  

Gender      0.6 

F 131 (45%) 53 (49%) 22 (42%) 41 (45%) 15 (38%)  

M 162 (55%) 55 (51%) 31 (58%) 51 (55%) 25 (62%)  

Surgery 148 (51%) 84 (78%) 30 (57%) 29 (32%) 5 (12%) <0.001 

SUVmax      <0.001 

Median (IQR) 11.8 

(6.7, 17.2) 

7.1 

(4.0, 11.7) 

13.1 

(6.5, 17.2) 

14.6 

(11.2, 18.7) 

13.4 

(10.5, 19.3) 
 

Range 0.5, 40.0 0.5, 37.9 2.9, 26.2 3.4, 33.6 1.9, 40.0  

TBRlung      <0.001 

Median (IQR) 41.3 

(22.3, 59.0) 

24.2 

(13.4, 45.7) 

38.3 

(20.8, 57.5) 

50.4 

(37.7, 71.0) 

49.4 

(36.0, 73.4) 
 

Range 1.6, 210.2 1.6, 171.7 8.5, 115.0 11.0, 173.0 9.5, 210.2  

Table 5: Biomarkers as compared to radiological disease stage 

Characteristic HR 95% CI p-value 

Radiological Stage    

I — —  

II 1.86 1.22, 2.82 0.004 

III 2.61 1.78, 3.82 <0.001 

IV 3.97 2.47, 6.38 <0.001 

Age at Enrolment 1.03 1.01, 1.04 0.005 

Surgery    

No — —  

Yes 0.35 0.25, 0.50 <0.001 

Table 6: Multivariate Cox-regression of survival with radiological stage, age and 
surgical status 
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Characteristic HR 95% CI p-value 

SUVmax 1.03 1.01, 1.04 0.002 

Table 7: Univariate Cox regression of survival versus SUVmax 

Characteristic HR 95% CI p-value 

SUVmax 1.02 1.00, 1.03 0.11 

Age at Enrolment 1.02 1.00, 1.03 0.061 

Surgery    

No — —  

Yes 0.24 0.18, 0.33 <0.001 

Table 8: Multivariate Cox regression of survival versus SUVmax, age at enrolment and 
surgical status 

Characteristic HR 95% CI p-value 

SUVmax    

SUVmax > 7.6 — —  

SUVmax ≤ 7.6 0.53 0.39, 0.73 <0.001 

Table 9: Univariate Cox regression of Survival versus SUVmax > 7.6 

Characteristic HR 95% CI p-value 

Surgery    

No — —  

Yes 0.24 0.17, 0.33 <0.001 

SUVmax    

SUVmax > 7.6 — —  

SUVmax ≤ 7.6 0.71 0.51, 0.98 0.037 

Table 10: Multivariate Cox regression of survival versus SUVmax > 7.6 and surgical status 
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Characteristic HR 95% CI p-value 

SUVmax    

SUVmax > 7.6 — —  

SUVmax ≤ 7.6 1.04 0.71, 1.52 0.8 

Radiological Stage    

I — —  

II 2.19 1.41, 3.39 <0.001 

III 3.50 2.31, 5.32 <0.001 

IV 6.41 4.01, 10.2 <0.001 

Table 11: Multivariate Cox regression of survival versus SUVmax > 7.6 and radiological 
stage 

Characteristic HR 95% CI p-value 

TBRlung 1.01 1.00, 1.01 0.001 

Table 12: Univariate Cox regression of survival versus TBRlung 

Characteristic HR 95% CI p-value 

TBRlung 1.00 1.00, 1.01 0.093 

Surgery    

No — —  

Yes 0.24 0.18, 0.33 <0.001 

Age at Enrolment 1.02 1.00, 1.03 0.069 

Table 13: Multivariate Cox regression of survival versus TBRlung, age at enrolment and 
surgical status 

Characteristic HR 95% CI p-value 

TBRlung    

TBRlung > 26.2 — —  

TBRlung ≤ 26.2 0.46 0.33, 0.63 <0.001 

Table 14: Univariate Cox regression of survival versus TBRlung > 26.2 
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Characteristic HR 95% CI p-value 

Surgery    

No — —  

Yes 0.25 0.18, 0.34 <0.001 

TBRlung    

TBRlung > 26.2 — —  

TBRlung ≤ 26.2 0.63 0.45, 0.88 0.007 

Table 15: Multivariate Cox regression of survival versus TBRlung > 26.2 and surgical 
status  
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3.8 Figures 

 

 

 
Figure 1: Receiver operating characteristic curve for survival vs. SUVmax > 7.6 

 
Figure 2: Kaplan-Meier Survival Curves stratified by SUVmax > 7.6 faceted by surgical 

status 
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Figure 3: Receiver operating characteristic curve for survival vs. TBRlung > 26.2 

Figure 4: Kaplan-Meier Survival Curves stratified by TBRlung > 26.2 faceted by 
radiological stage 
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4 CT Perfusion in Lung Cancer 

4.1 Abstract 

4.1.1 Purpose 
To examine the correspondence between CT perfusion (CTP) & 18F-FDG-PET/CT 

biomarkers and survival in non-small cell lung cancer (NSCLC). 

4.1.2 Methods 
484 patients with suspected lung cancer were recruited to the study. Only patients who 

had both a 18F-FDG-PET/CT study and a CT Perfusion study, and who were subsequently 

diagnosed with NSCLC, were included. 

Histology and stage were noted and 18F-FDG-PET/CT and CT perfusion biomarkers were 

analysed using Advantage Workstation (ADW) for Diagnostic Imaging (GE Healthcare) 

CT Perfusion 4D (CTP4). 

Kaplan-Meier and Cox proportional hazard survival analysis was performed. Analysis 

was performed using R. 

4.1.3 Findings 

4.1.3.1 Patient Demographics 

Of the 484 patients in the study, 475 had 18F-FDG-PET/CTs. Of these 293 were 

determined to have NSCLC and 133 were determined to be benign. Of the NSCLC 

patients, 162 patients had CT perfusion (CTP) analysis performed. 

Of these 162 patients, 95 were male and 67 were female, with median age 71 years 

(range 44–96 years). 56 (35%) of these patients were Stage I, 29 (18%) Stage II, 56 

(35%) Stage III and 21 (13%) Stage IV. The median survival of the patients was 903 days 

(721–1198 days 95% CI). The mean SUVmax was 12.4 +/- 6.8. 

4.1.3.2 CT Perfusion and Survival 
Correlation analysis demonstrates that the 11 CT Perfusion biomarkers are highly 

correlated with each other, but that they have poor individual correlation with 18F-FDG 

biomarkers, surgical status, stage, and raw survival time, and indicates that there is no 



 

75 

statistically significant survival relationship between any of these with survival, nor is 

there any linear combination of these which demonstrates a statistically significant 

relationship with survival. 

However, when considering only the patients who did not have surgery, there is a 

statistically significant relationship between mean transit time and survival (p=0.013). 

4.1.3.3 CT Perfusion and SUVmax 

A statistically significant linear model predicting SUVmax is possible when combining 

time-to-peak, blood volume and CTP4 base. (p=0.005, p<0.001 and p<0.001 

respectively). This linear model has an AIC of 1050 but when looking at the residuals 

there is a linear relationship suggesting that this is still incomplete. 

The results of this prediction are statistically significantly correlated with survival, 

however, the p-value is larger than that obtained from using SUVmax alone. 

4.1.3.4 CT Perfusion and Surgery 

A statistically significant multivariate logistic model predicting surgery is possible but 

has overall accuracy of only 66%. 

The results of this prediction are statistically significantly correlated with survival 

(p=0.03) but are not independent of SUVmax or stage. 

4.1.3.5 CT Perfusion and Nodal Status 

A statistically significant multivariate logistic model of CTP4 base and positive 

enhancement integral predicts nodal status with a 72% accuracy. The prediction score 

is significantly correlated with survival (p=0.03). This prediction is not independent of 

SUVmax or surgery but is independent of stage; however, this is not as strong as using 

nodal status directly and it is notable that the full dataset does not demonstrate 

survival benefit.  

4.1.4 Conclusion 
There is no definite clear correlation with CT perfusion biomarkers and survival, and 

there is no clear added benefit to CT perfusion over that 18F-FDG based staging and 

surgery.  
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4.2 Introduction 
As discussed in Section 3.2, lung cancer is the leading cause of cancer-related death 

worldwide (6), and long-term survival remains poor (2). Prognostication of survival 

using staging with the Tumour-Node-Metastasis (TNM) system (4) is non-ideal as stages 

are somewhat coarse and survival within these groups is heterogeneous. 

Amongst the key factors of tumour growth, evolution and metastatic spread, necrosis, 

angiogenesis and the response to hypoxia are vital (62). Whilst angiogenesis can be 

assessed histopathologically through assessment of the microvascular density and 

immunohistochemistry markers such as hypoxia-inducible factor (HIF) (62, 135), non-

invasive in vivo assessment of tumour vascularity with CT-perfusion (CTP) has the 

potential to predict response to anti-angiogenesis therapy and thence survival 

independently, although results so far have been mixed (140, 142, 145, 147, 151). 

18F-FDG-PET/CT, although, able to assess response to therapy and stage patients, 

cannot provide a direct measure of tumour perfusion, however, the relationship 

between CT perfusion biomarkers, tumour size, stage, location, histological subtype, 
18F-FDG biomarkers and the immunohistochemistry markers is unclear. Whether CTP 

can provide additional survival prognostication over that of 18F-FDG-PET/CT and the 

stage derived from it is also unknown. The aim of this study is therefore to assess if 

there is a statistically significant relationship between CT perfusion biomarkers and 

survival and histological subtype. Additionally, previous studies have shown that CT 

perfusion biomarkers can predict survival in non-surgical higher stage disease (142): we 

will also review if our study can replicate these findings.  
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4.3 Materials and Methods 

4.3.1 Patient Population 
The population of patients is as described in detail in Section 2.2 and Section 2.5. There 

were a total of 162 patients with non-small cell cancer (NSCLC) who had CT perfusion 

imaging and 18F-FDG-PET/CT imaging. 

4.3.2 18F-FDG-PET/CT Imaging Protocol 
The 18F-FDG-PET/CT imaging protocol is described in detail in Section 2.3. 

4.3.3 CT Perfusion Imaging Protocol 
The CT perfusion imaging protocol is described in detail in Section 2.6. 

4.3.4 18F-FDG-PET/CT Image Analysis 
The 18F-FDG-PET/CT image analysis protocol is described in detail in Section 2.4. 

4.3.5 CT Perfusion Image Analysis 
The CT perfusion image analysis protocol is described in detail in Section 2.7. 

4.3.6 Statistics and Data Analysis 
Statistical and data analysis is described in detail in Section 2.13.  
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4.4 Findings 

4.4.1 Patient Demographics 
Of the 484 patients in the study, 475 had 18F-FDG-PET/CTs. Of these 293 were 

determined to have NSCLC and 133 were determined to be benign. Of the NSCLC 

patients 162 patients had CT Perfusion (CTP) analysis performed. 

Of these 162 patients 95 were Male and 67 were Female with median age at enrolment 

of 71 years (range 44–96 years). 56 (35%) of these patients were Stage I, 29 (18%) 

Stage II, 56 (35%) Stage III and 21 (13%) Stage IV. There was no statistically significant 

difference between gender and Age at Enrolment, Stage, SUVmax, or the CT Perfusion 

measures. (See Table 16.) 

4.4.2 Age and Surgical Status 
The median survival of the NSCLC CTP patients was 903 days (721–1214 days 95% CI). 

This is slightly longer than the full PET dataset but is not statistically significantly 

different. Survival remained significantly albeit weakly negatively correlated with age at 

enrolment (HR=1.03 (1.00–1.05 95% CI), p=0.031) and strongly positively correlated 

with surgical status (HR=0.27 (0.17–0.41 95 %CI), p<0.001.) 

However, in multivariate Cox regression analysis these correlations were not 

independent and surgical status has a stronger correlation. 

4.4.3 Disease Stage 
Increasing disease was strongly negatively correlated with survival with increasing 

hazard ratio as stage increased and is independent of surgery in multivariate analysis, 

(See Table 6 & Table 18.)  

4.4.4 SUVmax 
The mean SUVmax was 12.4 +/- 6.8. This is similar to the main dataset. Lower SUVmax 

was significantly correlated with survival, (HR=1.02 (1.02–1.08 95%CI) p<0.001). In 

multivariate analysis this correlation was stronger than that of age at enrolment but 

was not independent or stronger than surgical status or disease stage. 
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Receiver operating characteristic curve analysis suggests that SUVmax has a fair accuracy 

for predicting survival with an area under the curve of 71%, with a cut-value of SUV 

11.5 maximizing accuracy but only has a specificity of 72% and a sensitivity of 65%. 

(See Figure 5.) This cut-off is, however, only statistically significant when restricted to 

patients who had surgery (See Figure 6) and it is not independent of stage. 

4.4.5 Correlation Between Non-Deconvolution and Deconvolution 
Dependent Biomarkers 
The deconvolution dependent biomarkers of blood flow, blood volume and 

permeability surface area product are well correlated with the non-deconvolution 

dependent biomarkers: positive enhancement integral and mean slope of increase. The 

remaining deconvolution dependent biomarkers — mean transit time, IRF(t0), and tmax 

— are very well correlated with each other but do not demonstrate good correlation 

with other non-deconvolution dependent biomarkers. (See Figure 7.) 

4.4.6 CT Perfusion Measures Against Survival 
The values of the CT perfusion measures are highly correlated with each other but 

appear poorly correlated with survival. (See Figure 7.) 

Univariate survival analysis thus revealed no statistically significant linear relationship 

between any of these characteristics and survival. (See Table 19.) 

Multivariate analysis was also unable to find a statistically significant model against 

survival. 

When patients were studied in subgroups by stage, CTP4 average was borderline 

statistically significant (HR=0.98, 0.96–1.00 95% CI, p=0.048). Subgroup analysis by T-

stage was unable to find a statistically significant linear relationship. 

4.4.7 Can CT Perfusion Predict SUVmax? 
Previous studies have suggested that SUVmax can be predicted using CT perfusion. A 

multivariate linear regression model was possible combining CTP4 time to peak, blood 

volume and base (p-values 0.005, <0.001 and <0.001 respectively.) However, there was 

poor prediction of higher SUVmax with this model showing significant 

heteroscedasticity. When the predicted SUVmax was used to predict survival there was a 
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statistically significant correlation, but this was weaker than that of SUVmax alone and 

was not independent of surgery or stage. 

4.4.8 Can CT Perfusion Predict Surgery? 
Similarly a statistically significant multivariate model predicting surgery was possible. 

However, this model required 5 variables combining CTP4 base, blood volume, blood 

flow, mean transit time and tMax, (AIC of 201.75) and although its values were also 

statistically significantly correlated with survival (p=0.03) it was not independent of 

SUVmax or stage. The overall accuracy was poor at only 66%. 

4.4.9 Can CT Perfusion Predict Nodal Status? 
A statistically significant multivariate logistic model of CTP4 base and positive 

enhancement integral predicts nodal status with a 72% accuracy.  

The prediction score is significantly correlated with survival with (p=0.03) and is 

independent of surgery and stage; however it has a poor AUC on ROC analysis of only 

64%, and the cut-value behaves poorly in subgroup analysis. 

4.4.10 Can CT Perfusion Predict Metastatic Status? 
No statistically significant univariate or multivariate logistic model of CT perfusion 

biomarkers was able to predict metastases within our dataset. 

4.4.11 Can CT Perfusion Predict Survival in Non-Surgical Higher Stage 
Disease Treated with Chemotherapy? 
Of the 162 NSCLC patients that had CT Perfusion (CTP) analysis performed, 42 patients 

(25.9%) had higher stage non-surgical disease treated with chemotherapy. 

Univariate analysis of the CT perfusion biomarkers revealed that CTP average, base, 

blood flow, mean transit time and tmax were all significantly associated with survival at 

p<0.05.  

Receiver operating characteristic curve analysis of tmax and survival demonstrated an 

AUC of 66% indicating tmax has poor accuracy. A cut-value of  tmax < 4.79 is however 

significantly correlated with poor survival, (HR=2.43, 1.18–5.01 95%CI, p=0.016).  
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4.4.12 Can CT Perfusion Predict Histological Subtype? 
Univariate analysis of the CT perfusion biomarkers reveals statistically significant 

relationships between CTP4 average, base and IRF(t0) and histological subtype, with 

odds ratios of 1.02 (1.01–1.04 95% CI) p=0.014, 1.05 (1.02–1.08 95%CI) p=0.002, and 

1.23 (1.04–1.55 95%CI) p=0.038 respectively. These had an AUC on ROC analysis of 

62.4%, 65.5% and 57.0% respectively indicating they were poor predictors and are less 

than that for TBRlung (67.8%). 

A statistically significant multivariate model was found using CTP4 average and IRF(t0). 

However, this model only predicted SCC with an accuracy of 64.6% and an AUC of 59% 

on ROC analysis.  
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4.5 Discussion 
This study has shown that there is no simple correlation between any of the CT 

perfusion metrics and survival, and that although multivariate predictors for SUVmax 

and surgery can be created, accuracy is poor and none of these have been shown to 

provide significant additional prognostication power over that of staging or that of 18F-

FDG-derived measures. 

The failure of these techniques to provide a statistically significant predictor is 

disappointing and contradicts previous studies (97, 128, 130, 140, 200). This may relate 

to problems of our analysis and data-acquisition. The software used in this project, CT 

Perfusion 4D for lung lesions, is limited to a single arterial input; however, as discussed 

in the introductory chapter, lung lesions can have dual arterial supply from the 

bronchial and the pulmonary arteries (117, 118, 122, 200, 201). In lesions where such a 

dual-arterial supply was present, the biomarkers calculated using a single arterial input 

function derived from the aorta could be a poor estimate of the true CT perfusion 

biomarkers (119, 121, 148, 200). Several papers propose using the same dual-perfusion 

analysis software used for hepatic lesions with regions of interest placed on the 

pulmonary artery and on the aorta. This would allow for the bronchial and pulmonary 

arterial flow to be estimated and accounted for; however, it would also increase the 

number of biomarkers to be estimated leading to increased noise and increased effect 

from movement and other error inducing problems. The data from this study is also 

not suitable for this analysis as in many cases the pulmonary artery is not within the 

scanned volume. Other papers suggest alternative calculation methods, for example, 

slope-intercept analysis and simple enhancement differences (143, 202). However, it is 

worth noting that only six of the 11 biomarkers provided by CT Perfusion 4D are 

dependent on deconvolution using the arterial input function. The remaining 5 are 

slope and graph biomarkers and there is a high correlation between 3 of the 

deconvolution dependent biomarkers and the non-deconvolution dependent 

biomarkers. 
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Similarly the software used in this project does not perform breath or motion 

correction. Several previous authors have suggested that motion correction would be 

helpful; however, this functionality was not available to the authors of this study. 

Another potential issue is related to patient selection. The study population is a subset 

of the larger 18F-FDG-PET/CT population, and has the same biases inherent its patient 

population due to recruitment factors. The study population is heavily weighted 

toward those with lower disease stage and likely operable tumours, with a bias 

towards surgically fit patients as compared to the normal population of the lung cancer 

patients. These biases mean that the survival of our population of Stage II–IV patients 

is likely to be artificially long — especially for the larger tumours. It may also artificially 

increase the difference in survival between those treated with surgery versus those 

not, as non-surgical treatment may be reflecting worse non-tumoural prognostic 

factors, e.g. heart disease, fibrosis, and emphysema. Further, the lower stage means 

that the tumours are smaller, and thus more susceptible to partial volume effects, 

breath motion and other motion artefacts. 

Previous papers have suggested that CT perfusion biomarkers are important for 

survival in larger non-surgical tumours (121, 139–141, 203). When the study 

population is restricted to these patients, we do find that markers of increased 

angiogenesis are correlated with poorer survival. The inability to detect a similar effect 

across the whole of our cohort suggests that these features may only be helpful in 

larger tumours or may be quantifying a risk that can be determined qualitatively by 

expert reviewers.   



 

84 

4.6 Conclusion 
There is no definite clear correlation with CT perfusion biomarkers and survival, and 

there is no clear added benefit to CT perfusion over that 18F-FDG based staging and 

surgery. In subgroup analysis restricted to the higher stage patients treated with 

chemotherapy there are statistically significant correlations between survival and the 

CT perfusion biomarkers; however, caution should be taken when interpreting these as 

the numbers of patients in this group are small. Importantly we were unable to create 

a multivariate linear regression model model to predict SUVmax using parameters 

obtained from CT perfusion suggesting that CT perfusion cannot replace 18F-FDG 

PET/CT imaging.  
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4.7 Tables 

Gender 
Overall, 

N = 162 

Female, 

N = 67 

Male, 

 N = 95 
p-value1 

Age at Enrolment    >0.9 

N 162.0 67.0 95.0  

Median (IQR) 71.0 (63.0, 75.0) 69.0 (62.5, 77.0) 71.0 (63.0, 75.0)  

Range 44.0, 96.0 44.0, 88.0 49.0, 96.0  

Radiological Stage    0.7 

I 56 (35%) 23 (34%) 33 (35%)  

II 29 (18%) 11 (16%) 18 (19%)  

III 56 (35%) 26 (39%) 30 (32%)  

IV 21 (13%) 7 (10%) 14 (15%)  

Surgery 76 (47%) 30 (45%) 46 (48%) 0.6 

SUVmax    0.7 

Median (IQR) 11.8 (7.0, 16.6) 11.5 (7.0, 16.3) 12.0 (6.9, 16.9)  

Range 0.5, 40.0 0.5, 33.6 1.4, 40.0  

CTP4 average    0.2 

Median (IQR) 24.0 (8.4, 39.8) 27.3 (10.1, 39.9) 21.7 (8.1, 39.2)  

Range 0.0, 325.1 0.0, 62.0 0.0, 325.1  

CTP4 base    0.9 

Median (IQR) 16.4 (5.7, 27.4) 16.5 (5.4, 27.2) 16.0 (6.0, 27.3)  

Range 0.0, 94.1 0.0, 37.6 0.0, 94.1  

CTP4 time to peak    >0.9 

Median (IQR) 37.6 (29.4, 45.9) 37.6 (29.3, 44.2) 37.6 (29.4, 45.9)  

Range 2.9, 88.3 14.1, 69.1 2.9, 88.3  

CTP4 positive 
enhancement integral 

   0.8 

Median (IQR) 0.3 (0.2, 0.3) 0.3 (0.2, 0.3) 0.2 (0.2, 0.3)  

Range 0.0, 4.1 0.0, 0.8 0.0, 4.1  

CTP4 mean slope of 
increase 

   0.5 
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Gender 
Overall, 

N = 162 

Female, 

N = 67 

Male, 

 N = 95 
p-value1 

Median (IQR) 4.1 (2.8, 6.2) 4.2 (2.9, 6.5) 4.0 (2.8, 6.1)  

Range 0.9, 40.9 1.3, 20.5 0.9, 40.9  

CTP4 blood volume    >0.9 

Median (IQR) 6.6 (4.7, 8.9) 6.6 (4.9, 8.7) 6.8 (4.5, 9.2)  

Range 0.0, 146.3 0.5, 17.3 0.0, 146.3  

CTP4 blood flow    0.2 

Median (IQR) 74.8 (52.1, 128.3) 69.3 (52.0, 108.5) 80.8 (53.9, 146.3)  

Range 0.0, 818.8 5.1, 373.9 0.0, 818.8  

CTP4 mean transit time    0.057 

Median (IQR) 8.2 (5.3, 9.9) 8.9 (5.5, 11.1) 7.5 (5.3, 9.4)  

Range 0.0, 25.1 2.1, 23.8 0.0, 25.1  

CTP4 IRF(t0)    0.4 

Median (IQR) 0.6 (0.2, 1.1) 0.6 (0.2, 1.1) 0.5 (0.2, 1.0)  

Range 0.0, 16.2 0.0, 8.2 0.0, 16.2  

CTP4 tMax    0.081 

Median (IQR) 4.8 (3.2, 6.2) 5.3 (3.6, 6.6) 4.6 (3.1, 5.7)  

Range 0.0, 27.8 1.5, 12.0 0.0, 27.8  

CTP4 ps    0.2 

Median (IQR) 10.5 (6.8, 14.9) 10.9 (7.8, 14.9) 9.7 (5.8, 14.8)  

Range 0.0, 281.8 0.6, 55.1 0.0, 281.8  

1Wilcoxon rank sum test; Pearson's Chi-squared test 

Table 16: Patient demographics as compared to gender 
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Survival HR1 95% CI1 p-value 

Radiological Stage    

I — —  

II 3.55 1.92, 6.57 <0.001 

III 4.30 2.50, 7.39 <0.001 

IV 6.61 3.53, 12.4 <0.001 

1HR = Hazard Ratio, CI = Confidence Interval 

Table 17: Univariate Cox regression of survival versus radiological stage 

 

Multivariate Regression HR1 95% CI1 p-value 

Radiological Stage    

I — —  

II 3.24 1.74, 6.04 <0.001 

III 3.01 1.70, 5.33 <0.001 

IV 3.66 1.85, 7.23 <0.001 

Surgery    

No — —  

Yes 0.39 0.24, 0.63 <0.001 

1HR = Hazard Ratio, CI = Confidence Interval 

Table 18: Multivariate Cox regression of survival versus radiological stage and surgical 
status 

 



 

88 

Univariate Regressions HR1 95% CI1 p-value 

CTP4 average 1.00 1.00, 1.01 0.9 

CTP4 base 1.01 0.99, 1.02 0.3 

CTP4 time to peak 1.00 0.98, 1.01 0.7 

CTP4 positive enh. integral 0.65 0.35, 1.23 0.2 

CTP4 mean slope of increase 0.96 0.92, 1.01 0.081 

CTP4 blood volume 0.99 0.96, 1.01 0.3 

CTP4 blood flow 1.00 1.00, 1.00 0.5 

CTP4 mean transit time 0.99 0.95, 1.04 0.7 

CTP4 irf to 0.95 0.85, 1.06 0.4 

CTP4 tMax 0.97 0.91, 1.04 0.4 

CTP4 ps 0.99 0.98, 1.00 0.2 

1HR = Hazard Ratio, CI = Confidence Interval 

Table 19: Univariate regressions of survival against CT perfusion measurements 
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4.8 Figures 

 

Figure 5: ROC curve for survival against SUVmax > 11.52 
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Figure 6: Survival vs SUVmax > 11.52 faceted by surgery 
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Figure 7: Correlation between CT perfusion  biomarkers 
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5 Texture Analysis with TexRAD in Lung Cancer 

5.1 Abstract 

5.1.1 Purpose 
To examine the correspondence between CT and PET textural biomarkers and survival 

in NSCLC. 

