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Determining assignment and identifying effect

Abstract

This thesis is concerned with the related problems of whether individuals benefit from treatment and

determining who should receive treatment—both from an empirical and a theoretical viewpoint—and is

broadly divided into two parts (with Chapter A outlining the notation that is used throughout).

The first part is mainly theoretical and examines the problem of how to allocate individuals to treatment

in order to maximise a welfare criterion. Chapter B collects several results pertaining to modified Bessel

functions of the first kind that are then used in Chapter C to derive a characterisation of the statistical

divergence of a von Mises-Fisher distribution and its asymptotic behaviour. Chapter D develops a frame-

work for estimating stochastic—rather than deterministic—assignment rules that are drawn from von

Mises-Fisher distributions. This method for estimating assignment rules is motivated by a variational

Bayes approximation of the infeasible optimal posterior distribution (i.e., the optimal stochastic assign-

ment rule). The optimal posterior distribution is obtained from the maintained prior via an updating

procedure that is based upon an empirical welfare criterion and that reflects the objective of a utilitarian

social planner with access to the results of a randomised control trial or otherwise suitable data. The use

of stochastic assignment rules has strong theoretical justification, and the proposed method is shown to

achieve low regret with high probability. Experimental data from the National Job Training Partnership

Act Study is used to illustrate the implementation and performance of this framework.

The second part is mainly empirical and examines the problem of identifying how additional children

affect maternal labour supply. Chapter E studies a model of maternal behaviour that allows for a rich

set of behaviours by mothers and that is applicable to a range of other empirical problems. Census (and

related) data is used to estimate whether maternal labour supply increases or decreases in the presence

of additional children.

Impact statement

Several novel results are introduced that can be built upon by or directly used in future academic

research, both inside and outside of the field of economics. To give a specific example, von Mises-Fisher

distributions have been studied extensively in the field of directional statistics, and statistical divergences

appear frequently in the field of machine learning as a means of quantifying information; characterisation

of the statistical divergence of a von Mises-Fisher distribution and its asymptotic behaviour is arguably

of interest to students in both fields. Indeed, these and many of the other concepts that are discussed



are likely more familiar to students of other fields than to those of economics despite their applicability

to many types of economic research. Aside from the intrinsic value of these results, their introduction to

the field of economics and the suggestion of alternative approaches to empirical and theoretical research

can be of benefit to students of economics—especially to those studying cyclical data, or settings that

are homomorphic or isomorphic to spheres.

The tools that are developed are with specific economic environments in mind, and are motivated by

particular questions that have a basis in policy design and evaluation. Despite this specificity, however,

they are suitable for application to a broad range of other economic environments that have a similar

composition. The evidence that these tools provide about labour market outcomes is intended to inform

public policy on this subject. How should educational and skills training be directed at the unemployed?

How do additional children affect maternal employment at the extensive margin? Such questions are of

national and international importance, and the evidence that these tools provide is particularly credible

due to the parsimony that both frameworks exhibit. In the case of the first framework, this manifests as

a lack of specificity about how education and previous earnings influence wages, and is accompanied by

the interpretability of the approximating class of assignment rules and their suitability for application

to a broader population. In the case of the second framework, this manifests as a lack of restriction

upon how mothers choose their employment status following the birth of additional children. It is

important to emphasise that parsimony does not simply lend a tool credibility; it is likewise useful for

understanding what information further restrictions can yield and for reconciling any existing evidence

that is contradictory.
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—| Notation |—

Conventions and typography

This chapter constitutes a record of the various mathematical and typographical conventions that I have

adopted—a sort of standards manual if you will. I include some additional information that is otherwise

taken to be implicit and underline when I feel that additional emphasis is warranted (something that

I continue to do throughout this thesis). Some of these works are full or partial reproductions of

collaborations with with co-authors. Where this is the case, I include only that material that I have

contributed towards or else that is necessary for the reader’s comprehension—omitting, for instance, any

related proofs—and use the third-person singular.

I adopt one and a half spacing throughout. All margins are set to 3/4 inch except the binding (side)

margin, which is set to 3/2 inch.

The main text is typeset in Computer Modern regular serif font (Figure A.1), or in Computer Modern

italicised serif font (Figure A.1) whenever this is appropriate. Figures and tables are centred, framed

and titled, with the title appearing above each object and typeset in Computer Modern capitalised serif

font (Figure A.1). A caption is included below a figure or a table when I feel that further description is

necessary, and typeset in Computer Modern italicised serif font. All external references are typeset in

Computer Modern capitalised serif typeface, whilst internal references are regularly typeset. Paragraphs

are marked using vertical line spacing.

Mathematical expressions are typeset in one of two fonts and several typographical effects depending

upon what they are intended to represent, and are either presented inline (if they comprise a simple

equality or inequality relation, or are the product of no more than two objects) or as equations. Equations

are left-aligned and labelled, and are preceded by the conditions under which they hold. For instance,

an equation might hold for all or for some values of an argument. Where these conditions are omitted

then equations should be taken to hold for all values of their arguments. Equations are not punctuated

as a matter of style.
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Figure A.1
The typography used in the main text

Computer Modern regular serif font

A
a

B
b

C
c

D
d

E
e

F
f

G
g

H
h

I
i

J
j

K
k

L
l

M
m

N
n

O
o

P
p

Q
q

R
r

S
s

T
t

U
u

V
v

W
w

X
x

Y
y

Z
z

Computer Modern italicised serif font

A
a

B
b

C
c

D
d

E
e

F
f

G
g

H
h

I
i

J
j

K
k

L
l

M
m

N
n

O
o

P
p

Q
q

R
r

S
s

T
t

U
u

V
v

W
w

X
x

Y
y

Z
z

Computer Modern capitalised serif font

A
a

B
b

C
c

D
d

E
e

F
f

G
g

H
h

I
i

J
j

K
k

L
l

M
m

N
n

O
o

P
p

Q
q

R
r

S
s

T
t

U
u

V
v

W
w

X
x

Y
y

Z
z

Underpinning my analysis and associated exposition is The Probability Approach in Econometrics

(Haavelmo, 1944), and I assume throughout that there exists a (standard) probability space equipped

with the Borel algebra, and upon which are defined a multitude of stochastic variables that stand-in for

real economic variates.

I denote stochastic variables using the Latin alphabet, distinguishing single-valued stochastic variables

from their multiple-valued counterparts (Figure A.2). I refer to single-valued stochastic variables as

random variables, which I denote using Computer Modern italicised serif font; and I refer to multiple-

valued stochastic variables as random sets or random vectors, which I denote using Computer Modern

bold italicised serif font. I reserve the upper-case alphabet for stochastic variables, whilst I reserve

the lower-case alphabet for their realisations (actual or hypothetical). Where I refer to more than one

realisation of the same stochastic variable, I distinguish these two realisations using a combination of

accents and subscripted characters from the Latin alphabet. So as to minimise overlap or possible

confusion, I avoid using those characters from the alphabet that are difficult to distinguish from Arabic

numerals or that I use extensively for other purposes,1 such as to represent mathematical objects and

operators that I rely upon.

I denote the collection of values that a stochastic variable can take using the Latin alphabet combined

with Fraktur font (Figure A.3). By support, I mean one of two things, which I do not distinguish

between: the collection of values that a stochastic variable can take; and the collection of values that a

stochastic variable does take (i.e., the collection of values that occur with positive probability). I reserve

the upper-case alphabet for the supports of stochastic variables, whilst I reserve the lower-case alphabet

for their cardinalities. Where I am concerned with the support of a stochastic variable conditional on

1 I present the full alphabet in Figure A.2 in any case, for completeness.
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Figure A.2
The typography used to denote random variables, sets and vectors
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The upper-case alphabet is reserved for stochastic variables, whilst the lower-case alphabet is reserved for their realisations
as well as for certain deterministic objects.

Figure A.3
The typography used to denote the supports of stochastic variables

𝔄 𝔅 ℭ 𝔇 𝔈 𝔉 𝔊 ℌ ℑ 𝔍 𝔎 𝔏 𝔐 𝔑 𝔒 𝔓 𝔔 ℜ 𝔖 𝔗 𝔘 𝔙 𝔚 𝔛 𝔜 ℨ

Cardinality or dimension

𝔞 𝔟 𝔠 𝔡 𝔢 𝔣 𝔤 𝔥 𝔦 𝔧 𝔨 𝔩 𝔪 𝔫 𝔬 𝔭 𝔮 𝔯 𝔰 𝔱 𝔲 𝔳 𝔴 𝔵 𝔶 𝔷

The cardinality or dimension of a set or vector can be finite or (countably or uncountably) infinite.

the realisations of one or more other stochastic variables then I use the syntax

Support of stochastic variable ↤ (Realisations of other stochastic variables) A.1

omitting the included parentheses if there is a single realisation that is being conditioned upon; I regard

conditioning on multiple realisations of one or more other stochastic variables as a union operation over

the support conditional on each realisation. For illustration, I write the support of 𝐴 conditional on 𝑏
as 𝔄 ↤ 𝑏 and the support of 𝐴 conditional on 𝑏 and 𝑐 as 𝔄 ↤ (𝑏, 𝑐), with 𝔞 ↤ 𝑏 and 𝔞 ↤ (𝑏, 𝑐) the

respective cardinalities. The notation that I use for the support of a random variable is consistent with

the notation that I use for the co-domain or support of a function.

The support of a random variable can be of finite or of (countably or uncountably) infinite cardinality;2

where the support of a random variable is finite, it is often convenient to write the support as the Arabic

numerals one through the cardinality. The supports of random sets and random vectors inherit their

cardinalities from the random variables that they are, in essence, constructed around. Every stochastic

variable that I consider inhabits one of several common spaces that I denote using the Latin alphabet

combined with blackboard-effect Computer Modern serif font (Figure A.4). These spaces include general

spaces such as the complex numbers, the integer numbers, the natural numbers and the real numbers,

2 I assume that the axiom of choice holds.
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but also include some special spaces such as the spherical manifold, the unit continuum and the unit

simplex. These special spaces warrant some additional description. The spherical manifold is defined

for higher dimensional Euclidean spaces as the collection of unit vectors; the unit continuum is defined

for higher dimensional Euclidean spaces as the collection of vectors whose elements are all between zero

and one; and the unit simplex is defined for higher dimensional Euclidean spaces as the collection of

vectors of non-negative elements whose elements sum to one. I otherwise refer to the spherical manifold

as the hypersphere, to the unit continuum as the hypercube and to the unit simplex as the simplex. I

subscript spaces that can contain zero by an asterisk to render the space exclusive of zero. I superscript

the space by infinity to render the power set of (or Borel sets over) the space; I superscript the space by

a finite integer (or by 𝑖, as a placeholder for an unspecified finite integer) to render the product space;

and I use a colon separator (plus symbol preceding infinity) to render the power set over the product

space. To summarise, I use the syntax

Space∞ = the power set of the space

Space𝑖 = the product set of the space

Space𝑖∶∞
∗ = the power set of the product set of the space exclusive of zero

A.2

which is a convention that I also adopt when considering the support of a stochastic variable (in place of

a space). I am not specific as to whether these spaces or their subsets are closed or open or neither unless

providing this detail is useful. The notation that I use for the space that a random variable inhabits is

consistent with the notation that I use for the space that a function inhabits.

To distinguish cases where a random set or random vector is such that several of their elements can

take the same value from cases where each of their elements is distinct, I use ∈ (the in symbol) and

⊂ (the subset symbol), respectively. To avoid any confusion, particularly with respect to closedness

and openness, I use inequality relations to define intervals rather than brackets and parentheses; I use

brackets to group objects (in advance of applying an operation to them say) and parentheses to enclose

function arguments.

Where I am concerned with the particular elements of a set or vector, I use subscripted Arabic numerals

to index and reference individual elements. I denote the concatenation of elements of a set or of a

vector using braces, separating individual elements by a comma or a semi-colon depending upon which

is clearer. Both sets and vectors are, in essence, lists of varying dimension or length, and the notation

that I use does not distinguish between them in view of this. Often a set or vector comprises elements
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Figure A.4
The typography used to denote some common spaces

General spaces → Special spaces →

C N R Z D S U

Complex numbers

Natural numbers

Real numbers

Integer numbers

Unit simplex

Spherical manifold

Unit continuum

that have a common definition or form, for which I use the syntax

List = {List𝑖 ∶ Definition of the 𝑖th element (and all other elements) of the list} A.3

additionally specifying the cardinality of these objects or other information when I feel that this is

warranted. To transpose a list, I use ⊤ (the transpose symbol), which I write in superscript.

Some of the characters of the Latin alphabet already have a well-established meaning in the body of

existing economic work. For instance, the characters 𝑌 and 𝑇 are typically interpreted as observable

endogenous economic variates (response and treatment, respectively); the characters 𝑍 and 𝑋 as ob-

servable exogenous economic variates (instrument and covariates, respectively); and the character 𝑈
as a latent exogenous economic variate (heterogeneity). I maintain this convention for the most part,

whether as random variables as is written above or as random sets and random vectors.

What distinguishes endogenous economic variates from their exogenous counterparts is how they are

determined. I say that an economic variate is endogenous if it is determined by other economic variates

in the overarching system, and is exogenous if it is given (i.e., it is determined outside of the overarching

system, or is determined by an economic agent other than the one whose choice is of principal focus).

The relationships between the endogenous and exogenous components of the economic environment are

described by structural functions, for which I adopt the same conventions as I do for functions.

I denote functions (and operators) using characters from the Greek or Latin alphabets combined with

either Computer Modern italicised serif font or Computer Modern regular serif font, omitting those char-

acters from the Greek alphabet that overlap with or appear similar to characters from the Latin alphabet

(Figure A.5). The reader is undoubtedly familiar with many of the functions that are associated with

these characters, but some may be unfamiliar. I enclose the arguments of functions inside parentheses.

In cases where several functions share a purpose, I denote these functions using the same character; to
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Figure A.5
The typography used to denote functions

Greek alphabet

Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ω

Gamma

Delta
Theta

Lambda

Xi Pi Sigma
Upsilon

Phi
Psi

Omega

distinguish between each function, I employ a combination of accents and characters from the Latin

alphabet. For example, in the classical model of endogenous choice described by the equations

𝑦 = ℎ𝑦 (𝑡, 𝑥, 𝑢)

𝑡 = ℎ𝑡 (𝑧, 𝑥, 𝑢)
A.4

I write ℎ to refer to ℎ𝑦 and ℎ𝑡 together. This example also serves to illustrate how I refer to functions

in the main text. Whilst I typeset non-Latin characters exclusively in regular font, I typeset Latin

characters in a mixture of italicised and regular font; as a general rule, I use regular font to denote

common (perhaps more accurately described as standard, since some of the objects that I work with

are uncommon) constants, functions and operators, otherwise using italicised font. Particular examples

include the characters 𝐷 (the differential operator), 𝐸 (the elementary vector, the expectation operator,

or the exponential constant), 𝐼 (the identity matrix or vector, or the modified Bessel function of the first

kind), 𝑀 (the annihilation matrix), 𝑂 (the order operator), and 𝑃 (the projection matrix), to list but a

few examples.

Often, the functions that I define are characterised or multiplied by one or several parameters. Where

these parameters are of finite dimension, I term the associated function parametric; where these param-

eters are of infinite dimension, I term the associated function non-parametric; and where some of these

parameters are of finite dimension and others of infinite dimension, I term the associated function semi-

parametric. I denote parameters using the Greek alphabet combined with Computer Modern italicised

serif font (Figure A.6), omitting those characters that overlap with or appear similar to characters in

the Latin alphabet or that are mathematical constants that I rely upon. To distinguish the parameters

of a function from its other inputs, I use a semi-colon separator.

In some limited cases, the functions that I define rely upon other functions. That is, they are functions

of functions—otherwise known as functionals. To distinguish the functions of a functional from its other
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Figure A.6
The typography used to denote parameters

𝛼 𝛽 𝛾 𝛿 𝜀 𝜁 𝜂 𝜃 𝜅 𝜆 𝜇 𝜉 𝜎 𝜙 𝜒 𝜓 𝜔

Alpha
Beta

Gamma

Delta
Epsilon

Zeta
Eta

Theta
Kappa

Lambda

Mu Xi Sigma
Phi

Chi
Psi

Omega

inputs and parameters, I use a semi-colon separator. This syntax can be summarised as

Output = Function (Input; Parameter)

Output = Functional (Function; Functional input; Functional parameter)
A.5

with non-applicable arguments simply omitted as and when this is required. I otherwise do not treat

functionals differently from other types of functions.

I emphasise that functionals are not the same thing as composite functions. Where I sequentially apply

more than two functions and no detail is omitted by doing so (i.e., a later function does not require

additional arguments to be specified beyond the output of the preceding function), I use ∘ (the compo-

sition symbol). This syntax can be summarised as

Output = Second function (First function (Input))

Output = Third function ∘ Second function (First function (Input))
A.6

with the composition symbol replaced by more standard parentheses if the third function is reliant on

another input or on a parameter. The composition symbol is not to be confused with ⋅ (the dot symbol)

that I use for multiplication. I also use the composition symbol to make notation more concise when

several functions with the same input are added, divided, multiplied or subtracted.

The functions that I define are, for the most part, regular, in that they map from one or several single-

valued inputs (whether deterministic or random) to a single-valued output. I do, however, allow for a

function’s generalisation to set- or vector-valued inputs that, accordingly, map to set- or vector-valued

outputs. For example, returning to the classical model of endogenous choice described by Equation A.4,

I require that ℎ𝑦 satisfies such equality relations as

ℎ𝑦 (𝑡, 𝑥, 𝒖) = {𝒚𝑖 ∶ 𝒚𝑖 = ℎ𝑦 (𝑡, 𝑥, 𝒖𝑖)} A.7

say, so that ℎ𝑦 is well-defined irrespective of the dimension of its inputs. I require that functions have

well-defined inverses; with the exception of the inverse operator, I write operations applied to functions
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Figure A.7
The typography used to denote intermediate objects

Cyrillic alphabet

B Æ K M Þ ß A � � Y

Dje
Zhe

Lje Nje
Yu Ya Ae Ghe

En Yus

in superscript following both the function and the parentheses enclosing its arguments.

Differentiation and integration are two operations that I apply to functions but do not use superscripted

notation for; rather, I write the differential and integral operators in full, making explicit the variable of

differentiation or integration.

To characterise the behaviour of functions as the principal argument takes extreme values I use either the

big-O operator (from big-O notation, otherwise referred to as Bachmann-Landau notation in Lattimore

and Szepesvári, 2020) or ≃ (the approximately equal symbol). Specifically, I use the big-O operator

to characterise the behaviour of functions as their principal argument becomes large (i.e., approaches

infinity) and the approximately equal symbol to characterise the behaviour of functions as their principal

argument becomes small (i.e, approaches zero). In each case, I express the function in terms of another

function. This syntax can be summarised as

Function (Principal argument) = O (Known function (Principal argument))

Function (Principal argument) ≃ Known function (Principal argument)
A.8

which should be taken to mean that the function on the left-hand side grows or decays at a rate that is

proportional to the known function on the right-hand side, or is else is approximately equal to the known

function on the right-hand side; the growth or decay rate of the known function on the right-hand side

is then what I refer to as the rate of the function on the left-hand side.

To characterise the neighbourhood that a function occupies for particular values of its inputs, it is

necessary to specify constants. This is also the case when talking about how likely something is to

occur. I follow convention in reserving the characters Delta and Epsilon from the Greek alphabet

(Figure A.6) to denote positive and infinitesimal or specified constants, as is typical elsewhere. I capture

the probability with which an event occurs, which is typically the probability with which a stochastic

variable takes one or several possible values, using the probability operator. Where this probability is
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conditional, I use the conditional probability operator. I summarise this syntax as

Pr (Stochastic variable = Realisation of stochastic variable)

Pr (Stochastic variable = Realisation of stochastic variable|Conditioning event)
A.9

depending upon whether it is an unconditional or conditional probability that is of interest, and where

I write the conditioning event simply as the realisation of a stochastic variable (rather than as the

full event that the stochastic variable takes that realisation) if this is sufficient to make the full event

clear.

Since each of the following chapters are self-contained and standalone (with the exception of some of the

appendices, that precede or follow certain chapters), I recycle notation between them. The reader should

not, therefore, carry-over notation and terminology from one chapter to another. In several places, it is

necessary for me to define functions that play a very limited role in the overall analysis; I denote such

intermediate functions using characters from the Slavic or non-Slavic Cyrillic alphabets combined with

Computer Modern regular serif font, omitting those characters from the Cyrillic alphabet that overlap

with or appear similar to characters from the Latin alphabet (Figure A.7).
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—| Chapter B |—

Modified Bessel functions of the first kind

Hereafter, where I refer to the modified Bessel function, I intend this to mean the modified Bessel

function of the first kind.

—| Section 1 |—

Definition

The modified Bessel function is defined in NIST (2021, §10.25 and §10.32) and, its precursor,

Abramowitz and Stegun (1964, §9.6), and I refer the reader to those references for further (detailed)

information about this function. The modified Bessel function is defined, for all 𝑎 > 0, as

I𝑚 (𝑎) ≐ (𝑎/2)𝑚 ⋅
∞

∑
𝑘=0

(𝑎/2)2𝑘

𝑘! ⋅ Γ (𝑚 + 𝑘 + 1) = (𝑎/2)𝑚
√𝜋 ⋅ Γ (𝑚 + 1/2) ⋅ ∫

𝜋

0
exp (±𝑎 ⋅ cos (𝑏)) ⋅ sin (𝑏)2𝑚 ⋅ d𝑏 B.1

or as

I𝑚 (𝑎) ≐ 1
𝜋 ⋅ ∫

𝜋

0
exp (𝑎 ⋅ cos (𝑏)) ⋅ cos (𝑚 ⋅ 𝑏) ⋅ d𝑏 − sin (𝑚 ⋅ 𝜋)

𝜋 ⋅ ∫
∞

0
exp (−𝑚 ⋅ 𝑐 − 𝑎 ⋅ cosh (𝑐)) ⋅ d𝑐 B.2

where 𝑚 is said to be the order and 𝑎 is said to be the argument. Various other definitions of the

modified Bessel function exist, including as the purely imaginary solution to

𝑎2 ⋅ d2𝑓 (𝑎)
d𝑎2 + 𝑎 ⋅ d𝑓 (𝑎)

d𝑎 − (𝑎2 + 𝑚2) ⋅ 𝑓 (𝑎) = 0 B.3

which is a modification of Bessel’s equation. This modification relates to the final term on the left-hand

side of Equation B.3; Bessel’s equation is generally written with the final term on the left-hand side

entering additively. This is what distinguishes a Bessel function (that admits real solutions, and is a

generalisation of a sine wave) from a modified Bessel function (that admits imaginary solutions, and is

an increasing function). Bessel’s equation and the modified Bessel function relate to Laplace’s equation

and harmonic functions (that describe the propagation of a wave along a taut string). The modified
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Figure B.1
Modified Bessel functions of varying order
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Modified Bessel functions of increasing order are plotted for several values of their argument.

Bessel function is a type of generalised hypergeometric function.

The modified Bessel function is plotted in Figure B.1 for various integer orders, although the function

is equally well-defined for non-integer orders too, including negative ones.

—| Section 2 |—

Reccurence relations

The modified Bessel function satisfies the recurrence relation (NIST, 2021, §10.29)

I𝑚 (𝑎) = 𝑎
2𝑚 ⋅ (I𝑚−1 (𝑎) − I𝑚+1 (𝑎)) B.4

that arises from

I𝑚−1 (𝑎) − 𝑚
𝑎 ⋅ I𝑚 (𝑎) = d

d𝑎 I𝑚 (𝑎) = I𝑚+1 (𝑎) + 𝑚
𝑎 ⋅ I𝑚 (𝑎) B.5

such that the modified Bessel function of a particular order can be computed recursively from the

modified Bessel function of a lower order (indeed, this is how many computer programmes calculate the

modified Bessel function).

Amos (1974) introduces several further results that are not only useful for the characterisation of the

modified Bessel function, but also for its computation. Adapting the notation of that paper to suit,
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Amos (1974) shows that, for all 𝜅𝑞 ≥ 𝜅𝑟 > 0,

B (𝜅𝑞, 𝜅𝑟, 𝑚) ≤ ln (I𝑚 (𝜅𝑞)) ≤ B (𝜅𝑞, 𝜅𝑟, 𝑚) B.6

where

B (𝜅𝑞, 𝜅𝑟, 𝑚) ≐ ln (I𝑚 (𝜅𝑟)) + 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) + 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

⎞⎟⎟
⎠

+ 𝜅2
𝑞 − 𝜅2

𝑟

√𝜅2𝑞 + 𝑎2
𝑚 + √𝜅2𝑟 + 𝑎2

𝑚

B.7

and

B (𝜅𝑞, 𝜅𝑟, 𝑚) ≐ ln (I𝑚 (𝜅𝑟)) + 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) + 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

⎞⎟⎟
⎠

+ 𝜅2
𝑞 − 𝜅2

𝑟

√𝜅2𝑞 + 𝑎2
𝑚 + √𝜅2𝑟 + 𝑎2

𝑚

B.8

given 𝑎𝑚 ≐ 𝑚+1/2 and 𝑎𝑚 ≐ 𝑚+3/2. I note that Equation B.6 is reversed when the arguments instead

satisfy 𝜅𝑟 > 𝜅𝑞. In the special case where 𝜅𝑟 → 0, Amos (1974) shows that Equations B.7 and B.8

reduce to

B (𝜅𝑞, 0, 𝑚) = 1
2 ⋅ ln ( 2

𝜅𝑞
) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln ⎛⎜⎜

⎝

𝜅𝑞 ⋅ (𝑎𝑚 + 𝑎𝑚) /2
𝑎𝑚 + √𝜅2𝑞 + 𝑎2

𝑚

⎞⎟⎟
⎠

+ 𝜅2
𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

B.9

and

B (𝜅𝑞, 0, 𝑚) = 1
2 ⋅ ln ( 2

𝜅𝑞
) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln ⎛⎜⎜

⎝

𝜅𝑞 ⋅ (𝑎𝑚 + 𝑎𝑚) /2
𝑎𝑚 + √𝜅2𝑞 + 𝑎2

𝑚

⎞⎟⎟
⎠

+ 𝜅2
𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

B.10

respectively. It is self-evident that Equation B.10 exceeds Equation B.9 as is required for Equation B.6

to be non-empty. An implication of Equation B.6 is that

𝜅𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

≤ 𝐼𝑚+1 (𝜅)
I𝑚 (𝜅) ≤ 𝜅𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

B.11

which defines a subset of the unit interval as is evident from Equation B.4.

—| Section 3 |—

Limiting behaviour

The modified Bessel function satisfies the limiting behaviour (NIST, 2021, §10.30)

I𝑚 (𝑎)
𝑎𝑚 ≃ 1

2𝑚 ⋅ Γ (𝑣 + 1) B.12
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which is proportional to the surface area of the hypersphere. Conversely, the modified Bessel function

admits, for all 𝑛 ∈ N∗, the Poincaré asymptotic expansion (NIST, 2021, §2.1)

I𝑚 (𝑎) = exp (𝑎)√
2𝜋 ⋅ 𝑎 ⋅ (

𝑛−1
∑
𝑗=0

(−1)𝑗 ⋅ Pochhammer𝑗 (𝑚)
𝑎𝑗 + O ( 1

𝑎𝑛 )) B.13

which is derived from Hankel’s expansion (NIST, 2021, §10.17 and §10.40) and which is defined in terms

of a factorial sequence (NIST, 2021, §5.2—Pochhammer’s symbol) that is polynomial in its argument.

It is of no surprise that the modified Bessel function grows at an exponential rate given the appearance

of Figure B.1, but this is easily verified from Equation B.13.
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—| Chapter C |—

The 𝑓-divergence of a von Mises-Fisher distribution from some reference

distributions

The von Mises-Fisher family of distributions is well-known in the field of directional statistics1 but is

foreign to economics and, as such, warrants some introduction. Also known as the Langevin family

(Watson, 1984), the von Mises-Fisher family recognises those two titans of statistics, Sir Ronald Fisher

and Richard von Mises, for their seminal contributions in considering Gaussianity on the circle (von

Mises, 1918) and on the sphere (R. A. Fisher, 1953). Subsequent work has generalised the von Mises-

Fisher family to S𝑖, and has led to the definition of other related parametric distributions such as the

Bingham family (Bingham, 1974) and the Fisher-Bingham or Kent family (Kent, 1982).

A von Mises-Fisher distribution assigns probability mass to the surface of the unit ball—the hypersphere.

As such, the von Mises-Fisher family is relevant to situations where the researcher is interested in either

the sampling of directional vectors—i.e., vectors of unit length—or in the clustering of some phenomenon

on a circular object, such as occurs if data is periodic. Applications range from the study of sea turtle

navigation (Hillen et al., 2017), to the study of perihelia of long-tailed comets (Mardia, 1975) and

near-earth objects (Sei et al., 2013), as well as to the study of patient arrival data (Mardia, 1975).

Sabelfeld (2018) even links the von Mises-Fisher family to the solving of high-dimensional diffusion-

advection-reaction equations. The von Mises-Fisher family is a two-parameter family, summarised by a

concentration parameter (or, simply, concentration), which we denote by 𝜅 > 0, and a mean direction,

which we denote by 𝜇 ∈ S𝑖.

The main contribution of this chapter is to provide analytical expressions for the 𝑓-divergence of a

von Mises-Fisher distribution from two relevant reference distributions given several common choices of

function. We study the broad class of Rényi divergence of simple order as well as several other measures

of (statistical) divergence that relate to the Rényi class—the 𝜒-square distance, the squared-Hellinger

distance and the Kullback-Leibler divergence. Each is, of course, a measure of the difference between

1 See Mardia and Jupp (2009) for a summary of important results in the field of directional statistics.
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two probability distributions. Several well-known inequalities relate these measures to the total variation

distance (Bretagnolle and Huber, 1978; Pinsker, 1964), which is often of interest. The reference

distributions that we specify are another, distinct, von Mises-Fisher distribution on S𝑖 and the uniform

distribution on the hypersphere. We are unaware of such expressions being available elsewhere. Alongside

these expressions, we characterise how the various measures of divergence that we consider change as

a von Mises-Fisher distribution becomes increasingly concentrated and degenerate. In particular, we

clarify the leading order terms of asymptotic expansions,2 which relies on results in Amos (1974). These

asymptotic expansions offer analytically tractable polynomial approximations of each of the measures of

divergence that we consider in terms of the concentration parameter, with these approximations accurate

when this parameter takes large values.

Obtaining analytical expressions of statistical divergence is useful for implementing minimum distance-

type or penalised estimation methods, and also for characterising the statistical performance of these

procedures. See, for instance, Kitagawa et al. (2022b), which builds upon the analytical expression of

the Kullback-Leibler divergence that is derived in this chapter to estimate the randomised treatment

assignment rule that minimises a penalised empirical welfare criterion. Polynomial approximation of

statistical divergences for parameter values corresponding to high concentration are useful for charac-

terising the convergence behaviour of numerous objects including the concentration rate of the posterior

distribution and of the PAC-Bayes regret bounds that are formulated in Kitagawa et al. (2022b), and

that are exploited in that paper.

Analytical expressions for the moments and other known distributional features of the von Mises-Fisher

family are, to varying extents, available elsewhere. These include statement of the first two moments

of a von Mises-Fisher distribution (available in or adaptable from Mardia and Jupp, 2009, §9.3 and

§9.6, respectively) and its associated Fisher information matrix (Hornik and Grün, 2013). Dhillon

and Sra (2003), Hillen et al. (2017), and Hornik and Grün (2013) demonstrate three distinct ap-

proaches to obtaining expressions for these moments. These are integration by substitution following

transformation to spherical coordinates, application of the divergence theorem,3 and differentiation of

the moment-generating function, respectively. We use several of the results in these papers directly.4

In particular, knowledge of the first moment is essential to characterising the divergence of a von Mises-

Fisher distribution from our chosen reference distributions.

2 In the appendices, we demonstrate how Hankel expansions can be performed to complement results given in Kitagawa
et al. (2022b).

3 The divergence theorem relates the area of a surface integral to a volume integral.
4 We otherwise establish these results in Section 2.e for the benefit of the reader, should they be unfamiliar with spherical

distributions and their associated concepts. Our use of the moment-generating function is very much a case of horses
for courses, to use the British idiom: integration by susbstitution and the divergence theorem can also be used, but
their application is more involved in this setting.
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Figure C.1
von Mises-Fisher distributions on the circle
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The density function of a von Mises-Fisher distribution on the circle with mean direction (−1, 0)—i.e., a polar orientation
with reference angle equal to 𝜋 radians—for several values of the concentration parameter. A spherical coordinate system

is used.

Directional objects are common in economics, and the von Mises-Fisher family of distributions is relevant

to many environments and several methods. For instance, consider the canonical binary choice model

with latent random utility. The rational choice of the individual, which we denote by 𝑡 ∈ {0, 1}, is

determined according to the linear index equation

𝑡 = 1(𝒙⊤𝛾 − 𝑢 ≥ 0) C.1

where 𝒙 ∈ R𝑖 and 𝑢 ∈ R𝑖 denote the individual’s observable characteristics (including an intercept) and

latent heterogeneity, respectively. The conditional zero-median restriction inherent in the semiparametric

maximum score approach of Manski (1975, 1985) does not identify the scale of the utility coefficients

𝛾 ∈ R𝑖. It is common to normalise the parameter space of 𝛾 to the collection of vectors satisfying

‖𝛾‖2 = 1—i.e., to the hypersphere. Similarly, in the context of statistical treatment choice (Manski,

2004a), Kitagawa and Tetenov (2018a) considers individualised treatment assignment rules based

upon a linear index,

𝑡 = 1(𝒙⊤𝛾 ≥ 0) C.2

where 𝒙⊤𝛾 ∈ R is an eligibility score that aggregates the individual’s observable characteristics and

determines whether she should be assigned to treatment—i.e., if 𝒙 ∈ R𝑖 maps to 𝑡 = 1—or to non-

treatment—i.e., if 𝒙 ∈ R𝑖 maps to 𝑡 = 0. Such assignment rules are invariant to multiplication of

the eligibility score by a positive constant and can be uniquely indexed by a parameter vector on the
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Figure C.2
von Mises-Fisher distributions on the sphere
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Orthogonal projection of the sphere, oriented to the mean direction, for several values of the concentration parameter.
Each contour describes a region in which the von Mises-Fisher distribution assigns 10% mass, with contours distinguished
by their shading. As the value of the concentration parameter is increased, more mass is assigned to the vicinity of the

pole.

hypersphere.

Optimising maximum score or an empirical welfare criterion is difficult, however, and complicates estima-

tion of and inference on 𝛾. This motivates a quasi-Bayesian approach as considered in Chernozhukov

and Hong (2003a). The von Mises-Fisher family offers a parsimonious and convenient prior specifica-

tion over 𝛾 within the quasi-Bayesian framework, with prior elicitation facilitated by knowledge of the

moments of the distribution. In a related but different context, PAC-Bayesian analysis, which is widely

studied in machine learning (Alquier et al., 2016; Catoni, 2007; Germain et al., 2009; McAllester,

2003, to name but a few relevant papers), considers exponentiated negative empirical risk as a quasi-

likelihood, and forms a posterior distribution over prediction rules. The von Mises-Fisher family is then

not only useful as a specified prior over directional parameters, but can also be used to approximate a

posterior distribution over 𝛾 in the linear classification rule or linear index treatment assignment rule

settings (Kitagawa et al., 2022b).

Another context where the parameter space is isomorphic to the hypersphere is the class of underiden-

tifying linear simultaneous equation models in which the imposed model restrictions identify structural

parameters up to sets of orthonormal transformations. See, for instance, Arias et al. (2018), Giacomini

and Kitagawa (2021a), and Uhlig (2005) for a class of set-identified structural vector autoregressions

in which the identified set of an impulse-response is spanned by the class of orthonormal matrices. The

isomorphism of the hypersphere and the orthogonal group suggests that a spherical distribution—and a

von Mises-Fisher distribution in particular—can be used as a prior distribution for the non-identified or-

thonormal matrices. When combined with prior elicitation of the reduced-form parameters, the moments

of a von Mises-Fisher distribution can be used to translate a belief about the structural parameters into

a prior distribution over the non-identified orthonormal matrices. Like the Gaussian family of distribu-
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tions on the hyperplane from which it can be derived, the von Mises-Fisher family is highly restrictive5

but, nonetheless, forms an interesting baseline case to study.

We are unaware of any paper that characterises the 𝑓-divergence of a von Mises-Fisher distribution as

we do. For instance, Diethe (2015) similarly studies the Kullback-Leibler divergence of von Mises-

Fisher distributions. Whereas we provide exact analytical expressions, Diethe (2015) either provides

upper bounds on the Kullback-Leibler divergence, or else provides analytical expressions that rely on

an approximation that is valid only when the von Mises-Fisher distribution is close to the uniform

distribution over the hypersphere, something that we do not rely on. Where updating of the von Mises-

Fisher distribution has been considered, this appears to have mainly centred on the likelihood function

and its characterisation rather than on measures of divergence per se. We refer to Lin et al. (2017) and

Mardia and El-Atoum (1976) as pertinent examples.

A von Mises-Fisher distribution constitutes a conjugate prior (Mardia and El-Atoum, 1976). Our

choice of reference distributions—another, distinct, von Mises-Fisher distribution on S𝑖 and the uniform

distribution on the hypersphere—reflects both this and the prevalence of the uniform distribution in

practice. Another commonly invoked choice that we do not consider is the Jeffreys prior, which is

proportional to the square root of the determinant of the Fisher information matrix relative to the

parametrisation employed.6 Hornik and Grün (2013) derive the Fisher information matrix and its

determinant and show that the Jeffreys prior is improper in this setting.

—| Section 1 |—

The probability density function and moments of the von Mises-Fisher family

Throughout this chapter, we exploit the fact that the von Mises-Fisher family is an exponential family

and, accordingly, we adopt the terminology that is used in conjunction with that well-known class.

Defining 𝑚 ≐ 𝑝/2 − 1 for convenience and maintaining 𝜅 ≥ 0 and ‖𝜇‖2 = 1, we write the probability

density function of a von Mises-Fisher random vector, which we denote by 𝑽 ∈ S𝑝−1, for integer 𝑝 > 1,

as

𝑓 (𝒗; 𝜅, 𝜇) ≐ exp (𝜅 ⋅ 𝜇⊤𝒗)
Æ (𝜅, 𝑚) C.3

5 The von Mises-Fisher family is akin to the class of Gaussian distributions that feature a diagonal variance matrix—i.e.,
statistically independent Gaussian random variables—with the same entry on each element of the diagonal.

6 Our parametrisation of the von Mises-Fisher family specifies a concentration and a mean direction—what Hornik
and Grün (2013) call a polar coordinate parametrisation. Equally, one could combine the concentration and mean
direction into a single parameter vector, 𝜂 say, such that the concentration corresponds to ‖𝜂‖2 and the mean direction
corresponds to 𝜂/‖𝜂‖2. This is the parametrisation that Hornik and Grün (2013) specifies.
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where we reiterate that 𝜅 and 𝜇 are the concentration and mean direction, respectively, and where, for

all 𝜅 ≥ 0,

Æ (𝜅, 𝑚) ≐ ∫
S𝑝−1

exp (𝜅 ⋅ 𝜇⊤𝒗) ⋅ d𝒗 =
⎧{
⎨{⎩

[2𝜋]𝑚+1 ⋅ I𝑚 (𝜅) /𝜅𝑚 if 𝜅 > 0

2𝜋𝑚+1/Γ (𝑚 + 1) if 𝜅 = 0
C.4

thereby guaranteeing that the density function integrates to one.7 We recall the definition of the modified

Bessel function in Chapter B. We refer to the exponentiation—i.e., the numerator in Equation C.3—as

the kernel of the density function, and to the normalising constant—i.e., the denominator in Equa-

tion C.3—as the partition function. We emphasise that the integral in Equation C.4 is over the hyper-

sphere and it is this fact that makes derivation of statistical features of the von Mises-Fisher random

vector difficult. Moreover, we note that our choice of parametrisation is but one way that a von Mises-

Fisher distribution can be parametrised. Another parametrisation that is better suited to certain analyses

of von Mises-Fisher distributions (in particular, derivation of their moments) is presented in Hornik

and Grün (2013).

The von Mises-Fisher family is the hyperspherical analogue of the Gaussian family, which is informative

as to its shape: the von Mises-Fisher family is unimodal and symmetric about its mean direction, with

the concentration parameter determining the degeneracy (when 𝜅 → ∞) and uniformity (when 𝜅 → 0)

of the distribution, and it assigns positive density to the entirety of the hypersphere. This relationship is

shown by appropriately normalising the probability density function of statistically independent Gaussian

random variables with variance 1/𝜅 that are distributed on the hypersphere. Importantly, the von

Mises-Fisher family is rotationally equivariant, which is the hyperspherical analogue of the translation

equivariance property that is exhibited by the Gaussian family.

The (centred) moments of the von Mises-Fisher family can be obtained by differentiating its moment-

generating function. Since the von Mises-Fisher family is an exponential family, the moment-generating

function is equal to the log-partition function. Whilst the partition function of the von Mises-Fisher

family has a closed-form expression, this is not necessarily true for other named directional families. For

instance, we are unaware of any closed-form expressions for the partition functions of both the Kent and

von Mises families of distributions beyond the bivariate case.8 Differentiating the log-partition function,

7 See Dhillon and Sra (2003, §B.2) for proof of this statement, and also for derivation of the determinant of the
Jacobian matrix in the generalised spherical coordinate transform of this integral.

8 Whilst numerical methods can be used to compute the moments of the Kent and von Mises families (see Best
and N. I. Fisher, 1979; Kent et al., 2013 for suitable rejection sampling routines; also Mardia et al., 2008, which
establishes that the conditional von Mises density is itself von Mises), the lack of closed-form expressions for these other
named directional families certainly limits their tractability and usefulness in applications featuring a high-dimensional
covariate or outcome vector.
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we obtain

E (𝑽 ) = I𝑚+1 (𝜅)
I𝑚 (𝜅) ⋅ 𝜇 C.5

which exploits results in NIST (2021, §10.29). The higher-order moments of the von Mises-Fisher family

can be derived via recursive differentiation.9

Equation C.5 is adapted from results that are available in Mardia and Jupp (2009), which also discusses

several other important results, including the asymptotic and high-concentration behaviour of von Mises-

Fisher random vectors and their tangent normal vectors. We emphasise that the expression for the

variance that we present here is distinct from the circular variance, which is simply the distance of the

mean resultant length from the surface—i.e., one minus the mean resultant length.

—| Section 2 |—

Measuring the 𝑓-divergence of an obtained distribution from a reference distribution

To facilitate consideration of the 𝑓-divergence of an obtained distribution from a reference distribution,

we suppose that, for all 𝒂 ⊂ S𝑝−1,

Pr (𝑸 ∈ 𝒂) = ∫
𝒂

𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ d𝒗

Pr (𝑹 ∈ 𝒂) = ∫
𝒂

𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ⋅ d𝒗
C.8

such that 𝑸 ∈ S𝑝−1 and 𝑹 ∈ S𝑝−1 are two von Mises-Fisher random vectors with the corresponding mean

direction and concentration parameters satisfying all of the usual properties that we maintain.10 We

use the notation above to distinguish the two von Mises-Fisher random vectors from the 𝜅-concentrated

𝜇-oriented 𝑽 that is previously discussed.

We adopt the convention of referring to the probability distribution of the random vector 𝑸 as the ob-

9 For reference, the second moment of the von Mises-Fisher family is

Variance (𝑽 ) = I𝑚+1 (𝜅)
I𝑚 (𝜅) ⋅ [ 1

𝜅 ⋅ I𝑝 + [ I𝑚+2 (𝜅)
I𝑚+1 (𝜅) − I𝑚+1 (𝜅)

I𝑚 (𝜅) ] ⋅ 𝜇𝜇⊤] C.6

where I𝑝 is the identity matrix of subscripted dimension; this expression can otherwise be written as

Variance (𝑽 ) = 1
𝜅 ⋅ I𝑚+1 (𝜅)

I𝑚 (𝜅) ⋅ I𝑝 + [1 − I𝑚+1 (𝜅)
I𝑚 (𝜅) ⋅ [ 𝑝

𝜅 − I𝑚+1 (𝜅)
I𝑚 (𝜅) ]] ⋅ 𝜇𝜇⊤ C.7

which exploits recurrence relations in NIST (2021, §10.29). As noted in Hornik and Grün (2013), given that the von
Mises-Fisher family is an exponential family, its second moment coincides with its Fisher information matrix under
the parametrisation considered in that paper. We derive the first and second moments of the von Mises-Fisher family
in the appendices.

10 A necessary condition that we require is that the probability distribution of the random vector 𝑸 is absolutely
continuous with respect to the probability distribution of the random vector 𝑹 (Lattimore and Szepesvári, 2020,
§2.7 and §14.5), thereby guaranteeing that each of the measures that we consider is well-defined. The von Mises-Fisher
family clearly satisfies this requirement, assigning positive density to all points on the hypersphere.
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tained distribution and to the probability distribution of the random vector 𝑹 as the reference distribu-

tion, and of measuring the divergence of the obtained distribution from the reference distribution.

We reiterate that the uniform distribution on the hypersphere corresponds to the limiting case where

the concentration of the von Mises-Fisher distribution is zero. As such, we emphasise that our frame-

work is also compatible with the reference distribution being equal to the uniform distribution on the

hypersphere.

For all of the measures that we consider, each measure approaches its maximum possible value when

the obtained distribution is degenerate. We defer proof of each proposition in this section to the appen-

dices.

With the exception of the total variation distance, each of the measures that we consider has a closed-form

expression that depends only upon the parameters of the two distributions whose divergence they capture

(and even then, most of the expressions that we obtain simply feature the concentration parameter).

These expressions feature ratios of modified Bessel functions, whether of consecutive order or of the same

order. Various statistical programming languages have inbuilt functionality to compute modified Bessel

functions that perform well for comparatively small values of their argument (i.e., for low concentrations)

but that can break for large values. Amos (1974) derives some inequalities (see the appendices) that

are robust to large arguments and that can be used when inbuilt functionality breaks.

Whilst one or more of these measures may be of ultimate interest, it is perhaps more likely that they form

only a constituent part of what the researcher is interested in (see, for instance, Kitagawa et al., 2022b).

The rejection sampling algorithm of Wood (1994; see Tsagris et al., 2022, which implements the sug-

gested algorithm, for further details) can be used to sample vectors from a von Mises-Fisher distribution

as part of a routine to approximate related objects that do not have a closed-form expression.

Asymptotic calculations can be performed using Hankel series expansion (see NIST, 2021, §10.17 and

§10.40, which rely upon §2.1 and the Poincáre expression therein). We include a demonstration in the

appendices, applying a Hankel series expansion to the circular variance of the von Mises-Fisher family

of distributions,11 which is defined as one minus the ratio of modified Bessel functions—i.e., one minus

the mean resultant length. We note that Hankel series expansion is appropriate when 𝜅 → ∞, which

is the limiting behaviour that we are interested in. We emphasise that the circular variance is strictly

contained in the unit interval, which is asymptotically guaranteed by the fact that 𝑝 ≥ 2—i.e., the

minimal hypersphere (the circle) is defined on the real plane.

11 See Mardia and Jupp (2009) for further, general, details about the circular variance.
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—| Subsection 2.a |—

Rényi divergence

Following van Erven and Harremoës (2014), we define the Rényi divergence of simple order 0 < 𝛼 < 1
or 1 < 𝛼 < ∞ as

𝑑𝛼 (𝑸, 𝑹) ≐ 1
𝛼 − 1 ⋅ ln (∫

S𝑝−1
𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞)𝛼 ⋅ 𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟)1−𝛼 ⋅ d𝒗) C.9

The Rényi divergence is the most general measure of 𝑓-divergence that we consider and describes a

broad class that relates to the other measures that we study—namely, the 𝜒-squared distance, the

squared-Hellinger distance and the Kullback-Leibler divergence.