5.1.2 Methods 
484 patients with suspected lung cancer were recruited in to the study. Only patients 

who had 18F-FDG-PET/CTs, were diagnosed with NSCLC lung cancer and where TexRAD 

extraction was possible were included. 

Histology and stage were noted, CT and PET textural features were extracted using 

TexRAD software. 

Kaplan-Meier and Cox proportional hazard survival analysis was performed. 

Adjustments for multiple comparisons were made, as per Benjamini and Hochberg as 

appropriate. Analysis was performed using R. 

5.1.3 Findings 

5.1.3.1 Patient Demographics 

Of the 484 patients in the study, 475 had 18F-FDG-PET/CTs. Of these, 293 were 

determined to have NSCLC and 133 were determined to be benign. 290 of these NSCLC 

patients had successful extraction of TexRAD features. 

Of these 290 NSCLC patients 161 were male and 129 were female. The median survival 

was 901 days (710–1082 days 95% CI). 

5.1.3.2 Individual TexRAD Biomarkers at Median Cut-Point Across the 
Whole Cohort  

Univariate analysis of the whole dataset reveals 29 biomarkers that when cut at the 

median point are statistically correlated with survival in univariate analysis at p<0.05 

when adjusted for multiple comparisons as per Benjamini and Hochberg. However, 
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none of these cut-points remain statistically significant when compared with surgery 

and staging. 

5.1.3.3 Individual TexRAD Biomarkers at Optimal Cut-point for Stage I 
Across the Whole Cohort 

Univariate analysis of the whole dataset reveals 34 biomarkers that when cut at the 

optimal cut-off point for stage I are statistically correlated with survival in univariate 

analysis at p<0.05 when adjusted for multiple comparisons, as per Benjamini and 

Hochberg. 11 of these remain statistically significant when combined with surgery and 

staging. 
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5.2 Introduction 
Although contrast-enhanced CT and 18F-FDG-PET/CT are established in the diagnosis, 

staging and thence prognostication of non-small cell lung cancer (NSCLC) there has 

been considerable interest in the application of imaging analysis techniques to further 

improve prognostication through the recognition of and quantification of features 

associated with adverse biological characteristics, or potentially directly associated 

with worsened prognosis. Intratumoural necrosis, haemorrhage and myxoid change are 

all known to cause low attenuation on CT and low 18F-FDG uptake, whereas hypoxia is 

known to be associated with high 18F-FDG uptake. 

Texture analysis methods may provide a mechanism for detecting tumours that contain 

such areas of low attenuation or altered uptake through the recognition and 

quantification of variations of intensity within pulmonary lesions. The biomarkers 

extracted would then be correlated with these already recognised biological risk factors 

and could hence provide an additional risk stratification method for the 

prognostication of NSCLC. 

There are multiple methods for texture analysis, however, in this chapter we will use 

TexRAD (Feedback Medical Ltd., https://fbkmed.com/texrad-landing-2/, 

London/Cambridge, UK), a proprietary clinical-research texture analysis software 

platform. Texture biomarkers derived from the filtration-histogram and statistical 

approach used in TexRAD have been shown to be correlated with survival, response 

and histology in a number of cancers and have been shown to correlate with 18F-FDG-

PET SUVmax and CT perfusion biomarkers (150, 161, 161, 161, 168–183). 

The aim of this study is therefore to assess if there is a statistically significant 

relationship between biomarkers derived from TexRAD and survival and histological 

subtype in NSCLC in the dataset.  
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5.3 Materials and Methods 

5.3.1 Patient Population 
TThe population of patients is as described in detail in Section 2.2 and Section 2.8. 

There were a total of 290 patients with non-small cell cancer (NSCLC) who had TexRAD 

analysis and 18F-FDG-PET/CT imaging. 

5.3.2 18F-FDG-PET/CT Imaging Protocol 
The imaging protocol is described in detail in Section 2.3. 

5.3.3 18F-FDG-PET/CT Image Analysis 
The 18F-FDG-PET/CT image analysis protocol is described in detail in Section 2.4. 

5.3.4 TexRAD Image Analysis 
The TexRAD analysis protocol is described in detail in Section 2.4. 

5.3.5 Statistics and Data Analysis 
Statistical and data analysis is described in detail in Section 2.13.  
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5.4 Findings 

5.4.1 Individual TexRAD Biomarkers at Median Cut-Point Across the 
Whole Cohort 
Univariate analysis of the whole dataset reveals 29 biomarkers that, when cut at the 

median point are significant correlated with survival in univariate analysis with p<0.05 

when adjusted for multiple comparisons as per Benjamini and Hochberg. (See Table 

20.) However, none of these cut-points remain statistically significant when combined 

with Surgery and Staging in multivariate analysis. 

5.4.2 Individual TexRAD Biomarkers at Optimal Cut-Point for Stage I 
Across the Whole Cohort 
When looking at our patient cohort, we note that the largest subgroup of patients are 

Stage I patients. We therefore performed a maximal logrank survival test against each 

of the biomarkers for the Stage I patients. We then performed univariate analysis of 

the whole dataset for these biomarkers at this optimal cut-point.  

This univariate analysis of the whole dataset reveals 34 biomarkers which are 

statistically correlated with survival at p<0.05 when adjusted for multiple comparisons 

as per Benjamini and Hochberg. (See Table 21.) We then performed multivariate 

survival analysis against surgery and survival for these biomarkers revealing eight of 

these remain statistically significant when combined with surgery and staging, with a 

decrease in the Akaike Information Criterion (AIC) of more than two. (See Table 22.) 

5.4.3 Training and Testing Cohort Analysis 
Following random sampling the patient cohort was divided into two approximately 

equal groups. (145 training and 147 testing). 

Out of 145 patients in the training cohort, 103 died, with a median survival of 888 days 

(621–1102 days 95% CI). Statistical analysis reveals that CT entropy and CT kurtosis at 

various spatial scale filters are significant predictors of overall survival. In particular, at 

the fine texture scale (SSF=2mm), median cut-offs (derived from the whole population) 

for CT entropy (entropy_ct_ssf_2 ≥ 5.19) and kurtosis (kurtosis_ct_ssf_2 ≥ 0.42) and at 

the medium texture scale (SSF=3mm), median cut-off for kurtosis (kurtosis_ct_ssf_3 ≥ 
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0.42) identified patients with poor prognosis (p = 0.008, 0.011 and 0.011 respectively). 

A high CT kurtosis value without filtration (SSF=0) also identified patients with poor 

prognosis (kurtosis_ct_ssf_0 ≥ 0.12, p=0.008) as did high 18F-FDG-PET entropy without 

filtration (entropy_pet_ssf_0 ≥ 4.55, p=0.001). 

The testing cohort consisted of 147 patients, 104 of whom died, with a median survival 

of 901 days (656–1474 days 95% CI). Of the above significant markers in the training 

cohort, only CT entropy at fine texture scale (entropy_ct_ssf_2 ≥ 5.19, HR 2.5, 1.7–3.7 

95% CI, p<0.001, 

Figure 8), CT kurtosis at medium texture scale (kurtosis_ct_ssf_3 ≥ 0.42, HR 2.0, 1.3–3.0 

95% CI, p=0.002, Figure 9) and 18F-FDG-PET entropy without filtration 

(entropy_pet_ssf_0 ≥ 4.55, HR 2.1, 1.4–3.2 95% CI, p<0.001, 
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Figure 10) remained significant.  

A multivariate Cox regression model comprising of the above three significant and 

validated markers along with their interactions demonstrated that CT entropy at fine 

texture (entropy_ct_ssf_2 ≥ 5.19) is the only independent predictor of survival 

(p<0.001). This is significant in combination with Stage but it does not remain 

significant in combination with surgery and staging. 

5.4.4 Correlation Between TexRAD  Biomarkers 
A simple correlation plot reveals that there is considerable correlation between the 

entropy biomarkers at all SSF levels and there is some correlation between 18F-FDG PET 

and CT image derived entropy. Mean and standard deviation biomarkers are well 

correlated and this is likely to represent the effect of intensity magnitude on standard 

deviation. Within the 18F-FDG PET derived biomarkers, there is good to excellent 

correlation between kurtosis and skewness across SSF levels. (See 
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Figure 4.) 
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5.5 Discussion 
This study has shown that multiple CT and PET textural features are statistically 

significantly related to survival, and in particular CT entropy at fine texture (SSF=2mm) 

is statistically significantly related to survival when combined with surgery and staging, 

and remains statistically significant when the whole treatment group is split into 

training and validation sets.  

Entropy is a measure of tumour heterogeneity which is a recognized feature of 

malignancy. Malignant tumours contain areas of necrosis, high cell density, 

haemorrhage, scarring and myxoid change (62, 204, 205). It is not hard to see that 

these areas will have differing tissue densities and thus CT attenuation, and similarly, 

differing 18F-FDG uptake. Thus this biological heterogeneity can be reflected in imaging 

as image heterogeneity and image texture. However, it should be recognised that 

normal tissues also display a degree of heterogeneity, and thus the relationships 

between heterogeneity, diagnosis and survival can be complex. A potential method to 

help differentiate between abnormal and pathological heterogeneity, versus the 

normal heterogeneity that would be expected, is through recognition that the scales 

on which normal and abnormal heterogeneity are apparent can differ. TexRAD uses 

image filtration with Laplacian of Gaussian filters which highlight textural features at 

different scales and we have found that the filtration fine and medium textural features 

most strongly correlate with survival. However, our study has also shown that CT 

entropy is relatively strongly correlated with itself at different texture scales. 

Many biomarkers derived from texture analysis provide some measurement of 

heterogeneity: entropy is a intensity magnitude independent measure of heterogeneity 

and is related to the average uncertainty in the intensity across the ROI. CT entropy 

appears to be poorly correlated with standard deviation (a different measure of 

heterogeneity) and most mean biomarkers — but there is a weak correlation between 

these biomarkers and unfiltered mean. This correlation may reflect the way that whilst 

the Laplacian of Gaussian filter highlights features at some frequencies, it blurs 

features at others. This blurring involves pushing the intensity closer to the mean 

intensity for those non-highlighted frequencies. 
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The finding that entropy_ct_ssf_2 > 4.81 remains statistically significant in a combined 

model with staging and surgical status across the whole dataset suggests that TexRAD 

can be used to provide additional stratification over that of staging and surgical status 

alone. The technique for ROI selection used in the study is quick and simple, many 

other studies have relied on segmenting the whole tumour often using a separate 

diagnostic CT. In this study, the ROI was chosen from a single slice at the level of the 

SUVmax. This was further coupled with CT thresholding, allowing one to draw more 

generous borders around tumours centred within the lung but still resulting in the 

same ROI. These techniques makes ROI segmentation quicker, more repeatable and 

easier.  

A limitation of our study is the relative small number of patients and the biases 

inherent its patient population due to recruitment factors. The study population is 

heavily weighted toward those with lower disease stage and likely operable tumours, 

with a bias towards surgically fit patients as compared to the normal population of 

patients with lung cancer. These biases mean that the survival of our population of 

Stage II–IV patients is likely to be artificially large — especially for the larger tumours. It 

may also artificially increase the difference in survival between those treated with 

surgery versus those not, as non-surgical treatment may be reflecting worse non-

tumoural prognostic factors, e.g. heart disease, fibrosis, and emphysema. Further, the 

lower stage means that the tumours are smaller, and thus more susceptible to partial 

volume effects, breath motion and other motion artefacts. The small number of 

patients means that we cannot check if the proposed cut off remains statistically 

significant when combined to full staging (i.e. Stage Ia, Ib, Ic, IIa etc. vs Stage I, II, III and 

IV). Similarly, the biases within the dataset mean that there are likely other significant 

markers that have been hidden by the significant survival benefit from the surgery. 

These factors mean that the discovery that entropy_ct_ssf_2 > 4.81 is still a significant 

predictor of worse survival even in combination with surgery and staging is more 

significant.   
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5.6 Conclusion 
Multiple CT and PET textural features are statistically significantly related to survival 

and in particular CT entropy at fine texture (SSF=2mm) is statistically significantly 

related to survival when combined with surgery and staging, and remains statistically 

significant when the whole treatment group is split into training and validation sets.  
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5.7 Tables 

Characteristic HR (CI)1 p-value 
adjusted 
p-value 

entropy_pet_ssf_2 ≤ 4.55 0.51 (0.38 to 0.67) <0.001 <0.001 

entropy_pet_ssf_4 ≤ 4.555 0.50 (0.38 to 0.66) <0.001 <0.001 

entropy_pet_ssf_6 ≤ 4.55 0.51 (0.38 to 0.67) <0.001 <0.001 

entropy_pet_ssf_0 ≤ 4.555 0.50 (0.38 to 0.66) <0.001 <0.001 

entropy_pet_ssf_3 ≤ 4.55 0.50 (0.38 to 0.66) <0.001 <0.001 

entropy_pet_ssf_5 ≤ 4.56 0.51 (0.38 to 0.67) <0.001 <0.001 

entropy_ct_ssf_2 ≤ 5.195 0.51 (0.39 to 0.68) <0.001 <0.001 

entropy_ct_ssf_5 ≤ 4.92 0.57 (0.43 to 0.75) <0.001 <0.001 

kurtosis_ct_ssf_3 ≤ 0.43 0.57 (0.43 to 0.75) <0.001 <0.001 

entropy_ct_ssf_6 ≤ 4.88 0.57 (0.43 to 0.76) <0.001 <0.001 

entropy_ct_ssf_3 ≤ 5.055 0.58 (0.44 to 0.76) <0.001 <0.001 

entropy_ct_ssf_0 ≤ 4.52 0.59 (0.45 to 0.78) <0.001 0.001 

kurtosis_ct_ssf_5 ≤ -0.135 0.62 (0.47 to 0.82) <0.001 0.004 

entropy_ct_ssf_4 ≤ 4.99 0.62 (0.47 to 0.82) <0.001 0.004 

kurtosis_ct_ssf_6 ≤ -0.3 0.63 (0.48 to 0.83) 0.001 0.005 

mean_ct_ssf_0 ≤ 18.13 0.64 (0.48 to 0.84) 0.001 0.005 

kurtosis_ct_ssf_4 ≤ 0.065 0.64 (0.48 to 0.84) 0.001 0.005 

kurtosis_ct_ssf_0 ≤ 0.12 0.65 (0.49 to 0.85) 0.002 0.007 

sd_pet_ssf_0 ≤ 7378.315 0.65 (0.49 to 0.85) 0.002 0.007 

skewness_pet_ssf_5 ≤ 1.58 1.52 (1.15 to 2.01) 0.003 0.010 

kurtosis_ct_ssf_2 ≤ 0.435 0.67 (0.51 to 0.88) 0.004 0.014 

mean_pet_ssf_6 ≤ 875.095 1.49 (1.13 to 1.96) 0.005 0.016 

kurtosis_pet_ssf_0 ≤ 0.715 1.46 (1.11 to 1.93) 0.007 0.021 

skewness_pet_ssf_6 ≤ 1.535 1.45 (1.10 to 1.91) 0.008 0.025 

mean_ct_ssf_4 ≤ 1.89 1.44 (1.09 to 1.89) 0.010 0.029 

skewness_pet_ssf_4 ≤ 1.66 1.42 (1.08 to 1.88) 0.012 0.033 

mean_pet_ssf_5 ≤ 488.73 1.39 (1.06 to 1.84) 0.019 0.049 

skewness_pet_ssf_2 ≤ 1.635 1.39 (1.05 to 1.82) 0.020 0.050 
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skewness_pet_ssf_3 ≤ 1.68 1.39 (1.05 to 1.83) 0.019 0.050 

1HR = Hazard Ratio, CI = Confidence Interval    

Table 20: TexRAD biomarkers in univariate analysis against survival with median cut-off 
with p<0.05 as adjusted by Benjamini and Hochberg 
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Characteristic HR (CI)1 p-value 
adjusted 
p-value 

entropy_ct_ssf_2 ≤ 4.81 0.37 (0.26 to 0.53) <0.001 <0.001 

entropy_ct_ssf_3 ≤ 4.86 0.41 (0.29 to 0.56) <0.001 <0.001 

entropy_pet_ssf_2 ≤ 4.16 0.42 (0.30 to 0.58) <0.001 <0.001 

entropy_pet_ssf_4 ≤ 4.16 0.42 (0.30 to 0.58) <0.001 <0.001 

entropy_pet_ssf_6 ≤ 4.16 0.42 (0.30 to 0.58) <0.001 <0.001 

entropy_pet_ssf_0 ≤ 4.16 0.42 (0.30 to 0.58) <0.001 <0.001 

entropy_pet_ssf_3 ≤ 4.16 0.42 (0.30 to 0.58) <0.001 <0.001 

entropy_pet_ssf_5 ≤ 4.16 0.42 (0.30 to 0.58) <0.001 <0.001 

entropy_ct_ssf_4 ≤ 4.78 0.43 (0.31 to 0.59) <0.001 <0.001 

entropy_ct_ssf_0 ≤ 4.36 0.43 (0.31 to 0.60) <0.001 <0.001 

entropy_ct_ssf_6 ≤ 4.69 0.46 (0.34 to 0.62) <0.001 <0.001 

entropy_ct_ssf_5 ≤ 4.76 0.49 (0.36 to 0.67) <0.001 <0.001 

kurtosis_ct_ssf_2 ≤ 0.88 0.57 (0.43 to 0.76) <0.001 <0.001 

kurtosis_ct_ssf_3 ≤ 0.07 0.58 (0.44 to 0.78) <0.001 <0.001 

sd_pet_ssf_0 ≤ 2565.16 0.25 (0.09 to 0.66) <0.001 0.002 

mean_ct_ssf_0 ≤ 17.9 0.61 (0.46 to 0.81) <0.001 0.002 

skewness_pet_ssf_0 ≤ 2 2.05 (1.29 to 3.25) <0.001 0.003 

kurtosis_ct_ssf_0 ≤ -0.98 0.30 (0.12 to 0.72) 0.001 0.004 

mpp_ct_ssf_2 ≤ 65.86 1.91 (1.25 to 2.93) 0.001 0.005 

mean_ct_ssf_2 ≤ 9.7 2.97 (1.32 to 6.71) 0.002 0.006 

mean_ct_ssf_3 ≤ 10.71 2.29 (1.24 to 4.20) 0.003 0.009 

sd_pet_ssf_6 ≤ 7538.82 0.36 (0.16 to 0.82) 0.004 0.012 

mpp_pet_ssf_5 ≤ 5947.88 0.37 (0.16 to 0.84) 0.005 0.016 

mean_pet_ssf_4 ≤ 335.13 1.48 (1.11 to 1.98) 0.007 0.019 

sd_pet_ssf_4 ≤ 6124.9 0.46 (0.24 to 0.87) 0.007 0.019 

sd_pet_ssf_5 ≤ 7157.2 0.40 (0.19 to 0.86) 0.007 0.019 

mpp_pet_ssf_6 ≤ 7096.73 0.42 (0.21 to 0.86) 0.007 0.019 
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Characteristic HR (CI)1 p-value 
adjusted 
p-value 

sd_ct_ssf_2 ≤ 88.19 1.93 (1.12 to 3.33) 0.009 0.023 

mean_pet_ssf_0 ≤ 6871.69 0.57 (0.36 to 0.90) 0.009 0.023 

mpp_pet_ssf_0 ≤ 6871.69 0.57 (0.36 to 0.90) 0.009 0.023 

mpp_ct_ssf_3 ≤ 34.58 1.45 (1.09 to 1.93) 0.014 0.032 

mean_pet_ssf_6 ≤ 1259.75 1.46 (1.06 to 1.99) 0.016 0.036 

mean_pet_ssf_3 ≤ 168.1 1.41 (1.06 to 1.88) 0.018 0.039 

mean_pet_ssf_5 ≤ 368.53 1.40 (1.06 to 1.85) 0.018 0.039 

1HR = Hazard Ratio, CI = Confidence Interval 

Table 21: TexRAD biomarkers in univariate analysis against survival with optimal cut-off 
in radiological stage I with p<0.05 as adjusted by Benjamini and Hochberg 

 

Characteristic 
Coefficient 

HR (CI)1 
Coefficient 

p-value 
AIC2 ΔAIC3 

entropy_ct_ssf_2 ≤ 4.81 0.60 (0.40 to 0.91) 0.016 1,914.59 -4.09 

kurtosis_ct_ssf_2 ≤ 0.88 0.71 (0.53 to 0.95) 0.022 1,915.55 -3.13 

entropy_pet_ssf_2 ≤ 4.16 0.67 (0.46 to 0.97) 0.032 1,915.89 -2.79 

entropy_pet_ssf_4 ≤ 4.16 0.67 (0.46 to 0.97) 0.032 1,915.89 -2.79 

entropy_pet_ssf_6 ≤ 4.16 0.67 (0.46 to 0.97) 0.032 1,915.89 -2.79 

entropy_pet_ssf_0 ≤ 4.16 0.67 (0.46 to 0.97) 0.032 1,915.89 -2.79 

entropy_pet_ssf_3 ≤ 4.16 0.67 (0.46 to 0.97) 0.032 1,915.89 -2.79 

entropy_pet_ssf_5 ≤ 4.16 0.67 (0.46 to 0.97) 0.032 1,915.89 -2.79 

1HR = Hazard Ratio, CI = Confidence Interval for the coefficient of the characteristic in the multivariate model 
2AIC = Akaike Information Criterion for the multivariate model 
2ΔAIC = The difference in the Akaike Information Criterion for the multivariate model as compared to the 
multivariate model consisting of Surgical status and Stage which has an AIC of 1918.68 

Table 22: Statistically significant multivariate models versus survival with cut-offs as 
above 
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Variables in the Equation 
(final-step) 

HR CI p-value 

entropy_ct_ssf_2 ≥ 5.19 2.5 1.7 to 3.7 < 0.001 

    

Variables not in the Equation 
(final-step) 

Score df p-value 

kurtosis_ct_ssf_3 ≥ 0.42 2.900 1 0.089 

entropy_pet_ssf_0 ≥ 4.55 2.976 1 0.085 

entropy_ct_ssf_2 ≥ 5.19 * kurtosis_ct_ssf_3 ≥ 0.42 0.002 1 0.964 

entropy_ct_ssf_2 ≥ 5.19 * entropy_pet_ssf_0 ≥ 4.55 1.634 1 0.201 

entropy_pet_ssf_0 ≥ 4.55 * kurtosis_ct_ssf_3 ≥ 0.42 0.480 1 0.488 

Table 23: Multivariate step-wise (Forward-Wald) Cox regression analysis comprising of 
significant and validated CTTA (entropy at fine-texture and kurtosis at medium-texture) 
and PETTA (entropy without filtration) along with their interaction. HR = hazard ratio, 
df - degrees of freedom, * - interaction between the two variables 
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5.8 Figures 



 

109 
 

Figure 8: Survival analysis for entropy_ct_ssf_2 in training, p=0.008 & validation, p=<0.001 cohorts 

Figure 9: Survival analysis for kurtosis_ct_ssf_3 in training, p=0.012 & validation, p=0.002 cohorts 
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Figure 10: Survival analysis for entropy_pet_ssf_0 in training, p=0.001 & validation, p<0.001 cohorts 
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Figure 11: Correlation of Texrad derived  biomarkersbiomarkers 
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6 Correlation Between Immunohistochemistry and 
Mutation and Imaging Biomarkers 

6.1 Abstract 

6.1.1 Purpose 
To examine the association between imaging biomarker biomarkers and 

immunohistochemistry and mutation analysis in NSCLC. 