Proposition C.1. Given 𝑸 ∈ S𝑝−1 and 𝑹 ∈ S𝑝−1 are distributed as 𝑝-variate von Mises-Fisher random

vectors with concentrations 𝜅𝑞 > 0 and 𝜅𝑟 > 0, respectively, and mean directions 𝜇𝑞 ∈ S𝑝−1 and

𝜇𝑟 ∈ S𝑝−1, respectively, and recalling the definition of 𝑚, the Rényi divergence of simple order 0 < 𝛼 < 1
or 1 < 𝛼 < ∞ is

𝑑𝛼 (𝑸, 𝑹) = 𝑚
𝛼 − 1 ⋅ ln (𝜅𝛼

𝑞 ⋅ 𝜅1−𝛼
𝑟

𝜅𝛼
) + 𝛼

𝛼 − 1 ⋅ ln ( I𝑚 (𝜅𝛼)
I𝑚 (𝜅𝑞)) − ln ( I𝑚 (𝜅𝛼)

I𝑚 (𝜅𝑟) ) C.10

where

𝜅𝛼 ≐ ∥𝛼 ⋅ 𝜅𝑞 ⋅ 𝜇𝑞 + (1 − 𝛼) ⋅ 𝜅𝑟 ⋅ 𝜇𝑟∥2 C.11

In the special case where 𝜅𝛼 = 0,

𝑑𝛼 (𝑸, 𝑹) = 𝑚
𝛼 − 1 ⋅ ln (𝜅𝛼

𝑞 ⋅ 𝜅1−𝑎
𝑟

2 ) + 𝛼
𝛼 − 1 ⋅ ln (1/Γ (𝑚 + 1)

I𝑚 (𝜅𝑞) ) − ln (1/Γ (𝑚 + 1)
I𝑚 (𝜅𝑟) ) C.12

with

𝜅𝑟 = 𝛼
|1 − 𝛼| ⋅ 𝜅𝑞 and 𝜇𝑟 + Sign (1 − 𝛼) ⋅ 𝜇𝑞 = 0 C.13

In the special case where 𝑹 is, instead, uniformly distributed on the hypersphere,

𝑑𝛼 (𝑸, 𝑹) = 𝑚
𝛼 − 1 ⋅ ln ( 21−𝛼

𝛼 ⋅ 𝜅1−𝛼𝑞
) + 𝛼

𝛼 − 1 ⋅ ln ( I𝑚 (𝛼 ⋅ 𝜅𝑞)
I𝑚 (𝜅𝑞) ) − ln ( I𝑚 (𝛼 ⋅ 𝜅𝑞)

1/Γ (𝑚 + 1)) C.14

The Rényi divergence is an O (ln (𝜅𝑞)) function.
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—| Subsection 2.b |—

𝜒-square distance

We define the 𝜒-square distance as

𝑑𝜒 (𝑸, 𝑹) ≐ ∫
S𝑝−1

[𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) − 𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟)]2

𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ⋅ d𝒗 C.15

= ∫
S𝑝−1

𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞)2

𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ⋅ d𝒗 − 1 C.16

with Equation C.16 being the more convenient definition to work with. We observe that the 𝜒-square

distance relates to the Rényi class of measures via the equality relation

𝑑𝛼 (𝑸, 𝑹) |𝛼=2 = ln (1 + 𝑑𝜒 (𝑸, 𝑹)) C.17

as per van Erven and Harremoës (2014), which serves to illustrate the breadth of the Rényi

class.

Proposition C.2. Given 𝑸 ∈ S𝑝−1 and 𝑹 ∈ S𝑝−1 are distributed as 𝑝-variate von Mises-Fisher random

vectors with concentrations 𝜅𝑞 > 0 and 𝜅𝑟 > 0, respectively, and mean directions 𝜇𝑞 ∈ S𝑝−1 and 𝜇𝑟 ∈ S𝑝−1,

respectively, and recalling the definition of 𝑚, the 𝜒-square distance is

𝑑𝜒 (𝑸, 𝑹) = 𝜅2𝑚
𝑞 ⋅ I𝑚 (𝜅𝜒) ⋅ I𝑚 (𝜅𝑟)
𝜅𝑚𝜒 ⋅ 𝜅𝑚𝑟 ⋅ I𝑚 (𝜅𝑞)2 − 1 C.18

where

𝜅𝜒 ≐ ∥2𝜅𝑞 ⋅ 𝜇𝑞 − 𝜅𝑟 ⋅ 𝜇𝑟∥2 C.19

In the special case where 𝜅𝜒 = 0,

𝑑𝜒 (𝑸, 𝑹) = 𝜅𝑚
𝑞 ⋅ I𝑚 (2𝜅𝑞)

4𝑚 ⋅ Γ (𝑚 + 1) ⋅ I𝑚 (𝜅𝑞)2 − 1 C.20

with

𝜅𝑟 = 2𝜅𝑞 and 𝜇𝑟 − 𝜇𝑞 = 0 C.21

In the special case where 𝑹 is, instead, uniformly distributed on the hypersphere, the 𝜒-square distance

coincides with Equation C.20. The 𝜒-square distance is an O (𝜅𝑞) function.
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—| Subsection 2.c |—

Squared-Hellinger distance

We define the squared-Hellinger distance as

𝑑ℎ (𝑸, 𝑹)2 ≐ ∫
S𝑝−1

[√𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) − √𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟)]
2

⋅ d𝒗 C.22

= 2 [1 − ∫
S𝑝−1

√𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ 𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ⋅ d𝒗] C.23

with Equation C.23 being the more convenient definition to work with. We observe that the squared-

Hellinger distance relates to the Rényi class of measures via the equality relation

𝑑𝛼 (𝑸, 𝑹) |𝛼=1/2 = −2 ln (1 − 𝑑ℎ (𝑸, 𝑹)2

2 ) C.24

as per van Erven and Harremoës (2014), which serves to illustrate the breadth of the Rényi class and

is also interpretable as twice the negative logarithm of the Bhattacharyya coefficient (Bhattacharyya,

1943). The Bhattacharyya coefficient is an approximate measure of the amount of overlap between two

probability distributions, such that when the obtained and reference distributions are close (i.e., they

have a similar concentration and mean direction) then the squared-Hellinger distance is small in absolute

value, as is to be expected.

Proposition C.3. Given 𝑸 ∈ S𝑝−1 and 𝑹 ∈ S𝑝−1 are distributed as 𝑝-variate von Mises-Fisher random

vectors with concentrations 𝜅𝑞 > 0 and 𝜅𝑟 > 0, respectively, and mean directions 𝜇𝑞 ∈ S𝑝−1 and 𝜇𝑟 ∈ S𝑝−1,

respectively, and recalling the definition of 𝑚, the squared-Hellinger distance is

𝑑ℎ (𝑸, 𝑹)2 = 2 ⎡⎢
⎣

1 −
√√√
⎷

𝜅𝑚𝑞 ⋅ 𝜅𝑚𝑟 ⋅ I𝑚 (𝜅ℎ)2

𝜅2𝑚
ℎ ⋅ I𝑚 (𝜅𝑞) ⋅ I𝑚 (𝜅𝑟)

⎤⎥
⎦

C.25

where we define

𝜅ℎ ≐ 1
2 ⋅ ∥𝜅𝑞 ⋅ 𝜇𝑞 + 𝜅𝑟 ⋅ 𝜇𝑟∥2 C.26

In the special case where 𝜅ℎ = 0,

𝑑ℎ (𝑸, 𝑹)2 = 2 [1 − 𝜅𝑚
𝑞

2𝑚 ⋅ I𝑚 (𝜅𝑞) ⋅ Γ (𝑚 + 1)] C.27
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with

𝜅𝑟 = 𝜅𝑞 and 𝜇𝑟 + 𝜇𝑞 = 0 C.28

In the special case where 𝑹 is, instead, uniformly distributed on the hypersphere,

𝑑ℎ (𝑸, 𝑹)2 = 2 ⎡⎢
⎣

1 −
√√√
⎷

23𝑚 ⋅ I𝑚 (𝜅𝑞/2)2 ⋅ Γ (𝑚 + 1)
𝜅𝑚𝑞 ⋅ I𝑚 (𝜅𝑞)

⎤⎥
⎦

C.29

The squared-Hellinger distance is an O (1 − 1/𝜅𝑞) function.

—| Subsection 2.d |—

Kullback-Leibler divergence

We define the Kullback-Leibler divergence as

𝑑ℓ (𝑸, 𝑹) ≐ ∫
S𝑝

ln (𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞)
𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ) ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ d𝒗 C.30

We observe that the Kullback-Leibler divergence is a limiting case of the Rényi divergence. That is,

lim
𝛼→1

𝑑𝛼 (𝑸, 𝑹) = 𝑑ℓ (𝑸, 𝑹) C.31

as per van Erven and Harremoës (2014), which serves to illustrate the breadth of the Rényi

class.

Proposition C.4. Given 𝑸 ∈ S𝑝−1 and 𝑹 ∈ S𝑝−1 are distributed as 𝑝-variate von Mises-Fisher random

vectors with concentrations 𝜅𝑞 > 0 and 𝜅𝑟 > 0, respectively, and mean directions 𝜇𝑞 ∈ S𝑝−1 and 𝜇𝑟 ∈ S𝑝−1,

respectively, and recalling that 𝑚 ≐ 𝑝/2 − 1, the Kullback-Leibler divergence is

𝑑ℓ (𝑸, 𝑹) = 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) − ln ( I𝑚 (𝜅𝑞)
I𝑚 (𝜅𝑟) ) + 𝐼𝑚+1 (𝜅𝑞)

I𝑚 (𝜅𝑞) ⋅ [𝜅𝑞 ⋅ 𝜇𝑞 − 𝜅𝑟 ⋅ 𝜇𝑟]⊤ 𝜇𝑞 C.32

In the special case where 𝑹 is, instead, uniformly distributed on the hypersphere,

𝑑ℓ (𝑸, 𝑹) = 𝑚 ⋅ ln (𝜅𝑞
2 ) − ln (I𝑚 (𝜅𝑞)) − ln (Γ (𝑚 + 1)) + 𝐼𝑚+1 (𝜅𝑞)

I𝑚 (𝜅𝑞) ⋅ 𝜅𝑞 C.33

The Kullback-Leibler divergence is an O (ln (𝜅𝑞)) function.

We note that the final terms of Equations C.32 and C.33 are proportional to the first moment of a von

Mises-Fisher distribution (specifically, the first moment of the obtained distribution). In particular, we
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note that the final term of Equation C.32 can otherwise be written as

𝐼𝑚+1 (𝜅𝑞)
I𝑚 (𝜅𝑞) ⋅ [𝜅𝑞 ⋅ 𝜇𝑞 − 𝜅𝑟 ⋅ 𝜇𝑟]⊤ 𝜇𝑞 = 𝐼𝑚+1 (𝜅𝑞)

I𝑚 (𝜅𝑞) ⋅ [𝜅𝑞 − 𝜅𝑟 ⋅ 𝜇⊤
𝑟 𝜇𝑞] C.34

which we contrast with the corresponding term in Equation C.33. The difference between Equations C.33

and C.34 arises because the mean direction does not enter the probability density function of the uniform

distribution on the hypersphere. The intuition here is that, in the special case where the reference

distribution is the uniform distribution on the hypersphere, the mean direction can always be taken to

be equal to the mean direction.

—| Subsection 2.e |—

Total variation distance

We define the total variation distance, for all measurable 𝒂 ⊂ S𝑝−1, as

𝑑𝑡 (𝑸, 𝑹) ≐ sup
𝒂

∣∫
𝒂

𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) − 𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ⋅ d𝒗∣ C.35

which is well-defined if the underlying probability space is endowed with the Borel 𝜎-algebra—something

that we, implicitly, maintain throughout all parts of our analysis.

Corollary C.1. Given 𝑸 ∈ S𝑝−1 and 𝑹 ∈ S𝑝−1 are distributed as 𝑝-variate von Mises-Fisher random

vectors with concentrations 𝜅𝑞 > 0 and 𝜅𝑟 > 0, respectively, and mean directions 𝜇𝑞 ∈ S𝑝−1 and 𝜇𝑟 ∈ S𝑝−1,

respectively, and recalling that 𝑚 ≐ 𝑝/2 − 1, the total variation distance satisfies the inequality relations

𝑑𝑡 (𝑸, 𝑹)2 ≤ 𝑑ℎ (𝑸, 𝑹)2 ≤ 𝑑ℓ (𝑸, 𝑹) ≤ 𝑑𝜒 (𝑸, 𝑹) C.36

𝑑𝑡 (𝑸, 𝑹) ≤ √1 − exp (−𝑑ℓ (𝑸, 𝑹)) ≤ 1 − 𝑑ℓ (𝑸, 𝑹)
2 C.37

and, for all orders 0 < 𝛼 ≤ 1,

𝑑𝑡 (𝑸, 𝑹)2 ≤ 𝛼 ⋅ 𝑑𝛼 (𝑸, 𝑹)
2 C.38

where each measure of divergence is as defined in Section 2.

The inequalities in Corollary C.1 are well-known (see, for instance, Lattimore and Szepesvári, 2020,

§14.3 and references therein, and van Erven and Harremoës, 2014). The total variation distance is

difficult to characterise in this setting due to the need to integrate over a region of the hypersphere.

The inequality relations stated in Corollary C.1 provide a means to bound the total variation distance
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from above using measures that are more easily characterised. In particular, Equation C.38 is a gen-

eralisation of Pinsker’s inequality, yielding the classic statement of that inequality at the limit (see

Equation C.31).

—| Appendix C.1 |—

Proofs

↪ Proof of Equation C.5. We reiterate that the von Mises-Fisher family is an exponential family and,

as such, its moments can be obtained via differentiation of the log-partition function, with the first

moment equal to the first derivative, the second moment equal to the second derivative, and so forth. To

facilitate our analysis of the log-partition function and its derivatives, we rewrite the probability density

function of the von Mises-Fisher family in terms of a single parameter vector. We let

𝜅 ≐ ‖𝜂‖2

𝜇 ≐ 𝜂/‖𝜂‖2

C.39

where 𝜂 ∈ R𝑝. The log-partition function is equal to

ln (Æ (𝜅, 𝑚)) = ln (∫
S𝑝−1

exp (𝜅 ⋅ 𝜇⊤𝒗) ⋅ d𝒗) = −𝑚 ⋅ ln (𝜅) + [𝑚 + 1] ⋅ ln (2𝜋) + ln (I𝑚 (𝜅)) C.40

The moments of the von Mises-Fisher family of distributions are obtained by recursively differentiating

this function with respect to the new parameter vector.

We now present some derivatives that are useful for the construction of the first, second and higher-order

moments. First,

d
d𝜂 𝜅 = 𝜇

d
d𝜂⊤ 𝜇 = 1

𝜅 ⋅ [I𝑝 − 𝜇𝜇⊤]
C.41

Second, for all 𝑛 ∈ N∗,

d
d𝜂⊤

I𝑚+𝑛 (𝜅)
I𝑚 (𝜅) = I𝑚 ⋅ (𝜅) ⋅ I′

𝑚+𝑛 (𝜅) − I𝑚+𝑛 (𝜅) ⋅ I′
𝑚 (𝜅)

I𝑚 (𝜅)2 ⋅ 𝜇⊤

= [ I𝑚+𝑛+1 (𝜅)
I𝑚 (𝜅) + 𝑛 ⋅ I𝑚+𝑛 (𝜅)

𝜅 ⋅ I𝑚 (𝜅) − I𝑚+𝑛 (𝜅)
I𝑚 (𝜅) ⋅ I𝑚+1 (𝜅)

I𝑚 (𝜅) ] ⋅ 𝜇⊤

= [
𝑛−1
∏
𝑗=0

I𝑚+𝑗+1 (𝜅)
I𝑚+𝑗 (𝜅) ] ⋅ [ I𝑚+𝑛+1 (𝜅)

I𝑚+𝑛 (𝜅) + 𝑛
𝜅 − I𝑚+1 (𝜅)

I𝑚 (𝜅) ] ⋅ 𝜇⊤

C.42

which exploits Equation B.4 and the telescoping property of the ratios. We now differentiate Equa-
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tion C.40 (i.e., we take the first derivative of the log-partition function), which yields

d
d𝜂 ln (Æ (𝜅, 𝑚)) = I𝑚+1 (𝜅)

I𝑚 (𝜅) ⋅ 𝜇 C.43

where we use Equation C.41 and Equation B.4. This proves the first result of the corollary. We then

differentiate Equation C.43 (i.e., we take the second derivative of the log-partition function), which yields

d
d𝜂⊤

I𝑚+1 (𝜅)
I𝑚 (𝜅) ⋅ 𝜇 = I𝑚+1 (𝜅)

I𝑚 (𝜅) ⋅ [ 1
𝜅 ⋅ I𝑝 + [ I𝑚+2 (𝜅)

I𝑚+1 (𝜅) − I𝑚+1 (𝜅)
I𝑚 (𝜅) ] ⋅ 𝜇𝜇⊤] C.44

where we use Equations B.4, C.41 and C.42. Substituting

I𝑚+1 (𝜅)
I𝑚 (𝜅) ⋅ I𝑚+2 (𝜅)

I𝑚+1 (𝜅) = 1 − 𝑝
𝜅 ⋅ I𝑚+1 (𝜅)

I𝑚 (𝜅) C.45

which is valid by Equation B.4, we obtain an alternative expression for the variance. This proves the

second result of the corollary. The higher-order moments of the von Mises-Fisher family can be obtained

via recursive differentiation of these expressions, with application of the product rule of differentiation

and the derivatives that are presented in Equations C.41 and C.42 then sufficient to construct these

moments.

To faciliate characterisation of the limiting behaviour of the various measures of divergence that we

consider, we apply Equation B.6.

Corollary C.2. Given that 𝜅 > 1, then for B (𝜅, 0, 𝑚) and B (𝜅, 0, 𝑚) defined as in Equations B.9

and B.10, with 𝑚 ≥ 0

B (𝜅, 0, 𝑚) ≥ 𝜅 − 1
2 ⋅ ln (𝜅) − 𝑚 ⋅ ln (2) − ln (Γ (𝑚 + 1)) − 𝑎𝑚 C.46

and

B (𝜅, 0, 𝑚) ≤ 𝜅 − 1
2 ⋅ ln (𝜅) − 𝑚 ⋅ ln (2) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln (2𝑎𝑚) C.47

such that ln (I𝑚 (𝜅)) is an O (𝜅 − ln (𝜅) /2) function.

Corollary C.2 follows from Equations B.9 and B.10 and the simple exploitation of the properties of

increasing concave functions. Moreover, that we choose to state that the logarithm of the modified

Bessel function is an O (𝜅 − ln (𝜅) /2) function rather than a linear function is for practical reasons.

Specifically, we rely on Corollary C.2 to prove many of the statements in Section 1, for which we find
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that the linear component typically cancels. We observe that Corollary C.2 aligns with results elsewhere

NIST (2021, §10.30).

↪ Proof of Corollary C.2. We rewrite Equations B.9 and B.10 using the formula for the difference of

two squares as

B (𝜅, 0, 𝑚) = 1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝜅 ⋅ [𝑎𝑚 + 𝑎𝑚] /2
𝑎𝑚 + √𝜅2 + 𝑎2

𝑚

⎞⎟⎟
⎠

+ √𝜅2 + 𝑎2
𝑚 − 𝑎𝑚 C.48

≥ 1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln (𝜅 ⋅ [𝑎𝑚 + 𝑎𝑚] /2
𝑎𝑚 + 𝜅 + 𝑎𝑚

) + 𝜅 − 𝑎𝑚 C.49

= 1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln (𝜅) + 𝑎𝑚 ⋅ ln ([𝑎𝑚 + 𝑎𝑚] /2
𝑎𝑚 + 𝑎𝑚 + 𝜅 ) + 𝜅 − 𝑎𝑚 C.50

≥ 1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚 + 1)) + (𝑎𝑚 − 𝑎𝑚) ⋅ ln (𝜅) + 𝑎𝑚 ⋅ ln ( 𝑎𝑚 + 𝑎𝑚
2 [𝑎𝑚 + 𝑎𝑚]) + 𝜅 − 𝑎𝑚 C.51

= 𝜅 − 1
2 ⋅ ln (𝜅) − 𝑚 ⋅ ln (2) − ln (Γ (𝑚 + 1)) − 𝑎𝑚 C.52

and

B (𝜅, 0, 𝑚) = 1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝜅 ⋅ [𝑎𝑚 + 𝑎𝑚] /2
𝑎𝑚 + √𝜅2 + 𝑎2

𝑚

⎞⎟⎟
⎠

+ √𝜅2 + 𝑎2
𝑚 − 𝑎𝑚 C.53

≤ 1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln (2𝑎𝑚 ⋅ 𝜅
2𝜅 ) + 𝜅 + 𝑎𝑚 − 𝑎𝑚 C.54

= 𝜅 − 1
2 ⋅ ln (𝜅) − 𝑚 ⋅ ln (2) − ln (Γ (𝑚 + 1)) + 𝑎𝑚 ⋅ ln (2𝑎𝑚) C.55

respectively. Here, we exploit the concavity of the logarithmic and square root functions, and set

some terms equal to zero where it is useful to do so. This establishes the veracity of the first part of

Corollary C.2. We now need to show that the logarithm of the modified Bessel function, which we know

lies between these two bounds for all 𝜅 > 0, is an O (𝜅 − ln (𝜅) /2) function. To do so, we show that the

maximum of the absolute value of Equations C.52 and C.55 is bounded from above by a function that

has the required order. Specifically, for all 𝜅 > 0,

| ln (I𝑚 (𝜅)) | ≤ 𝜅 − 1
2 ⋅ ln (𝜅) + 𝑚 ⋅ ln (2) + ln (Γ (𝑚 + 1)) + max (𝑎𝑚, 𝑎𝑚 ⋅ ln (2𝑎𝑚)) C.56

≤ [𝜅 − 1
2 ⋅ ln (𝜅)] ⋅ [1 + 𝑚 ⋅ ln (2) + ln (Γ (𝑚 + 1)) + max (𝑎𝑚, 𝑎𝑚 ⋅ ln (2𝑎𝑚))

(1 + ln (2)) /2 ] C.57

where the denominator in the second term of Equation C.57 is the minimum value that the first term

of Equation C.57 can attain, which establishes the result.

Each of the various measures of divergence that we consider involves integration of the kernel for some
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value of the concentration parameter. The implication of this property is that each measure can be

expressed in terms of logarithmic ratios of the form

ln (Æ (𝜅𝑑, 𝑚)
Æ (𝜅, 𝑚) ) =

⎧{
⎨{⎩

ln (I𝑚 (𝜅𝑑)) − ln (I𝑚 (𝜅)) − 𝑚 ⋅ [ln (𝜅𝑑) − ln (𝜅)] if 𝜅 > 0

ln (I𝑚 (𝜅𝑑)) + ln (Γ (𝑚 + 1)) − 𝑚 ⋅ [ln (𝜅𝑑) − ln (2)] if 𝜅 = 0
C.58

where 𝜅𝑑 > 0 and 𝜅 ≥ 0 are placeholders for either the obtained concentration, the reference concentra-

tion, or their weighted average.

↪ Proof of Proposition C.1. We focus on the integrand in the definition of the Rényi divergence, and

note that

𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞)𝛼 ⋅ 𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟)1−𝛼 =
exp ((𝛼 ⋅ 𝜅𝑞 ⋅ 𝜇𝑞 + [1 − 𝛼] ⋅ 𝜅𝑟 ⋅ 𝜇𝑟)⊤ 𝒗)

Æ (𝜅𝑞, 𝑚)𝛼 ⋅Æ (𝜅𝑟, 𝑚)1−𝛼 C.59

We then define

𝜅𝛼 ≐ ∥𝛼 ⋅ 𝜅𝑞 ⋅ 𝜇𝑞 + [1 − 𝛼] ⋅ 𝜅𝑟 ⋅ 𝜇𝑟∥2

𝜇𝛼 ≐ [𝛼 ⋅ 𝜅𝑞 ⋅ 𝜇𝑞 + [1 − 𝛼] ⋅ 𝜅𝑟 ⋅ 𝜇𝑟] / ∥𝛼 ⋅ 𝜅𝑞 ⋅ 𝜇𝑞 + [1 − 𝛼] ⋅ 𝜅𝑟 ⋅ 𝜇𝑟∥2

C.60

such that the resulting expression respects the conventions that we have adopted for the concentration

and mean direction—i.e., that the concentration is non-negative and that the mean direction is a unit

vector. We substitute Equation C.60 into Equation C.59 and integrate over the hypersphere, finding

that

1
𝛼 − 1 ⋅ ln (∫

S𝑝−1

exp (𝜅𝛼 ⋅ 𝜇⊤
𝛼𝒗)

Æ (𝜅𝑞, 𝑚)𝛼 ⋅Æ (𝜅𝑟, 𝑚)1−𝛼 ⋅ d𝒗) = 𝛼
𝛼 − 1 ⋅ ln (Æ (𝜅𝛼, 𝑚)

Æ (𝜅𝑞, 𝑚)) − ln (Æ (𝜅𝛼, 𝑚)
Æ (𝜅𝑟, 𝑚) ) C.61

Hence, applying Equation C.58 to Equation C.61 implies that

𝑑𝛼 (𝑸, 𝑹) = 𝛼
𝛼 − 1 ⋅ ln (𝜅𝑚

𝑞 ⋅ I𝑚 (𝜅𝛼)
𝜅𝑚𝛼 ⋅ I𝑚 (𝜅𝑞)) − ln (𝜅𝑚

𝑟 ⋅ I𝑚 (𝜅𝛼)
𝜅𝑚𝛼 ⋅ I𝑚 (𝜅𝑟) ) C.62

which yields Equation C.10 upon rearrangement.