6.1.2 Methods 
484 patients with suspected lung cancer were recruited to the study. In this part of the 

investigation, we only selected patients with NSCLC who underwent surgery and had 

tissue data for analysis. 

Histology and Stage were noted and 18F-FDG-PET/CT, textural analysis and CT perfusion 

biomarkers were analysed. 

Kaplan-Meier and Cox proportional hazard survival analysis was performed. Univariate 

and multivariate analysis was performed using R and SPSS. 

6.1.3 Results 
Of the 484 patients, immunohistochemistry results were available for 147 patients and 

genomic analysis was available for 96 patients. 

The most significant result was moderate correlation between the SUV biomarkers and 

GLUT1 (e.g. SUVmax r=0.441, p<0.001). There was a significant weak correlation 

between SUV biomarkers (e.g. SUVpeak r=0.318, p=0.026), some textural biomarkers 

(e.g. kurtosis_ct_ssf_3 r=0.356, p=0.012) and CD105.  

A significant moderate correlation was demonstrated between Inflammation and CTP4 

mean slope of increase (r=-0.442, p=0.021) with a few other weaker correlations with 

textural biomarkers. HIF-1α demonstrated significant weak correlations between CTP4 

time-to-peak (r=-0.312, p=0.023) and entropy_pet_ssf_3 (r=0.344, p=0.015) amongst 

others. PIK3CA mutation similarly demonstrated significant weak correlations between 

CTP4 average (r=-0.358, p=0.008) and kurtosis_ct_ssf_4 (r=-0.263, p=0.010). 
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Multivariate analysis showed that entropy_ct_ssf_2 coupled with SUV biomarkers 

stratifies survival when there are mutations present. 

6.1.4 Conclusion 
The findings suggest that there are complex relationships between the imaging 

biomarkers and the pathological markers, however, they are interesting and suggest 

targetted studies with a larger population may be successful in demonstrating 

multivariate predictors. 

  



 

114 

6.2 Introduction 
Lung cancers are classified histopathologically by cellular and molecular subtypes using 

the 2021 World Health Organization (WHO) classification system (15). The three main 

subtypes of non-small cell lung cancer are: adenocarcinoma (40%), squamous-cell 

carcinoma (25%) and large cell carcinoma (10%). Subtypes are determined using 

cytology and immunohistochemistry staining, with immunohistochemistry staining 

playing a pivotal role in most classifications (9, 15). 

Immunohistochemical staining, however, is not limited to subtype classification, as 

assays can be used to detect pharmaceutical targetable mutations or evaluate the 

cellular localisation and the context of tumour structures. These assays can then inform 

prognosis and treatment. Nevertheless, not all mutations can be detected reliably 

through staining, and molecular testing with mutation analysis sequencing may be 

required. 

The most common mutations in non-small cell lung cancer have been shown to be 

EGFR, KRAS and FGFR1 however expression of mutations differs by subtype (206–208). 

Whilst not all mutations have targeted therapy, several mutations do have and 

therefore guidelines exist for the molecular testing of lung cancers (207, 208). These 

guidelines suggest a molecular testing approach that is supported by studies in to 

tyrosine-kinase inhibitor effectiveness and immunomodulator effectiveness. This of 

course means that mutations which are associated with poor prognosis but do not 

have effective targetted treatments are not recommended by this guideline and as a 

result these guidelines make no recommendation for mutation analysis of squamous 

cell carcinomas. It also means that mutations are not analysed when the treatments 

have not shown to be effective. 

The lack of a current effective treatment does not imply that there will never be an 

effective treatment. Nor does it imply that treatments could not be effective in subsets 

of patients, or become effective if other treatments change. Thus highly targeted 

guidelines to only test for markers with effective treatments may prevent recognition 

of subsets of patients in whom treatments would be or could be effective. Meanwhile, 
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these tests are expensive and require acquisition of tissues, most often from biopsies, 

and if they do not provide benefit for the patients themselves it is questionable if they 

should be performed. 

Mutation analysis and immunohistochemical staining can only be performed on a small 

sample of the tumour, either from a biopsy or from whole resected sample. Tumour 

heterogeneity raises questions about the generalisability of the results from these 

samples (209–211), and it should also be noted that there is a risk of biopsy tract 

metastasis (212). 

In the midst of this diagnostic dilemma, it is reasonable to ask if there would be a way 

in which mutations could be detected without the need for biopsy and expensive 

immunohistochemical marking and mutation analysis.  

Further, if these mutations are associated with prognosis, it would be reasonable to 

investigate whether they cause structural changes that could be assessed on imaging: 

indeed, such changes may perhaps be expected. If there exists a characteristic 

signature that would suggest specific mutations or collections of mutations, that would 

allow one to target additional mutation analysis to these patients. In fact, several 

studies have suggested that relationships like this do appear; however, repeatability of 

these studies appears poor (211, 213–216). 

In this chapter, the following immunohistochemical biomarkers were assessed: 

Inflammation, CA-IX (hypoxia), CD105 (vasculature), GLUT1 (glucose 

metabolism/hypoxia), HIF-1α (hypoxia), MCM2 (genetic stability), and VEGF 

(vasculature). The following tumour promoting oncogenes were also assessed: BRAF, 

EGFR, HER2, KRAS, and PI3KCA. 

6.2.1 Inflammation 
A tumour’s micro-environment plays an important role in tumour growth, invasion and 

metastasis. In particular, a close relationship has been shown between inflammation 

and lung cancer, and some reports suggest intervention in the inflammatory micro-

environment can reduce the development of lung cancer (217–219). 
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6.2.2 CA-IX 
Carbonic anhydrase IX (CA-IX) is a surface-expressed enzyme upregulated by hypoxia 

during tumour development and progression. The enzyme catalyses the hydration of 

cell-generated carbon dioxide into hydrogen and bicarbonate ions. This helps tumour 

cells to survive hypoxia (220). 

6.2.3 CD105 
CD105, also known as endoglin, is a cell-surface glycoprotein, involved in the 

development of blood vessels and represents a specific neovascularization marker 

indicating proliferation of human endothelial cells. It is a receptor for transforming 

growth factor TGF-β1 and TGF-β3, modulating TGF-β signalling by interacting with TGF-

βR-I and/or -II (187, 221–223). 

6.2.4 GLUT1 
Although there are multiple types of transmembrane glucose transporters, the type-1 

transporter (GLUT1) is the main glucose transporter implicated in lung cancer. Its 

overexpression has been associated with poor prognosis and is thought to help 

promote glycolysis, especially that associated with the Warburg effect, thence promote 

tumourigenesis and progression (224). 

6.2.5 HIF-1α 
Hypoxia-inducible factor (HIF)-1 is a transcription factor consisting of two subunits: α 

and β. The HIF-1α subunit is rapidly degraded in the presence of Oxygen and thus acts 

as the regulatory subunit. HIF-1 causes the transcription of a number of genes 

including Erythropoietin, CA-IX and GLUT-1. HIF-1α has been found to be widely 

expressed in solid tumours and associated with both improved and worsened 

prognosis (225–227). 

6.2.6 MCM2 
MCM2 is a member of the minichromosome maintenance protein family. These 

proteins are essential components for DNA replication regulating transcription, 

chromatin remodelling and checkpoint responses. Various studies have shown that 

MCM proteins can act as markers of dysplasia and malignancy, and be prognostic 
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markers. In particular increased MCM2 expression has previously been shown to be 

associated with an increased risk of death in lung cancer (228–230). 

6.2.7 VEGF 
Vascular Endothelial Growth Factor (VEGF) plays a central role in angiogenesis and 

promotes endothelial cell proliferation, migration and invasion. Additionally, it 

increases vascular permeability and extravasation, and some evidence suggests that it 

can directly induce tumour cell growth and metastasis alongside that of the 

angiogenesis effect (231, 232). Overexpression and high serum levels of VEGF have 

been reported in lung cancer and are associated with poor prognosis. However, 

although drugs targeting VEGF and its receptors have been approved, these have only 

shown modest improvements in survival (232). 

6.2.8 BRAF 
The BRAF (B-Rapidly Accelerated Fibrosarcoma) gene is on chromosome 7 and encodes 

for the B-Raf (B-Rapidly Accelerated Fibrosarcoma) protein. The B-Raf protein is a 

member of the Raf (Rapidly Accelerated Fibrosarcoma) kinase family of growth signal 

transduction protein kinases and plays a role in regulating the MAPK/ERKs (Mitogen-

activated Protein Kinase/Extracellular signal-related Protein Kinase) signalling pathway. 

Thus, it regulates cell division, differentiation and secretion. Mutations in this gene can 

lead to permanent activation or upregulated activation of the protein and hence 

unregulated cell growth and division. Mutations in BRAF have been widely observed 

across multiple cancers but has been seen in up to 3% of lung cancer (14, 210, 233). 

6.2.9 EGFR 
The EGFR gene is also on chromosome 7 and encodes for the epidermal growth factor 

receptor (EGFR) protein. This protein is a transmembrane protein acting as a receptor 

tyrosine-kinase for members of the epidermal growth factor family of ligands. When 

activated, EGFR causes activation of a number of signalling cascades including the 

MAPK/ERKs pathway and the PI3K/AKT (Phosphatidylinositol 3-Kinase/Ak strain 

transforming also known as Protein kinase B) pathway. Mutations within the gene can 

lead to permanent activation of the receptor and hence unregulated growth driven by 
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multiple cascades. In lung cancer, patients with EGFR mutations may benefit from 

treatment with EGFR antagonists such as erlotinib or gefitinib (14, 207, 208). 

6.2.10 HER2 
The HER2 (Human Epidermal Growth Factor Receptor 2) gene on chromosome 17 

similarly encodes for a transmembrane receptor tyrosine-kinase, this receptor binds 

epidermal growth factor ligands and activates a number signalling cascades. Mutations 

within the gene can similarly lead to permanent activation of the receptor and 

upregulation of the downstream signalling pathways. Although HER2 mutations are 

most commonly associated with breast cancer and treatments have been approved 

there, HER2 mutations has been reported in up to 4% lung cancer cases (210, 233). 

6.2.11 KRAS 
The KRAS (Kirsten Rat Sarcoma Virus) gene encodes for the K-Ras (Kirsten Rat 

Sarcoma Virus) protein, which is a part of the RAS/MAPK (Rat Sarcoma Virus 

protein/Mitogen-activated protein kinase) signalling pathway. Mutations within the 

gene can lead to permanent activation of the protein and hence unregulated growth 

driven by this pathway. In lung cancer, mutations in KRAS and EGFR are generally 

mutually exclusive and so a mutation in KRAS predicts poor response to EGFR 

antagonists such as erlotinib or gefitinib (14, 208, 233). 

6.2.12 PI3KCA 
The PIK3CA (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

alpha) gene on chromosome 3 encodes for a catalytic subunit of the 

Phosphatidylinositol 3-kinase (PI3K) protein. A mutation in PIK3CA that causes 

permanent or increased activation of the catalytic protein will lead to upregulated and 

unregulated signalling on the PI3K/Akt pathway, leading to increased cellular 

proliferation and survival. Mutations in this gene have been found in around 4% of lung 

cancer cases, and can co-occur with mutations in EGFR and KRAS amongst others (15, 

206–208, 210, 216). 

The aim of this study is therefore to assess if there are statistically significant 

relationships, and the strength of these relationships, between imaging biomarkers and 
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selected immunohistochemical markers and mutations in NSCLC in the dataset. 

Multivariate survival analysis was performed with mutation status and imaging 

biomarkers to suggest prognostic associations with tissue biomarkers. 
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6.3 Materials and Methods 

6.3.1 Patient Population 
The population of patients is as described in detail in Section 2.2 and Section 2.10.  

6.3.2 18F-FDG-PET/CT Imaging Protocol 
The 18F-FDG-PET/CT imaging protocol is described in detail in Section 2.3. 

6.3.3 18F-FDG-PET/CT Image Analysis 
The 18F-FDG-PET/CT image analysis protocol is described in detail in Section 2.4. 

6.3.4 Textural Analysis 
The TexRAD image analysis protocol is described in detail in Section 2.9. 

6.3.5 CT Perfusion Imaging Protocol 
The CT perfusion imaging protocol is described in detail in Section 2.6. 

6.3.6 CT Perfusion Image Analysis 
The CT perfusion image analysis protocol is described in detail in Section 2.7. 

6.3.7 Immunohistochemistry 
The immunohistochemistry protocol is described in detail in Section 2.11. 

6.3.8 Mutation Analysis 
The mutation analysis protocol is described in detail in Section 2.12. 

6.3.9 Statistical Analysis 
Statistical and data analysis is described in detail in Section 2.13.  
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6.4 Results 

6.4.1 Patient Demographics 
Of the 484 patients, 475 patients had 18F-FDG-PET/CT imaging and a total of 293 

patients were determined to have NSCLC, (133 were determined to benign.) 

Of these 293 patients 147 went on to have surgery and 96 of these patients went on to 

have successful mutation analysis performed. 54 of these patients were male and 42 

were female. The median age at enrolment was 68 years (interquartile range 61–74 

years). 58 (60%) of these patients were Stage I, 16 (17%) Stage II, 19 (20%) Stage III and 

3 (3.1%) Stage IV.  

SUVmax, SUVpeak, and TBRlung were all statistically significantly different between male 

and female patients which may relate to the statistically significant higher rates of 

Squamous-cell carcinoma (SCC) within the male group. (21 male patients (39%) versus 

8 female patients (19%), p=0.036). (See Table 24.) 

6.4.2 Inflammation 
Of the 90 biomarkers looked at, four were statistically significantly correlated with 

Inflammation at p<0.05 with 2 at p<0.01. CTP4 mean slope of increase was negatively 

correlated with Inflammation (r=-0.442, p=0.021) and sd_ct_ssf_0 was statistically 

correlated with Inflammation (r=0.361, p=0.007). (See Table 25, Figure 12 and 13.) 

6.4.3 CA-IX 
There were 4 biomarkers that were statistically significantly correlated with CA-IX 

expression at p<0.05. The most significant result was a negative correlation with CTP4 

PS (r=-0.350, p=0.01). (See Table 26, Figure 12 and 13.) 

6.4.4 CD105 
There were 12 biomarkers that were statistically significantly correlated with CD105 

expression at p<0.05. kurtosis_ct_ssf_3 was the most significant correlation (r=0.356, 

p=0.012). (See Table 27, Figure 12 and 13.) 
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6.4.5 GLUT1 
Thirty biomarkers were statistically significantly correlated with GLUT1 expression at 

p<0.05 with 15 of these at p<0.001. (See Table 29, Figure 12 and 13.) All of the SUV 

measures and TBRlung demonstrated moderate (0.400 ≤ r < 0.600) positive correlations 

with GLUT1 expression and there were weak (0.200 ≤ r < 0.400) positive correlations 

with the textural entropy measures. 

6.4.6 HIF-1α 
Nine biomarkers were statistically significantly correlated with HIF-1α expression at 

p<0.05. (See Table 28, Figure 12 and 13.) Of these, the most significant was a negative 

correlation with CTP4 time to peak (r=-0.312, p=0.023). 

6.4.7 MCM2 
Twelve biomarkers were statistically significantly correlated with MCM2 expression at 

p<0.05 with five at p<0.001. (See Table 30, Figure 12 and 13.) Of these, the most 

significant was a moderate correlation with SUVmin (r=0.403, p<0.0.1) but there were 

significant correlations with the other SUV biomarkers. 

6.4.8 VEGF 
There were no statistically significant correlations with VEGF expression. 

6.4.9 BRAF 
Ten biomarkers were statistically significant correlated with BRAF mutations at 

p<0.05.(See Table 31, Figure 12 and 13.) There were negative correlations with textural 

entropy scores: the most significant was entropy_ct_ssf_2 (r=-0.220, p=0.032). 

6.4.10 EGFR 
Twenty biomarkers were statistically significant correlated with EGFR mutations at 

p<0.05.(See Table 32, Figure 12 and 13.) The were most significant were negative 

correlations with textural kurtosis_ct_ssf_2 (r=-0.293, p=0.004), kurtosis_pet_ssf_5 (r=-

0.293, p=0.004) and kurtosis_pet_ssf_6 (r=-0.289, p=0.004). 
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6.4.11 HER2 
Three biomarkers were statistically significant correlated with HER2 mutations at 

p<0.05. (See Table 33, Figure 12 and 13.) There were negative correlations with textural 

skewness_ct_ssf_4 (r=-0.216, p=0.034), skewness_ct_ssf_3 (r=-0.256, p=0.012) and 

skewness_pet_ssf_0 (r=-0.209, p=0.041). 

6.4.12 KRAS 
Four biomarkers were statistically significant correlated with KRAS mutations at 

p<0.05.(See Table 34, Figure 12 and 13.) There were negative correlations with textural 

skewness_pet_ssf_3 (r=-0.205, p=0.045), kurtosis_pet_ssf_2 (r=-0.240, p=0.018), 

kurtosis_pet_ssf_4 (r=-0.222, p=0.029) and kurtosis_pet_ssf_3 (r=-0.245, p=0.016). 

6.4.13 PI3KCA 
Six biomarkers were statistically significant correlated with PI3KCA mutations at p<0.05. 

(See Table 35, Figure 12 and 13.) The most significant was a negative correlation with 

CTP4 average (r=-0.256, p=0.008). 

6.4.14 No Mutation Detected 
There were no statistically significant correlations. 

6.4.15 Multivariate and Univariate Survival Analysis 
For most mutations, entropy_ct_ssf_2 & SUVpeak worked synergistically to stratify 

patients into low, medium and high risk groups. In patients who had no mutation 

detected, only SUVmean>7.2 acted as a statistically significant prognosticator. (See Table 

36.)  
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6.5 Discussion 
This prospective study has demonstrated a number of statistically significant 

associations between immunohistochemical/mutation status and imaging biomarkers. 

Investigating associations between imaging features and imaging biomarkers, and 

mutations and immunohistochemical expression, is a critical step in radiogenomics 

(234). Recognising the effect that mutations and immunohistochemical markers have 

on the imaging phenotype helps further understanding of the role of these factors and 

could provide impetus to suggest repeated biopsy or even that biopsies should be 

avoided in the case of a non-response to therapy or non-phenotypic appearance. 

The most significant and strongest association we have found is a moderate correlation 

between SUV and SUV dependent markers and the GLUT1 immunohistochemical 

marker. This replicates the findings of a previous cross-tumour study in 2019 (235), and 

the correlation found is not significantly different from those findings. This may suggest 

that GLUT1 hyperexpression is important component of glucose hypermetabolism and 

the Warburg effect in lung cancer, whilst not completely explaining glucose 

hypermetabolism. The moderate association is stronger than that recently 

demonstrated in breast cancer and suggests that GLUT1 hyperexpression plays a 

greater role in lung cancer than in breast cancer (186). 

The correlations between the SUV biomarkers, some textural biomarkers and CD105 

are similar to but slightly weaker than those found recently in breast cancer (186). This 

relatively reduced correlation raises the possibility that lung cancer may respond 

differently to hypoxia than breast cancer, preferring GLUT1 hyperexpression and the 

Warburg effect to increase metabolism. 

If GLUT1 hyperexpression were as a consequence of hypoxia, HIF-1α could help 

demonstrate that. HIF-1α is an important upregulator of GLUT1 expression and a 

marker of hypoxia. Although there was a weak relationship between the textural 

entropy biomarkers and HIF-1α and GLUT1, there is not a significant relation between 

the SUV biomarkers and HIF-1α. It should also be noted that HIF-1α is highly unstable 

and thus levels of HIF-1α detected in our samples may be artificially low. The error this 
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instability causes in our measurements of HIF-1α may be related to both age of sample 

and the amount of HIF-1α in the sample, and therefore may represent a non-constant 

non-linear error making it difficult to interpret our results. 

Another possible interpretation for the difference in the strength of the correlations 

between CD105 and SUV versus GLUT1 and SUV is that our tumours are less affected 

by hypoxia than the tumours in the breast study. As a consequence of the biases within 

the dataset, our tumours tend to be relatively small tumours, and on account of the 

anatomy are likely to have a relatively good blood supply (likely even a dual blood 

supply). Assuming that this is the case, the tumours may be not be particularly hypoxic 

and hence there would be a reduced evolutionary drive towards angiogenesis. These 

tumour cells may be hyperexpressing GLUT1 and undergoing the Warburg effect in a 

non-hypoxia dependent fashion as a way of increasing metabolism if the Krebs cycle is 

saturated. In such an environment, tumour cells with higher GLUT1 expression would 

likely be more evolutionarily fit and then form the majority of the tumour. 

Minichromosome maintenance complex component 2 (MCM2) is involved in the 

initiation of eukaryotic genome replication and thus is a marker of cell replication. The 

statistically significant correlations found between the SUV biomarkers suggest that 

higher SUV is at least partially associated with increased cell-replication. 

The significant but weak-to-moderate negative association between the CTP4 average 

measure and PI3KCA implies that, of the surgical cases that had CT Perfusion 

performed, those that were denser and enhanced more over the study were less likely 

to have PI3KCA mutation. It is difficult to tease out the effect of contrast enhancement 

versus higher overall attenuation here but it is likely that this is more likely to represent 

contrast enhancement. This is an interesting finding and it raises the question of if the 

findings could be replicated on standard contrast-enhanced CT images and whether 

this may indicate that PI3KCA mutations result in tumours which demonstrate lower 

enhancement and hence are less likely to demonstrate angiogenesis. There are several 

PIK/Akt/mTOR inhibitor therapy drug candidates and clinical trials (236, 237): if there 

were an imaging biomarker that could predict the presence of PI3KCA mutations, the 
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effectiveness of these therapies could be monitored by the change on the tumour 

imaging signature. 

The weak negative correlations found for the rest of tumour mutations markers 

suggests the radiologic-pathologic correspondence for these is complex 2014 — most 

of the associated imaging biomarkers here were also related to survival, suggesting 

that these may be survival correlates rather than correlates with the mutation per se. It 

should also be noted that many of the mutations considered here upregulate similar 

downstream pathways, so the correlations may be indirect and represent correlations 

between the imaging biomarkers and the upregulated pathways. Whilst such a 

correlation would not necessarily be as helpful as the ability to detect specific 

mutations, such a biomarker could still help monitor therapy or help target mutation 

and immunohistochemical analysis. It could also help further elucidate how mutations 

and receptor upregulation affect these pathways in vivo as opposed to in vitro. 

The correlations discussed above are of interest; however, the use of multiple imaging 

biomarkers together has the potential to investigate imaging histological relationships 

further. Previous studies have suggested that imaging biomarkers could be combined 

to predict KRAS mutation status in colorectal cancer and in lung cancer using a decision 

tree analysis (238–240). An alternative is to investigate how histology can be combined 

with imaging biomarkers to stratify in to risk groups for survival prognostication. This 

study has shown that entropy_ct_ssf_2 can be combined with several 18F-FDG uptake 

measurements to further stratify patients with mutations in to at-risk groups.  

The population of this study is biased by the requirement for surgical pathology. Even 

within a large population of recruited lung cancer patients such as this in this study, 

only a relatively small population of patients go on to have surgery and thence 

available tissue. Thus, compared to pathology only studies our population size is 

limited and there is less statistical power available to tease out correlations. 

Nonetheless, by imaging tissue standards, this is a relatively large cohort with a long 

follow-up. As such it provides an original dataset. Higher numbers of patients may 

achieved by using biopsy specimens rather than surgical specimens. Other limitations 
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related to imaging parameter extraction as discussed in other chapters e.g. respiratory 

motion still apply. 