In the special case where 𝜅𝛼 = 0, the numerator on the right-hand side of Equation C.59 is one, with

the corresponding integral over the hypersphere equal to the surface area of the unit ball. The formula
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for the surface area of the unit ball is well-known. Hence, Equation C.61 reduces to

𝑑𝛼 (𝑸, 𝑹) = 𝑚
𝛼 − 1 ⋅ ln (𝜅𝛼

𝑞 ⋅ 𝜅1−𝛼
𝑟

2 ) + 𝛼
𝛼 − 1 ⋅ ln (1/Γ (𝑚 + 1)

I𝑚 (𝜅𝑞) ) − ln (1/Γ (𝑚 + 1)
I𝑚 (𝜅𝑟) ) C.63

We reiterate that this special case occurs only when Equation C.13 holds, which facilitates the restate-

ment of the Renyí divergence in terms of one of the two concentration parameters. We choose to state

the Renyí divergence in terms of both concentration parameters because the expression that we obtain

is relatively simple.

In the special case where the reference distribution is the uniform distribution on the hypersphere,

Equation C.61 reduces to

𝑑𝛼 (𝑸, 𝑹) = 𝛼
𝛼 − 1 ⋅ ln (𝜅𝑚

𝑞 ⋅ I𝑚 (𝜅𝛼)
𝜅𝑚𝛼 ⋅ I𝑚 (𝜅𝑞)) − ln ( 2𝑚 ⋅ I𝑚 (𝜅𝛼)

𝜅𝑚𝛼 ⋅ 1/Γ (𝑚 + 1)) C.64

We then recall that 𝜅𝛼 = 𝛼 ⋅ 𝜅𝑞 whenever 𝜅𝑟 = 0, such that

𝑑𝛼 (𝑸, 𝑹) = 𝛼
𝛼 − 1 ⋅ ln ( I𝑚 (𝛼 ⋅ 𝜅𝑞)

I𝑚 (𝜅𝑞) ) − ln ( 2𝑚 ⋅ I𝑚 (𝛼 ⋅ 𝜅𝑞)
𝜅𝑚𝑞 ⋅ 1/Γ (𝑚 + 1)) − 𝑚

𝛼 − 1 ⋅ ln (𝛼) C.65

from which we obtain Equation C.14 upon rearrangement.

We now turn our attention to the limiting behaviour of the Rényi divergence with respect to an increase

in 𝜅𝑞 given that 𝜅𝑞 > 𝜅𝑟 and 𝜅𝑞 is sufficiently large such that min (𝜅𝛼, 𝜅𝑞) > 1, holding 𝜅𝑟 > 0 fixed.

We recall that

B (𝜅𝑞, 𝜅𝑟, 𝑚) ≤ ln (I𝑚 (𝜅𝑞)) ≤ B (𝜅𝑞, 𝜅𝑟, 𝑚) C.66

where

B (𝜅𝑞, 𝜅𝑟, 𝑚) ≐ ln (I𝑚 (𝜅𝑟)) + 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) +K (𝜅𝑞, 𝜅𝑟, 𝑚) C.67

and

B (𝜅𝑞, 𝜅𝑟, 𝑚) ≐ ln (I𝑚 (𝜅𝑟)) + 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) +K (𝜅𝑞, 𝜅𝑟, 𝑚) C.68
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where

K (𝜅𝑞, 𝜅𝑟, 𝑚) ≐ 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

⎞⎟⎟
⎠

+ √𝜅2𝑞 + 𝑎2
𝑚 − √𝜅2𝑟 + 𝑎2

𝑚 C.69

and

K (𝜅𝑞, 𝜅𝑟, 𝑚) ≐ 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

⎞⎟⎟
⎠

+ √𝜅2𝑞 + 𝑎2
𝑚 − √𝜅2𝑟 + 𝑎2

𝑚 C.70

given 𝑎𝑚 ≐ 𝑚 + 1/2 and 𝑎𝑚 ≐ 𝑚 + 3/2. We further recall that the Rényi divergence is defined as

𝑑𝛼 (𝑸, 𝑹) = 𝑚
𝛼 − 1 ⋅ ln (𝜅𝛼

𝑞 ⋅ 𝜅1−𝛼
𝑟

𝜅𝛼
) + 𝛼

𝛼 − 1 ⋅ ln ( I𝑚 (𝜅𝛼)
I𝑚 (𝜅𝑞)) − ln ( I𝑚 (𝜅𝛼)

I𝑚 (𝜅𝑟) ) C.71

and so satisfies

1
𝛼 − 1 ⋅ A + 𝛼

𝛼 − 1 ⋅ C + 1 − 𝛼
𝛼 − 1 ⋅ D ≤ 𝑑𝛼 (𝑸, 𝑹) ≤ 1

𝛼 − 1 ⋅ B − 𝛼
𝛼 − 1 ⋅ C − 1 − 𝛼

𝛼 − 1 ⋅ D C.72

where

A ≐ 𝛼 ⋅K (𝜅𝛼, 𝜅𝑞, 𝑚) + [1 − 𝛼] ⋅K (𝜅𝛼, 𝜅𝑟, 𝑚)

B ≐ 𝛼 ⋅K (𝜅𝛼, 𝜅𝑞, 𝑚) + [1 − 𝛼] ⋅K (𝜅𝛼, 𝜅𝑟, 𝑚)

C ≐ 1 (sign (𝛼 − 1) ≠ sign (𝜅𝛼 − 𝜅𝑞)) ⋅ (K−K) ∘ (𝜅𝛼, 𝜅𝑞, 𝑚)

D ≐ 1 (𝜅𝛼 > 𝜅𝑟) ⋅ (K−K) ∘ (𝜅𝛼, 𝜅𝑟, 𝑚)

C.73

as per Equation C.66. It immediately follows (by considering each possible ordering of 𝜅 and the

magnitude of 𝛼 relative to one) that

|𝑑𝛼 (𝑸, 𝑹)| ≤ 1
|𝛼 − 1| ⋅ [𝑎𝑚 ⋅ ∣ln (𝜅𝛼

𝑞 ⋅ 𝜅1−𝛼
𝑟

𝜅𝛼
)∣ + ∣𝜅𝛼 − 𝛼 ⋅ 𝜅𝑞 − [1 − 𝛼] ⋅ 𝜅𝑟∣ + 𝑎𝑚] C.74

which then reduces to

|𝑑𝛼 (𝑸, 𝑹)| ≤ 1
|𝛼 − 1| ⋅ [𝑎𝑚 ⋅ ∣ln (𝜅𝛼

𝑞 ⋅ 𝜅1−𝛼
𝑟

𝜅𝛼
)∣ + 𝑎𝑚] + 2𝜅𝑟 C.75

by virtue of the fact that

𝛼 ⋅ 𝜅𝑞 − |1 − 𝛼| ⋅ 𝜅𝑟 ≤ 𝜅𝛼 ≤ 𝛼 ⋅ 𝜅𝑞 + |1 − 𝛼| ⋅ 𝜅𝑟 C.76
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as per its definition. Moreover, given that

ln (𝜅𝛼
𝑞 ⋅ 𝜅1−𝛼

𝑟
𝜅𝛼

) = − ln (∥𝛼 ⋅ (𝜅𝑞
𝜅𝑟

)
1−𝛼

⋅ 𝜇𝑞 + [1 − 𝛼] ⋅ (𝜅𝑟
𝜅𝑞

)
𝛼

⋅ 𝜇𝑟∥
2
) C.77

it is then self-evident that the limiting behaviour of the Rényi divergence is then wholly determined by

the first term on the right-hand side of Equation C.75, which is O (ln (𝜅𝑞)) function—and so too the

Rényi divergence.12

It is straightforward to determine that this result extends to the special case where the reference distribu-

tion is the uniform distribution on the hypersphere, since the final two logarithmic terms in Equation C.14

can easily be shown to be of the same order as the first logarithmic term using Corollary C.2.

↪ Proof of Proposition C.2. Proposition C.2 is implied by Proposition C.1 and Equation C.17.

↪ Proof of Proposition C.3. Proposition C.3 is implied by Proposition C.1 and Equation C.24.

↪ Proof of Proposition C.4. We focus on the integrand in the definition of the Kullback-Leibler diver-

gence and note that

ln (𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞)
𝑓 (𝒗; 𝜅𝑟, 𝜇𝑟) ) ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) = ((𝜅𝑞 ⋅ 𝜇𝑞 − 𝜅𝑟 ⋅ 𝜇𝑟)⊤ 𝒗 + ln (Æ (𝜅𝑟, 𝑚)

Æ (𝜅𝑞, 𝑚))) ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) C.78

We integrate each term on the right-hand side of Equation C.78, finding that

∫
S𝑝−1

(𝜅𝑞 ⋅ 𝜇𝑞 − 𝜅𝑟 ⋅ 𝜇𝑟)⊤ 𝒗 ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ d𝒗 = (𝜅𝑞 ⋅ 𝜇𝑞 − 𝜅𝑟 ⋅ 𝜇𝑟)⊤ E (𝑸) C.79

and

∫
S𝑝−1

ln (Æ (𝜅𝑟, 𝑚)
Æ (𝜅𝑞, 𝑚)) ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ d𝒗 = ln ( 𝜅𝑚

𝑞 ⋅ I𝑚 (𝜅𝑟)
𝜅𝑚𝑟 ⋅ I𝑚 (𝜅𝑞)) C.80

respectively, which relies on the fact that the density function integrates to one and which we obtain

from Equation C.58. Adding Equations C.79 and C.80 and substituting the results of Equation C.5—

specifically, the result pertaining to the first moment—we obtain Equation C.32.

In the special case where the reference distribution is the uniform distribution on the hypersphere,

12 Equation C.77 can be negative and decreasing for some values of 𝜅𝑞, with the overall value of the function then
resembling a check function. Over the range of values for which 𝜅𝛼 > 1, however, this function is purely increasing
in 𝜅𝑞. From Equation C.76, it is clear that 𝜅𝛼 > 1 is satisfied if 𝛼 ⋅ 𝜅𝑞 > 1 + |1 − 𝛼| ⋅ 𝜅𝑟, regardless of the respective
mean directions of the obtained and reference distributions.
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Equation C.79 simplifies to

∫
S𝑝−1

𝜅𝑞 ⋅ 𝜇⊤
𝑞 𝒗 ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ d𝒗 = 𝜅𝑞 ⋅ 𝜇⊤

𝑞 E (𝑸) C.81

and Equation C.80 simplifies to

∫
S𝑝−1

ln ( 2𝜋𝑚+1

Æ (𝜅𝑞, 𝑚) ⋅ Γ (𝑚 + 1)) ⋅ 𝑓 (𝒗; 𝜅𝑞, 𝜇𝑞) ⋅ d𝒗 = ln ( (𝜅𝑞/2)𝑚

I𝑚 (𝜅𝑞) ⋅ Γ (𝑚 + 1)) C.82

which we obtain from Equation C.58. Adding Equations C.81 and C.82 and substituting the results

of Equation C.5—specifically, the result pertaining to the first moment—we obtain Equation C.33. In

particular, we rely on the fact that the inner product of a single mean direction is one.

We now turn our attention to the limiting behaviour of the Kullback-Leibler divergence with respect to

an increase in 𝜅𝑞 given that 𝜅𝑞 ≥ min (1, 𝜅𝑟), holding 𝜅𝑟 > 0 fixed. Given Equation C.31 and Proposi-

tion C.1, it is perhaps unsurprising that we find that the Kullback-Leibler divergence is also an O (ln (𝜅𝑞))
function. To show this, however, requires a slight modification of our approach as compared to the proof

of Proposition C.1. Whilst the main idea remains the same (replace the logarithms of modified Bessel

functions with their lower or upper bounds and characterise the limiting behaviour), the Kullback-Leibler

divergence is also a function of ratios of modified Bessel functions. We must take this into account when

deriving bounds. We rely extensively on Corollary C.2, and recall that the Kullback-Leibler divergence

is defined as

𝑑ℓ (𝑸, 𝑹) = 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) − ln ( I𝑚 (𝜅𝑞)
I𝑚 (𝜅𝑟) ) + I𝑚+1 (𝜅𝑞)

I𝑚 (𝜅𝑞) ⋅ (𝜅𝑞 − 𝜅𝑟 ⋅ 𝜇⊤
𝑟 𝜇𝑞) C.83

We bound the Kullback-Leibler divergence from below, as

𝑑ℓ (𝑸, 𝑹) ≥ 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) −B (𝜅𝑞, 𝜅𝑟, 𝑚) + ln (I𝑚 (𝜅𝑟)) + 𝜅2
𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

− 𝜅𝑞 ⋅ 𝜅𝑟

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

C.84

= 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

⎞⎟⎟
⎠

−�ℓ (𝜿, 𝑚) C.85

where

�ℓ (𝜿, 𝑚) ≐ √𝜅2𝑞 + 𝑎2
𝑚 − √𝜅2𝑟 + 𝑎2

𝑚 − 𝜅2
𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

+ 𝜅𝑞 ⋅ 𝜅𝑟

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

C.86

≤ √𝜅2𝑞 + 𝑎2
𝑚 − √𝜅2𝑟 + 𝑎2

𝑚 − √𝜅2𝑞 + 𝑎2
𝑚 + 𝑎𝑚 + 𝜅𝑟 C.87
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To move from Equation C.86 to Equation C.87, we replace 𝑎𝑚 with 𝑎𝑚 where it is appropriate to do

so, apply the formula for the difference of two squares (the other square being zero) to the penultimate

term, and set the dimensional constants in the denominator of the final term equal to zero. It then

follows that

𝑑ℓ (𝑸, 𝑹) ≥ 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

⎞⎟⎟
⎠

− 𝜅𝑟 − 𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚 C.88

We bound the Kullback-Leibler divergence from above, as

𝑑ℓ (𝑸, 𝑹) ≤ 𝑚 ⋅ ln (𝜅𝑞
𝜅𝑟

) −B (𝜅𝑞, 𝜅𝑟, 𝑚) + ln (I𝑚 (𝜅𝑟)) + 𝜅2
𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

C.89

= 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

⎞⎟⎟
⎠

−�ℓ (𝜿, 𝑚) C.90

where

�ℓ (𝜿, 𝑚) ≐ √𝜅2𝑞 + 𝑎2
𝑚 − √𝜅2𝑟 + 𝑎2

𝑚 − 𝜅2
𝑞

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

C.91

≥ √𝜅2𝑞 + 𝑎2
𝑚 − √𝜅2𝑟 + 𝑎2

𝑚 − √𝜅2𝑞 + 𝑎2
𝑚 + 𝑎𝑚 C.92

To move from Equation C.91 to Equation C.92, we replace 𝑎𝑚 with 𝑎𝑚 where it is appropriate to do so

and apply the formula for the difference of two squares (the other square being zero) to the final term.

It then follows that

𝑑ℓ (𝑸, 𝑹) ≤ 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

⎞⎟⎟
⎠

− 𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚 C.93

Together, Equations C.88 and C.93 imply that

∣𝑑ℓ (𝜅𝑞, 𝜅𝑟)∣ ≤ 𝑎𝑚 ⋅ ln ⎛⎜⎜
⎝

𝑎𝑚 + √𝜅2𝑞 + 𝑎2
𝑚

𝑎𝑚 + √𝜅2𝑟 + 𝑎2
𝑚

⎞⎟⎟
⎠

+ ∣√𝜅2𝑟 + 𝑎2
𝑚 − 𝑎𝑚 − 𝜅𝑟∣ C.94

and so it is trivial to show that the Kullback-Leibler divergence is an O (ln (𝜅𝑞)) function.

49



—| Appendix C.2 |—

Hankel expansion of the circular variance

One quantity that is often of interest is the circular variance of the von Mises-Fisher family of distri-

butions, which is defined as one minus the ratio of modified Bessel functions—i.e., one minus the mean

resultant length. Kitagawa et al. (2022b) demonstrates that the circular variance is an O (1/𝜅) func-

tion. Here, we show that the same result can be obtained via Hankel series expansion (see Equation B.13

for a definition). We note that Hankel series expansion is appropriate when 𝜅 → ∞, which is the lim-

iting behaviour that we are interested in. We begin by writing the circular variance in the alternative

form

1 − I𝑚+1 (𝜅)
I𝑚 (𝜅) = 1 − I𝑚+1 (𝜅)

I𝑚 (𝜅) = I𝑚 (𝜅) − I𝑚+1 (𝜅)
I𝑚 (𝜅) C.95

to which we apply the expansion. Recalling Equation B.13 and setting 𝑛 = 2 for simplicity,

1 − I𝑚+1 (𝜅)
I𝑚 (𝜅) = [Pochhammer1 (𝑚 + 1) − Pochhammer1 (𝑚)] /𝜅 + O (1/𝜅2)

1 − Pochhammer1 (𝑚) /𝜅 + O (1/𝜅2) C.96

= Pochhammer1 (𝑚 + 1) − Pochhammer1 (𝑚) + O (1/𝜅)
𝜅 − Pochhammer1 (𝑚) + O (1/𝜅) C.97

which is, trivially, an O (1/𝜅) function. More accurate approximations can be attained by increasing 𝑛,

but a simple approximation suffices to establish the rate of the circular variance.
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—| Chapter D |—

Stochastic treatment choice with empirical welfare updating

The principal goal of programme evaluation is to inform the social planner as to which individuals within

a target population should receive a given treatment. When treatment effects are heterogeneous in in-

dividuals’ observable characteristics, the social planner can improve social welfare by implementing an

individualised treatment assignment rule based upon these characteristics. The literature on statistical

treatment choice initiated by Manski (2004b) studies how to estimate assignment rules based upon

a finite sample and how to assess their welfare performance. Given an experimental or observational

sample, existing approaches—including those proposed in Athey and Wager (2021), Hirano and

Porter (2009), Kitagawa and Tetenov (2018b), and Manski (2004b)—yield deterministic assign-

ment rules, which are functions mapping an individual’s observable characteristics to a recommended

treatment. That is, individuals who share the same observable characteristics are all assigned the same

treatment. Such assignment rules are sharp and address the question of who should be treated? We

adopt a broader view of the treatment choice problem by considering stochastic assignment rules that

map individual observable characteristics to a probability distribution over the different treatment arms,

instead addressing the question of with what probability should an individual be treated?

In static treatment choice problems with outcome distributions that exhibit the monotone likelihood ratio

property, deterministic assignment rules form a class of admissible policies (Karlin and H. Rubin, 1956;

Tetenov, 2012), such that restricting attention to this class is without loss (of welfare). Once we allow

the class of outcome distributions to be unconstrained though, there is little theoretical justification for

focusing on deterministic rules. In comparison to stochastic assignment rules, deterministic assignment

rules have the following three potentially undesirable features. First, deterministic assignment rules

cannot incorporate confidence or uncertainty about which treatment is best for each individual, with

individuals typically assigned treatment if conventional point estimates suggest that treatment has a

positive effect on average. The strength of evidence in support of this conclusion, usually presented

in the form of confidence intervals or p-values, is not generally acted upon; what matters is whether

empirical evidence supports a positive point estimate, and not whether it is sufficient or insufficient
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to reject a non-positive effect. Such a sharp dichotomy of assignment is naturally overconfident in its

prescription, and there is no theoretical basis for the incorporation of confidence intervals or p-values into

frequentist-based decision-making. Stochastic assignment rules can represent such uncertainty, which

arises due to the (finite sample) nature of experimental data or model misspecification, through their

probability weighting of treatments. Second, stochastic assignment rules facilitate future evaluation,

since implementing a stochastic assignment rule can generate a new experimental sample in which

treatment is randomised conditional on individual observable characteristics. Third, unlike deterministic

assignment rules for which the probability that a treatment is assigned changes discontinuously at

some threshold, stochastic assignment rules feature assignment probabilities that smoothly change with

respect to individual characteristics. Such a feature is desirable if a fairness criterion requiring that

individuals with similar characteristics have similar probabilities of treatment (Dwork et al., 2012) is

enforced.

This chapter proposes novel and general methods for obtaining stochastic individualised assignment rules

based on randomised control trial data. Assuming that the social planner assigns individuals to a binary

treatment, with her goal being to maximise additive (utilitarian) social welfare as in Manski (2004b),

we exploit an empirical analogue of the social welfare criterion to generate individualised assignment

probabilities. Specifically, we start with a prior distribution over a collection of deterministic assignment

rules that we denote by 𝔊, each 𝑔 of which partitions the space of individual observable characteristics into

a group of characteristics and its complement. An individual is assigned treatment if their characteristics

are such that 𝑔 (𝑿) = 1, and is not assigned treatment if 𝑔 (𝑿) = 0. We then update the prior distribution

based upon an empirical analogue of the social welfare criterion to obtain a posterior distribution over

𝔊. To generate a stochastic assignment, we draw a 𝑔 ∈ 𝔊 according to the posterior distribution over

this collection, and implement the policy prescribed by 𝑔. In this way, the probability that an individual

is treated is equal to the posterior probability that the 𝑔 that is drawn is such that 𝑔 (𝑿) = 1 (i.e., the

individual is assigned treatment under several possible 𝑔, with their overall probability of being assigned

treatment equal to the probability of these 𝑔 being drawn).

One of the main contributions of this chapter is that we derive an optimal updating procedure for

obtaining the posterior distribution over 𝔊. This procedure minimises an upper bound on welfare regret

and yields an exponential tilting of the prior over 𝔊, where the tilting depends upon the empirical welfare

criterion. This novel updating formula resembles the quasi-posterior distribution that appears in the

Laplace-type estimation that is studied by Chernozhukov and Hong (2003b), but differs in that the

constant factor in the exponential tilting term is determined endogenously by the Lagrange multiplier

of the optimisation.
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Despite our analytical characterisation of the optimal posterior distribution, computation of this distri-

bution or sampling of 𝑔 from it is not straightforward. We therefore consider a variational approximation

of the optimal posterior distribution by a parametric distribution. In particular, as a specification of

𝔊, we consider the class of Linear Eligibility Score (LES) rules that assign treatment if 𝑥⊤𝛾 (the linear

score) exceeds some threshold 𝛾0 (eligibility). Building upon the LES class, we exploit the invariance

of the welfare criterion to the ratio of 𝛾 to 𝛾0 (scale invariance) and approximate the optimal posterior

distribution using a multivariate von Mises-Fisher distribution.

For the practice of reporting and communicating individualised allocations of treatment, our approach

of obtaining a posterior distribution over policies is useful for generating some quantities that existing

methods yielding deterministic assignment rules cannot produce. First, the posterior probability that

𝑔(𝑿) = 1 offers a personalised probabilistic assessment that individuals with these characteristics favour

treatment over no treatment. Reporting such a probability offers a novel alternative to the common

practice of using the p-values of hypothesis testing to express confidence in a positive treatment effect,

something which does not easily translate to a recommendation about what the social planner should do.

Second, viewing the posterior over 𝑔 as an inferential tool for the welfare-optimality of (deterministic)

assignment policies within 𝔊, we can obtain a credible region for the optimal policy by, for instance,

selecting its highest posterior density region. This approach to obtaining confidence sets for the optimal

treatment assignment policy is an alternative to the frequentist approach that is studied in Rai (2019).

Third, analogous to the practice of using a Bayesian posterior with a noninformative prior as a visual

summary of the likelihood function, we can use our variationally approximated posterior over 𝑔 as a

visual summary of the exponentiated empirical welfare criterion function.

To demonstrate how to implement our approach and what it delivers in practice, we apply our methods to

the JTPA Study sample that is studied by Bloom et al. (1997). Given observations of prior earnings and

years of education, we ask with what probability should an individual be treated? Restricting attention

to linear assignment rules and a variational approximation of the optimal posterior distribution by a

multivariate von Mises-Fisher distribution, we estimate a stochastic assignment rule that is more likely to

allocate JTPA assistance to individuals with high prior earnings and fewer years of education. Kitagawa

and Tetenov (2018b), which similarly considers the JTPA Study sample, and estimates a deterministic

assignment rule, serves as a useful benchmark for comparison. Aside from the obvious difference that

we estimate a stochastic rule (i.e., every individual has a non-trivial probability to be allocated JTPA

assistance under our rule), our estimated rule allocates JTPA assistance to a smaller fraction of the

population than the deterministic rule of Kitagawa and Tetenov (2018b), which targets individuals

with low prior earnings and few years of education for treatment. This difference reflects the shape of
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the empirical welfare criterion, which can be captured by our approach but is missed by deterministic

policies that are obtained as the mode of the empirical welfare criterion.

This chapter contributes to the growing literature on statistical treatment choice initiated by Manski

(2004b). Exact minimax regret assignment rules are studied in Ishihara and Kitagawa (2021), Schlag

(2006), Stoye (2009), Stoye (2012), Tetenov (2012), and Yata (2021). Hirano and Porter (2009)

analyses asymptotically-optimal assignment rules in limit experiments, and Bhattacharya and Dupas

(2012) considers capacity constrained policies. Kitagawa and Tetenov (2018b) proposes Empiri-

cal Welfare Maximisation (EWM) methods for individualised assignment, which maximise a sample

analogue of the social welfare function over a constrained class of policies. Similar approaches have

been studied in the literature on machine learning and personalised medicine, as in Beygelzimer and

Langford (2009), Swaminathan and Joachims (2015), Zadrozny (2003), Zhang et al. (2012), and

Zhao et al. (2012). Recent advances in learning individualised assignment policies include Adjaho

and Christensen (2022), Athey and Wager (2021), D’Adamo (2021), Han (2022), Kido (2022),

Kitagawa and Tetenov (2021), Kitagawa et al. (2021), Liu (2022), Mbakop and Tabord-Meehan

(2021), Nie et al. (2021), Sakaguchi (2019), Sasaki and Ura (2020), Sun (2021), and Viviano (2021),

to list but a few works. The assignment rules estimated in these works are all deterministic.

There are some earlier works that investigate the decision-theoretic justification for stochastic (fractional)

assignment and the welfare performance of these rules, with Manski (2009) providing a detailed review

of settings where stochastic rules are preferable. When the welfare criterion is only partially identified,

minimax regret-optimal rules are stochastic given knowledge of the identified set (Manski, 2000a, 2005,

2007a,b), which remains true even after taking into account uncertainty of estimates of the bounds

(Manski, 2022; Stoye, 2012; Yata, 2021). As shown by Manski and Tetenov (2007) and Manski,

2009, stochastic assignment rules can also be justified by a nonlinear welfare criterion in a point-identified

setting. Kitagawa et al. (2022a) shows that, for a wide class of nonlinear welfare regret criteria,

admissible assignment rules are stochastic (fractional). In particular, Kitagawa et al. (2022a) shows

that the minimax squared-regret rule is stochastic, with the probability of assignment equal to the

posterior probability of a positive treatment effect under the least-favorable null. Kitagawa et al.

(2022a) proposes using this probability as a measure of the strength of evidence for a positive treatment

effect, replacing the commonly used p-value of a hypothesis test. In contrast, this chapter obtains

the probability of assignment from a posterior probability distribution over assignment rules, rather

than over the treatment effect parameters, with a quasi-likelihood built upon the empirical welfare

criterion. Kock et al. (2022) obtains a stochastic assignment rule in a setting where the oracle optimal

rule is fractional due to nonlinearity in the social planner’s chosen welfare criterion. In contrast to the
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static treatment assignment problem, dynamic treatment assignment problems analysed in the multi-arm

bandit literature often consider stochastic assignments that balance the exploitation versus exploration

trade-off, such as the posterior probability matching algorithm of Thompson (1933) does. Thompson

sampling algorithms build upon the standard Bayesian posterior distribution for treatment effects such

that the allocation algorithm crucially relies on a parametric specification of the data generating process,

which our approach does not require.

Chamberlain (2011) and Dehejia (2005) approach the treatment choice problem from a Bayesian

perspective. In their framework, the potential outcome distributions are parametric, and it is over the

parameters of these distributions that a prior is imposed. For the standard mean welfare criterion, the

Bayes optimal allocation rule is deterministic. Our approach differs from these works in that we do

not assume a prior distribution over the data generating process. We instead impose few restrictions

on the data generating process, and form prior and posterior distributions over the parameters that

index assignment rules. Our approach can be advantageous when compared to Chamberlain (2011)

if the social planner is concerned about potential misspecification of the likelihood. If the likelihood is

misspecified, the resulting Bayes-optimal assignment rule can be suboptimal even for large samples. In

contrast, our approach is guaranteed to yield a distribution over policies that is guaranteed to concentrate

on welfare-optimal policies without requiring a specification for the data generating process.

Our approach is also related to that of Bissiri et al. (2016) and Csaba and Szoke (2020), where loss

function-driven (quasi-Bayes) updating rules are proposed. Rather than follow their approach by adopt-

ing exponentiated loss as a quasi-likelihood and solving the quasi-Bayesian decision problem, we obtain

an optimal learning rule by minimising a high probability upper bound on welfare regret. This way of

establishing optimality is similar to the structural risk minimisation approach of Vapnik (1998) and

the Probably Approximately Correct (henceforth, PAC) analysis proposed by Valiant (1984), which

was extended to the study of randomised predictors in McAllester (1999), and Shawe-Taylor and

Williamson (1997), constituting the development of PAC-Bayes theory. For classification and regres-

sion problems, various PAC-Bayes bounds on prediction generalisation errors are obtained in Bégin

et al. (2014, 2016), Catoni (2007), Derbeko et al. (2004), Germain et al. (2009), McAllester

(2003), Pentina and Lampert (2015), and Seeger (2002), and can accommodate quasi-Bayesian pro-

cedures similar to ours. See Guedj (2019) for a recent review of this literature. To our knowledge,

the PAC-Bayes bounds that we derive for treatment choice are new to the literature and offer a contri-

bution of independent interest. We also note that Pellatt (2022) makes use of PAC-Bayes theory to

analyse the treatment allocation problem with stochastic assignment rules under a budget (or resource)

constraint.
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Although the treatment choice problem is distinct from prediction problems—as is discussed in Kita-

gawa and Tetenov (2018b)—the EWM approach for treatment choice is closely related to the cost-

sensitive binary classification problem, as first pointed out by Zadrozny (2003). The PAC-Bayes clas-

sification analysis with variational posterior approximation that is proposed by Alquier et al. (2016)

is, therefore, closely related to our analysis. There are, however, important differences with Alquier

et al. (2016). First, we make use of the approach proposed by Bégin et al. (2016), which allows for

the construction of a variety of different bounds via a general convex function. This introduces the

complication that classification is not standard (i.e., cost is homogeneous) and is instead cost-sensitive.

Introducing heterogeneity in the cost of misclassification leads to a non-trivial challenge in deriving the

PAC bounds. To address these complications we leverage results in Maurer (2004) for continuous loss

functions over the unit interval. Second, Alquier et al. (2016) considers approximating the optimal

posterior distribution by a Gaussian distribution. We exploit the scale invariance property of the wel-

fare criterion and approximate the optimal posterior distribution by a multivariate von Mises-Fisher

distribution over the hypersphere.

—| Section 1 |—

Framework

We suppose that the social planner (or the econometrician acting on her behalf) observes experimental

data that comprises a probability distribution over {𝑌 , 𝑇 , 𝑿} that we denote by 𝑃 𝑛 and that is con-

structed from 𝑛 independent and identically distributed draws. Here, 𝑌 ∈ R denotes response, which

is some measured outcome of interest; 𝑇 ∈ {0, 1} denotes treatment, which is an indicator for whether

an individual is treated or not (i.e., which group—the experimental group or the control group—an

individual is a member of in the experimental data); and 𝑿 ∈ R𝑖 denotes covariates, which are some

measured individual characteristics. The population from which the experimental data is drawn com-

prises a probability distribution over {𝑌0, 𝑌1, 𝑇 , 𝑿} that we denote by 𝑃 . Here, 𝑌1 and 𝑌0 are potential

outcomes and relate to 𝑌 via the relationship

𝑦 = 𝑦1 ⋅ 𝑡 + 𝑦0 ⋅ [1 − 𝑡] D.1

We refer to 𝑃 𝑛 as the empirical distribution and to 𝑃 (together with Equation D.1) as the data-

generating process, and assume that 𝑿 consists only of those characteristics that the social planner

can use to discriminate between individuals in the target population, with budgetary, ethical or legal

considerations precluding the use of other characteristics.

Throughout our analysis, we maintain several assumptions. We follow Manski (2004b) and the subse-
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quent literature in supposing that the social welfare criterion is that of a utilitarian social planner who

aims to maximise the average level of individual outcomes. We note that other criteria could also be

implemented, such as inequality-averse social welfare and Gini social welfare.1

Assumption D.1 (External validity). The population to which policy is to be applied—the target

population—has the same distribution over {𝑌1, 𝑌0, 𝑿} as the marginal distribution of {𝑌1, 𝑌0, 𝑿} that

is obtained from the data generating process.

Assumption D.2 (Unconfoundedness). The data generating process satisfies {𝑌1, 𝑌0} ⟂⟂ 𝑇 |𝑿.

Assumptions D.1 and D.2 are satisfied, for instance, if the experimental data is extracted directly from the

target population and the treatment is, conditional on the covariates, randomly assigned,2 independently

of the potential outcomes (Rosenbaum and D. B. Rubin, 1983).

Assumption D.3 (Bounded outcomes). There exists a constant 0 < 𝑐𝑦 < ∞ such that 0 ≤ 𝑌 ≤ 𝑐𝑦.

Assumption D.4 (Strict overlap). There exists a constant 0 < 𝜓 < 1/2 such that the propensity score

satisfies 𝜓 ≤ 𝑒 (𝑥) ≤ 1 − 𝜓, where 𝑒 (𝑥) ≐ E𝑃 (𝑇 |𝑿).

As is discussed in Kitagawa and Tetenov (2018b) and Swaminathan and Joachims (2015), poli-

cies that maximise an empirical welfare criterion are not invariant to positive affine transformations of

outcomes, which is the case for the empirical welfare criterion that we consider in this chapter. Given

Assumptions D.3 and D.4, we can define

𝐻 ≐ 𝜓 ⋅ 𝑌 /𝑐𝑦
𝑒 (𝑿) ⋅ 𝑇 + [1 − 𝑒 (𝑿)] ⋅ [1 − 𝑇 ] D.2

which is confined to the unit interval, and which we interpret as weights and that are motivated by an

unbiased estimator of the (scaled) expected potential outcomes. We solve the planner’s problem using

these transformed outcomes. This transformation of outcomes does not affect the welfare ranking over

assignment policies, both in the population and according to in-sample welfare criteria, yet facilitates

our analysis.

Adopting an additive utilitarian perspective, the average level of social welfare attained by 𝑔 is propor-

1 For example, Kasy (2016) and Kitagawa and Tetenov (2021) study a setting where the social welfare function is a
weighted average of the outcomes with rank-dependent weights, which includes the Gini social welfare function as a
special case.

2 Kitagawa and Tetenov (2018b) considers a setting where the marginal distribution of 𝑿 differs between the popu-
lation of interest and the data generating process. Adjaho and Christensen (2022) and Kido (2022) study settings
that differ also in terms of the distribution of potential outcomes.
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tional to

𝑊 (𝑔) ≐ E𝑃 (𝑌1 ⋅ 1 (𝑔 (𝑿) = 1) + 𝑌0 ⋅ 1 (𝑔 (𝑿) = 0)) D.3

Given Assumptions D.1, D.2 and D.4 and that 𝑌 = 𝑌0 + 𝑇 ⋅ (𝑌1 − 𝑌0), we can re-write Equation D.3

as

𝑊 (𝑔) = E𝑃 ( 𝑌 ⋅ 𝑇
𝑒 (𝑿) ⋅ 1 (𝑔 (𝑿) = 1) + 𝑌 ⋅ (1 − 𝑇 )

1 − 𝑒 (𝑿) ⋅ 1 (𝑔 (𝑿) = 0)) D.4

= E𝑃 (𝑌 ⋅ [1 − 𝑇 ]
1 − 𝑒 (𝑿) ) + E𝑃 ([ 𝑌 ⋅ 𝑇

𝑒 (𝑿) − 𝑌 ⋅ [1 − 𝑇 ]
1 − 𝑒 (𝑿) ] ⋅ 𝑔 (𝑿)) D.5

Accordingly, the sample analogue of Equation D.3 can be written as

𝑊𝑛 (𝑔) ≐ 1
𝑛

𝑛
∑
𝑖=1

[ 𝑦𝑖 ⋅ 𝑡𝑖
𝑒 (𝒙𝑖)

⋅ 1 (𝑔((𝒙𝑖) = 1) + 𝑦𝑖 ⋅ [1 − 𝑡𝑖]
1 − 𝑒 (𝒙𝑖)

⋅ 1 (𝑔 (𝒙𝑖) = 0)] D.6

= 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 ⋅ [1 − 𝑡𝑖]
1 − 𝑒 (𝒙𝑖)

+ 1
𝑛

𝑛
∑
𝑖=1

[ 𝑦𝑖 ⋅ 𝑡𝑖
𝑒 (𝒙𝑖)

− 𝑦𝑖 ⋅ [1 − 𝑡𝑖]
1 − 𝑒 (𝒙𝑖)

] ⋅ 𝑔 (𝒙𝑖) D.7

where 𝑊𝑛 (𝑔) is an unbiased estimator for the true level of welfare that arises from the implementation

of a particular 𝑔. Given the additive social welfare criterion, the maximal welfare level can be attained

by a deterministic policy. Hence, as far as the population welfare maximisation problem is concerned,

the social planner wants to select the 𝑔 that maximises 𝑊 (𝑔).

Each 𝑔 can be associated with the set of characteristics that it assigns treatment to. We refer to 𝑔
as a deterministic asssignment rule, or simply as an assignment rule, with 𝔊 constituting the class of

assignment rules. We can write Equation D.7 as

𝑊𝑛 (𝑔) = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 ⋅ [ 𝑡𝑖
𝑒 (𝒙𝑖)

⋅ 𝑔 (𝒙𝑖) + 1 − 𝑡𝑖
1 − 𝑒 (𝒙𝑖)

⋅ [1 − 𝑔 (𝒙𝑖)]] D.8

= 1
𝑛

𝑛
∑
𝑖=1

ℎ𝑖 ⋅ 𝑐𝑦
𝜓 ⋅ [𝑡𝑖 ⋅ 𝑔 (𝒙𝑖) + [1 − 𝑡𝑖] ⋅ [1 − 𝑔 (𝒙𝑖)]] D.9

= 1
𝑛

𝑛
∑
𝑖=1

ℎ𝑖 ⋅ 𝑐𝑦
𝜓 ⋅ 1 (𝑔 (𝒙𝑖) = 𝑡𝑖) D.10

= 1
𝑛

𝑛
∑
𝑖=1

ℎ𝑖 ⋅ 𝑐𝑦
𝜓 − 1

𝑛
𝑛

∑
𝑖=1

ℎ𝑖 ⋅ 𝑐𝑦
𝜓 ⋅ 1 (𝑔 (𝒙𝑖) ≠ 𝑡𝑖) D.11

where ℎ𝑖 is the realisation of 𝐻, as defined in Equation D.2, for a given individual. We observe from

Equation D.11 that 𝑊𝑛 (𝑔) depends upon 𝑔 only through its second term, such that

argmax
𝑔

𝑊𝑛 (𝑔) = argmin
𝑔

1
𝑛

𝑛
∑
𝑖=1

ℎ𝑖 ⋅ 1 (𝑔 (𝒙𝑖) ≠ 𝑡𝑖) D.12
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Accordingly, we define

𝑅 (𝑔) ≐ E𝑃 (𝐻 ⋅ 1 (𝑔 (𝑿) ≠ 𝑇 )) D.13

which we term the welfare risk of 𝑔, and its empirical analogue

𝑅𝑆 (𝑔) ≐ 1
𝑛

𝑛
∑
𝑖=1

ℎ𝑖 ⋅ 1 (𝑔 (𝒙𝑖) ≠ 𝑡𝑖) D.14

which we term the empirical welfare risk of 𝑔. In view of Equation D.12, the social planner’s objective is to

minimise Equation D.13 with respect to 𝑔, via Equation D.14, following the empirical risk minimisation

principle of Vapnik (1998).

One special set of policies that we draw particular attention to is the LES class that is defined in

Kitagawa and Tetenov (2018b), and that we denote by 𝔏. Assignment rules in this class are indexed

by a finite-dimensional parameter vector 𝛾 and a threshold 𝛾0, and are associated with a binary function

ℓ𝛽 that satisfies

ℓ𝛽 (𝑿) ≐ 1 (𝑿⊤𝛾 ≥ 𝛾0) D.15

where we take 𝛽 to include both 𝛾 and 𝛾0 (i.e., 𝛽 is an 𝑚-dimensional vector). Each LES rule induces

a partitioning of the covariate space into two half-spaces, such that individuals in the upper contour

set receive treatment and individuals in the lower contour set do not. By restricting 𝛽 to the unit

hypersphere, we guarantee that each policy is associated with a unique 𝛽. In what follows, we exploit

the interchangeability of 𝛽 and the LES rule that it indexes, adopting 𝛽 as the argument of the loss

functions that we consider. For instance, and again with some abuse of notation, whenever we focus on

the LES class of decision rules we write

𝑅 (𝛽) = E𝑃 (𝐻 ⋅ 1 (ℓ𝛽 (𝑿) ≠ 𝑇 )) D.16

and

𝑅𝑆 (𝛽) = 1
𝑛

𝑛
∑
𝑖=1

ℎ𝑖 ⋅ 1 (ℓ𝛽 (𝒙𝑖) ≠ 𝑡𝑖) D.17

respectively, in place of Equations D.13 and D.14.
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—| Section 2 |—

Posterior distributions and stochastic assignment rules

We now adapt Equations D.13 and D.14 to handle stochastic assignment rules. We let Π denote a

probability distribution over 𝔊 that we interpret as a posterior distribution, assuming that 𝔊 can be

embedded in a measurable space.3 We let 𝔓 denote the collection of all posterior distributions.

Definition D.1 (Posterior assignment rule). Let Π be a probability distribution over 𝔊 that is constructed

upon observing the sample. The posterior assignment rule under Π is a stochastic assignment rule that

assigns treatment to individuals with probability 𝑄Π (𝑿) ≐ ∫𝔊 𝑔 (𝑿) ⋅ dΠ.

To implement posterior assignment rules in practice, we randomly draw a 𝑔 from 𝔊 according to Π
for each individual in the target population. In this way, similar individuals, who can have similar

assignment probabilities, can be assigned to different treatment arms. Moreover, this approach does not

require computation of the probability of treatment.

Definition D.2 (Expected welfare risk under Π). We define the expected welfare risk under Π as

𝑅Π ≐ ∫
𝔊

𝑅 (𝑔) ⋅ dΠ (𝑔) = E𝑃 (𝐻 ⋅ [𝑇 ⋅ [1 − 𝑄Π (𝑿)] + [1 − 𝑇 ] ⋅ 𝑄Π (𝑿)]) D.18

with its empirical analogue taking the form

𝑅Π
𝑆 ≐ ∫

𝔊
𝑅𝑆 (𝑔) ⋅ dΠ (𝑔) = 1

𝑛
𝑛

∑
𝑖=1

ℎ𝑖 ⋅ [𝑡𝑖 ⋅ [1 − 𝑄Π (𝒙𝑖)] + [1 − 𝑡𝑖] ⋅ 𝑄Π (𝒙𝑖)] D.19

The interpretation of 𝑅Π is the average welfare loss that the social planner expects from stochastic

implementation of 𝑔 in 𝔊 in the target population when 𝑔 is distributed according to Π.

We reiterate that stochastic assignment is achieved by randomly drawing 𝑔 according to Π. This way of

selecting assignment rules is reminiscent of the Gibbs classifier in statistical learning theory (Germain

et al., 2009) and might offer a computational advantage over other methods if drawing 𝑔 according to Π
is easier than maximising empirical welfare or finding the mode of Π, say. An advantage of stochastic

assignment is the possibility for sequential treatment evaluation: the induced assignment of treatment

and non-treatment to individuals in the target population by Π is random conditional on 𝑿, which allows

for estimation of the causal effect of treatment in future studies. In this sense, stochastic assignment

is well suited to balancing existing evidence about what constitutes the optimal assignment for each

3 For 𝔊 to be embedded in a measurable space, 𝔊 cannot be too rich. We defer to Molchanov (2005) and Gunsilius
(2019) for further discussion of this point.
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individual against the benefit of further exploration of the treatment effect (Manski, 2000b). We do

not, however, study this channel and focus on a purely static problem in this chapter.

Our framework allows the social planner to hold some prior as to what constitutes the best policy.

We differentiate the subjective beliefs that the social planner holds, which we encode using the prior

distribution Π0, and their updated beliefs following their observation of sample data, which we encode

using Π. In the analysis that follows, we provide finite sample regret guarantees in the form of PAC-

Bayes bounds for stochastic assignment. The approach discussed here differs significantly from other

Bayesian treatment choice settings, such as those discussed in Chamberlain (2011), because we do not

impose any kind of prior belief on 𝑃 . We instead choose to model the beliefs that the social planner has

regarding the optimal policy. Using a decision procedure that is free from specification of the likelihood

comes with a desirable robustness property, as we discuss in due course.

Aside from its more conventional role as a means of expressing existing information about what consti-

tutes the best policy, Π0 can also play several other roles within our framework. For instance, Π0 can

also embed any constraints that are imposed upon the set of policies through truncation of its support.

Such a zero density condition can be imposed in lieu of an explicit restriction on 𝔊 and is easy to im-

plement in practice via rejection sampling, with only those policies that satisfy any budgetary, ethical

or legal constraints being retained under the sampling procedure. Moreover, Π0 can also be used to

describe the status quo, with restrictions on the shape of Π0 governing how much policy can deviate.

These interpretations of Π0 naturally extend to Π.

—| Section 3 |—

Optimal stochastic assignment and convergence of welfare

Having defined a criterion by which to assess stochastic assignment rules, we ask what is the optimal

posterior assignment rule? Of course, answering this question requires that we make some link between

the performance of an assignment rule in the sample versus in the target population, and that we make

some judgement about the feasibility of estimating this rule.

—| Subsection 3.a |—

Bounding expected welfare risk

Seeing as experimental data provides only an insight into the welfare performance of any policy in the

target population, a very natural question to ask is how much we can expect 𝑅Π
𝑆 to differ from 𝑅Π for

any given Π. We provide an answer to this question here.
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Theorem D.1. Suppose that Assumptions D.1 to D.4 are satisfied, and that 𝑛 ≥ 8. Then, with at least

probability 1 − 𝜀 under 𝑃 𝑛, for all 𝜀 satisfying 0 < 𝜀 < 1,

𝑅Π ≤ 𝑅Π
𝑆 + √ 1

2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (2√𝑛
𝜀 )] D.20

provided that Π ∈ 𝔓 is absolutely continuous with respect to Π0.

We present Theorem D.1 without proof (see Kitagawa et al., 2022b for a proof of Theorem D.1).4

We note that Theorem D.1 holds for any rules that update Π0 and deliver Π, and that we have not

committed to any particular updating rule to obtain Equation D.20. A feature of Equation D.20 is that

the regularisation term—the square root term containing the Kullback-Leibler divergence of Π from Π0—

enters additively, which we find is a convenient feature for establishing convergence of our variational

approximation (regularisation can otherwise be effected multiplicatively).5 The regularisation term, by

design, prevents overfitting. To illustrate this point, suppose that Π0 is uniform over 𝔊: the best response

of the social planner absent regularisation is to concentrate probability mass on the optimal (in-sample)

𝑔 as suggested by data, such that Π is degenerate. In the presence of regularisation, however, this is

no longer a best response, since the Kullback-Leibler divergence infinitely penalises degeneracy vis-à-vis

uniformity. Rather, the best response of the social planner is to allocate probability mass on all 𝑔 in

𝔊, albeit concentrating more mass on those 𝑔 that are associated with low empirical welfare risk. Put

differently, the regularisation term controls how far away from Π0 a stochastic assignment rule can be,

with this difference governed by the number of observations in the sample.

The Vapnik-Chervonenkis (VC) dimension is the standard measure of complexity in the statistical learn-

ing literature. We instead associate complexity with the Kullback-Leibler divergence. If one is willing

to impose distributional constraints on a posterior assignment rule, an advantage of the PAC-Bayes

approach and of using the Kullback-Leibler divergence is that complexity is then purely in terms of the

selected (stochastic) assignment rule Π rather than in terms of the class of possible stochastic assignment

rules 𝔓 or the class of underlying deterministic rules 𝔊. As such, Theorem D.1 does not explictly require

any assumption about the VC dimension of 𝔊. The influence of VC dimension for 𝔊 is implicit in our

setting: the upper bound on the difference between 𝑅Π
𝑆 and 𝑅Π implied by Equation D.20 is governed

4 The proof builds upon Bégin et al. (2016, §Lemma 3), which offers a flexible approach that allows for the recovery of
many different PAC-Bayes bounds. The approach centres around a convex function of 𝑅Π and 𝑅Π

𝑆 , which we specify
so as to recover the form that is presented in McAllester (2003, see §(8) in Bégin et al., 2016). We leverage results
in Maurer (2004, §Lemma 3 and §Theorem 1), exploiting the properties of Bernoulli random variables and convex
functions, to adapt Bégin et al. (2016) and the bound that is presented therein to allow for heterogeneous cost (in
lieu of the standard binary loss function that is prevalent in the classification literature and that is studied in Bégin
et al., 2016).