Only one example of multivariate analysis was performed as an example. In reality 

there are many combinations that could be explored. An artificial intelligence 

methodology could be explored here but is beyond the scope of this theses. This could 

be a topic of research to be taken forward into the future.  
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6.6 Conclusion 
This study has demonstrated that there some correlations between imaging 

biomarkers and the immunohistochemical and mutation biomarkers, some of which 

were highly significant. In particular, the correlations found between imaging 

biomarkers and GLUT1 and CD105 give potentially tantalising in vivo insights into 

tumour metabolism, hypoxia and vascularity. These techniques have significant 

prognostic and predictive potential and further large studies applied to lung-cancer 

treatment studies may prove this.  
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6.7 Tables 

Gender 
Overall, 
N = 96 

Female, 
N = 42 

Male, 
N = 54 

p-value1 

Age at Enrolment    0.14 

N 96.0 42.0 54.0  

Median (IQR) 68.0 (61.0, 74.0) 66.0 (60.0, 73.0) 70.0 (63.0, 75.0)  

Range 49.0, 90.0 49.0, 88.0 51.0, 90.0  

Radiological Stage, n (%)    >0.99 

I 58 (60) 26 (62) 32 (59)  

II 16 (17) 7 (17) 9 (17)  

III 19 (20) 8 (19) 11 (20)  

IV 3 (3.1) 1 (2.4) 2 (3.7)  

SUVmax    0.024 

N 96.0 42.0 54.0  

Median (IQR) 8.7 (4.7, 14.2) 7.1 (4.0, 12.3) 11.2 (6.6, 15.5)  

Range 0.8, 37.9 1.0, 27.0 0.8, 37.9  

TBRlung    0.003 

N 96.0 42.0 54.0  

Median (IQR) 27.9 (15.6, 47.5) 20.4 (12.3, 37.5) 40.4 (19.7, 55.8)  

Range 2.7, 139.0 2.8, 135.0 2.7, 139.0  

SUVmean    0.033 

N 96.0 42.0 54.0  

Median (IQR) 5.2 (2.8, 8.7) 4.2 (2.4, 7.5) 6.8 (4.0, 9.5)  

Range 0.6, 24.1 0.8, 16.3 0.6, 24.1  

SUVpeak    0.028 

N 96.0 42.0 54.0  

Median (IQR) 7.2 (3.5, 11.9) 5.2 (2.8, 9.4) 9.1 (5.1, 12.0)  
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Gender 
Overall, 
N = 96 

Female, 
N = 42 

Male, 
N = 54 

p-value1 

Range 0.7, 32.7 0.9, 24.1 0.7, 32.7  

TLG    0.050 

N 96.0 42.0 54.0  

Median (IQR) 
24,511.1 

(9,859.3, 92,357.7) 
14,754.3 

(5,311.7, 109,469.7) 
32,926.6 

(15,123.7, 87,968.6) 
 

Range 829.6, 1,822,757.4 829.6, 392,145.4 1,899.6, 1,822,757.4  

SCC, n (%) 29 (30) 8 (19) 21 (39) 0.036 

1Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test 

Table 24: Patient demographics as compared to gender 

 

Inflammation Spearman’s Rho1 p-value 

CTP4 mean slope of increase -0.442 0.021 

sd_ct_ssf_2 0.355 0.008 

sd_ct_ssf_0 0.361 0.007 

mpp_ct_ssf_2 0.310 0.022 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 25: Significant correlations with inflammation 

 
CA-IX Spearman’s Rho1 p-value 

CTP4 positive enh. integral -0.301 0.028 

CTP4 ps -0.350 0.010 

mpp_pet_ssf_2 -0.221 0.035 

mpp_pet_ssf_3 -0.229 0.028 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 26: Significant correlations with CA-IX 
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CD105 Spearman’s Rho1 p-value 

SUVmax 0.308 0.032 

SUVmin 0.305 0.033 

SUVmean 0.298 0.037 

SUVpeak 0.318 0.026 

kurtosis_ct_ssf_4 0.287 0.045 

kurtosis_ct_ssf_3 0.356 0.012 

entropy_pet_ssf_2 0.345 0.015 

entropy_pet_ssf_4 0.343 0.016 

entropy_pet_ssf_6 0.346 0.015 

entropy_pet_ssf_0 0.347 0.015 

entropy_pet_ssf_3 0.344 0.015 

entropy_pet_ssf_5 0.344 0.016 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 27: Significant correlations with CD105 

 

HIF-1α Spearman’s Rho1 p-value 

CTP4 time to peak -0.312 0.023 

CTP4 mean slope of increase 0.302 0.028 

skewness_ct_ssf_3 0.224 0.034 

entropy_pet_ssf_2 0.231 0.029 

entropy_pet_ssf_4 0.223 0.035 

entropy_pet_ssf_6 0.226 0.032 

entropy_pet_ssf_0 0.224 0.034 

entropy_pet_ssf_3 0.220 0.037 

entropy_pet_ssf_5 0.220 0.037 

entropy_pet_ssf_3 0.344 0.015 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 28: Significant correlations with HIF-1α 
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GLUT1 Spearman’s Rho1 p-value 

SUVmax 0.441 <0.001 

SUVmin 0.436 <0.001 

SUVmean 0.429 <0.001 

SUVpeak 0.440 <0.001 

TBRlung 0.471 <0.001 

TLG 0.365 <0.001 

mean_ct_ssf_2 -0.224 0.031 

mean_ct_ssf_4 -0.254 0.014 

mean_ct_ssf_6 -0.229 0.028 

mean_ct_ssf_3 -0.266 0.010 

mean_ct_ssf_5 -0.260 0.012 

entropy_ct_ssf_2 0.380 <0.001 

entropy_ct_ssf_4 0.336 0.001 

entropy_ct_ssf_6 0.349 0.001 

entropy_ct_ssf_0 0.301 0.003 

entropy_ct_ssf_3 0.357 <0.001 

entropy_ct_ssf_5 0.361 <0.001 

kurtosis_ct_ssf_2 0.264 0.011 

kurtosis_ct_ssf_4 0.207 0.047 

kurtosis_ct_ssf_0 0.213 0.040 

kurtosis_ct_ssf_3 0.278 0.007 

mean_pet_ssf_0 -0.220 0.034 

sd_pet_ssf_0 0.215 0.039 

entropy_pet_ssf_2 0.388 <0.001 

entropy_pet_ssf_4 0.393 <0.001 

entropy_pet_ssf_6 0.390 <0.001 

entropy_pet_ssf_0 0.390 <0.001 

entropy_pet_ssf_3 0.388 <0.001 

entropy_pet_ssf_5 0.389 <0.001 
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GLUT1 Spearman’s Rho1 p-value 

mpp_pet_ssf_0 -0.220 0.034 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 29: Significant correlations with GLUT1 

 
MCM2 Spearman’s Rho1 p-value 

SUVmax 0.399 <0.001 

SUVmin 0.403 <0.001 

SUVmean 0.392 <0.001 

SUVpeak 0.362 <0.001 

TBRlung 0.376 <0.001 

TLG 0.231 0.025 

CTP4 average 0.324 0.018 

mean_pet_ssf_0 -0.286 0.005 

mpp_pet_ssf_0 -0.286 0.005 

mpp_pet_ssf_3 0.212 0.040 

kurtosis_pet_ssf_2 0.257 0.012 

kurtosis_pet_ssf_3 0.219 0.034 

kurtosis_pet_ssf_3 0.219 0.034 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 30: Significant correlations with MCM2 
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BRAF Spearman’s Rho1 p-value 

entropy_ct_ssf_2 -0.220 0.032 

entropy_ct_ssf_6 -0.211 0.039 

entropy_ct_ssf_0 -0.219 0.032 

entropy_ct_ssf_5 -0.212 0.038 

entropy_pet_ssf_2 -0.217 0.034 

entropy_pet_ssf_4 -0.215 0.035 

entropy_pet_ssf_6 -0.215 0.036 

entropy_pet_ssf_0 -0.215 0.036 

entropy_pet_ssf_3 -0.215 0.036 

entropy_pet_ssf_5 -0.215 0.036 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 31: Significant correlations with BRAF mutation status 
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EGFR Spearman’s Rho1 p-value 

mean_ct_ssf_0 -0.202 0.048 

kurtosis_ct_ssf_2 -0.293 0.004 

kurtosis_ct_ssf_4 -0.225 0.028 

kurtosis_ct_ssf_0 -0.246 0.016 

kurtosis_ct_ssf_3 -0.208 0.042 

kurtosis_ct_ssf_5 -0.239 0.019 

entropy_pet_ssf_2 -0.255 0.012 

entropy_pet_ssf_4 -0.257 0.012 

entropy_pet_ssf_6 -0.260 0.011 

entropy_pet_ssf_0 -0.256 0.012 

entropy_pet_ssf_3 -0.257 0.012 

entropy_pet_ssf_5 -0.256 0.012 

skewness_pet_ssf_4 -0.208 0.042 

skewness_pet_ssf_6 -0.226 0.027 

skewness_pet_ssf_5 -0.229 0.025 

kurtosis_pet_ssf_2 -0.203 0.047 

kurtosis_pet_ssf_4 -0.255 0.012 

kurtosis_pet_ssf_6 -0.289 0.004 

kurtosis_pet_ssf_3 -0.229 0.025 

kurtosis_pet_ssf_5 -0.293 0.004 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 32: Significant Correlations with EGFR mutation 

 
HER2 Spearman’s Rho1 p-value 

skewness_ct_ssf_4 -0.216 0.034 

skewness_ct_ssf_3 -0.256 0.012 

skewness_pet_ssf_0 -0.209 0.041 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 33: Significant Correlations with HER2 mutation 
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KRAS Spearman’s Rho1 p-value 

skewness_pet_ssf_3 -0.205 0.045 

kurtosis_pet_ssf_2 -0.240 0.018 

kurtosis_pet_ssf_4 -0.222 0.029 

kurtosis_pet_ssf_3 -0.245 0.016 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 34: Significant Correlations with KRAS mutation 

 
PI3KCA Spearman’s Rho1 p-value 

CTP4 average -0.358 0.008 

kurtosis_ct_ssf_4 -0.263 0.010 

kurtosis_ct_ssf_3 -0.236 0.021 

kurtosis_ct_ssf_5 -0.228 0.025 

sd_pet_ssf_0 -0.261 0.010 

mpp_pet_ssf_2 -0.213 0.037 

1Spearman’s rank correlation rho with pairwise complete observations 

Table 35: Significant Correlations with PIK3CA mutation 
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p-value HER2 WT 
HER2 

mutation 
EGFR 

mutation EGFR WT 
KRAS 

mutation BRAF WT Any Mutation All WT 

Univariate         

CT Entropy 
SSF2 
(Median 
value 5.19 as 
cut-off) 

0.034    0.022    

PET SUV Peak 
(Median 
value 9.65 as 
cut-off)   0.007  0.033  0.024  

PET TBR 
(Median 
value 41.5833 
as cut-off)  0.010 0.007  0.023  0.003  

PET SUV Avg 
(Median 
value 7.2 as 
cut-off)   0.007  0.033   0.033 

PET SUV Max 
(Median 
value 12 as 
cut-off)   0.007  0.033    

Combination         

CT Entropy 
SSF2 + 
PET SUV Peak 0.029  0.018 0.021 0.011 0.018 0.010  

CT Entropy 
SSF2 + 
PET TBR 

0.018  0.018   0.033   

CT Entropy 
SSF2 + 
PET SUV Avg  0.024 0.018  0.011  <0.001  

CT Entropy 
SSF2 + 
PET SUV Max  0.024 0.018  0.011  <0.001  
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Table 36: p-values from Kaplan Meier survival analysis demonstrating the ability of CT 
entropy and PET uptake biomarkers to stratify patients by prognosis 
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6.8 Figures 
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Figure 12: Correlations between TexRAD biomarkersbiomarkers, Immunohistochemistry and 
mutation analysis 

*,**,*** denotes significance at p=0.05, 0.01, and 0.001 respectively 
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Figure 13: Correlations between PET and CTP4 biomarkers and Immunohistochemistry 
and mutation analysis. 

*,**,*** denotes significance at p=0.05, 0.01, and 0.001 respectively 
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7 Evolution of 18F-FDG-PET/CT Findings in Patients 
Following COVID-19: An Initial Investigation 

7.1 Abstract 

7.1.1 Purpose 
The aim of this chapter was to study the temporal-evolution of pulmonary 18F-FDG-

uptake in patients with Coronavirus Disease (COVID-19) and in Post-COVID-19 Lung-

Disease (PCLD). 

7.1.2 Methods 
Using our hospital’s clinical electronic records we retrospectively identified 23 Acute 

COVID-19, 18 PCLD and 9 completely recovered 18F-FDG-PET/CT studies during the two 

peaks of UK pandemic. Pulmonary 18F-FDG-uptake was measured as a Target-to-

Background Ratio (TBRlung=SUVmax/SUVmin) and compared to temporal stage. 

7.1.3 Results 
In acute COVID-19, less than three weeks after infection, TBRlung was strongly 

correlated with time after infection (rs=0.81, p<0.001) and was significantly higher in 

late-stage than early-stage (p=0.001). In PCLD TBRlung was lower in patients treated 

with high-dose steroids (p=0.003) and asymptomatic patients (p<0.001). 

7.1.4 Conclusion 
Pulmonary 18F-FDG-uptake in COVID-19 increases with time after infection. In PCLD 

pulmonary 18F-FDG-uptake rises despite viral clearance suggesting on-going 

inflammation. There was lower pulmonary 18F-FDG-uptake in PCLD patients treated 

with steroids.  
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7.2 Introduction 
During late February–Early March 2020, SARS-CoV-2 and its associated disease 

Coronavirus Disease 2019 (COVID-19) began spreading rapidly throughout London and 

the rest of the UK (25, 241, 242), following its emergence in December 2019 in Wuhan, 

China (23, 243). Although COVID-19 can remain essentially asymptomatic or have a 

large variety of clinical symptoms, COVID-19 is typically characterised by a bilateral 

interstitial pneumonia/viral pneumonitis of varying severity. Its severity may 

progressively worsen with symptoms of dyspnoea, tachypnoea, hypoxia and 

hypercapnia and the development acute respiratory distress syndrome (23, 26–35, 46, 

244–246). 

The median time from symptom-onset to intensive-care admission is 10 days, although 

only 5% of patients are admitted (23, 34–36, 247–250). The protracted clinical course, 

in contrast to the rapid course usually expected of viral diseases (35, 37, 249), and the 

timing at the peak of anti-viral response, suggests that the acute lung changes and 

damage may be a consequence of inflammation from the adaptive immune response 

rather than from the virus itself (35, 38). 

On CT imaging, COVID-19 typically presents with ground-glass opacities (GGOs) and/or 

bilateral pulmonary consolidation in multiple segmental and subsegmental regions 

(26–33, 46, 244). In early stages, changes are often limited to peripheral GGOs and 

bronchovascular thickening. Consolidation and spread to the centre of the lungs 

happens later (26, 27, 30–33, 244, 246) with sub-pleural sparing and development of 

organising pneumonia occurring even later (26–28, 30–33, 244). Many other signs such 

as interlobular septal thickening and crazy paving have also been demonstrated (33, 39, 

46) however, other typical pulmonary infection features — enlarged lymphadenopathy, 

pulmonary nodules, pleural effusions and cavitation — are not commonly 

demonstrated, except as features of other intercurrent disease e.g. heart failure (26). 

Lymphadenopathy, although not a common feature may be associated with prognosis 

(34). The findings are similar to those described with MERS-CoV and SARS-CoV-1 (26, 

30, 47, 251).  
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Appearances in recovery are varied (39); however, persistent respiratory symptoms 

affect at least one-third of hospitalized patients, some of whom will have Post-COVID-

19 Lung-Disease (PCLD) (42). 

Steroids are critical in reducing mortality from COVID-19 but their role in PCLD is less 

clear and identifying those that might benefit may be difficult. 

Currently, 18F-Fluoro-2-deoxy-D-glucose (18F-FDG) Positron Emission 

Tomography/Computed Tomography (PET/CT) has no role in the management of 

patients with COVID-19 (252) and there has been little investigation into the 

quantification and evolution of 18F-FDG-uptake in COVID-19 (See Table 37). Given the 

growing role of 18F-FDG-PET/CT in Interstitial Lung Diseases (ILD), the primary aim of 

this chapter was to assess the temporal-evolution of 18F-FDG uptake in COVID-19, and 

correlate to clinical progression and recovery. A secondary aim was to investigate if 

steroids could alter this evolution.  
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7.3 Materials and Methods 

7.3.1 Ethics 
The Institutional Review Board approved this retrospective study and waived the 

requirement to obtain informed consent. The challenges of the pandemic constrained 

the methodological design necessitating a retrospective approach. 

7.3.2 Patient Selection 
All studies performed in the department over the first UK peak of the coronavirus 

pandemic (March–April 2020) and from September 2020–February 2021 (second-peak) 

were assessed for acute COVID-19 by following the British Society of Thoracic Imaging 

guidelines and/or a confirmed history of COVID-19 on the Electronic Health-Record 

System (EHRS) (29). This included some patients without positive Polymerase Chain 

Reaction (PCR) test results due to the poor availability of PCR tests in the early period. 

In addition, studies performed for persistent (symptoms persisting for greater than or 

equal to 4 weeks) respiratory symptoms, in keeping with PCLD, and those who had 

recovered from COVID-19 after the initial period were also included. Ongoing 

treatment with steroids and other immunosuppression was recorded. Formal lung 

function tests were not performed due to infection risks. Acute studies between May 

and September 2020 were not examined due to the low prevalence and incidence of 

COVID-19 in London during that time. (See Figure 17 and Table 38.) 

7.3.3 18F-FDG-PET/CT Imaging Protocol 
Patients were fasted for at least six hours and blood glucose levels were recorded prior 

to injection of 400MBq 18F-FDG adjusted for weight in keeping with Administration of 

Radioactive Substances Advisory Committee guidelines (253). After an uptake time of 

63.1±10.9 minutes whole-body PET scans were acquired in a supine position with the 

arms above the head with two minutes per bed position using a General Electric (GE) 

Discovery-710 PET/CT scanner. A non-enhanced low-dose CT scan was acquired for 

anatomic co-registration and attenuation correction. Images were reconstructed using 

a resolution recovery iterative algorithm. 



 

146 

All images were reviewed by at least one dual accredited radiologist nuclear medicine 

physician. Quantification was performed by investigators with at least 10-years’ 

experience of quantifying PET/CT images in diffuse lung disease. PET analysis was 

performed blind of clinical history and the CT analysis. 

7.3.4 Determination of Temporal Stage 
After radiological and EHRS review, the acute COVID-19 cases were assigned to two 

temporal groups: ‘Early’ or ‘Late’, following review of the available clinical history 

coupled with assessment of the CT components as per well-established findings (30): 

Early COVID-19 (approximately equating to ≤1 week after onset of disease) is defined 

as predominantly ground-glass opacities with or without associated interlobular 

thickening this progresses to Late COVID-19 (>1 week after onset of disease to ≤4 

weeks), with increasing consolidation and signs of resolution being marked by sub-

pleural sparing, development of a fibrous-stripe and crescentic consolidation or 

reversed halo/atoll sign. Patients who were asymptomatic after 28 days were classed 

as recovered patients. In addition, patients who were imaged due to persistent 

symptoms after 28 days were described as having PCLD. The CT component was 

correlated with other cross-sectional imaging to reduce the likelihood of error of 

incorrect classification due to breathing artefact. Using this and clinical information 

from EHRS the number of days since disease onset was estimated. 

7.3.5 Quantitative 18F-FDG-PET Analysis 
All images were processed using a standard protocol on a dedicated imaging 

workstation (ADW-volume-4.6 GE-Healthcare) calculated the lung Target-to-

Background Ratio (TBRlung=SUVmax/SUVmin) following the methods described previously 

(48, 49, 254).  

7.3.6 Statistics 
The difference in 18F-FDG-PET uptake measures within the lung against temporal 

staging and pre-treatment with steroids were assessed using non-parametric Mann-

Whitney test. Results were visualized using Box-and-Whisker plots. All statistical 

analyses were performed using SPSS-25.0.   
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7.4 Results 
Of the 3112 18F-FDG-PET/CT studies screened 50 met the criteria for study entry, 

including 18 cases referred for 18F-FDG-PET/CT for investigation of PCLD. Of the 50 

cases (median age 61 range 18–87 years), 32 were male (64%), 27 patients were of 

ethnic minority background (54%): 23 (46%) cases were found to demonstrate acute 

COVID-19. None of these were intentionally imaged for COVID-19. 9 cases 

demonstrated asymptomatic recovered COVID-19 confirmed on the EHRS. (See Table 

39–40.) 

In the other 18 of the 50 cases imaging was performed because of persistent shortness 

of breath and respiratory symptoms in keeping with PCLD — all 18 had been admitted 

to hospital requiring oxygen. 15 of these patients previously had positive PCR tests and 

COVID-19 was clinically diagnosed in the others. 9 had ongoing treatment with steroids 

for PCLD, the other 9 were not receiving treatment for their PCLD. All PCLD patients 

had been re-swabbed prior to PET imaging and confirmed as PCR negative. (See Table 

41.) 

7.4.1 Temporal Stage 
Following review of the attached CT component (lung windows) and available clinical 

history, of the 23 acute COVID-19 patients: 8 (35%) were determined to represent early 

COVID-19 and 15 (65%) late. (See Figure 12 and Table 41) 

7.4.2 Association of Pulmonary 18F-FDG-Uptake with Temporal-staging in 
Early & Late Stage Disease 
18F-FDG-uptake analysis of the lung lesions in the acute patients demonstrated 

increasing TBRlung over time with the progression from low avidity ground-glass change 

to avid consolidation during the late phase (Median Early-stage: SUVmax 1.6, TBRlung 6.4; 

Late-stage: SUVmax 4.0, TBRlung 13.7). In the acute patients, TBRlung was significantly 

different for late-stage patients having a higher TBRlung than early stage patients 

(p=0.001, See 
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Figure 

15.). Amongst these patients, a significant positive correlation was observed between 

TBRlung and estimated time since onset, (rs=0.60, p=0.003, See 

Figure 16.), this was stronger when limited to acute patients estimated to be in the first 

three weeks of infection (n=18, rs=0.81, p<0.001). 

7.4.3 Pulmonary 18F-FDG-Uptake in PCLD 
There was lower TBRlung in patients who had received treatment with high-dose 

steroids (p=0.003) (See 
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Figure 

15.) (Median steroid-treated: SUVmax 2.4, TBRlung 6.62; untreated: SUVmax 5.8, TBRlung 

18.1) 

TBRlung was lower in asymptomatically recovered patients (median SUVmax 1.2, TBRlung 

4.6) than both untreated PCLD patients and those treated with steroids. (p<0.001 and 

p=0.020 respectively, Kruskal-Wallis for all 3 groups p<0.001). 
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7.5 Discussion 
This chapter represents the first attempt to characterise the evolution of pulmonary 
18F-FDG-uptake in a reasonably large cohort of patients with COVID-19 assigned a 

temporal stage (Early-to-Late-to-PCLD) based on clinical context and CT findings. 

The increase of lung avidity with time suggests increasing lung inflammation (35, 255) 

in acute COVID-19. In most cases, 18F-FDG uptake would then be expected to decrease 

with viral clearance and establishment of immunity. There is, however, a subset of 

COVID-19 patients with delayed recovery that continue to show significant 18F-FDG 

uptake, reminiscent of our findings in ILD (48–50, 256), and raising the possibility that 

COVID-19 pneumonitis is associated with an activated host immune response rather 

than direct viral pathology (35, 257, 258). It would be useful to understand the ability 

of lung avidity to predict clinical course or the likelihood of development of a post-

COVID-19 ILD, in this patient-cohort. 

The RECOVERY study, which this study pre-dates, demonstrated survival benefit with 

steroids in hypoxic patients with COVID-19 (257). In our study, several patients went on 

to develop an inflammatory organising-pneumonia, characterised by persistent and 

increasing 18F-FDG-uptake. Steroid therapy is a recognised treatment for organizing-

pneumonia and other inflammatory ILDs (257), and in those cases treated with post-

discharge steroids, 18F-FDG-uptake was consistently lower. Our findings raise the 

question of whether steroid administration has a role, not just for acute hypoxia but 

also in the later stages of COVID-19 and for PCLD. This approach has been debated 

(257) with calls for a randomized-control trial to define the role of steroid therapy more 

widely. Although imaging may be useful, it is hard to determine from CT whether 

parenchymal changes indicate reversible inflammation or irreversible fibrosis. It is 

possible that 18F-FDG-PET/CT may offer a sensitive and specific biomarker to guide and 

rationalise steroid treatment. 

7.5.1 Limitations 
Given the challenges of nuclear medicine imaging in the pandemic this study has 

methodological limitations. They are directly related to the infectious and emergent 
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epidemic, the workload and severe capacity restraints of PET/CT departments, staff 

protection and equipment sterilization, and the medical instability of seriously ill 

COVID-19 patients. This limits patient numbers, preventing the use of a control group 

and longitudinal 18F-FDG-PET/CT imaging. Diagnostic CT will likely remain the most 

practical way to investigate acute COVID-19, although PET imaging may give potential 

mechanistic insights. However, PCLD patients are not currently believed to be an 

infection risk and thus performing longitudinal 18F-FDG-PET/CT studies in this 

population may be realistic and feasible. This study was not prospectively designed to 

study the use of steroid in PCLD; however, statistically-significant lower 18F-FDG uptake 

in PCLD patients with steroid administration versus those without was observed. 