5 See Bégin et al. (2016) for the implications of different convex functions.
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by the Kullback-Leibler divergence, which is increasing in the dimension of the support of Π and Π0,

and so is non-decreasing in the complexity of 𝔊.

—| Subsection 3.b |—

Optimal updating rule

In a standard Bayesian setting, unknown parameters index the distribution of data and inference on

parameters is conducted with respect to the posterior distribution. Typically, the posterior distribution

is constructed from a well-defined likelihood function via Bayes’ theorem. We leverage Theorem D.1

to construct Π from Π0 and 𝑅Π
𝑆 . This approach is valid since Theorem D.1 holds for all Π ∈ 𝔓.

We emphasise that the posterior distribution that we construct is over assignment rules rather than

over the data generating processes, which is distinct from Bissiri et al. (2016) and Csaba and Szoke

(2020).

Following McAllester (2003) and Germain et al. (2009), we define an optimal posterior distribution,

which we denote by Π∗, as a distribution over 𝔊 that minimises the right hand side of Equation D.20.

That is, Π∗ minimises

𝑅Π
𝑆 + √ 1

2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (2√𝑛
𝜀 )] D.21

Theorem D.2. The optimal posterior Π∗ over 𝔊 satisfies

dΠ∗ (𝑔) ≐ exp (−𝜒 ⋅ 𝑅𝑆 (𝑔))
∫𝔊 exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔) ⋅ dΠ0 (𝑔) D.22

where

𝜒 ≐ 4𝑛 ⋅ √ 1
2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (2√𝑛

𝜀 )] D.23

We present a proof of Theorem D.2 in the appendices.

The posterior distribution that we derive is analogous to the optimal posterior in McAllester (2003)

with the difference that our observations are mapped to the unit interval rather than to positive-negative,

which is the standard support in classification. This particular distribution is common in the statistical

mechanics literature and is a Boltzmann (or Gibbs) distribution, and has the form of exponential tilting

of the prior, where the exponential tilting term involves the negative empirical welfare risk. The degree

of tilting depends upon the magnitude of 𝜒 > 0, which is the inverse of the Lagrange multiplier of the
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associated minimisation problem and that corresponds to the root of Equation D.23. The Lagrange

multiplier controls the extent to which Π0 is updated by empirical welfare risk in minimising the upper

bound for 𝑅Π.

Although Theorem D.2 offers an analytical characterisation of the optimal posterior, we are unable to

obtain a closed-form expression for the optimal posterior density. Whilst Equation D.23 does suggest

a means to compute this density, it is likely that, in practice, this computation is difficult to perform

with any precision. Given that we have, however, established that this density exists, we can con-

sider approximating it using the variational approximation method, as is considered in Alquier et al.

(2016).

—| Subsection 3.c |—

Variational approximation of the optimal stochastic assignment rule

We develop a variational approximation of the optimal posterior density. Variational approximation

is useful in situations where Gibbs distributions are difficult to sample from directly, such as is the

case for graphical models where Markov Chain Monte Carlo (MCMC) sampling is costly (Wainwright

and Jordan, 2008). In variational approximation, we choose to approximate the optimal posterior

distribution via a family of distributions of our choice, 𝔙 ⊂ 𝔓. This allows us to develop an analytically

tractable upper bound for the welfare regret attained by the resulting stochastic assignment rule.

Aside from guaranteeing tractability in estimation, variational approximation can also be motivated as

a convenient way to impose constraints on the set of policies. For instance, a fairness criterion requiring

that individuals with similar characteristics have similar probabilities of treatment (Dwork et al., 2012)

can be enforced by specifying that 𝔙 is a continuous family, and by limiting the concentration of the

density. A similar approach can be used if 𝔙 is a parametric family to limit how much policy can deviate

from the status quo, by fixing the parameters of the posterior distribution or restricting them to some

set, say.

We approximate Π∗ (implicitly defined in Theorem D.2) by minimising the right-hand side of Equa-

tion D.20 with respect to posterior distributions in 𝔙, defining

Π̃ ≐ argmin
Π∈𝔙

(𝑅Π
𝑆 + √ 1

2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (2√𝑛
𝜀 )]) D.24

We then use this optimal variational posterior distribution to define a new bound for welfare regret from

which we can characterise its convergence rate.
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Lemma D.1. With probability 1 − 𝜀 under 𝑃 𝑛, for all 𝜀 such that 0 < 𝜀 < 1, the expected welfare risk

under the optimal variational posterior satisfies

𝑅Π̃ ≤ inf
Π∈𝔙

(𝑅Π + 𝑎 (𝜆, 𝑛)
𝜆 + 𝑑ℓ (Π, Π0)

𝜆 + ln (2/𝜀)
𝜆 + √ 1

2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (4√𝑛
𝜀 )]) D.25

where 𝜆 > 0 is an arbitrary constant.

In what follows, we let 𝔙 be a variational family of distributions that assigns positive density to assign-

ment rules in 𝔏 only. Equivalently, we let 𝔙 be a directional family that assigns positive density to

unit vectors on the hypersphere, recalling that every policy in the LES class can be uniquely associated

with a unit vector (see Equation D.15 and surrounding discussion). A particularly tractable directional

family, and one that we use, is the von Mises-Fisher family of distributions, which is characterised by a

probability density function satisfying, for all 𝜅 > 0 and 𝑚-dimensional unit vectors 𝜇,

dΠ (𝛽; 𝜅, 𝜇) ≐ 𝜅𝑚/2−1 ⋅ exp (𝜅 ⋅ 𝜇⊤𝛽)
[2𝜋]𝑚/2 ⋅ I𝑚/2−1 (𝜅)

⋅ d𝛽 D.26

We refer the reader to Chapter C for further details about the von Mises-Fisher family of distribu-

tions.

We now introduce some further notation that facilitates our analysis. First, we let 𝑅 ≐ infΠ∈𝔓 𝑅Π

denote the minimum expected welfare risk amongst assignment rules in 𝔏 and 𝛽 denote the vector that

parametrises the assignment rule that induces 𝑅. We also add the following assumption that restricts

the marginal distribution of 𝑿.

Assumption D.5 (Margin assumption). There exists a constant 𝜂 > 0 such that, for all 𝑚-dimensional

unit vectors 𝛽† and 𝛽‡,

𝑃 (sign (𝑿⊤𝛽†) ≠ sign (𝑿⊤𝛽‡)) ≤ 𝜂 ⋅ ∥𝛽† − 𝛽‡∥2 D.27

Assumption D.5 is satisfied whenever 𝑿 has bounded density on the unit hypersphere and is also present

in the analysis of Alquier et al. (2016). An interpretation is that the proportion of individuals whose

treatment status switches is continuous with respect to the LES, with

𝑅 (𝛽) − 𝑅 ≤ 2𝜂 ⋅ ‖𝛽 − 𝛽‖2 D.28

being an implication of Assumption D.5.
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We now present a high-probability uniform upper bound for the welfare regret of the stochastic assign-

ment rule obtained by variational approximation via the von Mises-Fisher family of distributions.

Theorem D.3. Suppose that Assumptions D.1 to D.5 are satisfied, that Π0 is a uniform distribution over

the unit hypersphere, that Π is a von Mises-Fisher distribution, and that 𝑛 ≥ 8. Then, with probability

at least 1 − 𝜀 under 𝑃 𝑛,

𝑅Π̃ − 𝑅 ≤ universal constant ⋅ ln (𝑛)√𝑛 D.29

where the universal constant is a function of 𝜀.

We present proof of Theorem D.3 and provide an analytical expression for the universal constant in the

appendices.

The uniform upper bound on welfare regret that is defined by Equation D.29 decays at a rate of

ln (𝑛) /√𝑛. This rate is slightly slower than the welfare regret convergence rate of the EWM (deter-

ministic) assignment rule studied in Kitagawa and Tetenov (2018b). A simple comparison of these

rates, however, is not quite meaningful for the following reason: we do not know if the convergence rate

of ln (𝑛) /√𝑛 that is obtained in Theorem D.3 is sharp or not. Theorem D.3 requires Assumption D.5,

whilst Kitagawa and Tetenov (2018b) does not impose this assumption in showing that 1/√𝑛 is the

minimax optimal rate of welfare regret convergence.6 We do not know what the minimax optimal rate

of welfare regret convergence is when Assumption D.5 is additionally imposed and, hence, cannot rule

out the possibility that the convergence rate of Theorem D.3 can be improved upon and made faster

than 1/√𝑛. We leave further investigation of this matter for future research.

It is worth emphasising that the regret convergence result of Theorem D.3 imposes weak restrictions on

the distribution of data (Assumptions D.3 - D.5) and does not require the specification of a likelihood

function or of regression equations. This contrasts with other approaches such as a Bayesian approach,

where misspecification of likelihood can lead to non-convergence of the welfare regret even when Bayes

optimal policies are constrained to deterministic ones in 𝔏.

Our approach is similar to Alquier et al. (2016) in which the families of distributions for variational

approximation are multivariate Gaussian distributions on Euclidean space with flexible covariance ma-

6 Kitagawa and Tetenov (2018b, §Theorem 2.3 and §Theorem 2.4) establishes that the minimax-optimal rate under
a stronger condition than our Assumption D.5 is 1/𝑛2/3. This stronger condition embeds a margin assumption that
implies our Assumption D.5 but also embeds the requirement that the first-best treatment rule is contained in the set
of admissible decision rules—that 𝔏 contains the deterministic assignment rule that minimises expected welfare risk
amongst all assignment rules. We do not make any assumption about whether 𝔏 (or indeed 𝔊 in earlier parts of our
analysis) contains the first-best assignment rule, or whether this rule is deterministic or stochastic.
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trices. In our approach, we stipulate a class of von Mises-Fisher distributions. Since the empirical welfare

criterion for LES rules is invariant to the scale of 𝛽, it is natural to consider von Mises-Fisher distri-

butions rather than Gaussian ones. The scale invariance of von Mises-Fisher distributions can simplify

optimisation of the variational approximation by reducing the set of optima to a singleton.

—| Section 4 |—

Implementation

To implement our procedure, we restrict attention to 𝔏 and let 𝔙 be the von Mises-Fisher family of

distributions. Our goal is then to minimise the objective function,

𝑅Π
𝑆 + √ 1

2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (2√𝑛
𝜀 )] D.30

with respect to 𝜅 and 𝜇, which are the parameters of our chosen variational family (the concentration

parameter and the mean direction, respectively). Here, we reiterate that 𝜀 relates to the probability

with which our high probability bounds hold. We assume that Π0 is the uniform distribution over the

sphere and set 𝜀 equal to the 5% level throughout.

We propose numerically minimising the objective function, approximating 𝑅Π
𝑆 using Monte Carlo draws

of 𝛽 from the von Mises-Fisher distribution for a given realisation of data and for fixed values of the

parameters of the von Mises-Fisher distribution. We let 𝛽𝑗 be one such pseudo-random draw that we

obtain, and compute

�̂�Π
𝑆 ≐ 1

𝑛
𝑛

∑
𝑖=1

ℎ𝑖 ⋅ [𝑡𝑖 ⋅ [1 − Π̂𝑖] + [1 − 𝑡𝑖] ⋅ Π̂𝑖] D.31

where

Π̂𝑖 ≐ 1
𝐽

𝐽
∑
𝑗=1

1 (𝒙⊤
𝑖 𝛽𝑗 ≥ 0) D.32

Fast pseudo-random sampling of von Mises-Fisher random vectors is possible using the rejection sampling

method of Wood (1994) or the inversion method of Kurz and Hanebeck (2015). The analogue of

Equation D.30 that we then minimise is

�̂�Π
𝑆 +

√√√
⎷

1
2𝑛 ⋅ [[𝑚

2 − 1] ⋅ ln (𝜅
2 ) − ln (I𝑚/2−1 (𝜅)) − ln (Γ (𝑚

2 )) +
I𝑚/2 (𝜅)

I𝑚/2−1 (𝜅) ⋅ 𝜅 + ln (2√𝑛
𝜀 )] D.33

which follows from our assumption of a uniform prior and the form that the Kullback-Leibler divergence

takes under that assumption.
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As is shown in Chapter C, the Kullback-Leibler divergence of the von Mises-Fisher distribution from the

uniform distribution over the hypersphere does not depend upon 𝜇 and increases at the logarithmic rate

in the concentration. In contrast, although 𝑅Π
𝑆 is a function of the parameters of the von Mises-Fisher

distribution, the nature of this relationship is not clear. That several combinations of these parameters

induce local minima of 𝑅Π
𝑆 cannot be ruled out for instance. Moreover, since we construct �̂�Π

𝑆 based

upon random draws of 𝛽 from Π, our objective function is not a smooth function of the concentration

nor the mean direction. Given this, we suggest that a grid-based search for the minimum of the objective

function is appropriate, with this search limited to values of the concentration parameter between zero

and some specified upper limit. Further insight about the behaviour of the objective function is provided

in an online appendix.

—| Section 5 |—

Empirical illustration

We illustrate our procedure using data from the National Job Training Partnership Act (JTPA) Study.

Applicants to the Study were randomly allocated to one of two groups. Applicants allocated to the

treatment group were extended training, job search assistance and other services provided by the JTPA

over a period of 18 months. Applicants allocated to the control group were excluded from JTPA assis-

tance. Along with information collected prior to the commencement of the intervention, the Study also

collected administrative and survey data relating to applicants’ earnings in the 30 months following its

start. Further details about the data and the Study can be found elsewhere (see, for instance, Bloom

et al., 1997). We restrict attention to a sample of 9,223 observations for which data on years of educa-

tion and pre-programme earnings amongst the sample of adults (aged 22 years and older) used in the

original evaluation of the programme and in subsequent studies (Abadie et al., 2002; Bloom et al.,

1997; Heckman et al., 1997) is available. Applicants in this sample were assigned to the treatment

group with a probability of two thirds. Like Kitagawa and Tetenov (2018b), we define 𝑇 to be the

initial assignment of treatment, rather than the actual take-up due to the presence of non-compliance

in the experiment. We study stochastic assignment rules.

We follow Kitagawa and Tetenov (2018b) in considering total individual earnings in the 30 months

after programme assignment as our principal welfare measure. Moreover, we focus exclusively on the

class of linear rules,

𝔏 = {𝑔 ∶ 𝑔 (𝑿) = 1 (𝛽0 + 𝛽1 ⋅ 𝑥1 + 𝛽2 ⋅ 𝑥2 ≥ 0) ∣ ‖{𝛽0, 𝛽1, 𝛽2}‖2 = 1}

= {𝑔 ∶ 𝑔 (𝑿) = 1 (𝛽0 + 𝛽1 ⋅ prior earnings + 𝛽2 ⋅ education ≥ 0) ∣ ‖{𝛽0, 𝛽1, 𝛽2}‖2 = 1}
D.34
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Figure D.1
Variation in treatment propensity across individuals in the JTPA Study sample
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JTPA Study sample. This figure illustrates the treatment propensity of individuals under the posterior assignment rule
that is induced by {𝜅∗, 𝜇∗}. Each point represents the individual characteristics of an individual or several individuals in
the (crosses denote individuals with zero in-sample weight). For comparison, individuals to the left of the solid diagonal

line are assigned treatment under the optimal deterministic assignment rule of Kitagawa and Tetenov (2018b).

that are studied in that paper.

To implement our procedure, we map prior earnings and education to the unit interval,7 and calculate

𝐻 as outlined in Equation D.2. We perform this calculation without adjusting post-programme earnings

by the average cost of JTPA assistance ($774 per individual) for treated individuals.8 We then utilise a

grid search approach over the parameters of the von Mises-Fisher distribution, specifying a reasonably

fine grid over the unit sphere and over a finite subset of the reals.9

For each point on our grid, we draw 1,000 values of 𝛽 from the corresponding von Mises-Fisher distri-

bution and approximate empirical welfare risk as per Equation D.31. We then substitute these values

into Equation D.33 to provide an estimate of the objective function.

7 We map each variable to the unit interval by dividing through by its maximum in the sample. Kitagawa and Tetenov
(2018b) also does this. Such a change of units is useful when the domain of one variable is much larger than the
domain of another and the respective coefficients on the two variables reflect this. For instance, in our sample, every
individual has between seven and 18 years of education, and no individual earned more than $63,000 prior to the start
of the intervention.

8 We adjust post-programme earnings by the average cost of JTPA assistance in an online appendix.
9 We design our grid so as to place an upper limit on the great-circle distance between any point on the sphere and

its closest point on the grid. Our grid comprises a total of 10,116 directional vectors combined with a sequence of
evenly-spaced concentrations on the zero to five interval. For reference, the surface area of the sphere is 4𝜋, which
means that our grid has a density of approximately 0.001.

69



Figure D.2
Behaviour of the objective function at 𝜇∗ given variation in 𝜅
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JTPA Study sample. This figure illustrates the shape of the objective function and its risk component at 𝜇∗ as 𝜅 is varied;
high concentration is associated with low risk but incurs a large penalty for divergence from the uniform prior.

We find that the objective function is minimised (amongst the class of von Mises-Fisher distributed linear

assignment rules) by the stochastic assignment rule with 𝜅 = 1.550 and 𝜇 = {0.883, 0.442, 0.158},10 which

we label as 𝜅∗ and 𝜇∗, respectively.

The optimal stochastic assignment rule, on average, assigns treatment to individuals in the JTPA Study

sample around 83% of the time. This probability is not, however, uniform, and there is some variation

in the probability with which distinct individuals are assigned treatment. This variation in assignment

propensity can be seen in Figure D.1, which plots the individual characteristics of all individuals in the

sample. The propensity with which individuals with distinct characteristics are assigned treatment is

represented by the color of each point, and the weight given to individuals in the sample with partic-

ular characteristics is represented by the size of each point. The weight attached to a given point is

proportional to the sum of post-programme earnings over all individuals with those characteristics.11

Figure D.1 shows that the optimal stochastic assignment rule is more likely to assign treatment to an

individual with few years of education and high prior earnings than an individual with more years of

education and lower prior earnings, with the assignment probability ranging from 78% to 84%. The

deterministic assignment rule of Kitagawa and Tetenov (2018b), in contrast, assigns only individuals

10 This directional vector can be represented by an azimuth of 27∘ and an inclination of 81∘ using spherical coordinates.
11 To simplify Figure D.1, we scale the weights such that they sum to one.
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with few years of education and low prior earnings to treatment, with around 93% of individuals assigned

treatment. We plot this deterministic rule as a useful benchmark for comparison in Figure D.1.

It is important to emphasise that it is the regularisation term and, in particular, the Kullback-Leibler

divergence that limits the value of the concentration parameter at the optimum, and leads to an interior

probability of assignment for all individuals. This can be seen in Figure D.2, which plots the USD

equivalent of the objective function (left-hand axis, solid line) and of empirical welfare risk (right-hand

axis, dashed line) for a range of values of the concentration parameter, holding fixed 𝜇 = 𝜇∗. We

observe that empirical welfare risk decreases as the value of the concentration parameter increases,

remaining low and constant once its value is sufficiently large.12 The intuition here is that large values

of the concentration parameter lead to stochastic assignment rules that mimic deterministic ones; we

expect the mean direction to eventually coincide with the deterministic assignment rule of Kitagawa

and Tetenov (2018b) as the value of the concentration parameter approaches infinity,since there does

not exist a (linear) deterministic rule that can improve upon this. Tempering this preference towards

large values of the concentration parameter is the Kullback-Leibler divergence of the von Mises-Fisher

distribution from the uniform distribution, which is increasing at the logarithmic rate in the concentration

and generates the difference between the objective function and empirical welfare risk in Figure D.2. As

the value of the concentration parameter increases, the regularisation term begins to dominate.

To better understand why 𝜇∗ does not coincide with the deterministic assignment rule of Kitagawa and

Tetenov (2018b) holding fixed 𝜅 = 𝜅∗, we refer to Figure D.3, which plots empirical welfare risk for all

vectors on the unit sphere—i.e., the empirical welfare risk associated for each deterministic assignment

rule in 𝔏. Figure D.3 utilises the spherical coordinate system

{𝛽0, 𝛽1, 𝛽2} = {cos (𝜃) ⋅ sin (𝜙) , sin (𝜃) ⋅ sin (𝜙) , cos (𝜙)} D.35

where −180∘ ≤ 𝜃 < 180∘ is the azimuth and 0∘ ≤ 𝜙 ≤ 180∘ is the inclination. It is perhaps convenient to

think of the azimuth as related to longitude and the inclination as related to latitude. For non-trivial

values of the concentration parameter, the von Mises-Fisher distribution allocates probability mass to the

sphere in such a way that its density contours are concentric about the mean direction, with points closer

to this direction more likely to occur. The deterministic assignment rule of Kitagawa and Tetenov

(2018b) can be seen from Figure D.3 to be located on the boundary between a high risk region (no-one

treated) and a moderate risk region (everyone treated). As such, a stochastic assignment rule with a

12 That empirical welfare risk decreases for small to moderate values of the concentration parameter is specific to the
data and chosen mean direction, and is arguably also attributable to the lack of consideration given to the cost of
treatment.
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Figure D.3
Deterministic assignment rules and empirical welfare risk
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JTPA Study sample. This figure illustrates the risk that is associated with (deterministic) assignment rules in 𝔏. A
spherical coordinate mapping is implemented. The intersection of the two white lines is located at 𝜇∗. The intersection
of the two black lines is located at the optimal deterministic assignment rule of Kitagawa and Tetenov (2018b), which

attains the minimal regret amongst all deterministic linear rules.

Figure D.4
Behaviour of the objective function at 𝜅∗ given variation in the mean direction 𝜇
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JTPA Study sample. This figure illustrates the risk that is associated with (stochastic) assignment rules in 𝔙; the
concentration parameter is fixed at 𝜅∗ whilst 𝜇 is varied. The intersection of the two white lines is located at 𝜇∗. The
intersection of the two black lines is located at the optimal deterministic assignment rule of Kitagawa and Tetenov

(2018b), which attains the minimal regret amongst all deterministic linear rules.
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non-trivial value of the concentration parameter with its mean direction located at this point would

approximately allocate probability mass to each of these regions in equal amounts. By shifting the mean

direction towards the centre of the moderate risk region, we allocate relatively more mass to rules that

induce moderate risk and less mass to rules that induce high risk, which reduces empirical welfare risk

overall.

This pattern underlies what we observe in Figure D.4, which plots empirical welfare risk for all directions

on the sphere holding fixed 𝜅 = 𝜅∗. Despite the apparent discontinuity of risk over deterministic

assignment rules, empirical welfare risk (and the objective function) appear to vary smoothly.

—| Appendix D.1 |—

Proofs

↪ Proof of Theorem D.2. An optimal posterior minimises

EΠ (𝑅𝑆 (𝑔)) + √ 1
2𝑛 ⋅ [EΠ (ln ( dΠ (𝑔)

dΠ0 (𝑔))) + ln (2√𝑛
𝜀 )] subject to ∫

𝔊
dΠ (𝑔) = 1,

inf
𝑔∈𝔊

dΠ (𝑔) ≥ 0
D.36

Provided that the solution satisfies the non-negativity constraints (the second constraint of Equa-

tion D.36), this is equivalent to minimising

∫
𝔊

𝑅𝑆 (𝑔) ⋅ dΠ (𝑔) + √ 1
2𝑛 ⋅ [∫

𝔊
ln ( dΠ (𝑔)

dΠ0 (𝑔)) ⋅ dΠ (𝑔) + ln (2√𝑛
𝜀 )] + 𝜉 ⋅ [Π (𝔊) − 1] D.37

where 𝜉 is the Lagrange multiplier. We separate this minimisation into two parts, by minimising Equa-

tion D.37 over Π subject to its Kullbuck-Leibler divergence from Π0 being equal to 𝑐 ≥ 0 and, subse-

quently, by searching for the value of 𝑐 that minimises the objective function.

We can write the constrained minimisation that forms the first part of the problem as

∫
𝔊

𝑅𝑆 (𝑔) ⋅ dΠ (𝑔) + √ 1
2𝑛 ⋅ [𝑐 + ln (2√𝑛

𝜀 )] + 𝜉 ⋅ [Π (𝔊) − 1] + 1
𝜒 ⋅ [∫

𝔊
ln ( dΠ (𝑔)

dΠ0 (𝑔)) ⋅ dΠ (𝑔) − 𝑐] D.38

where 𝜉 and 1/𝜒 are Lagrange multipliers, and where 𝑐 ≥ 0 is a constant, provided that the omitted non-

negativity constraints are satisfied at the solution. The associated first order condition of the minimand

with respect to dΠ (𝑔) is

𝑅𝑆 (𝑔) + 𝜉 + 1
𝜒 ⋅ [ln ( dΠ (𝑔)

dΠ0 (𝑔)) + 1] = 0 D.39
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Rearranging, we obtain

dΠ∗ (𝑔) = exp (−𝜒 ⋅ 𝑅𝑆 (𝑔))
exp (1 + 𝜉 ⋅ 𝜒) ⋅ dΠ0 (𝑔) D.40

where we emphasise that Π∗ is a function of 𝜒. In view of the first constraint of Equation D.37,

exp (1 + 𝜉 ⋅ 𝜒) = ∫
𝔊

exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔) D.41

and so, for all 𝑔 ∈ 𝔊,

dΠ∗ (𝑔) = exp (−𝜒 ⋅ 𝑅𝑆 (𝑔))
∫𝔊 exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔) ⋅ dΠ0 (𝑔) D.42

which integrates to one as is required. We reiterate that Equation D.42 is derived for an arbitrary (but

non-negative) 𝑐, and so holds for any feasible values of 𝜒.