Finally, the lack of PCR testing in the first wave, as well as the high incidence of 

asymptomatic cases throughout the pandemic, creates uncertainties in prevalence and 

thus retrospective analysis may suffer from selection bias. Despite design limitations, 

the findings of this study offer some insight into the development of pulmonary 

disease in COVID-19 and can help provide the evidence to justify performing formal 

prospective studies on this topic in future.  
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7.6 Conclusion 
In this novel chapter it is shown that 18F-FDG uptake in COVID-19 increases with time 

after infection and correlates with severity. Persistent 18F-FDG uptake is seen in 

patients with PCLD disease. These findings suggest that future studies may be directed 

at the use of 18F-FDG-PET/CT to understand disease trajectory and may aid 

management of those patients with persistent respiratory symptoms. 
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7.7 Figures 

 

 
Figure 14: Exemplar images demonstrating increasing 18F-FDG-uptake with temporal 
stage and lower 18F-FDG-uptake in steroid-treated PCLD.  

(Lung-windowed Axial-CT, 18F-FDG-PET windowed SUV 0–5 and fused 18F-FDG-PET/CT 
images.) 
Medullary uptake in case 1 was due to leukaemia and not COVID-19. 
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Figure 15: 18F-FDG-uptake (TBRlung) by temporal stage 

Figure 16: 18F-FDG-uptake (TBRlung) against the estimated time after onset of 
disease (on a logarithmic scale) with superimposed regression using the 23 
acute (early & late) patients. (F-statistic=14.94, p<0.001. Spearman’s rs=0.595, 
p=0.003.) Steroid treatment means ≥10 days high-dose steroid treatment. 
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Figure 17: STARD flow chart of study selection. 
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7.8 Tables 
Previous Study Type Number of papers 

Individual case reports demonstrating 18F-FDG avidity 23 
Case series: 

 1 paper with 5 patients 

 1 paper with 5 patients 

 1 paper with 4 patients 

 1 paper with 5 patients 

 1 paper with 6 patients 

 1 paper with 4 patients 

6 

Incidence & Prevalence of COVID-19 in PET/CT 3 
Discussion of the potential future role of PET/CT 3 

Table 37: Results of literature review of published papers on COVID-19 and 18F-FDG 
PET/CT 

Inclusion Criteria 

18F-FDG-PET/CT performed within period of 
acute study collection or referred for PCLD study 

BSTI CVCT1 or CVCT2 changes on CT component of scan or CVCT0 and 
previous confirmed history of COVID-19 compatible with asymptomatic recovery. 
Clinical history compatible with COVID-19 available on electronic health records 

Exclusion Criteria 
BSTI CVCT0, CVCT3 changes on CT component except when 

previously confirmed COVID-19 disease and considered recovered 
No clinical history available or CVCT2 changes explained by other pathology 

Table 38: Inclusion and exclusion criteria 

Indications Number of patients 
Non-thoracic Cancer 19 
Pyrexia of Unknown Origin 2 
Paraneoplastic Syndrome 1 
Vasculitis 1 

Table 39: Indications of the acute cases 

Indications Number of patients 
Non-thoracic Cancer 6 

Musculoskeletal Inflammation 1 

Paraneoplastic Syndrome 1 

Cardiac Sarcoid 1 

Table 40: Indications of the asymptomatic recovered cases 
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Case 
Number 

Age at 
scan 

(years) 
& Sex 

Temporal 
Stage 

Estimated 
Time since 

onset of 
disease (days) 

Admitted 
to 

Hospital 
PCR 

Proven 
CRP 

(mg/L) 

 
ESR 

(mm/hr) 

 
D-Dimer 

(µg/L 
FEU) 

SpO2 
during 
scan 

Oxygen 
during 
scan 

Inpatient at 
time of scan 

Steroid 
Therapy 

1 61F Early Early (1–3) y y 9.6 — 810 95% RA y n 
2 58F Early Early (3–7) n —a — — — — RA n n 
3 72M Early Early (3–7) n —a — — — — RA n n 
4 43F Early Early (3–7) n —a — — — — RA n n 
5 68F Early Borderline 

Early (4–9) y y — — — 95% 2L NC y n 

6 62M Late Borderline 
Late (7–10) y y 37.5 — — 96% RA y n 

7 84M Late Late (9–14) n —a — — — — RA n n 
8 18F Late Late (10–14) y n 228.7 8 2478 97% RA y n 
9 76M Late Late (11–14) y y 6.8 — 1970 98% RA y n 

10 60M Late Late (11–14) n —a — — — — RA n n 
11 64M Late Late (11–14) n —a — — — 97% RA n n 
12 60M PCLD 28–36 y n 1.0c — — 100% RA y n 
13 80M PCLD 30–38 y y —c — — 92% 1L NC y n 
14 60M PCLD 42–52 y n 8.4c — — 97% RA y y 
15 71M PCLD 48–56 y y —c — — 94%b RA n y 
16 68F PCLD 54–64 y n 14.7c — — 95% 1L NC y y 
17 72F PCLD 64–74 y y 121.6c — — 91% RA y n 
18 60F PCLD 70-85 y y —c — — 96%b RA n n 
19 60M PCLD 150–160 y y 121.2c 70 300 96% RA n n 
20 56M PCLD 210–215 y y 1.2c — — 95% RA n y 
21 27F Recovered 76–80 y y — — — 100% RA n n 
22 39M Recovered 26–30 y y — — — 99% RA n n 
23 58M PCLD 195–205 y y 63.7c 120 1080 95% RA n y 
24 60M PCLD 260–270 y y 51.9c 28 190 99% RA n y 
25 51M Recovered 180–200 y y — — — 95% RA n n 
26 45M PCLD 100–120 n y 14.5c — 500 95% RA n n 
27 61M PCLD 240–250 y y 0c — 1280 95% RA n y 
28 72M PCLD 45–52 y y 122.8c 111 1570 99% RA y n 
29 47F Late Borderline 

Late (9–12) y y 43.4 — 390 99% RA y n 
30 61M PCLD 232–242 y n 11.9c — — 100% RA n y 
31 48M Late Late (20–30) y y 5.7 5 1690 99% RA y n 
32 70M PCLD 39–43 y y — — — 95% RA y n 
33 87F Late Late (22–28) y y 38.7 — 1290 92% 1L NC y n 
34 66M PCLD 309–320 y y — — — 95% 2L NC n y 
35 59F Late Late (13–18) n y — — — 97% RA n n 
36 51F Late Late (15–25) n y — — — 95% RA n n 
37 87F Early Early (5–7) y y 10.4 27 — 96% RA y n 
38 61M Recovered 215–225 n y — — — 97% RA n n 
39 79M Recovered 200–240 n y — — — 95% RA n n 
40 60F Early Early (1–3) n y — — — 95% RA n n 
41 51M Late Late (26–28) y y — — 1380 95% RA n n 
42 60M Recovered 200–220 n —a — — — 96% RA n n 
43 61M Late Late (20–28) y n — — — 95% RA n n 
44 61F PCLD 300–315 y y — — — 96% RA n n 
45 79M Late Late (19–23) y y — — — 98% RA y n 
46 61M Recovered 317–330 y y — — — 95% RA n n 
47 61M Recovered 38–44 y y — — — 97% RA n n 
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48 75F Late Late (25–28) y y — — — 94% 2L NC y n 
49 74F Recovered 90–120 n y — — — 95% RA n n 
50 80M Early Early (1–3) y y — — — 96% RA y n 

Table 41: Distribution and Clinical Parameters 
a At the time of infection availability of PCR testing was limited to only patients admitted to 
hospital 
b Saturations measured on different day to imaging. RA: Room Air; NC: nasal cannulae 
c CRP was noted to be falling from peak for all Delayed Recovery patients 
—: Test not performed 
Steroid therapy was defined as high dose steroids for 10 days or more 
Please note: formal lung function tests were not performed on these patients due to the 
pandemic.  
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8 Limitations 

8.1 Lung Cancer Dataset 
As discussed in Chapters 3-6 there are a number of limitations with the lung cancer 

dataset. Due to the importance of 18F-FDG PET/CT in the diagnosis of lung cancer many 

patients who undergo imaging with 18F-FDG PET/CT will not have lung cancer. 

Recruitment was therefore focused on patients whom it was felt had a high pre-test 

probability of having lung cancer. This severely biases our population of patients who 

were eventually not diagnosed with lung cancer meaning these patients do not 

represent a fair sample and thus these patients were excluded from analysis. 

Similarly, due to the desire for surgical histology, patient recruitment was focused on 

patients who were expected to be fit for surgery and to have operable disease. This 

results in a patient population heavily weighted towards lower stage disease, and 

biases the population toward surgically fit patients as compared to the normal 

population of the lung cancers. These biases mean that the survival of our population 

of Stage II–IV patients is likely to be artificially large — especially for the larger 

tumours. (For example, our one-year survival for all our patients and all Stage III 

patients was 74.9% and 63.4% respectively whereas the 2013–2017 age standardised 

one-year survival in the UK is only 40.6% and 48.1% respectively (3)). It may also 

artificially increase the difference in survival between those treated with Surgery 

versus those not, as non-surgical treatment may reflect worse non-tumoural prognostic 

factors, e.g. heart disease, fibrosis, and emphysema. It should be noted that these 

biases which improve survival make finding significant correlations with survival more 

difficult rather than easier, and thus should strengthen positive results. 

The requirement for CT perfusion and desire for surgical histology also excludes very 

small tumours because the results of CT perfusion imaging of tumours smaller than 

1cm can be rather inaccurate and very small tumours may be treated non-surgically. 

The overall smaller stage however, still means that the imaging biomarkers may be 

negatively affected by partial volume effects, breath motion and other motion 

artefacts. 
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The overall population size is still relatively small, and somewhat heterogeneous in 

stage of disease meaning that we could not check if there were statistically significant 

correlations between biomarkers and substages nor correlate against full-staging (i.e. 

Stage Ia, Ib, Ic, IIa etc. vs Stage I, II, III and IV). 

8.2 COVID-19 Dataset 
The limitations of the COVID-19 dataset are discussed in detail in Section 7.5.1.  
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9 Conclusion 
The The main findings of this study and possible clinical relevance are summarized 

here. 

9.1 18F-FDG PET/CT  Biomarkers 
Both lower SUVmax and TBRlung are statistically associated with survival but neither are 

independent of Stage. Lower TBRlung is more strongly associated with survival than 

SUVmax.  

The finding that these prognostic factors are not independent of stage are in some 

ways unsurprising given the role of SUVmax (and other uptake measures) in diagnosis 

and the part they play in staging. The discovery that a cut-off for TBRlung acts as a strong 

predictor especially in Stage I disease is a novel and interesting finding and suggests 

further investigation with a larger cohort may prove a direct role for TBRlung (or even 

SUVmax) in sub-staging Stage I disease in addition to lesion size. 

9.2 CT Perfusion in Lung Cancer 
There is no definite clear correlation with CT perfusion biomarkers and survival within 

our study population, and there is no clear added benefit to CT perfusion over that of 
18F-FDG based staging and surgery. Subgroup analysis restricting to the higher stage 

patients treated with chemotherapy shows statistically significant correlations between 

survival and the CT perfusion biomarkers which does replicate the findings of other 

studies and, whilst caution should be taken when interpreting these as the numbers of 

patients in this group are small, they highlight the potential utility of CT Perfusion 

imaging in these cases.  

9.3 Texture Analysis with TexRAD in Lung Cancer 
Multiple CT and PET textural features are statistically significantly related to survival 

and in particular CT entropy at fine texture (SSF=2mm) is statistically significantly 

related to survival when combined with Surgery and Staging and remains statistically 

significant when the whole treatment group is split into training and validation sets.  
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The finding that entropy_ct_ssf_2 > 4.81 remains statistically significant in a combined 

model with staging and surgical status across the whole dataset suggests that textural 

analysis can be used to provide additional stratification over that of staging and surgical 

status alone. The technique for ROI selection used in the study is quick and simple, 

many other studies have relied on segmenting the whole tumour often using a 

separate diagnostic CT, and was further coupled with CT thresholding, allowing one to 

draw more generous borders around tumours centred within the lung but still result 

with the same ROI. Prospective analysis on a future cohort using this cut-off would help 

further prove the utility of this measure; it may also be helpful to review the effect of 

radiotherapy and chemotherapy on entropy_ct_ssf_2 and whether it could provide an 

earlier marker of recurrence or response.  

9.4 Correlation Between Immunohistochemistry and 
Mutation and Imaging Biomarkers 

There were several interesting correlations between imaging biomarkers and the 

immunohistochemical and mutation biomarkers, some of which were highly significant. 

In particular the correlations found between imaging biomarkers and GLUT1 and 

CD105 give potentially tantalising in vivo insights into tumour metabolism, hypoxia and 

vascularity. These techniques have significant prognostic and predictive potential and 

further large studies applied to lung-cancer treatment studies may prove this. The 

initial results could be further investigated to suggest multivariate predictors for 

mutation status or immunohistochemical markers. 

9.5 Evolution of 18F-FDG-PET/CT Findings in Patients 
Following COVID-19 

This study opportunistically analysed incidental findings of COVID-19 disease and post-

COVID-19 lung disease in a novel manner: correlating CT findings and clinical details to 

estimate disease time course and then using this information to further study 18F-FDG 

uptake. The study demonstrated 18F-FDG uptake in COVID-19 increases with time after 

infection and correlates with severity in contrast to the usual appearances of viral or 

infectious diseases, thus suggesting an inflammatory component to disease symptoms. 
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The persistent 18F-FDG uptake seen in patients with PCLD disease suggests that this 

may be due to abnormally long-lasting inflammation. These findings suggest that 

future studies may be directed at the use of 18F-FDG-PET/CT to understand disease 

trajectory and may aid management of those patients with persistent respiratory 

symptoms. 

This study further demonstrates the value of TBRlung in ILD and suggests it has a role 

across the spectrum of ILD not just in IPF. 

9.6 Further Work 
The findings in this thesis suggest further investigation of the 18F-FDG-PET biomarkers 

and  18F-FDG-PET/CT TexRAD biomarkers would be of value. In particular it would be 

helpful to more closely study SUVmax>7.6 and entropy_ct_ssf_2>4.81 across both more 

focused multicentre datasets and more general multicentre lung cancer datasets. It 

would similarly be of interest to evaluate if TBRlung≤ 26.2 remains prognostic in a Stage I 

disease. Further multivariate analysis of the histological dataset should also be 

performed with the histological dataset expanded with further recruitment. The 

correlations found between imaging biomarkers and GLUT1 and CD105 give potentially 

tantalising in vivo insights into tumour metabolism, hypoxia and vascularity. These 

techniques have significant prognostic and predictive potential and further large 

studies applied to lung-cancer treatment studies may prove this. 

The findings in Chapter 7 suggest that future studies directed at the use of 18F-FDG-

PET/CT to understand disease trajectory of COVID-19 and PCLD should be considered 

and that 18F-FDG-PET/CT should be considered when managing patients with persistent 

respiratory symptoms following infection. Of course, the emergency phase of the SARS-

CoV-2 pandemic is now over which makes further work here difficult, but should 

another variant of concern arise or another novel coronavirus epidemic/pandemic 

these results should be used to guide further work. 

9.7 Summary 
The most important results of this thesis are: 
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 The findings that cut-offs of SUVmax>7.6  & TBRlung > 26.2 are statistically 

significantly associated with worse prognosis. 

 The finding that entropy_ct_ssf_2 > 4.81 is an independent predictor of survival 

across the whole TexRAD cohort in a combined model with staging and survival, 

and also stratifies survival when there mutations present in the histological 

subset. 

 PCLD is associated with avidity which is reduced by steroids  



 

165 

Bibliography 
1.  Cancer survival statistics for all cancers combined. Cancer Research UK [Internet]. 2015 [cited 2021 

Dec 13]. Available from: https://www.cancerresearchuk.org/health-professional/cancer-
statistics/survival/all-cancers-combined. 

2.  Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers 
combined and survival adjusted for age and sex for each cancer in England and Wales, 1971–2011: 
a population-based study. The Lancet [Internet]. Elsevier; 2015 [cited 2021 Dec 16]; 
385(9974):1206–18. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-
6736(14)61396-9/fulltext. 

3.  Cancer survival in England - adults diagnosed - Office for National Statistics [Internet]. [cited 2021 
Dec 13]. Available from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddise
ases/datasets/cancersurvivalratescancersurvivalinenglandadultsdiagnosed. 

4.  Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WEE, et al. The IASLC Lung 
Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming 
(Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology [Internet]. 
Elsevier; 2016 [cited 2021 Dec 16]; 11(1):39–51. Available from: 
https://www.jto.org/article/S1556-0864(15)00017-9/fulltext. 

5.  Lung cancer statistics. Cancer Research UK [Internet]. 2015 [cited 2022 Feb 7]. Available from: 
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-
type/lung-cancer. 

6.  Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and 
mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European 
Journal of Cancer [Internet]. Elsevier; 2018 [cited 2021 Dec 16]; 103:356–87. Available from: 
https://www.ejcancer.com/article/S0959-8049(18)30955-9/fulltext. 

7.  Groot PM de, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer 
Res [Internet]. 2018 [cited 2022 Feb 7]; 7(3):220–33. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037963/. 

8.  Alberg AJ, Samet JM. Epidemiology of Lung Cancer*. CHEST [Internet]. Elsevier; 2003 [cited 2022 
Jul 18]; 123(1):21S-49S. Available from: https://journal.chestnet.org/article/S0012-
3692(15)32981-0/abstract. 

9.  Siddiqui F, Vaqar S, Siddiqui AH. Lung Cancer. In: StatPearls [Internet]. Treasure Island (FL): 
StatPearls Publishing; 2022 [cited 2022 Jul 15]. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK482357/. 

10.  Miller YE. Pathogenesis of Lung Cancer. Am J Respir Cell Mol Biol [Internet]. 2005 [cited 2022 Jul 
15]; 33(3):216–23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715312/. 

11.  Agents Classified by the IARC Monographs, Volumes 1–130 – IARC Monographs on the 
Identification of Carcinogenic Hazards to Humans [Internet]. [cited 2022 Feb 7]. Available from: 
https://monographs.iarc.who.int/agents-classified-by-the-iarc/. 

12.  Brown KF, Rumgay H, Dunlop C, Ryan M, Quartly F, Cox A, et al. The fraction of cancer attributable 
to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom 
in 2015. Br J Cancer. 2018; 118(8):1130–41. 



 

166 

13.  Peto R, Boreham J, Lopez AD, Thun M, Heath C. Mortality from tobacco in developed countries: 
indirect estimation from national vital statistics. The Lancet [Internet]. Elsevier; 1992 [cited 2022 
Feb 7]; 339(8804):1268–78. Available from: 
https://www.thelancet.com/journals/lancet/article/PII0140-6736(92)91600-D/fulltext. 

14.  Cagle PT, Allen TC, Olsen RJ. Lung cancer biomarkers: present status and future developments. 
Arch Pathol Lab Med. 2013; 137(9):1191–8. 

15.  Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO 
Classification of Lung Tumors: Impact of Advances Since 2015. Journal of Thoracic Oncology 
[Internet]. Elsevier; 2022 [cited 2022 Jul 21]; 17(3):362–87. Available from: 
https://www.jto.org/article/S1556-0864(21)03316-5/fulltext. 

16.  National Institute for Health and Care Excellence. Lung cancer: diagnosis and management 
[Internet]. NICE; 2019 [cited 2022 Feb 9]. Available from: 
https://www.nice.org.uk/guidance/ng122. 

17.  Postdiagnosis Smoking Cessation and Reduced Risk for Lung Cancer Progression and Mortality: A 
Prospective Cohort Study: Annals of Internal Medicine: Vol 174, No 9 [Internet]. [cited 2022 Feb 
9]. Available from: https://www.acpjournals.org/doi/full/10.7326/M21-
0252?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org. 

18.  Wells AU, Hirani N, on behalf of the BTS Interstitial Lung Disease Guideline Group, a subgroup of 
the British Thoracic Society Standards of Care Committee, in collaboration with the Thoracic 
Society of Australia and New Zealand and the Irish Thoracic Society. Interstitial lung disease 
guideline. Thorax [Internet]. 2008 [cited 2022 Jun 10]; 63(Supplement 5):v1–58. Available from: 
https://thorax.bmj.com/lookup/doi/10.1136/thx.2008.101691. 

19.  Chapman S, Robinson G, Stradling J, West S, Wrightson J. Diffuse lung disease. Oxford Handbook of 
Respiratory Medicine [Internet]. Oxford University Press; [cited 2022 Jun 10]. Available from: 
https://oxfordmedicine.com/view/10.1093/med/9780198703860.001.0001/med-
9780198703860-chapter-6. 

20.  Ryu JH, Olson EJ, Midthun DE, Swensen SJ. Diagnostic Approach to the Patient With Diffuse Lung 
Disease. Mayo Clinic Proceedings [Internet]. Elsevier; 2002 [cited 2022 Jun 10]; 77(11):1221–7. 
Available from: https://www.mayoclinicproceedings.org/article/S0025-6196(11)61812-0/fulltext. 

21.  Gruden JF, Naidich DP, Machnicki SC, Cohen SL, Girvin F, Raoof S. An Algorithmic Approach to the 
Interpretation of Diffuse Lung Disease on Chest CT Imaging: A Theory of Almost Everything. CHEST 
[Internet]. Elsevier; 2020 [cited 2022 Jun 10]; 157(3):612–35. Available from: 
https://journal.chestnet.org/article/S0012-3692(19)34121-2/abstract. 

22.  Radiology (ACR) RS of NA (RSNA) and AC of. Diffuse Interstitial Lung Disease. Radiologyinfo.org 
[Internet]. [cited 2022 Jun 10]. Available from: https://www.radiologyinfo.org/en/info/diffuselung. 

23.  Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 
novel coronavirus in Wuhan, China. Lancet [Internet]. Elsevier; 2020 [cited 2020 May 21]; 
395(10223):497–506. Available from: 
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/abstract. 

24.  Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020; 91(1):157–60. 

25.  Perez Guzman P, Daunt A, Mukherjee S, Crook P, Forlano R, Kont M, et al. Report 17: Clinical 
characteristics and predictors of outcomes of hospitalised patients with COVID-19 in a London NHS 



 

167 

Trust: a retrospective cohort study [Internet]. Imperial College London; 2020 [cited 2020 May 21]. 
Available from: http://spiral.imperial.ac.uk/handle/10044/1/78613. 

26.  Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT Findings in Coronavirus 
Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology [Internet]. Radiological 
Society of North America; 2020 [cited 2020 Apr 29]; 200463. Available from: 
https://pubs.rsna.org/doi/10.1148/radiol.2020200463. 

27.  Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. Temporal Changes of CT Findings in 90 Patients 
with COVID-19 Pneumonia: A Longitudinal Study. Radiology [Internet]. Radiological Society of 
North America; 2020 [cited 2020 Apr 29]; 200843. Available from: 
https://pubs.rsna.org/doi/full/10.1148/radiol.2020200843. 

28.  Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, et al. Initial CT findings and temporal changes in 
patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, 
China. Eur Radiol [Internet]. 2020 [cited 2020 May 20]. Available from: 
https://doi.org/10.1007/s00330-020-06731-x. 

29.  UPDATED BSTI COVID-19 Guidance for the Reporting Radiologist. The British Society of Thoracic 
Imaging website [Internet]. [cited 2020 May 18]. Available from: 
https://www.bsti.org.uk/standards-clinical-guidelines/clinical-guidelines/bsti-covid-19-guidance-
for-the-reporting-radiologist/. 

30.  Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with 
COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis [Internet]. Elsevier; 
2020 [cited 2020 May 18]; 20(4):425–34. Available from: 
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30086-4/abstract. 

31.  Kanne JP. Chest CT Findings in 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: 
Key Points for the Radiologist. Radiology [Internet]. Radiological Society of North America; 2020 
[cited 2020 May 18]; 295(1):16–7. Available from: 
https://pubs.rsna.org/doi/10.1148/radiol.2020200241. 

32.  Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time Course of Lung Changes at Chest CT during 
Recovery from Coronavirus Disease 2019 (COVID-19). Radiology [Internet]. Radiological Society of 
North America; 2020 [cited 2020 May 20]; 295(3):715–21. Available from: 
https://pubs.rsna.org/doi/10.1148/radiol.2020200370. 

33.  Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT Imaging Features of 2019 Novel 
Coronavirus (2019-nCoV). Radiology [Internet]. Radiological Society of North America; 2020 [cited 
2020 Apr 29]; 295(1):202–7. Available from: 
https://pubs.rsna.org/doi/full/10.1148/radiol.2020200230. 

34.  Phua J, Weng L, Ling L, Egi M, Lim C-M, Divatia JV, et al. Intensive care management of coronavirus 
disease 2019 (COVID-19): challenges and recommendations. The Lancet Respiratory Medicine 
[Internet]. 2020 [cited 2020 May 21]; 8(5):506–17. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/S2213260020301612. 

35.  Bouadma L, Lescure F-X, Lucet J-C, Yazdanpanah Y, Timsit J-F. Severe SARS-CoV-2 infections: 
practical considerations and management strategy for intensivists. Intensive Care Med [Internet]. 
2020 [cited 2020 May 21]; 46(4):579–82. Available from: https://doi.org/10.1007/s00134-020-
05967-x. 

36.  Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients 
With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA [Internet]. American 



 

168 

Medical Association; 2020 [cited 2020 May 21]; 323(11):1061–9. Available from: 
https://jamanetwork.com/journals/jama/fullarticle/2761044. 

37.  Czernin J, Fanti S, Meyer PT, Allen-Auerbach M, Hacker M, Sathekge M, et al. Nuclear Medicine 
Operations in the Times of COVID-19: Strategies, Precautions, and Experiences. J Nucl Med 
[Internet]. Society of Nuclear Medicine; 2020 [cited 2020 May 18]; 61(5):626–9. Available from: 
http://jnm.snmjournals.org/content/61/5/626. 

38.  Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical 
Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA [Internet]. American Medical 
Association; 2020 [cited 2020 May 21]; 323(15):1488–94. Available from: 
https://jamanetwork.com/journals/jama/fullarticle/2762688. 

39.  Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): A 
Systematic Review of Imaging Findings in 919 Patients. American Journal of Roentgenology 
[Internet]. American Roentgen Ray Society; 2020 [cited 2020 May 21]; 1–7. Available from: 
https://www.ajronline.org/doi/full/10.2214/AJR.20.23034. 

40.  Sardanelli F, Cozzi A, Monfardini L, Bnà C, Foà RA, Spinazzola A, et al. Association of mediastinal 
lymphadenopathy with COVID-19 prognosis. Lancet Infect Dis [Internet]. 2020 [cited 2020 Jul 4]. 
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304961/. 

41.  Mo X, Jian W, Su Z, Chen M, Peng H, Peng P, et al. Abnormal pulmonary function in COVID-19 
patients at time of hospital discharge. European Respiratory Journal [Internet]. European 
Respiratory Society; 2020 [cited 2020 Jul 20]. Available from: 
https://erj.ersjournals.com/content/early/2020/05/07/13993003.01217-2020. 

42.  Carfì A, Bernabei R, Landi F, Group  for the GAC-19 P-ACS. Persistent Symptoms in Patients After 
Acute COVID-19. JAMA [Internet]. American Medical Association; 2020 [cited 2020 Sep 9]; 
324(6):603–5. Available from: https://jamanetwork.com/journals/jama/fullarticle/2768351. 

43.  Stavem K, Ghanima W, Olsen MK, Gilboe HM, Einvik G. Persistent symptoms 1.5–6 months after 
COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax [Internet]. BMJ 
Publishing Group Ltd; 2021 [cited 2021 Apr 26]; 76(4):405–7. Available from: 
https://thorax.bmj.com/content/76/4/405. 

44.  Sahanic S, Thomas S, Alex P, Gerlig W, Anna L, Magdalena A, et al. Abstract no: OA4143: Persisting 
pulmonary impairment following severe SARS-CoV-2 infection, preliminary results from the CovILD 
study. European Respiratory Society International Congress. European Respiratory Society; 2020. 

45.  Arnold DT, Hamilton FW, Milne A, Morley A, Viner J, Attwood M, et al. Patient outcomes after 
hospitalisation with COVID-19 and implications for follow-up; results from a prospective UK 
cohort. medRxiv [Internet]. Cold Spring Harbor Laboratory Press; 2020 [cited 2020 Sep 8]; 
2020.08.12.20173526. Available from: 
https://www.medrxiv.org/content/10.1101/2020.08.12.20173526v1. 

46.  Hosseiny M, Kooraki S, Gholamrezanezhad A, Reddy S, Myers L. Radiology Perspective of 
Coronavirus Disease 2019 (COVID-19): Lessons From Severe Acute Respiratory Syndrome and 
Middle East Respiratory Syndrome. American Journal of Roentgenology [Internet]. American 
Roentgen Ray Society; 2020 [cited 2020 May 21]; 214(5):1078–82. Available from: 
https://www.ajronline.org/doi/full/10.2214/AJR.20.22969. 

47.  Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, 
demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome 
coronavirus disease from Saudi Arabia: a descriptive study. The Lancet Infectious Diseases 



 

169 

[Internet]. 2013 [cited 2020 May 21]; 13(9):752–61. Available from: 
http://www.sciencedirect.com/science/article/pii/S1473309913702044. 

48.  Groves AM, Win T, Screaton NJ, Berovic M, Endozo R, Booth H, et al. Idiopathic pulmonary fibrosis 
and diffuse parenchymal lung disease: implications from initial experience with 18F-FDG PET/CT. J 
Nucl Med. 2009; 50(4):538–45. 

49.  Win T, Screaton NJ, Porter JC, Ganeshan B, Maher TM, Fraioli F, et al. Pulmonary 18F-FDG uptake 
helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF). Eur J Nucl Med Mol 
Imaging [Internet]. 2018 [cited 2020 Apr 27]; 45(5):806–15. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978900/. 

50.  Win T, Screaton NJ, Porter J, Endozo R, Wild D, Kayani I, et al. Novel positron emission 
tomography/computed tomography of diffuse parenchymal lung disease combining a labeled 
somatostatin receptor analogue and 2-deoxy-2[18F]fluoro-D-glucose. Mol Imaging. 2012; 
11(2):91–8. 

51.  Chen DL, Ballout S, Chen L, Cheriyan J, Choudhury G, Denis-Bacelar AM, et al. Consensus 
recommendations on the use of 18F-FDG PET/CT in lung disease. J Nucl Med. 2020. 

52.  Rodrigues RS, Miller PR, Bozza FA, Marchiori E, Zimmerman GA, Hoffman JM, et al. FDG-PET in 
patients at risk for acute respiratory distress syndrome: a preliminary report. Intensive Care Med 
[Internet]. 2008 [cited 2020 May 18]; 34(12):2273. Available from: 
https://doi.org/10.1007/s00134-008-1220-7. 

53.  Jacene HA, Cohade C, Wahl RL. F-18 FDG PET/CT in Acute Respiratory Distress Syndrome: A Case 
Report: Clinical Nuclear Medicine [Internet]. 2004 [cited 2020 May 18]; 29(12):786–8. Available 
from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003072-
200412000-00002. 

54.  Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical 
Pharmacology & Therapeutics [Internet]. 2001 [cited 2022 Feb 10]; 69(3):89–95. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1067/mcp.2001.113989. 

55.  FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource 
[Internet]. Silver Spring (MD): Food and Drug Administration (US); 2016 [cited 2022 Feb 10]. 
Available from: http://www.ncbi.nlm.nih.gov/books/NBK326791/. 

56.  Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, deKemp RA. PET Metabolic Biomarkers 
for Cancer. Biomark Cancer [Internet]. 2016 [cited 2019 Oct 30]; 8(Suppl 2):61–9. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030827/. 

57.  Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert Consensus for 
Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report 
from the American Society of Echocardiography and the European Association of Cardiovascular 
Imaging. Journal of the American Society of Echocardiography [Internet]. Elsevier; 2014 [cited 
2022 Feb 25]; 27(9):911–39. Available from: https://www.onlinejase.com/article/S0894-
7317(14)00534-3/fulltext. 

58.  O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, et al. Imaging biomarker 
roadmap for cancer studies. Nat Rev Clin Oncol [Internet]. Nature Publishing Group; 2017 [cited 
2022 Feb 7]; 14(3):169–86. Available from: https://www.nature.com/articles/nrclinonc.2016.162. 



 

170 

59.  Law WP, Miles KA. Incorporating prognostic imaging biomarkers into clinical practice. Cancer 
Imaging [Internet]. 2013 [cited 2022 Feb 7]; 13(3):332–41. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781605/. 

60.  Kawada K, Iwamoto M, Sakai Y. Mechanisms underlying 18F-fluorodeoxyglucose accumulation in 
colorectal cancer. World J Radiol [Internet]. 2016 [cited 2021 Dec 16]; 8(11):880–6. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120247/. 

61.  Li X-F, Du Y, Ma Y, Postel GC, Civelek AC. 18F-Fluorodeoxyglucose Uptake and Tumor Hypoxia: 
Revisit 18F-Fluorodeoxyglucose in Oncology Application. Transl Oncol [Internet]. 2014 [cited 2021 
Dec 16]; 7(2):240–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101348/. 

62.  Muz B, Puente P de la, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, 
metastasis, and resistance to therapy. Hypoxia (Auckl) [Internet]. 2015 [cited 2021 Dec 16]; 3:83–
92. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045092/. 

63.  AL-Jahdali H, Khan AN, Loutfi S, Al-Harbi AS. Guidelines for the role of FDG-PET/CT in lung cancer 
management. Journal of Infection and Public Health [Internet]. 2012 [cited 2022 Feb 28]; 5:S35–
40. Available from: https://www.sciencedirect.com/science/article/pii/S1876034112000974. 

64.  Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from Non-Small Cell Lung Cancer: 
Mediastinal Staging in the 1990s—Meta-analytic Comparison Of PET and CT. Radiology [Internet]. 
Radiological Society of North America; 1999 [cited 2022 Feb 28]; 213(2):530–6. Available from: 
https://pubs.rsna.org/doi/10.1148/radiology.213.2.r99nv46530. 

65.  Gould MK, Kuschner WG, Rydzak CE, Maclean CC, Demas AN, Shigemitsu H, et al. Test 
performance of positron emission tomography and computed tomography for mediastinal staging 
in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003; 139(11):879–
92. 

66.  Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al. Noninvasive Staging of 
Non-small Cell Lung Cancer: ACCP Evidenced-Based Clinical Practice Guidelines (2nd Edition). 
Chest [Internet]. 2007 [cited 2022 Feb 28]; 132(3, Supplement):178S-201S. Available from: 
https://www.sciencedirect.com/science/article/pii/S0012369215355197. 

67.  Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for Staging 
Non-small Cell Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed: American College 
of Chest Physicians Evidence-Based Clinical Practice Guidelines. CHEST [Internet]. Elsevier; 2013 
[cited 2022 Feb 28]; 143(5):e211S-e250S. Available from: 
https://journal.chestnet.org/article/S0012-3692(13)60296-2/abstract. 

68.  Huang (Henry) Sung-Cheng. Anatomy of SUV. Nuclear Medicine and Biology [Internet]. 2000 [cited 
2022 Feb 28]; 27(7):643–6. Available from: 
https://www.sciencedirect.com/science/article/pii/S0969805100001554. 

69.  Ahuja V, Coleman RE, Herndon J, Patz EF. The prognostic significance of fluorodeoxyglucose 
positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer. 
1998; 83(5):918–24. 

70.  Dhital K, Saunders CAB, Seed PT, O’Doherty MJ, Dussek J. [18F]Fluorodeoxyglucose positron 
emission tomography and its prognostic value in lung cancer✩. European Journal of Cardio-
Thoracic Surgery [Internet]. 2000 [cited 2022 Jan 14]; 18(4):425–8. Available from: 
https://doi.org/10.1016/S1010-7940(00)00535-2. 



 

171 

71.  Jeong H-J, Min J-J, Park JM, Chung J-K, Kim BT, Jeong JM, et al. Determination of the prognostic 
value of [(18)F]fluorodeoxyglucose uptake by using positron emission tomography in patients with 
non-small cell lung cancer. Nucl Med Commun. 2002; 23(9):865–70. 

72.  Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 
fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts 
survival after lung cancer resection. J Clin Oncol. 2004; 22(16):3255–60. 

73.  Borst GR, Belderbos JSA, Boellaard R, Comans EFI, Jaeger KD, Lammertsma AA, et al. Standardised 
FDG uptake: A prognostic factor for inoperable non-small cell lung cancer. European Journal of 
Cancer [Internet]. Elsevier; 2005 [cited 2022 Jan 10]; 41(11):1533–41. Available from: 
https://www.ejcancer.com/article/S0959-8049(05)00338-2/fulltext. 

74.  Sasaki R, Komaki R, Macapinlac H, Erasmus J, Allen P, Forster K, et al. [18F]Fluorodeoxyglucose 
Uptake by Positron Emission Tomography Predicts Outcome of Non–Small-Cell Lung Cancer. JCO 
[Internet]. Wolters Kluwer; 2005 [cited 2022 Jan 14]; 23(6):1136–43. Available from: 
https://ascopubs.org/doi/10.1200/JCO.2005.06.129. 

75.  Davies A, Tan C, Paschalides C, Barrington SF, O’Doherty M, Utley M, et al. FDG-PET maximum 
standardised uptake value is associated with variation in survival: Analysis of 498 lung cancer 
patients. Lung Cancer [Internet]. Elsevier; 2007 [cited 2022 Jan 14]; 55(1):75–8. Available from: 
https://www.lungcancerjournal.info/article/S0169-5002(06)00489-2/fulltext. 

76.  Lee YJ, Cho A, Cho BC, Yun M, Kim SK, Chang J, et al. High Tumor Metabolic Activity as Measured 
by Fluorodeoxyglucose Positron Emission Tomography Is Associated with Poor Prognosis in Limited 
and Extensive Stage Small-Cell Lung Cancer. Clin Cancer Res [Internet]. American Association for 
Cancer Research; 2009 [cited 2022 Jan 14]; 15(7):2426–32. Available from: 
https://clincancerres.aacrjournals.org/content/15/7/2426. 

77.  Uehara H, Tsutani Y, Okumura S, Nakayama H, Adachi S, Yoshimura M, et al. Prognostic Role of 
Positron Emission Tomography and High-Resolution Computed Tomography in Clinical Stage IA 
Lung Adenocarcinoma. The Annals of Thoracic Surgery [Internet]. Elsevier; 2013 [cited 2022 Jan 
14]; 96(6):1958–65. Available from: https://www.annalsthoracicsurgery.org/article/S0003-
4975(13)01432-X/fulltext. 

78.  Khiewvan B, Ziai P, Houshmand S, Salavati A, Ziai P, Alavi A. The role of PET/CT as a prognosticator 
and outcome predictor in lung cancer. Expert Review of Respiratory Medicine [Internet]. Taylor & 
Francis; 2016 [cited 2022 Jan 10]; 10(3):317–30. Available from: 
https://doi.org/10.1586/17476348.2016.1147959. 

79.  Geus-Oei L-F de, Heijden HFM van der, Corstens FHM, Oyen WJG. Predictive and prognostic value 
of FDG-PET in nonsmall-cell lung cancer. Cancer [Internet]. 2007 [cited 2022 Mar 31]; 
110(8):1654–64. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cncr.22979. 

80.  Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The maximum standardized uptake values on 
positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and 
survival. The Journal of Thoracic and Cardiovascular Surgery [Internet]. Elsevier; 2005 [cited 2022 
Jan 14]; 130(1):151–9. Available from: https://www.jtcvs.org/article/S0022-5223(04)01601-
0/fulltext. 

81.  Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. Is standardised 18F-FDG 
uptake value an outcome predictor in patients with stage III non-small cell lung cancer? Eur J Nucl 
Med Mol Imaging [Internet]. 2006 [cited 2022 Mar 31]; 33(3):263–9. Available from: 
https://doi.org/10.1007/s00259-005-1953-2. 



 

172 

82.  Hanin F-X, Lonneux M, Cornet J, Noirhomme P, Coulon C, Distexhe J, et al. Prognostic value of FDG 
uptake in early stage non-small cell lung cancer. European Journal of Cardio-Thoracic Surgery 
[Internet]. 2008 [cited 2022 Jan 14]; 33(5):819–23. Available from: 
https://doi.org/10.1016/j.ejcts.2008.02.005. 

83.  Vansteenkiste JF, Stroobants SG, Dupont PJ, Leyn PRD, Verbeken EK, Deneffe GJ, et al. Prognostic 
Importance of the Standardized Uptake Value on 18F-Fluoro-2-Deoxy-Glucose–Positron Emission 
Tomography Scan in Non–Small-Cell Lung Cancer: An Analysis of 125 Cases. Journal of Clinical 
Oncology [Internet]. American Society of Clinical Oncology; 2016 [cited 2022 Jan 14]. Available 
from: https://ascopubs.org/doi/pdf/10.1200/JCO.1999.17.10.3201. 

84.  Mertoğlu A, Üçvet A, Balci G, Aksel N, Batum Ö, Cireli E, et al. Correlation of preoperative 
PET/computer tomography 18F-fluorodeoxyglucose uptake (maximum standardized uptake value) 
with prognosis in patients with operated lung cancer. Nuclear Medicine Communications 
[Internet]. 2022 [cited 2022 Apr 1]; 43(4):475–82. Available from: 
https://journals.lww.com/nuclearmedicinecomm/Abstract/2022/04000/Correlation_of_preoperat
ive_PET_computer.13.aspx. 

85.  Mostafa R, Abdelsamie Kandeel A, Abd Elkareem M, Nardo L, Abdelhafez YG. Pretherapy 18F-
fluorodeoxyglucose positron emission tomography/computed tomography robust radiomic 
features predict overall survival in non-small cell lung cancer. Nuclear Medicine Communications 
[Internet]. 2022 [cited 2022 Apr 1]. Available from: 
https://journals.lww.com/nuclearmedicinecomm/Abstract/9000/Pretherapy_18F_fluorodeoxygluc
ose_positron.97915.aspx. 

86.  Dong M, Liu J, Sun X, Xing L. Prognositc significance of SUVmax on pretreatment 18F-FDG PET/CT 
in early-stage non-small cell lung cancer treated with stereotactic body radiotherapy: A meta-
analysis. Journal of Medical Imaging and Radiation Oncology [Internet]. 2017 [cited 2022 Apr 1]; 
61(5):652–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1754-9485.12599. 

87.  Clarke K, Taremi M, Dahele M, Freeman M, Fung S, Franks K, et al. Stereotactic body radiotherapy 
(SBRT) for non-small cell lung cancer (NSCLC): Is FDG-PET a predictor of outcome? Radiotherapy 
and Oncology [Internet]. Elsevier; 2012 [cited 2022 Apr 1]; 104(1):62–6. Available from: 
https://www.thegreenjournal.com/article/S0167-8140(12)00223-X/abstract. 

88.  Takeda A, Yokosuka N, Ohashi T, Kunieda E, Fujii H, Aoki Y, et al. The maximum standardized uptake 
value (SUVmax) on FDG-PET is a strong predictor of local recurrence for localized non-small-cell 
lung cancer after stereotactic body radiotherapy (SBRT). Radiotherapy and Oncology [Internet]. 
Elsevier; 2011 [cited 2022 Apr 1]; 101(2):291–7. Available from: 
https://www.thegreenjournal.com/article/S0167-8140(11)00458-0/abstract. 

89.  Zhang X, Liu H, Balter P, Allen PK, Komaki R, Pan T, et al. Positron Emission Tomography for 
Assessing Local Failure After Stereotactic Body Radiotherapy for Non-Small-Cell Lung Cancer. 
International Journal of Radiation Oncology, Biology, Physics [Internet]. Elsevier; 2012 [cited 2022 
Apr 1]; 83(5):1558–65. Available from: https://www.redjournal.org/article/S0360-3016(11)03442-
0/abstract. 

90.  Satoh Y, Nambu A, Onishi H, Sawada E, Tominaga L, Kuriyama K, et al. Value of dual time point F-18 
FDG-PET/CT imaging for the evaluation of prognosis and risk factors for recurrence in patients with 
stage I non-small cell lung cancer treated with stereotactic body radiation therapy. European 
Journal of Radiology [Internet]. Elsevier; 2012 [cited 2022 Apr 1]; 81(11):3530–4. Available from: 
https://www.ejradiology.com/article/S0720-048X(11)00825-4/abstract. 

91.  Lee DS, Kim YS, Yoo IR, Kang YN, Kim SJ, Oh JK, et al. Long-term clinical experience of high-dose 
ablative lung radiotherapy: High pre-treatment [18F]Fluorodeoxyglucose-positron emission 



 

173 

tomography maximal standardized uptake value of the primary tumor adversely affects treatment 
outcome. Lung Cancer [Internet]. Elsevier; 2013 [cited 2022 Apr 1]; 80(2):172–8. Available from: 
https://www.lungcancerjournal.info/article/S0169-5002(13)00006-8/abstract. 

92.  Chang JY, Liu H, Balter P, Komaki R, Liao Z, Welsh J, et al. Clinical outcome and predictors of survival 
and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. 
Radiat Oncol [Internet]. 2012 [cited 2022 Apr 1]; 7:152. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444889/. 

93.  Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small 
Cell Lung Cancer: A Meta-Analysis. PLOS ONE [Internet]. Public Library of Science; 2016 [cited 2022 
Apr 1]; 11(1):e0146195. Available from: 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146195. 

94.  Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. 18F-FDG Uptake as a Biologic 
Prognostic Factor for Recurrence in Patients with Surgically Resected Non–Small Cell Lung Cancer. 
Journal of Nuclear Medicine [Internet]. Society of Nuclear Medicine; 2002 [cited 2022 Jan 14]; 
43(1):39–45. Available from: https://jnm.snmjournals.org/content/43/1/39. 

95.  Nair VS, Barnett PG, Ananth L, Gould MK. PET Scan 18F-Fluorodeoxyglucose Uptake and Prognosis 
in Patients With Resected Clinical Stage IA Non-small Cell Lung Cancer. CHEST [Internet]. Elsevier; 
2010 [cited 2022 Jan 14]; 137(5):1150–6. Available from: 
https://journal.chestnet.org/article/S0012-3692(10)60243-7/abstract. 

96.  Tomita M, Shimizu T, Ayabe T, Onitsuka T. Maximum SUV on positron emission tomography and 
serum CEA level as prognostic factors after curative resection for non-small cell lung cancer. Asia-
Pacific Journal of Clinical Oncology [Internet]. 2012 [cited 2022 Jan 14]; 8(3):244–7. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1743-7563.2012.01549.x. 

97.  Hwang SH, Yoo MR, Park CH, Jeon TJ, Kim SJ, Kim TH. Dynamic contrast-enhanced CT to assess 
metabolic response in patients with advanced non-small cell lung cancer and stable disease after 
chemotherapy or chemoradiotherapy. Eur Radiol [Internet]. 2013 [cited 2022 Jan 27]; 23(6):1573–
81. Available from: https://doi.org/10.1007/s00330-012-2755-0. 

98.  Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch C-M, Schäfers H-J. Value of F-18-
fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced 
bronchogenic carcinoma. The Journal of Thoracic and Cardiovascular Surgery [Internet]. Elsevier; 
2004 [cited 2022 Mar 31]; 128(6):892–9. Available from: https://www.jtcvs.org/article/S0022-
5223(04)01077-3/fulltext. 

99.  Guerra JLL, Gladish G, Komaki R, Gomez D, Zhuang Y, Liao Z. Large Decreases in Standardized 
Uptake Values After Definitive Radiation Are Associated with Better Survival of Patients with 
Locally Advanced Non–Small Cell Lung Cancer. Journal of Nuclear Medicine [Internet]. Society of 
Nuclear Medicine; 2012 [cited 2022 Apr 1]; 53(2):225–33. Available from: 
https://jnm.snmjournals.org/content/53/2/225. 

100.  Bollineni VR, Widder J, Pruim J, Langendijk JA, Wiegman EM. Residual 18F-FDG-PET Uptake 12 
Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts 
Local Control. International Journal of Radiation Oncology, Biology, Physics [Internet]. Elsevier; 
2012 [cited 2022 Apr 1]; 83(4):e551–5. Available from: https://www.redjournal.org/article/S0360-
3016(12)00055-7/abstract. 

101.  Jiménez Londoño GA, García Vicente AM, Bosque JJ, Amo-Salas M, Pérez-Beteta J, Honguero-
Martinez AF, et al. SUVmax to tumor perimeter distance: a robust radiomics prognostic biomarker 



 

174 

in resectable non-small cell lung cancer patients. Eur Radiol [Internet]. 2022 [cited 2022 Apr 1]. 
Available from: https://doi.org/10.1007/s00330-021-08523-3. 

102.  Im H-J, Pak K, Cheon GJ, Kang KW, Kim S-J, Kim I-J, et al. Prognostic value of volumetric parameters 
of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging 
[Internet]. 2015 [cited 2022 Apr 1]; 42(2):241–51. Available from: https://doi.org/10.1007/s00259-
014-2903-7. 