For Π∗ to satisfy 𝑑ℓ (Π∗, Π0) = 𝑐, we require that

𝑐 = ∫
𝔊

ln ( dΠ∗ (𝑔)
dΠ0 (𝑔)) ⋅ dΠ∗ (𝑔)

= − ∫
𝔊

𝜒 ⋅ 𝑅𝑆 (𝑔) ⋅ dΠ∗ (𝑔) − ln (∫
𝔊

exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔))
D.43

This relationship between the radius of the Kullback-Leibler ball and the inverse of the Lagrange mul-

tiplier shows that 𝑐 is strictly monotonically increasing in 𝜒 provided that 𝑅𝑆 (𝑔) is not constant over

those 𝑔 supported by Π0, since

d𝑐
d𝜒 = − ∫

𝔊
𝑅𝑆 (𝑔) ⋅ dΠ∗ (𝑔) − ∫

𝔊
𝜒 ⋅ 𝑅𝑆 (𝑔) ⋅ [ d

d𝜒
dΠ∗ (𝑔)
dΠ0 (𝑔)] ⋅ dΠ0 (𝑔) + ∫

𝔊
𝑅𝑆 (𝑔) ⋅ dΠ∗ (𝑔) D.44

= 𝜒 ⋅ ∫
𝔊

[𝑅𝑆 (𝑔) − 𝑅Π∗
𝑆 ]2 ⋅ dΠ∗ (𝑔) D.45

≥ 0 D.46

where Equation D.46 is strict if 𝜒 > 0 and 𝑅𝑆 (𝑔) ≠ 𝑅Π∗
𝑆 for at least some 𝑔 supported by Π0. That 𝜒 is

non-negative is evident upon further consideration of Equation D.42: posterior distributions associated

with negative values of 𝜒 assign more mass to policies that are associated with high levels of risk

and so cannot be optimal. Accordingly, in the second part of the optimisation, we substitute Π∗ into

Equation D.38 in place of Π and solve the unconstrained minimisation problem with respect to 𝜒. That
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is, we solve

min
𝜒

⎛⎜⎜⎜⎜
⎝

𝑅Π∗
𝑆 + √ 1

2𝑛 ⋅ [−𝜒 ⋅ 𝑅Π∗
𝑆 − ln (∫

𝔊
exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔)) + ln (2√𝑛

𝜀 )]
⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

Penalty

⎞⎟⎟⎟⎟
⎠

D.47

We note that

d
d𝜒𝑅Π∗

𝑆 = d
d𝜒 ∫

𝔊
𝑅𝑆 (𝑔) ⋅ exp (−𝜒 ⋅ 𝑅𝑆 (𝑔))

∫𝔊 exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔) ⋅ dΠ0 (𝑔)

= ∫
𝔊

𝑅𝑆 (𝑔) ⋅ d
d𝜒

exp (−𝜒 ⋅ 𝑅𝑆 (𝑔))
∫𝔊 exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔) ⋅ dΠ0 (𝑔)

= − ∫
𝔊

[𝑅𝑆 (𝑔) − 𝑅Π∗
𝑆 ]2 ⋅ dΠ∗ (𝑔)

D.48

which we interpret as the variance of empirical welfare risk under Π∗. Using this result, we further note

that

d
d𝜒Penalty = 1

4𝑛 ⋅ Penalty ⋅ (−𝑅Π∗
𝑆 − 𝜒 ⋅ d

d𝜒𝑅Π∗
𝑆 +

∫𝔊 𝑅𝑆 (𝑔) ⋅ exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔)
∫𝔊 exp (−𝜒 ⋅ 𝑅𝑆 (𝑔)) ⋅ dΠ0 (𝑔) )

= 1
4𝑛 ⋅ Penalty ⋅ −𝜒 ⋅ d

d𝜒𝑅Π∗
𝑆

= 1
4𝑛 ⋅ Penalty ⋅ 𝜒 ⋅ ∫

𝔊
[𝑅𝑆 (𝑔) − 𝑅Π∗

𝑆 ]2 ⋅ dΠ∗ (𝑔)

D.49

Together Equations D.48 and D.49 imply that the associated first order condition of Equation D.47 with

respect to 𝜒 is

1
4𝑛 ⋅ Penalty ⋅ 𝜒 ⋅ ∫

𝔊
[𝑅𝑆 (𝑔) − 𝑅Π∗

𝑆 ]2 ⋅ dΠ∗ (𝑔) = ∫
𝔊

[𝑅𝑆 (𝑔) − 𝑅Π∗
𝑆 ]2 ⋅ dΠ∗ (𝑔) D.50

Provided—trivially, we might add—that Π∗ is not degenerate and there is variation in empirical welfare

risk (the conditions under which Equation D.46 is strict), then this condition reduces to

𝜒 = 4𝑛 ⋅ √ 1
2𝑛 ⋅ [𝑑ℓ (Π∗, Π0) + ln (2√𝑛

𝜀 )] D.51

which is exactly the condition that appears in Theorem D.2.

Although Equations D.42 and D.51 characterise a possible interior solution of the optimisation, we have

yet to guarantee that this proposed solution is a global optimum. To address this, we show that the two

possible corner solutions are sub-optimal, such that the first order conditions from which Equation D.51

are derived are applicable. Continuity and differentiability of Equation D.38 are then sufficient13 to

13 It is possible to show that the difference between the left- and right-hand sides of Equation D.51 is negative at 𝜒 = 0
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guarantee that a fixed point satisfying Equation D.51 exists.

Neither Π0 nor a degenerate distribution are optimal. To establish that Π0 is not optimal, we note that

Π∗ coincides with Π0 when 𝜒 = 0. By marginally increasing 𝜒, such that we move in the direction of Π∗,

we obtain a probability distribution that is in the interior. It suffices to show that such a probability

distribution reduces the value of the objective function relative to Π0. Evaluating Equations D.48

and D.49 at 𝜒 = 0, we obtain

d
d𝜒 [𝑅Π∗

𝑆 + Penalty]∣𝜒=0 = d
d𝜒𝑅Π0

𝑆

< 0
D.52

as we require, with any 𝜒 satisfying

0 < 𝜒 < 2𝑛 ⋅ 𝑅Π0 D.53

yielding a strictly lower value than 𝜒 = 0. To establish that a degenerate distribution is not optimal, we

note that such a distribution implies infinite divergence from Π0 (if Π0 were itself degenerate then our

analysis would be meaningless since the prior and posterior distributions would always coincide; and if

Π0 is atomic then the discrete case would apply). Given that Π0 attains a finite value of the objective

function, however, Π0 is always preferred to a degenerate distribution, and so a degenerate distribution

cannot be optimal

To prove Theorem D.3, we rely on several intermediate results.

Lemma D.2. The circular variance of a 𝑚-variate von Mises-Fisher random vector with concentration

𝜅 ≥ 0 is bounded from above by

𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2 − 2𝜅

𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2
≤ 2𝑚

𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2
D.54

and is an O (1/𝜅) function

Lemma D.2 is trivially established by subtracting the lower bound of Equation B.11 from one, and so

is stated without proof. That the circular variance is an O (1/𝜅) function is otherwise established in

Chapter C using a Hankel expansion.

and positive if 𝜒 is sufficiently large, with existence then established using extensions of the intermediate value theorem
and its corollary, Bolzano’s theorem.
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Lemma D.3. The Kullback-Leibler divergence of a 𝑚-variate von Mises-Fisher random vector with

concentration 𝜅 ≥ 0 is bounded from above by

𝑚 − 1
2 ⋅ ⎡⎢

⎣
ln ⎛⎜

⎝

𝑚 − 1
2 + √𝜅2 + [𝑚 + 1

2 ]
2⎞⎟
⎠

− ln (𝑚)⎤⎥
⎦

+ √𝜅2 + [𝑚 − 1
2 ]

2
− √𝜅2 + [𝑚 + 1

2 ]
2

+ 1 D.55

and is an O (ln (𝜅)) function

↪ Proof of Lemma D.3. Chapter C shows that, when Π is a von Mises-Fisher distribution and Π0 is

the uniform distribution over the hypersphere,

𝑑ℓ (Π, Π0) = [𝑚
2 − 1] ⋅ ln (𝜅

2 ) − ln (I𝑚/2−1 (𝜅))⎵⎵⎵⎵⎵⎵
Bessel fn.

− ln (Γ (𝑚
2 )) +

I𝑚/2 (𝜅)
I𝑚/2−1 (𝜅) ⋅ 𝜅
⎵⎵⎵⎵⎵

Ratio fn.

D.56

To derive an upper bound on the Kullback-Leibler divergence that does not involve modified Bessel

functions or their ratios, we replace the terms labelled Bessel fn. and Ratio fn. in Equation D.56 with

appropriate lower and upper bounds, respectively. To do so, we rely on results (and notation) in

Chapter B.

First, the term labelled Bessel fn. is bounded from below (recall that the term enters negatively) by

1
2 ⋅ ln ( 2

𝜅) − ln (Γ (𝑚
2 )) + 𝑚 − 1

2 ⋅ ln ⎛⎜⎜
⎝

𝜅 ⋅ 𝑚
𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2

⎞⎟⎟
⎠

+ 2𝜅2

𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2
D.57

Second, the term labelled Ratio fn. is bounded from above by

2𝜅2

𝑚 − 1 + √4𝜅2 + [𝑚 − 1]2
D.58

Substituting Equations D.57 and D.58 into Equation D.56, cancelling terms and noting that

[𝑚
2 − 1] ⋅ ln (𝜅

2 ) − 1
2 ⋅ ln ( 2

𝜅) = 𝑚 − 1
2 ⋅ ln (𝜅

2 ) D.59

we obtain

𝑚 − 1
2 ⋅ [ln (𝜅

2 ) − ln ( 𝜅 ⋅ 𝑚
𝑎 + √4𝜅2 + 𝑎2 )] − 2𝜅2

𝑎 + √4𝜅2 + 𝑎2 + 2𝜅2

𝑎 + √4𝜅2 + 𝑎2 D.60

where 𝑎 ≐ 𝑚 − 1 and 𝑎 ≐ 𝑚 + 1. To obtain the required result, we simplify the first two terms of

Equation D.60 and use the fact that, for any real 𝑎 (in this case, equal to either 𝑎 or 𝑎, which are
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positive reals),

4𝜅2

𝑎 +
√

4𝜅2 + 𝑎2 = √4𝜅2 + 𝑎2 − 𝑎 D.61

which makes use of the formula for the difference of two squares

↪ Proof of Theorem D.3. With Lemmata D.2 and D.3 to hand, we begin by noting that, together,

Assumption D.5 and Lemma D.1 imply that

𝑅Π̃ ≤ �̄� + inf
𝜅

(inf
𝜇

(First term + Second term +
√

Third term)) D.62

where

First term = ∫
S𝑚−1

2𝜁 ⋅ ‖𝛽 − 𝛽‖2 ⋅ dΠ (𝛽; 𝜅, 𝜇)

Second term = 1
𝜆 ⋅ [𝑎 (𝜆, 𝑛) + 𝑑ℓ (Π, Π0) + ln (2

𝜀)]

Third term = 1
2𝑛 ⋅ [𝑑ℓ (Π, Π0) + ln (4√𝑛

𝜀 )]

D.63

and which we note are functions (either explicit or implicit) in 𝜅 and 𝜇.

Focusing on the First term, we use Jensen’s inequality to show that

2𝜁 ⋅ ∫
S𝑚−1

‖𝛽 − 𝛽‖2 ⋅ dΠ (𝛽; 𝜅, 𝜇) ≤ 2𝜁 ⋅
√√√
⎷

∫
S𝑚−1

𝑚−1
∑
𝑖=0

(𝛽𝑖 − 𝛽𝑖)
2 ⋅ dΠ (𝛽; 𝜅, 𝜇) D.64

= 2𝜁 ⋅ √tr (EΠ ([𝛽 − 𝛽] [𝛽 − 𝛽]⊤)) D.65

Rearranging, we obtain

EΠ ([𝛽 − 𝛽] [𝛽 − 𝛽]⊤) = EΠ ([𝛽 − 𝛽 + EΠ (𝛽) − EΠ (𝛽)] [𝛽 − 𝛽 + EΠ (𝛽) − EΠ (𝛽)]⊤) D.66

= EΠ ([𝛽 − EΠ (𝛽)] [𝛽 − EΠ (𝛽)]⊤) + [EΠ (𝛽) − 𝛽] [EΠ (𝛽) − 𝛽]⊤
D.67

= Variance (𝛽| 𝛽 ∼ Π) + [
I𝑚/2 (𝜅)

I𝑚/2−1 (𝜅) ⋅ 𝜇 − 𝛽] [
I𝑚/2 (𝜅)

I𝑚/2−1 (𝜅) ⋅ 𝜇 − 𝛽]
⊤

D.68

which relies on results from Chapter C relating to the first two moments of the von Mises-Fisher family

of distributions. Restricting the set of von Mises-Fisher distributions to those satisfying 𝜇 = 𝛽, the
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First term is bounded by

2𝜁 ⋅ √tr (E ([𝛽 − 𝛽] [𝛽 − 𝛽]⊤)) = 2𝜁 ⋅
√√√
⎷

tr ⎛⎜
⎝

Variance (𝛽| 𝛽 ∼ Π) + [
I𝑚/2 (𝜅)

I𝑚/2−1 (𝜅) − 1]
2

⋅ 𝜇𝜇⊤⎞⎟
⎠

= √8𝜁2 ⋅ √1 −
I𝑚/2 (𝜅)

I𝑚/2−1 (𝜅)

D.69

which is proportional to the square root of the circular variance.14 Lemma D.2 details the behaviour of

the circular variance. Using Lemma D.2, Equation D.69 can be bounded from above by

√√√√
⎷

8𝜁2 ⋅
𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2 − 2𝜅

𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2
≤ 4𝜁 ⋅ √ 𝑚

2𝜅 D.70

where the right-hand side follows from concavity of the square root, and by decreasing the denominator

via elimination of 𝑚−1 and 𝑚+1 (both are non-negative constants). We substitute the right-hand side

of Equation D.70 into Equation D.62 in place of the First term.

We now focus on the Kullback-Leibler divergence, which appears in both the Second term and the

Third term. We observe that the difference between the square roots in Equation D.55 is increasing in

𝜅 (i.e, the difference becomes less negative as 𝜅 increases and as 𝜅 increases in importance relative to

𝑚). As such, it suffices to omit the difference between the square roots in Equation D.55 and to simply

bound the Kullback-Leibler divergence from above by

𝑚 − 1
2 ⋅ ln ⎛⎜⎜

⎝

𝑚 − 1 + √4𝜅2 + [𝑚 + 1]2

2𝑚
⎞⎟⎟
⎠

+ 1 ≤ 𝑚 − 1
2 ⋅ ln (𝜅 + 1) + 1 D.71

which is at least one due to the non-negativity of 𝜅.

Substituting Equations D.70 and D.71 as upper bounds on the infimand of Equation D.62, we obtain

4𝜁⋅√ 𝑚
2𝜅 + 1

𝜆 ⋅[𝑎 (𝜆, 𝑛) + 𝑚 − 1
2 ⋅ ln (𝜅 + 1) + ln (2e

𝜀 )]+√ 1
2𝑛 ⋅ [𝑚 − 1

2 ⋅ ln (𝜅 + 1) + ln (4e ⋅ √𝑛
𝜀 )] D.72

which we emphasise is an upper bound on the infimum and is not dependent of 𝛽. Our objective

is to minimise Equation D.72 by appropriately choosing 𝜅 and 𝜆 alongside the functional form of 𝑎.

Accordingly, we let 𝜅 = 𝑛 and 𝜆 = √𝑛 alongside 𝑎 (𝜆, 𝑛) /𝜆 = 1/𝜆. Given these choices, we can write

14 Recall that the right-hand side of Equation D.62 is preceded by an infimum over 𝜇; replacing the infimum with a
specific value delivers an upper bound.
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Equation D.72 as

4𝜁 ⋅ √ 𝑚
2𝑛 + 𝑚 − 1

2√𝑛 ⋅ ln (𝑛 + 1) + 1√𝑛 ⋅ ln (2e2

𝜀 ) + √ 1
2𝑛 ⋅ [𝑚 − 1

2 ⋅ ln (𝑛 + 1) + ln (4e ⋅ √𝑛
𝜀 )] D.73

which, using the fact that 1/ ln (𝑛) and ln (𝑛 + 1) / ln (𝑛) are decreasing in 𝑛, we can upper bound by

ln (𝑛)√𝑛 ⋅ 1
ln (8) ⋅

⎡
⎢⎢
⎣

4𝜁 ⋅ √𝑚
2 + 𝑚 − 1

2 ⋅ ln (9) + ln (2e2

𝜀 ) + √1
2 ⋅ [𝑚 − 1

2 ⋅ ln (9) + ln (4e ⋅ √𝑛
𝜀 )]

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Universal constant

⎤
⎥⎥
⎦

D.74

where we rely on the maintained assumption of Theorem D.3 that 𝑛 ≥ 8. The Universal constant is a

decreasing function of 𝜀

—| Appendix D.2 |—

Accounting for the cost of treatment in the JTPA Study sample

In what follows, we distinguish between the JTPA Study sample, which we sometimes refer to as the raw

data, and the cost-adjusted JTPA Study sample, which we sometimes refer to as the costed data. The

costed data subtracts the cost of treatment from the outcome of interest (post-programme earnings) of

all treated individuals.15 Following Kitagawa & Tetenov (2018), we assume that the cost of treatment

is $774. We then proceed to search for the optimal stochastic assignment rule, applying the same grid

search approach as we outlined in the main text for the raw data, using the costed data.

We find that the objective function is minimised by the stochastic assignment rule with 𝜅 = 0.560 and

𝜇 = {+0.872, +0.490, +0.018}, which we label 𝜅𝑎 and 𝜇𝑎, respectively.16 The value of the objective

function and the empirical welfare risk induced by this assignment rule are equivalent to $9,302 and

$5,155, respectively.

In comparison, Kitagawa and Tetenov (2018b) estimates that the deterministic assignment rule

defined by 𝛽 = {+0.117, −0.990, −0.086} minimises empirical welfare risk. Relative to the raw analysis,

this assignment rule ascribes less weight to individual characteristics, and essentially determines that

all individuals with low pre-programme earnings (earnings of around $5,000 or less) should be treated,

irrespective of education.

Figures D.5 to D.8 are intended to be comparable to the figures in the main text. There are two differences

15 We observe that this leads individuals with zero post-programme earnings to have a negative outcome. This violates
Assumption 1, which requires that all outcomes be bounded and non-negative. We, nonetheless, proceed with this
adjustment of post-programme earnings as is. An alternative would be to add $774 to all post-programme earnings
before subtracting the assumed cost of treatment.

16 This directional vector can be represented by an azimuth of 29∘ and an inclination of 89∘ using spherical coordinates.
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Figure D.5
Variation in treatment propensity across individuals in the cost-adjusted JTPA Study sample
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Cost-adjusted JTPA Study sample. This figure illustrates the treatment propensity of individuals under the posterior
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several individuals (crosses denote individuals with negative in-sample weight). For comparison, individuals to the left of
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(2018b).

Figure D.6
Behaviour of the objective function at 𝜇∗ given variation in 𝜅
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Cost-adjusted JTPA Study sample. This figure illustrates the shape of the objective function and its risk component at 𝜇𝑎

as 𝜅 is varied.
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Figure D.7
Deterministic assignment rules and empirical welfare risk
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Cost-adjusted JTPA Study sample. This figure illustrates the risk that is associated with (deterministic) assignment rules
in 𝔉. A spherical coordinate mapping is implemented. The intersection of the two white lines is located at 𝜇𝑎. The
intersection of the two black lines is located at the optimal deterministic assignment rule of Kitagawa and Tetenov

(2018b), which attains the minimal regret amongst all deterministic linear rules.

Figure D.8
Behaviour of the objective function at 𝜅𝑎 given variation in 𝜇

0

15

30

45

60

75

90

105

120

135

150

165

180

−180 −135 −90 −45 0 45 90 135 180

 Azimuth (degrees)

In
cl

in
at

io
n
 (

d
eg

re
es

)

$5,187

$5,195

$5,203

$5,211

$5,219

Risk

Cost-adjusted JTPA Study sample. This figure illustrates the risk that is associated with (stochastic) assignment rules in
𝔙; the concentration parameter is fixed at 𝜅𝑎 whilst 𝜇 is varied. The intersection of the two white lines is located at 𝜇𝑎.
The intersection of the two black lines is located at the optimal deterministic assignment rule of Kitagawa and Tetenov

(2018b), which attains the minimal regret amongst all deterministic linear rules.
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Figure D.9
Distribution of treatment propensity across individuals (adjusted) at {𝜅𝑎, 𝜇𝑎}
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Cost-adjusted JTPA Study sample. This figure illustrates the variation in treatment propensity across individuals. We
draw 1,000 directional vectors and count how many of these vectors, implemented as deterministic assignment rules,
assign each individual to treatment. We sort individuals by how often they are assigned to treatment and summarise the

implied distribution by the range and the 10th and 90th quantiles.

Figure D.10
Distribution of treatment propensity across individuals (raw) at {𝜅∗, 𝜇∗}
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JTPA Study sample. This figure illustrates the variation in treatment propensity across individuals. We draw 1,000
directional vectors and count how many of these vectors, implemented as deterministic assignment rules, assign each
individual to treatment. We sort individuals by how often they are assigned to treatment and summarise the implied

distribution by the range and the 10th and 90th quantiles.
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of note between the results of the raw and costed analyses. First, in Figure D.6, the relationship between

the concentration parameter and empirical welfare risk is much more muted, with risk only decreasing

by around $50 as the value of the concentration parameter increases (over the interval that we study). In

contrast, empirical welfare risk decreases by around $200 when the cost of treatment is not accounted for.

This reflects the second difference, which is apparent in Figure D.7. Specifically, that the difference in

empirical welfare risk between those assignment rules that assign everyone to treatment versus those that

assign no-one to treatment is much smaller. The benefit to an increase in the value of the concentration

parameter, which is a reduction in the probability mass allocated to those assignment rules that assign

no-one to treatment is, accordingly, smaller. The implication is that the penalty term starts to dominate

the objective function for smaller values of the concentration parameter.

To supplement our analysis, we include two additional figures in Figures D.9 and D.10. These figures are

intended to give some idea about how the concentration of the von Mises-Fisher distribution influences

the propensity with which individuals are assigned treatment. For example, given a particular instance

of the von Mises-Fisher distribution, one individual might have a high propensity of assignment whereas

another might have a low propensity. In other words, the number of directional vectors that are drawn

from the von Mises-Fisher distribution for which the first individual is assigned treatment is greater than

for the second individual. As the value of the concentration parameter increases, so these directional

vectors concentrate around the mean direction, and the propensity of assignment to treatment approaches

zero or one for each individual. We see from Figure D.9 that, when 𝜇 = 𝜇∗, the propensity of assignment

in the costed data tends towards one for all individuals. In contrast, and to illustrate the possibility of

complete dichotomy, for the raw data, we see from Figure D.10 that the propensity of assignment to

treatment diverges as the value of the concentration parameter increases. We observe in both datasets

that much of the variation in propensity is driven by a few individuals in the tail, who are likely those

individuals whose individual characteristics make them outliers. In both cases, the median propensity of

treatment (i.e., the probability with which the average individual in the sample is assigned treatment)

tends towards one.

—| Appendix D.3 |—

Numerical simulations

We propose several experiments that investigate how various aspects of the sample data that is available

to the social planner affect the posterior distribution and its shape when the specified prior distribution

is uniform over the sphere. We conduct these experiments to better understand some of the empirical

results that we obtain for the main paper.
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Aspects of the sample data that we vary include the number of observations, the outcome of interest, and

individual characteristics. We conduct these experiments with simulated data and through manipulation

of the existing empirical application. Each experiment is comparable to the existing empirical application

in any case, in that observed individual characteristics are taken to be education and pre-programme

earnings alongside an intercept term, and the outcome of interest is taken to be post-programme earnings.