103.  Burdick MJ, Stephans KL, Reddy CA, Djemil T, Srinivas SM, Videtic GMM. Maximum Standardized 
Uptake Value From Staging FDG-PET/CT Does not Predict Treatment Outcome for Early-Stage Non–
Small-Cell Lung Cancer Treated With Stereotactic Body Radiotherapy. International Journal of 
Radiation Oncology, Biology, Physics [Internet]. Elsevier; 2010 [cited 2022 Apr 1]; 78(4):1033–9. 
Available from: https://www.redjournal.org/article/S0360-3016(09)03584-6/abstract. 

104.  Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of 
metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. 
Eur J Nucl Med Mol Imaging [Internet]. 2012 [cited 2022 Jan 14]; 39(1):27–38. Available from: 
https://doi.org/10.1007/s00259-011-1934-6. 

105.  Im H-J, Bradshaw T, Solaiyappan M, Cho SY. Current Methods to Define Metabolic Tumor Volume 
in Positron Emission Tomography: Which One is Better? Nucl Med Mol Imaging [Internet]. 2018 
[cited 2022 Jan 10]; 52(1):5–15. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777960/. 

106.  Unterrainer M, Taugner J, Käsmann L, Tufman A, Reinmuth N, Li M, et al. Differential role of 
residual metabolic tumor volume in inoperable stage III NSCLC after chemoradiotherapy ± immune 
checkpoint inhibition. Eur J Nucl Med Mol Imaging [Internet]. 2022 [cited 2022 Apr 1]; 49(4):1407–
16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921088/. 

107.  Eude F, Guisier F, Salaün M, Thiberville L, Pressat-Laffouilhere T, Vera P, et al. Prognostic value of 
total tumour volume, adding necrosis to metabolic tumour volume, in advanced or metastatic 
non-small cell lung cancer treated with first-line pembrolizumab. Ann Nucl Med [Internet]. 2022 
[cited 2022 Apr 1]; 36(3):224–34. Available from: https://doi.org/10.1007/s12149-021-01694-5. 

108.  Miles KA. Measurement of tissue perfusion by dynamic computed tomography. BJR [Internet]. The 
British Institute of Radiology; 1991 [cited 2022 Feb 11]; 64(761):409–12. Available from: 
https://www.birpublications.org/doi/10.1259/0007-1285-64-761-409. 

109.  Miles KA. Functional CT imaging in oncology. Eur Radiol [Internet]. 2003 [cited 2022 Feb 14]; 
13(5):134–8. Available from: https://doi.org/10.1007/s00330-003-2108-0. 

110.  Miles KA, Charnsangavej C, Lee FT, Fishman EK, Horton K, Lee TY. Application of CT in the 
investigation of angiogenesis in oncology. Acad Radiol. 2000; 7(10):840–50. 

111.  Djuric-Stefanovic A, Saranovic D, Masulovic D, Ivanovic A, Pesko P. Comparison between the 
deconvolution and maximum slope 64-MDCT perfusion analysis of the esophageal cancer: Is 
conversion possible? European Journal of Radiology [Internet]. Elsevier; 2013 [cited 2022 Feb 15]; 
82(10):1716–23. Available from: https://www.ejradiology.com/article/S0720-048X(13)00293-
3/fulltext. 

112.  Goh V, Halligan S, Bartram CI. Quantitative Tumor Perfusion Assessment with Multidetector CT: 
Are Measurements from Two Commercial Software Packages Interchangeable? Radiology 
[Internet]. Radiological Society of North America; 2007 [cited 2021 Dec 20]; 242(3):777–82. 
Available from: https://pubs.rsna.org/doi/10.1148/radiol.2423060279. 



 

175 

113.  Cuenod CA, Balvay D. Perfusion and vascular permeability: Basic concepts and measurement in 
DCE-CT and DCE-MRI. Diagnostic and Interventional Imaging [Internet]. 2013 [cited 2019 Nov 19]; 
94(12):1187–204. Available from: 
http://www.sciencedirect.com/science/article/pii/S2211568413003306. 

114.  Cuenod CA, Leconte I, Siauve N, Frouin F, Dromain C, Clément O, et al. Deconvolution Technique 
for Measuring Tissue Perfusion by Dynamic CT: Application to Normal and Metastatic Liver. 
Academic Radiology [Internet]. Elsevier; 2002 [cited 2022 Feb 11]; 9(1):S205–11. Available from: 
https://www.academicradiology.org/article/S1076-6332(03)80437-3/fulltext. 

115.  Mazzei MA, Squitieri NC, Sani E, Guerrini S, Imbriaco G, Di Lucia D, et al. Differences in perfusion 
CT parameter values with commercial software upgrades: a preliminary report about algorithm 
consistency and stability. Acta Radiol [Internet]. SAGE Publications; 2013 [cited 2021 Dec 17]; 
54(7):805–11. Available from: https://doi.org/10.1177/0284185113484643. 

116.  Ng Q-S, Goh V, Fichte H, Klotz E, Fernie P, Saunders MI, et al. Lung Cancer Perfusion at Multi–
Detector Row CT: Reproducibility of Whole Tumor Quantitative Measurements. Radiology 
[Internet]. Radiological Society of North America; 2006 [cited 2021 Dec 17]; 239(2):547–53. 
Available from: https://pubs.rsna.org/doi/10.1148/radiol.2392050568. 

117.  Han K, Yoon KW, Kim JH, Kim GM. Bronchial Artery Embolization for Hemoptysis in Primary Lung 
Cancer: A Retrospective Review of 84 Patients. Journal of Vascular and Interventional Radiology 
[Internet]. Elsevier; 2019 [cited 2022 Jan 28]; 30(3):428–34. Available from: 
https://www.jvir.org/article/S1051-0443(18)31444-1/fulltext. 

118.  Eldridge L, Moldobaeva A, Zhong Q, Jenkins J, Snyder M, Brown RH, et al. Bronchial Artery 
Angiogenesis Drives Lung Tumor Growth. Cancer Res [Internet]. American Association for Cancer 
Research; 2016 [cited 2022 Jan 28]; 76(20):5962–9. Available from: 
https://cancerres.aacrjournals.org/content/76/20/5962. 

119.  Yuan X, Zhang J, Ao G, Quan C, Tian Y, Li H. Lung cancer perfusion: can we measure pulmonary and 
bronchial circulation simultaneously? Eur Radiol [Internet]. 2012 [cited 2021 Dec 16]; 22(8):1665–
71. Available from: https://doi.org/10.1007/s00330-012-2414-5. 

120.  Boas FE, Kemeny NE, Sofocleous CT, Yeh R, Thompson VR, Hsu M, et al. Bronchial or Pulmonary 
Artery Chemoembolization for Unresectable and Unablatable Lung Metastases: A Phase I Clinical 
Trial. Radiology [Internet]. Radiological Society of North America; 2021 [cited 2022 Jan 28]; 
301(2):474–84. Available from: https://pubs.rsna.org/doi/10.1148/radiol.2021210213. 

121.  Li XS, Fan HX, Fang H, Huang H, Song YL, Zhou CW. Value of Whole-Tumor Dual-Input Perfusion CT 
in Predicting the Effect of Multiarterial Infusion Chemotherapy on Advanced Non–Small Cell Lung 
Cancer. American Journal of Roentgenology [Internet]. American Roentgen Ray Society; 2014 
[cited 2022 Jan 26]; 203(5):W497–505. Available from: 
https://www.ajronline.org/doi/10.2214/AJR.13.11621. 

122.  Deng L, Tang H, Qiang J, Wang J, Xiao S. Blood Supply of Early Lung Adenocarcinomas in Mice and 
the Tumor-supplying Vessel Relationship: A Micro-CT Angiography Study. Cancer Prev Res 
[Internet]. American Association for Cancer Research; 2020 [cited 2022 Jan 28]; 13(12):989–96. 
Available from: https://cancerpreventionresearch.aacrjournals.org/content/13/12/989. 

123.  Nguyen-Kim TDL, Frauenfelder T, Strobel K, Veit-Haibach P, Huellner MW. Assessment of bronchial 
and pulmonary blood supply in non-small cell lung cancer subtypes using computed tomography 
perfusion. Investigative Radiology [Internet]. Lippincott Williams & Wilkins; 2015 [cited 2022 Feb 
4]; 50(3):179–86. Available from: https://www.zora.uzh.ch/id/eprint/103173/. 



 

176 

124.  Chu LL, Knebel RJ, Shay AD, Santos J, Badawi RD, Gandara DR, et al. CT perfusion imaging of lung 
cancer: benefit of motion correction for blood flow estimates. Eur Radiol [Internet]. 2018 [cited 
2021 Dec 16]; 28(12):5069–75. Available from: https://doi.org/10.1007/s00330-018-5492-1. 

125.  Bevilacqua A, Barone D, Malavasi S, Gavelli G. Quantitative Assessment of Effects of Motion 
Compensation for Liver and Lung Tumors in CT Perfusion. Academic Radiology [Internet]. Elsevier; 
2014 [cited 2022 Feb 15]; 21(11):1416–26. Available from: 
https://www.academicradiology.org/article/S1076-6332(14)00233-5/fulltext. 

126.  Ohno Y, Koyama H, Matsumoto K, Onishi Y, Takenaka D, Fujisawa Y, et al. Differentiation of 
Malignant and Benign Pulmonary Nodules with Quantitative First-Pass 320–Detector Row 
Perfusion CT versus FDG PET/CT. Radiology [Internet]. 2011 [cited 2019 Nov 19]; 258(2):599–609. 
Available from: https://pubs.rsna.org/doi/10.1148/radiol.10100245. 

127.  Chandler A, Wei W, Herron DH, Anderson EF, Johnson VE, Ng CS. Semiautomated Motion 
Correction of Tumors in Lung CT-perfusion Studies. Academic Radiology [Internet]. Elsevier; 2011 
[cited 2022 Feb 15]; 18(3):286–93. Available from: 
https://www.academicradiology.org/article/S1076-6332(10)00576-3/fulltext. 

128.  García-Figueiras R, Goh VJ, Padhani AR, Baleato-González S, Garrido M, León L, et al. CT Perfusion 
in Oncologic Imaging: A Useful Tool? American Journal of Roentgenology [Internet]. 2013 [cited 
2019 Nov 18]; 200(1):8–19. Available from: 
http://www.ajronline.org/doi/abs/10.2214/AJR.11.8476. 

129.  Miles KA, Lee T-Y, Goh V, Klotz E, Cuenod C, Bisdas S, et al. Current status and guidelines for the 
assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. 
Eur Radiol [Internet]. 2012 [cited 2022 Feb 18]; 22(7):1430–41. Available from: 
https://doi.org/10.1007/s00330-012-2379-4. 

130.  Huang T, Sun H, Luo X, Zhang X, Jin K, Wang F, et al. Correlation study between flash dual source CT 
perfusion imaging and regional lymph node metastasis of non-small cell lung cancer. BMC Cancer 
[Internet]. 2020 [cited 2021 Dec 16]; 20(1):547. Available from: https://doi.org/10.1186/s12885-
020-07032-8. 

131.  Tateishi U, Nishihara H, Watanabe S, Morikawa T, Abe K, Miyasaka K. Tumor angiogenesis and 
dynamic CT in lung adenocarcinoma: radiologic-pathologic correlation. J Comput Assist Tomogr 
[Internet]. 2001 [cited 2022 Feb 14]; 25(1):23–7. Available from: 
https://doi.org/10.1097/00004728-200101000-00004. 

132.  Spira D, Neumeister H, Spira SM, Hetzel J, Spengler W, Weyhern CH von, et al. Assessment of 
Tumor Vascularity in Lung Cancer Using Volume Perfusion CT (VPCT) With Histopathologic 
Comparison: A Further Step Toward an Individualized Tumor Characterization. Journal of 
Computer Assisted Tomography [Internet]. 2013 [cited 2022 Feb 24]; 37(1):15–21. Available from: 
https://journals.lww.com/jcat/Abstract/2013/01000/Assessment_of_Tumor_Vascularity_in_Lung_
Cancer.3.aspx. 

133.  Sauter AW, Winterstein S, Spira D, Hetzel J, Schulze M, Mueller M, et al. Multifunctional Profiling of 
Non–Small Cell Lung Cancer Using 18F-FDG PET/CT and Volume Perfusion CT. Journal of Nuclear 
Medicine [Internet]. Society of Nuclear Medicine; 2012 [cited 2022 Feb 24]; 53(4):521–9. Available 
from: https://jnm.snmjournals.org/content/53/4/521. 

134.  Mineo TC, Ambrogi V, Baldi A, Rabitti C, Bollero P, Vincenzi B, et al. Prognostic impact of VEGF, 
CD31, CD34, and CD105 expression and tumour vessel invasion after radical surgery for IB–IIA non-
small cell lung cancer. Journal of Clinical Pathology [Internet]. 2004 [cited 2019 Oct 31]; 57(6):591–
7. Available from: https://jcp.bmj.com/content/57/6/591. 



 

177 

135.  Weidner N. Current pathologic methods for measuring intratumoral microvessel density within 
breast carcinoma and other solid tumors. Breast Cancer Res Tr [Internet]. 1995 [cited 2021 Dec 
16]; 36(2):169–80. Available from: https://doi.org/10.1007/BF00666038. 

136.  Weidner N, Semple JP, Welch WR, Folkman J. Tumor Angiogenesis and Metastasis — Correlation in 
Invasive Breast Carcinoma. N Engl J Med [Internet]. Massachusetts Medical Society; 1991 [cited 
2022 Feb 21]; 324(1):1–8. Available from: 
https://www.nejm.org/doi/10.1056/NEJM199101033240101. 

137.  Chen M-L, Wei Y-Y, Li X-T, Qi L-P, Sun Y-S. Low-dose spectral CT perfusion imaging of lung cancer 
quantitative analysis in different pathological subtypes. Transl Cancer Res [Internet]. 2021 [cited 
2022 Feb 18]; 10(6):2841–8. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797941/. 

138.  Ovali GY, Sakar A, Göktan C, Çelik P, Yorgancıoğlu A, Nese N, et al. Thorax perfusion CT in non-small 
cell lung cancer. Computerized Medical Imaging and Graphics [Internet]. 2007 [cited 2022 Feb 18]; 
31(8):686–91. Available from: 
https://www.sciencedirect.com/science/article/pii/S0895611107001310. 

139.  Fraioli F, Anzidei M, Serra G, Liberali S, Fiorelli A, Zaccagna F, et al. Whole-tumour CT-perfusion of 
unresectable lung cancer for the monitoring of anti-angiogenetic chemotherapy effects. BJR 
[Internet]. The British Institute of Radiology; 2013 [cited 2021 Dec 16]; 86(1029):20120174. 
Available from: https://www.birpublications.org/doi/10.1259/bjr.20120174. 

140.  Fraioli F, Anzidei M, Zaccagna F, Mennini ML, Serra G, Gori B, et al. Whole-Tumor Perfusion CT in 
Patients with Advanced Lung Adenocarcinoma Treated with Conventional and Antiangiogenetic 
Chemotherapy: Initial Experience. Radiology [Internet]. 2011 [cited 2019 Nov 26]; 259(2):574–82. 
Available from: https://pubs.rsna.org/doi/10.1148/radiol.11100600. 

141.  Shi L, Zhou X-L, Sun J-J, Huang J-H, Wang X, Li K, et al. Whole-tumor perfusion CT using texture 
analysis in unresectable stage IIIA/B non-small cell lung cancer treated with recombinant human 
endostatin. Quantitative Imaging in Medicine and Surgery [Internet]. AME Publishing Company; 
2019 [cited 2021 Dec 16]; 9(6):96875–975. Available from: 
https://qims.amegroups.com/article/view/26541. 

142.  Tacelli N, Remy-Jardin M, Copin M-C, Scherpereel A, Mensier E, Jaillard S, et al. Assessment of 
Non–Small Cell Lung Cancer Perfusion: Pathologic-CT Correlation in 15 Patients. Radiology 
[Internet]. 2010 [cited 2019 Nov 26]; 257(3):863–71. Available from: 
https://pubs.rsna.org/doi/10.1148/radiol.10100181. 

143.  Miles KA, Griffiths MR, Fuentes MA. Standardized Perfusion Value: Universal CT Contrast 
Enhancement Scale that Correlates with FDG PET in Lung Nodules. Radiology [Internet]. 2001 
[cited 2019 Oct 31]; 220(2):548–53. Available from: 
https://pubs.rsna.org/doi/10.1148/radiology.220.2.r01au26548. 

144.  Yang L, Sun L, Liu J, Liu Q. Role of low dose 256-slice CT perfusion imaging in predicting mediastinal 
lymph node metastasis of lung cancer. Rev Assoc Med Bras [Internet]. Associação Médica 
Brasileira; 2019 [cited 2021 Dec 16]; 65:761–6. Available from: 
http://www.scielo.br/j/ramb/a/F5VLMjWwJVvfZXZYrz3v5YL/?lang=en. 

145.  Tacelli N, Santangelo T, Scherpereel A, Duhamel A, Deken V, Klotz E, et al. Perfusion CT allows 
prediction of therapy response in non-small cell lung cancer treated with conventional and anti-
angiogenic chemotherapy. Eur Radiol [Internet]. 2013 [cited 2021 Dec 16]; 23(8):2127–36. 
Available from: https://doi.org/10.1007/s00330-013-2821-2. 



 

178 

146.  Yang D-M, Palma DA, Kwan K, Louie AV, Malthaner R, Fortin D, et al. Predicting pathological 
complete response (pCR) after stereotactic ablative radiation therapy (SABR) of lung cancer using 
quantitative dynamic [18F]FDG PET and CT perfusion: a prospective exploratory clinical study. 
Radiat Oncol [Internet]. 2021 [cited 2022 Feb 24]; 16:11. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805034/. 

147.  Sudarski S, Hagelstein C, Weis M, Schoenberg SO, Apfaltrer P. Dual-energy snap-shot perfusion CT 
in suspect pulmonary nodules and masses and for lung cancer staging. European Journal of 
Radiology [Internet]. Elsevier; 2015 [cited 2021 Dec 16]; 84(12):2393–400. Available from: 
https://www.ejradiology.com/article/S0720-048X(15)30116-9/fulltext. 

148.  Yuan X, Zhang J, Quan C, Cao J, Ao G, Tian Y, et al. Differentiation of malignant and benign 
pulmonary nodules with first-pass dual-input perfusion CT. Eur Radiol [Internet]. 2013 [cited 2019 
Nov 19]; 23(9):2469–74. Available from: https://doi.org/10.1007/s00330-013-2842-x. 

149.  Huang C, Liang J, Lei X, Xu X, Xiao Z, Luo L. Diagnostic Performance of Perfusion Computed 
Tomography for Differentiating Lung Cancer from Benign Lesions: A Meta-Analysis. Med Sci Monit 
[Internet]. 2019 [cited 2022 Feb 24]; 25:3485–94. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526743/. 

150.  Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, et al. Tumor Heterogeneity and 
Permeability as Measured on the CT Component of PET/CT Predict Survival in Patients with Non–
Small Cell Lung Cancer. Clin Cancer Res [Internet]. 2013 [cited 2020 Apr 2]; 19(13):3591–9. 
Available from: https://clincancerres.aacrjournals.org/content/19/13/3591. 

151.  Huellner MW, Collen TD, Gut P, Winterhalder R, Pauli C, Diebold J, et al. Multiparametric PET/CT-
perfusion does not add significant additional information for initial staging in lung cancer 
compared with standard PET/CT. EJNMMI Res [Internet]. 2014 [cited 2019 Nov 18]; 4:6. Available 
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901766/. 

152.  Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Transactions 
on Systems, Man, and Cybernetics. 1973; SMC-3(6):610–21. 

153.  Julesz B. Experiments in the visual perception of texture. Sci Am. 1975; 232(4):34–43. 

154.  Galloway MM. Texture analysis using gray level run lengths. Computer Graphics and Image 
Processing [Internet]. 1975 [cited 2022 Apr 21]; 4(2):172–9. Available from: 
https://www.sciencedirect.com/science/article/pii/S0146664X75800086. 

155.  Haralick RM. Statistical and structural approaches to texture. Proceedings of the IEEE. 1979; 
67(5):786–804. 

156.  Amadasun M, King R. Textural features corresponding to textural properties. IEEE Transactions on 
Systems Man and Cybernetics. 1989; 19(5):1264–74. 

157.  He D-C, Wang L. Texture features based on texture spectrum. Pattern Recognition [Internet]. 1991 
[cited 2022 Apr 21]; 24(5):391–9. Available from: 
https://www.sciencedirect.com/science/article/pii/0031320391900527. 

158.  Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clinical Radiology 
[Internet]. Elsevier; 2004 [cited 2022 Apr 21]; 59(12):1061–9. Available from: 
https://www.clinicalradiologyonline.net/article/S0009-9260(04)00265-X/fulltext. 



 

179 

159.  Maria Petrou, Pedro García Sevilla. Image Processing: Dealing with Texture [Internet]. John Wiley 
& Sons, Ltd; 2006 [cited 2022 Apr 21]. Available from: 
https://onlinelibrary.wiley.com/doi/book/10.1002/047003534X. 

160.  Thibault G, FERTIL B, Navarro C, Pereira S, Lévy N, Sequeira J, et al. Texture Indexes and Gray Level 
Size Zone Matrix Application to Cell Nuclei Classification. 2009. 

161.  Ganeshan B, Miles KA, Young RCD, Chatwin CR. Texture analysis in non-contrast enhanced CT: 
Impact of malignancy on texture in apparently disease-free areas of the liver. European Journal of 
Radiology [Internet]. Elsevier; 2009 [cited 2022 Apr 21]; 70(1):101–10. Available from: 
https://www.ejradiology.com/article/S0720-048X(07)00607-9/fulltext. 

162.  Lopes R, Betrouni N. Fractal and multifractal analysis: A review. Medical Image Analysis [Internet]. 
2009 [cited 2022 Apr 21]; 13(4):634–49. Available from: 
https://www.sciencedirect.com/science/article/pii/S1361841509000395. 

163.  Armi L, Fekri-Ershad S. Texture image analysis and texture classification methods - A review. 
arXiv:1904.06554 [cs] [Internet]. 2019 [cited 2022 Apr 21]. Available from: 
http://arxiv.org/abs/1904.06554. 

164.  Xu Y, Yang X, Ling H, Ji H. A new texture descriptor using multifractal analysis in multi-orientation 
wavelet pyramid. 2010 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition [Internet]. San Francisco, CA, USA: IEEE; 2010 [cited 2022 Apr 21]. Available from: 
http://ieeexplore.ieee.org/document/5540217/. 

165.  Cross GR, Jain AK. Markov random field texture models. IEEE Trans Pattern Anal Mach Intell. 1983; 
5(1):25–39. 

166.  Mao J, Jain AK. Texture classification and segmentation using multiresolution simultaneous 
autoregressive models. Pattern Recognit. 1992. 

167.  Procter AJ, Jacob J. Visual vs. computer-based computed tomography analysis for the identification 
of functional patterns in interstitial lung diseases. Curr Opin Pulm Med. 2019; 25(5):426–33. 

168.  Shi B, Zhang G-M-Y, Xu M, Jin Z-Y, Sun H. Distinguishing metastases from benign adrenal masses: 
what can CT texture analysis do? Acta Radiol [Internet]. SAGE Publications; 2019 [cited 2022 May 
4]; 60(11):1553–61. Available from: https://doi.org/10.1177/0284185119830292. 

169.  Yu H, Parakh A, Blake M, McDermott S. Texture Analysis as a Radiomic Marker for Differentiating 
Benign From Malignant Adrenal Tumors. Journal of Computer Assisted Tomography [Internet]. 
2020 [cited 2022 May 4]; 44(5):766–71. Available from: 
https://journals.lww.com/jcat/pages/articleviewer.aspx?year=2020&issue=09000&article=00021&
type=Fulltext. 

170.  Andersen MB, Bodtger U, Andersen IR, Thorup KS, Ganeshan B, Rasmussen F. Metastases or 
benign adrenal lesions in patients with histopathological verification of lung cancer: Can CT texture 
analysis distinguish? European Journal of Radiology [Internet]. Elsevier; 2021 [cited 2022 May 4]; 
138. Available from: https://www.ejradiology.com/article/S0720-048X(21)00144-3/fulltext. 

171.  Ren Z, Che J, Wu XW, Xia J. Analysis of KRAS Mutation Status Prediction Model for Colorectal 
Cancer Based on Medical Imaging. Computational and Mathematical Methods in Medicine 
[Internet]. Hindawi; 2021 [cited 2022 May 4]; 2021:e3953442. Available from: 
https://www.hindawi.com/journals/cmmm/2021/3953442/. 



 

180 

172.  Rajamohan N, Goyal A, Kandasamy D, Bhalla AS, Parshad R, Jain D, et al. CT texture analysis in 
evaluation of thymic tumors and thymic hyperplasia: correlation with the international thymic 
malignancy interest group (ITMIG) stage and WHO grade. BJR [Internet]. The British Institute of 
Radiology; 2021 [cited 2022 May 4]; 94(1128):20210583. Available from: 
https://www.birpublications.org/doi/10.1259/bjr.20210583. 

173.  Guerrisi A, Russillo M, Loi E, Ganeshan B, Ungania S, Desiderio F, et al. Exploring CT Texture 
Parameters as Predictive and Response Imaging Biomarkers of Survival in Patients With Metastatic 
Melanoma Treated With PD-1 Inhibitor Nivolumab: A Pilot Study Using a Delta-Radiomics 
Approach. Frontiers in Oncology [Internet]. 2021 [cited 2022 May 4]; 11. Available from: 
https://www.frontiersin.org/article/10.3389/fonc.2021.704607. 

174.  Brown AL, Jeong J, Wahab RA, Zhang B, Mahoney MC. Diagnostic accuracy of MRI textural analysis 
in the classification of breast tumors. Clinical Imaging [Internet]. Elsevier; 2021 [cited 2022 May 4]; 
77:86–91. Available from: https://www.clinicalimaging.org/article/S0899-7071(21)00087-
5/fulltext. 

175.  MacIver CL, Busaidi AA, Ganeshan B, Maynard JA, Wastling S, Hyare H, et al. Filtration-Histogram 
Based Magnetic Resonance Texture Analysis (MRTA) for the Distinction of Primary Central Nervous 
System Lymphoma and Glioblastoma. Journal of Personalized Medicine [Internet]. 
Multidisciplinary Digital Publishing Institute; 2021 [cited 2022 May 4]; 11(9):876. Available from: 
https://www.mdpi.com/2075-4426/11/9/876. 

176.  Song SE, Seo BK, Cho KR, Woo OH, Ganeshan B, Kim ES, et al. Prediction of Inflammatory Breast 
Cancer Survival Outcomes Using Computed Tomography-Based Texture Analysis. Frontiers in 
Bioengineering and Biotechnology [Internet]. 2021 [cited 2022 May 4]; 9. Available from: 
https://www.frontiersin.org/article/10.3389/fbioe.2021.695305. 

177.  An H, Wang Y, Wong EMF, Lyu S, Han L, Perucho JAU, et al. CT texture analysis in histological 
classification of epithelial ovarian carcinoma. Eur Radiol [Internet]. 2021 [cited 2022 May 4]; 
31(7):5050–8. Available from: https://doi.org/10.1007/s00330-020-07565-3. 

178.  Agazzi GM, Ravanelli M, Roca E, Medicina D, Balzarini P, Pessina C, et al. CT texture analysis for 
prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung 
cancer. Radiol med [Internet]. 2021 [cited 2022 May 4]; 126(6):786–94. Available from: 
https://doi.org/10.1007/s11547-020-01323-7. 

179.  Park H, Qin L, Guerra P, Bay CP, Shinagare AB. Decoding incidental ovarian lesions: use of texture 
analysis and machine learning for characterization and detection of malignancy. Abdom Radiol 
[Internet]. 2021 [cited 2022 May 4]; 46(6):2376–83. Available from: 
https://doi.org/10.1007/s00261-020-02668-3. 

180.  Szychot E, Youssef A, Ganeshan B, Endozo R, Hyare H, Gains J, et al. Predicting outcome in 
childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis. J 
Neuroradiol. 2021; 48(4):243–7. 

181.  Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA. Texture analysis of non-small cell lung 
cancer on unenhanced computed tomography: initial evidence for a relationship with tumour 
glucose metabolism and stage. Cancer Imaging [Internet]. 2010 [cited 2022 Apr 20]; 10(1):137–43. 
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904029/. 

182.  Ganeshan B, Miles K, Afaq A, Punwani S, Rodriguez M, Wan S, et al. Texture Analysis of Fractional 
Water Content Images Acquired during PET/MRI: Initial Evidence for an Association with Total 
Lesion Glycolysis, Survival and Gene Mutation Profile in Primary Colorectal Cancer. Cancers 



 

181 

[Internet]. Multidisciplinary Digital Publishing Institute; 2021 [cited 2022 May 4]; 13(11):2715. 
Available from: https://www.mdpi.com/2072-6694/13/11/2715. 

183.  Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non–Small Cell Lung Cancer: 
Histopathologic Correlates for Texture Parameters at CT. Radiology [Internet]. Radiological Society 
of North America; 2013 [cited 2022 Apr 20]; 266(1):326–36. Available from: 
https://pubs.rsna.org/doi/10.1148/radiol.12112428. 

184.  Groves AM, Kayani I, Dickson JC, Townsend C, Croasdale I, Syed R, et al. Oral contrast medium in 
PET/CT: should you or shouldn’t you? Eur J Nucl Med Mol Imaging [Internet]. 2005 [cited 2021 Dec 
17]; 32(10):1160–6. Available from: https://doi.org/10.1007/s00259-005-1833-9. 

185.  General Electric Company,. CT Perfusion 4 User Guide. 2011. 

186.  Groves AM, Shastry M, Rodriguez-Justo M, Malhotra A, Endozo R, Davidson T, et al. 18F-FDG PET 
and biomarkers for tumour angiogenesis in early breast cancer. Eur J Nucl Med Mol Imaging 
[Internet]. 2011 [cited 2022 Aug 8]; 38(1):46–52. Available from: https://doi.org/10.1007/s00259-
010-1590-2. 

187.  Yao Y, Pan Y, Chen J, Sun X, Qiu Y, Ding Y. Endoglin (CD105) Expression in Angiogenesis of Primary 
Hepatocellular Carcinomas: Analysis using Tissue Microarrays and Comparisons with CD34 and 
VEGF. Ann Clin Lab Sci [Internet]. Association of Clinical Scientists; 2007 [cited 2022 Aug 8]; 
37(1):39–48. Available from: http://www.annclinlabsci.org/content/37/1/39. 

188.  Uzzan B, Nicolas P, Cucherat M, Perret G-Y. Microvessel density as a prognostic factor in women 
with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004; 
64(9):2941–55. 

189.  R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: 
R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/. 

190.  Therneau TM. A Package for Survival Analysis in S [Internet]. 2015. Available from: https://CRAN.R-
project.org/package=survival. 

191.  Terry M. Therneau, Patricia M. Grambsch. Modeling Survival Data: Extending the Cox Model. New 
York: Springer; 2000. 

192.  Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag New York; 
2016. Available from: https://ggplot2.tidyverse.org. 

193.  Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the 
tidyverse. Journal of Open Source Software. 2019; 4(43):1686. 

194.  Heagerty PJ, Saha-Chaudhuri  packaging by P. survivalROC: Time-dependent ROC curve estimation 
from censored survival data [Internet]. 2013. Available from: https://CRAN.R-
project.org/package=survivalROC. 

195.  Yousefi-Koma A, Panah-Moghaddam M, Kalff V. The Utility of Metabolic Imaging by 18F-FDG 
PET/CT in Lung Cancer: Impact on Diagnosis and Staging. Tanaffos [Internet]. 2013 [cited 2021 Dec 
22]; 12(1):16–25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153235/. 

196.  Brenner H, Rachet B. Hybrid analysis for up-to-date long-term survival rates in cancer registries 
with delayed recording of incident cases. European Journal of Cancer [Internet]. Elsevier; 2004 
[cited 2022 Jan 14]; 40(16):2494–501. Available from: https://www.ejcancer.com/article/S0959-
8049(04)00608-2/fulltext. 



 

182 

197.  Chen DL, Mintun MA, Schuster DP. Comparison of Methods to Quantitate 18F-FDG Uptake with 
PET During Experimental Acute Lung Injury. Journal of Nuclear Medicine [Internet]. Society of 
Nuclear Medicine; 2004 [cited 2022 Jan 14]; 45(9):1583–90. Available from: 
https://jnm.snmjournals.org/content/45/9/1583. 

198.  Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ. Simplified Measurement of 
Deoxyglucose Utilization Rate. J Nucl Med [Internet]. Society of Nuclear Medicine; 1996 [cited 
2020 Apr 27]; 37(6):950–5. Available from: http://jnm.snmjournals.org/content/37/6/950. 

199.  Krak NC, Hoeven JJM van der, Hoekstra OS, Twisk JWR, Wall E van der, Lammertsma AA. Measuring 
[18F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J 
Nucl Med Mol Imaging [Internet]. 2003 [cited 2020 Apr 29]; 30(5):674–81. Available from: 
https://doi.org/10.1007/s00259-003-1127-z. 

200.  Kiessling F, Boese J, Corvinus C, Ederle JR, Zuna I, Schoenberg SO, et al. Perfusion CT in patients 
with advanced bronchial carcinomas: a novel chance for characterization and treatment 
monitoring? Eur Radiol [Internet]. 2004 [cited 2022 Jan 27]; 14(7):1226–33. Available from: 
https://doi.org/10.1007/s00330-004-2288-2. 

201.  Hori S, Nakamura T, Kennoki N, Dejima I, Hori A. Transarterial management of advance lung cancer. 
Jpn J Clin Oncol [Internet]. 2021 [cited 2022 Jan 28]; 51(6):851–6. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163058/. 

202.  Chen X, Xu Y, Duan J, Li C, Sun H, Wang W. Correlation of iodine uptake and perfusion parameters 
between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer. Medicine 
(Baltimore) [Internet]. 2017 [cited 2022 Jan 26]; 96(28):e7479. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515760/. 

203.  Meyer CR, Armato SG, Fenimore CP, McLennan G, Bidautn LM, Barboriak DP, et al. Quantitative 
Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, 
and Error Sources. Translational Oncology [Internet]. 2009 [cited 2019 Oct 30]; 2(4):198–210. 
Available from: http://www.sciencedirect.com/science/article/pii/S1936523309800259. 

204.  Nelson DA, Tan T-T, Rabson AB, Anderson D, Degenhardt K, White E. Hypoxia and defective 
apoptosis drive genomic instability and tumorigenesis. Genes Dev [Internet]. 2004 [cited 2022 
May 26]; 18(17):2095–107. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC515288/. 

205.  Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin 
Oncol [Internet]. Nature Publishing Group; 2018 [cited 2022 May 26]; 15(2):81–94. Available from: 
https://www.nature.com/articles/nrclinonc.2017.166. 

206.  Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, et al. Frequent and Focal FGFR1 
Amplification Associates With Therapeutically Tractable FGFR1 Dependency in Squamous-cell Lung 
Cancer. Sci Transl Med [Internet]. 2010 [cited 2022 Jul 21]; 2(62):62ra93. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990281/. 

207.  Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing 
guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: 
guideline from the College of American Pathologists, International Association for the Study of 
Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013; 15(4):415–53. 

208.  Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated Molecular 
Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine 
Kinase Inhibitors: Guideline From the College of American Pathologists, the International 



 

183 

Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol 
Diagn. 2018; 20(2):129–59. 

209.  Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T, Westbroek EM, et al. Magnetic resonance image 
features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. 
Science Translational Medicine [Internet]. American Association for the Advancement of Science; 
2015 [cited 2022 Aug 4]; 7(303):303ra138-303ra138. Available from: 
https://www.science.org/doi/10.1126/scitranslmed.aaa7582. 

210.  Sacher AG, Dahlberg SE, Heng J, Mach S, Jänne PA, Oxnard GR. Association Between Younger Age 
and Targetable Genomic Alterations and Prognosis in Non–Small-Cell Lung Cancer. JAMA Oncology 
[Internet]. 2016 [cited 2022 Aug 4]; 2(3):313–20. Available from: 
https://doi.org/10.1001/jamaoncol.2015.4482. 

211.  Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR mutation status in lung 
adenocarcinoma on computed tomography image using deep learning. European Respiratory 
Journal [Internet]. European Respiratory Society; 2019 [cited 2022 Aug 4]; 53(3). Available from: 
https://erj.ersjournals.com/content/53/3/1800986. 

212.  Loughran CF, Keeling CR. Seeding of tumour cells following breast biopsy: a literature review. BJR 
[Internet]. The British Institute of Radiology; 2011 [cited 2022 Aug 4]; 84(1006):869–74. Available 
from: https://www.birpublications.org/doi/full/10.1259/bjr/77245199. 

213.  Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding 
tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 
[Internet]. 2014 [cited 2022 Aug 4]; 5:4006. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059926/. 

214.  Karlo CA, Di Paolo PL, Chaim J, Hakimi AA, Ostrovnaya I, Russo P, et al. Radiogenomics of clear-cell 
renal cell carcinoma: Associations between CT imaging features and mutations. Radiology 
[Internet]. 2014 [cited 2022 Aug 4]; 270(2):464–71. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011179/. 

215.  Gevaert O, Xu J, Hoang CD, Leung AN, Xu Y, Quon A, et al. Non–Small Cell Lung Cancer: Identifying 
Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data—Methods 
and Preliminary Results. Radiology [Internet]. 2012 [cited 2022 Aug 4]; 264(2):387–96. Available 
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401348/. 

216.  Zhou M, Leung A, Echegaray S, Gentles A, Shrager JB, Jensen KC, et al. Non–Small Cell Lung Cancer 
Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with 
Prognostic Implications. Radiology [Internet]. 2018 [cited 2022 Aug 4]; 286(1):307–15. Available 
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749594/. 

217.  Caetano MS, Zhang H, Cumpian AM, Gong L, Unver N, Ostrin EJ, et al. IL6 Blockade Reprograms the 
Lung Tumor Microenvironment to Limit the Development and Progression of K-ras-Mutant Lung 
Cancer. Cancer Res. 2016; 76(11):3189–99. 

218.  Weichand B, Popp R, Dziumbla S, Mora J, Strack E, Elwakeel E, et al. S1PR1 on tumor-associated 
macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J Exp Med [Internet]. 
2017 [cited 2022 Sep 25]; 214(9):2695–713. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584110/. 

219.  Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms and Consequences. 
Immunity [Internet]. 2019 [cited 2022 Sep 25]; 51(1):27–41. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831096/. 



 

184 

220.  Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-inducible carbonic 
anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation 
of the intracellular pH. Cancer Res. 2009; 69(1):358–68. 

221.  Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T, Tokunaga O. Organ-specific endoglin (CD105) 
expression in the angiogenesis of human cancers. Pathology International [Internet]. 2006 [cited 
2022 Sep 25]; 56(12):717–23. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-1827.2006.02037.x. 

222.  Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential 
applications. The FASEB Journal [Internet]. 2003 [cited 2022 Sep 25]; 17(9):984–92. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1096/fj.02-0634rev. 

223.  Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T, Tokunaga O. Endoglin (CD105) expression in 
angiogenesis of colon cancer: analysis using tissue microarrays and comparison with other 
endothelial markers. Virchows Arch [Internet]. 2006 [cited 2022 Sep 25]; 448(2):127–34. Available 
from: https://doi.org/10.1007/s00428-005-0062-8. 

224.  Zhao H, Sun J, Shao J, Zou Z, Qiu X, Wang E, et al. Glucose Transporter 1 Promotes the Malignant 
Phenotype of Non-Small Cell Lung Cancer through Integrin β1/Src/FAK Signaling. J Cancer 
[Internet]. 2019 [cited 2022 Sep 25]; 10(20):4989–97. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775508/. 

225.  Liang X, Yang D, Hu J, Hao X, Gao J, Mao Z. Hypoxia Inducible Factor-1alpha Expression Correlates 
with Vascular Endothelial Growth Factor-C Expression and Lymphangiogenesis/Angiogenesis in 
Oral Squamous Cell Carcinoma. Anticancer Research [Internet]. International Institute of 
Anticancer Research; 2008 [cited 2022 Aug 8]; 28(3A):1659–66. Available from: 
https://ar.iiarjournals.org/content/28/3A/1659. 

226.  Swinson DEB, Jones JL, Cox G, Richardson D, Harris AL, O’Byrne KJ. Hypoxia-inducible factor-1α in 
non small cell lung cancer: Relation to growth factor, protease and apoptosis pathways. 
International Journal of Cancer [Internet]. 2004 [cited 2022 Sep 25]; 111(1):43–50. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.20052. 

227.  Ren W, Mi D, Yang K, Cao N, Tian J, Li Z, et al. The expression of hypoxia-inducible factor-1α and its 
clinical significance in lung cancer: a systematic review and meta-analysis. Swiss Medical Weekly 
[Internet]. EMH Media; 2013 [cited 2022 Sep 25]; (35). Available from: 
https://smw.ch/article/doi/smw.2013.13855. 

228.  Liu Y-Z, Wang B-S, Jiang Y-Y, Cao J, Hao J-J, Zhang Y, et al. MCMs expression in lung cancer: 
implication of prognostic significance. J Cancer [Internet]. 2017 [cited 2022 Sep 25]; 8(18):3641–7. 
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688916/. 

229.  Yang J, Ramnath N, Moysich KB, Asch HL, Swede H, Alrawi SJ, et al. Prognostic significance of 
MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer [Internet]. 2006 [cited 2022 
Sep 25]; 6:203. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1555597/. 

230.  Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, Williams GH, et al. Minichromosome 
Maintenance Proteins as Biological Markers of Dysplasia and Malignancy1. Clinical Cancer 
Research. 1999; 5(8):2121–32. 

231.  Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer [Internet]. 2013 [cited 2022 
Sep 25]; 13(12):871–82. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011842/. 



 

185 

232.  Frezzetti D, Gallo M, Maiello MR, D’Alessio A, Esposito C, Chicchinelli N, et al. VEGF as a potential 
target in lung cancer. Expert Opinion on Therapeutic Targets [Internet]. Taylor & Francis; 2017 
[cited 2022 Sep 25]; 21(10):959–66. Available from: 
https://doi.org/10.1080/14728222.2017.1371137. 

233.  Yang S-R, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Büttner R. Precision medicine in non-small 
cell lung cancer: Current applications and future directions. Seminars in Cancer Biology [Internet]. 
2022 [cited 2022 Aug 5]; 84:184–98. Available from: 
https://www.sciencedirect.com/science/article/pii/S1044579X20301644. 

234.  Kuo MD, Yamamoto S. Next Generation Radiologic-Pathologic Correlation in Oncology: Rad-Path 
2.0. American Journal of Roentgenology [Internet]. American Roentgen Ray Society; 2011 [cited 
2022 Aug 25]; 197(4):990–7. Available from: https://www.ajronline.org/doi/10.2214/AJR.11.7163. 

235.  Meyer H-J, Wienke A, Surov A. Associations between GLUT expression and SUV values derived 
from FDG-PET in different tumors—A systematic review and meta analysis. PLoS One [Internet]. 
2019 [cited 2022 Aug 26]; 14(6):e0217781. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576787/. 

236.  Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac 
Cancer [Internet]. 2020 [cited 2022 Oct 9]; 11(3):511–8. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049515/. 

237.  Lukey PT, Harrison SA, Yang S, Man Y, Holman BF, Rashidnasab A, et al. A Randomised, Placebo-
Controlled Study of Omipalisib (PI3K/mTOR) in Idiopathic Pulmonary Fibrosis. European 
Respiratory Journal [Internet]. European Respiratory Society; 2019 [cited 2020 Jul 22]. Available 
from: https://erj.ersjournals.com/content/early/2018/12/14/13993003.01992-2018. 

238.  Miles KA, Ganeshan B, Rodriguez-Justo M, Goh VJ, Ziauddin Z, Engledow A, et al. Multifunctional 
Imaging Signature for V-KI-RAS2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) Mutations in 
Colorectal Cancer. Journal of Nuclear Medicine [Internet]. Society of Nuclear Medicine; 2014 [cited 
2022 Oct 15]; 55(3):386–91. Available from: https://jnm.snmjournals.org/content/55/3/386. 

239.  Weiss GJ, Ganeshan B, Miles KA, Campbell DH, Cheung PY, Frank S, et al. Noninvasive Image 
Texture Analysis Differentiates K-ras Mutation from Pan-Wildtype NSCLC and Is Prognostic. PLOS 
ONE [Internet]. Public Library of Science; 2014 [cited 2022 Oct 15]; 9(7):e100244. Available from: 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100244. 

240.  Digumarthy SR, Padole AM, Gullo RL, Sequist LV, Kalra MK. Can CT radiomic analysis in NSCLC 
predict histology and EGFR mutation status? Medicine (Baltimore) [Internet]. 2019 [cited 2022 Oct 
15]; 98(1):e13963. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344142/. 

241.  Number of coronavirus (COVID-19) cases and risk in the UK. GOV.UK [Internet]. [cited 2020 May 
21]. Available from: https://www.gov.uk/guidance/coronavirus-covid-19-information-for-the-
public. 

242.  Deaths registered weekly in England and Wales, provisional - Office for National Statistics 
[Internet]. [cited 2020 May 21]. Available from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bull
etins/deathsregisteredweeklyinenglandandwalesprovisional/weekending8may2020. 

243.  Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) [Internet]. [cited 
2020 May 21]. Available from: https://www.who.int/publications-detail/report-of-the-who-china-
joint-mission-on-coronavirus-disease-2019-(covid-19). 



 

186 

244.  Lee EYP, Ng M-Y, Khong P-L. COVID-19 pneumonia: what has CT taught us? The Lancet Infectious 
Diseases [Internet]. Elsevier; 2020 [cited 2020 May 18]; 20(4):384–5. Available from: 
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30134-1/abstract. 

245.  Lescure F-X, Bouadma L, Nguyen D, Parisey M, Wicky P-H, Behillil S, et al. Clinical and virological 
data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020. 

246.  Kooraki S, Hosseiny M, Myers L, Gholamrezanezhad A. Coronavirus (COVID-19) Outbreak: What 
the Department of Radiology Should Know. Journal of the American College of Radiology 
[Internet]. 2020 [cited 2020 May 21]; 17(4):447–51. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/S1546144020301502. 

247.  Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with 
SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. 
The Lancet Respiratory Medicine [Internet]. 2020 [cited 2020 May 21]; 8(5):475–81. Available 
from: http://www.sciencedirect.com/science/article/pii/S2213260020300795. 

248.  Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult 
inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet [Internet]. 
2020 [cited 2020 May 21]; 395(10229):1054–62. Available from: 
http://www.sciencedirect.com/science/article/pii/S0140673620305663. 

249.  Thomas-Rüddel D, Winning J, Dickmann P, Ouart D, Kortgen A, Janssens U, et al. Coronavirus 
disease 2019 (COVID-19): update for anesthesiologists and intensivists March 2020. Anaesthesist 
[Internet]. 2020 [cited 2020 May 21]; 1–10. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095212/. 

250.  Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations 
during the COVID-19 epidemic in China. Intensive Care Med [Internet]. 2020 [cited 2020 May 21]; 
46(5):837–40. Available from: http://link.springer.com/10.1007/s00134-020-05979-7. 

251.  Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, et al. A Cluster of Cases of Severe Acute 
Respiratory Syndrome in Hong Kong. New England Journal of Medicine [Internet]. Massachusetts 
Medical Society; 2003 [cited 2020 May 21]; 348(20):1977–85. Available from: 
https://doi.org/10.1056/NEJMoa030666. 

252.  Zhao Y-M, Shang Y-M, Song W-B, Li Q-Q, Xie H, Xu Q-F, et al. Follow-up study of the pulmonary 
function and related physiological characteristics of COVID-19 survivors three months after 
recovery. EClinicalMedicine. 2020; 25:100463. 

253.  Notes for Guidance on the Clinical Administration of Radiopharmaceuticals and Use of Sealed 
Radioactive Sources. 2021; 71. 

254.  Giraudo C, Evangelista L, Fraia AS, Lupi A, Quaia E, Cecchin D, et al. Molecular Imaging of 
Pulmonary Inflammation and Infection. Int J Mol Sci [Internet]. 2020 [cited 2020 Jul 13]; 21(3). 
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037834/. 

255.  Braune A, Hofheinz F, Bluth T, Kiss T, Wittenstein J, Scharffenberg M, et al. Comparison of Static 
and Dynamic 18F-FDG PET/CT for Quantification of Pulmonary Inflammation in Acute Lung Injury. J 
Nucl Med. 2019; 60(11):1629–34. 

256.  Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, et al. Attributes and 
predictors of Long-COVID: analysis of COVID cases and their symptoms collected by the Covid 
Symptoms Study App. medRxiv [Internet]. Cold Spring Harbor Laboratory Press; 2020 [cited 2020 



 

187 

Oct 26]; 2020.10.19.20214494. Available from: 
https://www.medrxiv.org/content/10.1101/2020.10.19.20214494v1. 

257.  Horby P, Lim WS, Emberson J, Mafham M, Bell J, Linsell L, et al. Effect of Dexamethasone in 
Hospitalized Patients with COVID-19: Preliminary Report. medRxiv [Internet]. Cold Spring Harbor 
Laboratory Press; 2020 [cited 2020 Jul 9]; 2020.06.22.20137273. Available from: 
https://www.medrxiv.org/content/10.1101/2020.06.22.20137273v1. 

258.  Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular 
Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med [Internet]. Massachusetts 
Medical Society; 2020 [cited 2020 Jul 13]; 383(2):120–8. Available from: 
https://doi.org/10.1056/NEJMoa2015432. 