We investigate how these aspects and our variation of them affect the objective function.

The specific questions that we ask, and that inform the design of our experiments, are as follows.

– How does the number of observations influence the shape of the objective function?

– How does the relative influence of education and pre-programme earnings on post-programme

earnings influence empirical welfare risk?

– How does the distribution of individual characteristics influence the shape of the objective function?

To address these questions we propose a series of linear specifications that satisfy the bounded outcomes

assumption that we require. We concede that these specifications are somewhat contrived, reflecting our

need to balance tractability with the requirements of the bounded outcomes assumption. We suppose

that

0 ≤𝑋earn ≤ 1

0 ≤𝑋educ ≤ 1
D.75

which can always be maintained via an appropriate affine map of the individual characteristics (a step

that we undertake in any case), and propose that

𝑌1 = 𝑿⊤𝛼1 + 𝑉1 with 𝑉1 ∼ N(0, 𝜎2
1) such that 0 ≤ 𝑉1 ≤ 𝑐𝑣

𝑌0 = 𝑿⊤𝛼0 + 𝑉0 with 𝑉0 ∼ N(0, 𝜎2
0) such that 0 ≤ 𝑉0 ≤ 𝑐𝑣

D.76

with 𝛼1 ∈ S2 and 𝛼0 ∈ S2. The advantage of this specification is that it provides a clear interpretation

of the influence of education and pre-programme earnings on post-programme earnings, and facilitates

addressing all of the questions that we pose. Moreover, the potential outcomes satisfy

0 ≤ 𝑌1 ≤ 𝛼1 + 𝑐𝑣

0 ≤ 𝑌0 ≤ 𝛼1 + 𝑐𝑣

D.77
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We note that the conditional expectations of the potential outcomes are

E(𝑌1|𝑿) = 𝑿⊤𝛼1 + 𝛷′(0) − 𝛷′(𝑐𝑣/𝜎1)
𝛷(𝑐𝑣/𝜎1) − 𝛷(0) ⋅ 𝜎1 = 𝑿⊤ ̃𝛼1

E(𝑌0|𝑥) = 𝑿⊤𝛼0 + 𝛷′(0) − 𝛷′(𝑐𝑣/𝜎0)
𝛷(𝑐𝑣/𝜎0) − 𝛷(0) ⋅ 𝜎0 = 𝑿⊤ ̃𝛼0

D.78

which are both affine functions of individual characteristics.17 This is an attractive property that we

exploit.

Knowledge of the data generating process (Equation D.76 in our framework) is sufficient to determine

the optimal assignment rule.18 Specifically, the optimal assignment rule satisfies

𝑔 (𝑿) = 1 (E (𝑌1| 𝑿) ≥ E (𝑌0| 𝑿)) D.79

When the conditional expectation of the potential outcomes are affine functions of individual character-

istics (and assignment to treatment is at random, which is an assumption that we implicitly maintain

throughout) then the optimal assignment rule belongs to the LES class. Hence, Equation D.78 guaran-

tees that the optimal policy has the specific form

𝑔 (𝑿) = 1 (𝑿⊤ [ ̃𝛼1 − ̃𝛼0] /‖ ̃𝛼1 − ̃𝛼0‖2 ≥ 0) D.80

which is not only a member of the LES class but emphasises that the optimal assignment rule can be

summarised by a vector on the sphere (provided that the potential outcomes have distinct process).

This result provides motivation for our reliance on spherical distributions and, in particular, the von

Mises-Fisher distribution. We observe that, abstracting from the issue of sampling variation, empirical

welfare risk is minimised when the mean direction of the von Mises-Fisher distribution coincides with

the policy defined in Equation D.80. This insight allows us to focus exclusively on the influence of the

concentration parameter on empirical welfare risk and the objective function.

Throughout, we are careful to sample using inversion-based pseudo-random sampling methods where

possible. Compared to rejection sampling-based pseudo-random sampling methods, inversion-based

methods are able to guarantee comparability across experiments despite differences in parameter values.

We also note that where we use data from the JTPA Study sample, this data is not adjusted for the

17 Other commonly invoked models fail to meet our test of tractability or the requirements of the bounded outcomes
assumption: the standard censored outcome model generates a rectified normal distribution that is non-linear in
individual characteristics and is unbounded from above; logarithmic transformation of the outcome implies a non-
linear transformation of individual characteristics.

18 We do not make any claims about uniqueness in what follows and, indeed, presented with a finite sample of individual
characteristics, it is likely that several assignment rules can attain the same partition of individuals as what we refer
to as the optimal assignment rule.
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Figure D.11
Behaviour of the objective function at 𝜇∗ given variation in 𝜅
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JTPA Study sample (artificially inflated by copying observations). This figure illustrates how the objective function and
its risk component change as the number of observations is doubled (upper panel) and quadrupled (lower panel). We hold

𝜇 fixed at 𝜇∗ in each case, which differs according to the sample size, and vary 𝜅.

cost of treatment (i.e., we use the raw data). We continue to label those values of the parameters

that minimise the objective function by 𝜅∗ and 𝜇∗, which we emphasise can vary across the various

experiments that we conduct.

—| Subappendix D.3.a |—

Varying the number of observations

To investigate the influence that the number of observations has on the objective function and on

empirical welfare risk, we copy each observation in the JTPA Study sample either once or three times,

thereby doubling and quadrupling the number of individuals in the sample. The mechanical effect of

this change is to mute the influence of the penalty term in the objective function, without affecting

empirical welfare risk. The immediate implication is that larger values of the concentration parameter

can be sustained, since the penalty due to deviating from the uniform distribution is relatively smaller

for every such deviation.

We plot the objective function and empirical welfare risk for the doubled and quadrupled JTPA Study

samples in Figure D.11. We observe that increasing the number of observations has the direct effect of
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Figure D.12
(Experiment 1) Variation in treatment propensity across individuals
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Simulated data generated using Equation D.82 in conjunction with data from the JTPA Study sample. This figure
illustrates the treatment propensity of individuals in a simulated sample under the posterior assignment rule that is
induced by {𝜅∗, 𝜇∗}. Each point represents the individual characteristics of an individual or several individuals. For
comparison, individuals to the left of the solid diagonal line are assigned treatment under the oracle assignment rule of

Equation D.83.

decreasing the magnitude of the objective function. Moreover, increasing the number of observations

also leads to an increase in 𝜅∗, which increases from 1.550 to 1.890 and then to 2.490. We emphasise that

𝜇∗ is also not the same across the two cases. The intuition here is that an increase in the value of the con-

centration parameter leads to the concentric contour map of the density function becoming more tightly

arranged around the mean direction (whatever that may be). Locating the mean direction closer to the

boundary between high and moderate regret regions say, such as where the deterministic assignment

rule of Kitagawa and Tetenov (2018b) is located, incurs less of a penalty in this instance since the

density function assigns less probability mass to the high regret region than it would for a smaller value

of the concentration parameter. For the doubled sample we find that 𝜇∗ = {+0.812, +0.577, +0.088},

whilst for the quadrupled sample we find that 𝜇∗ = {+0.917, +0.394, +0.053}.19

—| Subappendix D.3.b |—

The variance of post-programme earnings

In the following three experiments, we investigate the influence of the variance of post-programme earn-

ings on the results of our method. Specifically, we investigate how altering 𝜎1 and 𝜎0 in the specification

19 These directions translate (azimuth:inclination) to 35∘ ∶ 85∘ and 23∘ ∶ 87∘, respectively, as compared to 𝜇∗ =
{+0.883, +0.442, +0.158} or 27∘ ∶ 81∘ in the original sample.

88



Figure D.13
(Experiments 1–3) Behaviour of the objective function at 𝜇∗ given variation in 𝜅

Experiment 𝜇∗ 𝜅∗

1. Baseline (top panel) {+0.822, +0.565, +0.078} 1.850
2. High variance (middle panel) {+0.641, +0.703, −0.309} 0.340
3. Low variance (bottom panel) {+0.831, +0.547, +0.105} 1.970
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Simulated data generated using Equation D.82 in conjunction with data from the JTPA Study sample. This figure
illustrates how the shape of the objective function and its risk component changes as the variance of post-programme
earnings is increased and decreased. We hold 𝜇 fixed at 𝜇∗ in each case, which varies according to the sample size, and

vary 𝜅. Parameter estimates are presented above.
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outlined in Equation D.76 affects our results. In particular, we are interested in whether there is a

fundamental change in how empirical welfare risk varies with the parameters of the von Mises-Fisher

distribution.

The JTPA Study sample consists of 9,223 observations, and we extract treatment status and individual

characteristics directly from this dataset (we refer to the group of individuals in the sample who are

treated as the experimental group and to the group of individuals who are not as the control group in line

with the terminology surrounding randomised control trials). We then generate potential outcomes ac-

cording to Equation D.76. We implement the affine map of Equation D.75 via the transformations

𝑋earn ↦ 𝑋earn/ max (𝑋earn)

𝑋educ ↦ 𝑋educ/ max (𝑋educ)
D.81

We then regress post-programme earnings in the experimental group and the control group on these

characteristics, separately and together, so that the baseline experiment somewhat mimics the JTPA

Study sample. Using our simple regressions as a rough guide, we let

𝛼1 = {+3, 040; +86, 446; +14, 008}
𝛼0 = {−1, 086; +82, 458; +18, 804}

with 𝜎1 = 𝜎0 = 15, 914 and 𝑐𝑣 = 5𝜎1 = 5𝜎0 D.82

so that the optimal policy is

𝑔 (𝑿) = 1 (𝑿⊤ {+0.552, +0.533, −0.641} ≥ 0) D.83

which we plot in Figure D.12. We note that the coefficients of the linear specification are so large

because our simple regressions scale individual characteristics but do not scale post-programme earnings,

which inflates the effect of pre-programme earnings and years of education. This constitutes our first

experiment.

We then propose two further experiments. Our second experiment increases the variance of post-

programme earnings by inflating 𝜎1, 𝜎0 and 𝑐𝑣 in Equation D.82 by a factor of five. Our third experiment

similarly reduces the variance of post-programme earnings by deflating 𝜎1, 𝜎0 and 𝑐𝑣 in Equation D.82

by a factor of five. We note that both experiments leave the oracle policy unchanged from Equa-

tion D.83. We present the corresponding estimates of the parameters of the posterior distribution in

Figure D.13.

An immediate conclusion that we can draw from these results is that 𝜇∗ does not align with the oracle
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Figure D.14
(Experiment 4) Variation in treatment propensity across individuals
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Simulated data generated using Equation D.84 in conjunction with data from the JTPA Study sample. This figure
illustrates the treatment propensity of individuals in a simulated sample under the posterior assignment rule that is
induced by {𝜅∗, 𝜇∗}. Each point represents the individual characteristics of an individual or several individuals. For
comparison, individuals to the left of the solid diagonal line are assigned treatment under the oracle assignment rule of

Equation D.85.

assignment rule. That being said, it is apparent from Figure D.12 that individuals who are assigned

treatment under the oracle assignment rule are more likely to be assigned treatment under the posterior

distribution that we obtain.

We plot the behaviour of the objective function and of empirical welfare risk in Figure D.13. We

emphasise the non-smoothness of empirical welfare risk for the second experiment, and we suggest that

increasing the variance of post-programme earnings makes the problem of finding the optimal assignment

rule more difficult.

—| Subappendix D.3.c |—

The location of the oracle assignment rule

A common feature of the data generating process outlined in Equation D.82 for Experiments 1 through

3 is the oracle assignment rule, which is located in the south-east corner of the covariate space (Fig-

ure D.12). Two things can be inferred from this. First, that only a small minority of individuals are not

assigned treatment under the oracle assignment rule; specifically, those individuals who are educated to
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Figure D.15
(Experiments 4–6) Behaviour of the objective function at 𝜇∗ given variation in 𝜅

Experiment 𝜇∗ 𝜅∗

4. Baseline (top panel) {+0.932, +0.362, −0.035} 0.000
5. High variance (middle panel) {−0.810, −0.526, −0.259} 0.390
6. Low variance (bottom panel) {+0.899, +0.425, +0.105} 0.000
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Simulated data generated using Equation D.84 in conjunction with data from the JTPA Study sample. This figure
illustrates how the shape of the objective function and its risk component changes as the variance of post-programme
earnings is increased and decreased. We hold 𝜇 fixed at 𝜇∗ in each case, which differs according to the sample size, and

vary 𝜅. Parameter estimates are presented above.
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post-graduate level.20 In other words, only a small subset of the data with extreme characteristics are

not assigned treatment. Second, that, all else being equal, average outcomes in the experimental group

are higher than average outcomes in the control group, and that this baseline difference is relatively

important as compared to pre-programme earnings and years of education. These features, we suggest,

are indicative of a relatively easy problem (of determining the optimal assignment rule).

The following three experiments largely replicate Experiments 1 through 3 but shift the oracle assignment

rule to the left, narrowing the difference between the baseline average outcomes in the experimental and

control groups. In Experiment 4, we assume that

𝛼1 = {+2, 442; +86, 446; +14, 008}
𝛼0 = {−489; +82, 458; +18, 804}

with 𝜎1 = 𝜎0 = 15, 914 and 𝑐𝑣 = 5𝜎1 = 5𝜎0 D.84

so that the optimal policy is

𝑔 (𝑿) = 1 (𝑿⊤ {+0.425, +0.579, −0.696} ≥ 0) D.85

which we plot in Figure D.14. Experiments 5 and 6 then mirror Experiments 2 and 3 in that they inflate

and deflate, respectively, the variance of post-programme earnings. We suggest that Equation D.84 is a

more difficult problem than Equation D.82.

We specifically design these experiments so that the oracle assignment rule is such that as close to 50%

of the sample is assigned treatment as is possible without altering the importance of pre-programme

earnings relative to years of education in the earnings process. We present the corresponding estimates

of the parameters of the posterior distribution immediately in Figure D.15.

A curious feature of these results is that, for Experiments 4 and 6, the posterior distribution is uniform.

We note that the mean direction is irrelevant in this case, but we include it anyway because knowledge

of it is necessary to interpret Figure D.15. This uniformity of the posterior distribution is apparently

driven by how empirical welfare risk increases alongside the concentration in Figure D.15. A possible

explanation for this feature is that this data generating process is indeed hard. We suggest that the

narrow gap between the baseline average outcomes of the experimental and control groups makes treating

everyone versus treating no-one equally appealing (or unappealing). For instance, contrasting Figure D.7

with its analogue in the main text (for the raw data), we see that the difference in empirical welfare

risk between the treat everyone rules and treat no-one rules that occupy the southern and northern

20 Or, more precisely, that are educated for an equivalent amount of time as would be required to obtain a post-graduate
degree, since we do not observe education level.
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regions of the heatmaps, respectively, narrows. A similar effect happens here. Given the fact that the

density contours of the von Mises-Fisher distribution are concentric, there is then no natural region of

the sphere to locate in order to minimise empirical welfare risk unless the value of the concentration

parameter is particularly large and the posterior distribution allocates substantial probability mass to

an extremely localised area on the frontier between the collections of treat everyone rules and treat

no-one rules. High concentration is heavily penalised by the Kullback-Leibler divergence though, and so

uniformity cannot be improved upon. The fact that a different pattern is observed for Experiment 5 is

compatible with this argument, and could be achieved if the high variance of post-programme earnings

makes a few observations in the sample pivotal (recall that the weight attached to each observation is

proportional to post-programme earnings; inflating the variance of post-programme earnings can lead to

greater concentration of weight on a few observations, since extreme outliers are more likely).

—| Subappendix D.3.d |—

Individual characteristics and their distribution

The final experiments that we undertake vary the distribution of individual characteristics. Our inten-

tion is to understand whether the JTPA Study sample is, in some sense, special and whether altering

individual characteristics substantially alters our results.

Experiments 7 and 8 mirror Experiment 1 in how the outcome is generated: both experiments rely on

Equation D.76 and the parameter values that we outline in Equation D.82 for Experiment 1. The dis-

tinction between Experiments 7 and 8 and Experiment 1 is how individual characteristics are generated.

Whereas Experiment 1 uses data taken from the JTPA Study sample, Experiments 7 and 8 generate

individual characteristics according to a bivariate normal distribution with the mean vector equal to half

of the maximum of pre-programme earnings and the average number of years of education, respectively.

We estimate the covariance matrix of pre-programme earnings and years of education in the JTPA Study

sample, and set the covariance of the bivariate normal distribution equal to this (Pearson correlation

coefficient of 0.126). In the case of Experiment 7, we discretise years of education by assigning each

observation to one of 12 equal-sized bins. We then map each characteristic to the unit interval by means

of the aforementioned linear transformation.

We plot the individual characteristics that we use in Experiments 7 and 8 in Figure D.16. Absent

from either plot is the oracle assignment rule. This is not an oversight. Rather, the oracle assignment

rule is such that it recommends that all individuals be assigned treatment (i.e., it to the south-east of

the plotting area). We plot the objective function and empirical welfare risk for Experiments 7 and 8

in Figure D.17. Due to the similarity of Figure D.17 to the other figures that we have presented, we
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Figure D.16
(Experiments 7–8) Variation in treatment propensity across individuals
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Simulated data generated using Equation D.82 and a bivariate normal distribution. This figure illustrates the treatment
propensity of individuals in simulated samples under the posterior assignment rule that is induced by {𝜅∗, 𝜇∗}. Each point
represents the individual characteristics of an individual or several individuals. Every individual is assigned to treatment

under the oracle assignment rule.
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Figure D.17
(Experiments 7–8) Behaviour of the objective function at 𝜇∗ given variation in 𝜅

Experiment 𝜇∗ 𝜅∗

7. Discrete (top panel) {+0.794, +0.405, +0.454} 3.090
8. Continuous (bottom panel) {+0.801, +0.408, +0.438} 3.120
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Simulated data generated using Equation D.82 and a bivariate normal distribution. This figure illustrates how the shape
of the objective function and its risk component at 𝜇∗ changes as 𝜅 increases. Parameter estimates are presented above.

do not provide any further discussion of this figure. What is somewhat interesting though is how the

propensity of treatment is highest for those individuals with individual characteristics located around

their mean values. We present the corresponding estimates of the parameters of the posterior distribution

in Figure D.17. We find that 𝜇∗ does not align with the oracle assignment rule, but does dictate that all

individuals are assigned treatment (as they are under the oracle assignment rule); 𝜅∗ is also relatively

large, as compared to its value in the previous experiments.

So as to make the assignment problem harder—at least, what we understand to be harder—we propose

Experiments 9 and 10. These experiments follow Experiments 7 and 8 in how individual characteristics

are generated, but differ slightly in how they generate the outcome. Whilst Experiments 9 and 10

broadly follow Experiments 7 and 8 with respect to how the outcome is generated, they shift the process

for the potential outcomes and, thereby, the oracle assignment rule. Specifically, in Experiments 9 and
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Figure D.18
(Experiments 9–10) Variation in treatment propensity across individuals
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Simulated data generated using Equation D.86 and a bivariate normal distribution. This figure illustrates the treatment
propensity of individuals in simulated samples under the posterior assignment rule that is induced by {𝜅∗, 𝜇∗}. Each point
represents the individual characteristics of an individual or several individuals. For comparison, individuals to the left
of the solid diagonal line are assigned treatment under the oracle assignment rule, which partitions the sample into two

approximately equal-sized groups.
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Figure D.19
(Experiments 9–10) Behaviour of the objective function at 𝜇∗ given variation in 𝜅

Experiment 𝜇∗ 𝜅∗

9. Discrete (top panel) {−0.766, −0.470, −0.438} 0.770
10. Continuous (bottom panel) {−0.766, −0.470, −0.438} 0.770
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Simulated data generated using Equation D.86 and a bivariate normal distribution. This figure illustrates how the shape
of the objective function and its risk component at 𝜇∗ changes as 𝜅 increases. Parameter estimates are presented above.

10, we assume that

𝛼1 = {+1, 286; +86, 446; +14, 008}
𝛼0 = {−668; +82, 458; +18, 804}

with 𝜎1 = 𝜎0 = 15, 914 and 𝑐𝑣 = 5𝜎1 = 5𝜎0 D.86

such that the oracle policy is

𝑔 (𝑿) = 1 (𝑿⊤ {+0.098, +0.636, −0.765} ≥ 0) D.87

The effect of this change is to maintain the slope of the oracle assignment rule (i.e., the contribution

of pre-programme earnings relative to years of education) but to alter the intercept. In other words, to

narrow the difference in baseline average outcomes between the experimental and control groups. In this

regard, Experiments 9 and 10 are similar in intent to Experiment 4.
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We plot the individual characteristics that we use in Experiments 9 and 10 in Figure D.18. The oracle

assignment rule is designed to partition the sample into approximately two groups of equal size. We plot

the objective function (left-hand panel) and empirical welfare risk (right-hand panel) for Experiments 9

and 10 in Figure D.19. We draw attention to several differences between the results that we obtain for

Experiments 9 and 10 versus Experiments 7 and 8. First, we highlight the fall in the average propensity

of treatment, as is apparent in Figure D.18. Whereas in Experiments 7 and 8 (and the preceding

experiments too), the propensity of treatment is close to one (i.e., everyone is assigned treatment),

here the propensity is closer to one third. There is more randomisation. Second, individuals who have

a relatively high propensity of treatment as compared to their peers in Experiments 7 and 8 have a

relatively low propensity of treatment in Experiments 9 and 10 (visually, the colours are inverted), as

is apparent in Figure D.18. That is, individuals whose characteristics are close to the mean values have

a low propensity of treatment. Third, the value of the concentration parameter decreases from above

three to below one (i.e., the posterior distribution is less concentrated and more uniform), as is apparent

in Figure D.19. We present the corresponding estimates of the parameters of the posterior distribution

in Figure D.19. Interestingly, the mean direction is, in both cases, almost the exact opposite of the

corresponding mean direction in Experiments 7 and 8 (i.e., the mean direction is approximately the

negative of the mean direction in Experiments 9 and 10).
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—| Chapter E |—

The effect of additional children on maternal labour supply

The principal objective of this chapter is to estimate the effect of additional children on maternal

employment under weak restrictions on the assumed data generating process. I frame this question

in the context of the U.S. labour market, exclusively studying mothers with at least two children. I

exploit natural variation in the characteristics (specifically, the birthdate and sex) of existing children

to identify the employment response of mothers to additional children. The model that I employ is a

minimally restrictive single equation model that incorporates an instrumental variable restriction; the

model features a dichotomous outcome and a dichotomous treatment, and is partially identifying.

Understanding the sign and magnitude of the employment response of mothers to additional children is

important for the design and evaluation of policy. Although family size is often, in itself, not a stated

objective of policy and is not necessarily (directly) manipulable in any case, the effect of additional

children on maternal employment is highly relevant to policymakers for its influence on present and

future aggregate outcomes. Do labour supply responses amongst working-age mothers exacerbate or off-

set the long-term effect of falling fertility on public finances? Children are an important feature of the tax

code and tax policy is often designed with families with children in mind—recent budget announcements

indicate an intention by government to provide or increase childcare provision with the intention of

improving the incentive to work amongst parents.1 Yet, do children increase or reduce maternal employ-

ment? Understanding how children affect maternal labour supply is necessary to understand both how

the tax and benefit schedule affects the household budget constraint, and whether these policies are the

most suitable for achieving their stated aims. Whilst low maternal employment relative to non-maternal

employment (see OECD, 2007) is a concern of policymakers, it is unclear whether this effect is driven by

1 The budget for the 2018 fiscal year included the provision of tax relief to help families struggling with child and
dependent care expenses, on top of the existing Earned Income Credit that lowers marginal tax rates for working-age
mothers with children in low-income groups. Since then, the American Rescue Plan and the President’s (proposed)
Budget for the 2024 fiscal year include an expansion of child tax credits and of access to affordable childcare. Similarly,
in the U.K., the 2017 Spring Budget included the provision of financial support to parents for each child under the
age of 12 years and of free childcare allowance of up to 30 hours per week to working parents with a three or four
year-old child, with the express intention of providing support for ordinary working families, and for women in the
workplace. The 2023 Spring Budget extended the childcare allowance to children aged between nine months and two
years of age.
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children or by the pre-existing opportunities of mothers for employment relative to non-mothers.

Existing empirical evidence as to the effect of children on maternal employment is mixed, despite ap-

parent similarities in sample construction—restricting attention to married mothers with at least two

children so as to exploit variation in family size that is associated with the birthdate and sex of these

children—across works.

Angrist and Evans (1998), Iacovou (2001), and Al-Khaja (2016) adopt a reduced form perspective,

recovering a Local Average Treatment Effect (Imbens and Angrist, 1994) that is the effect of children

on maternal employment amongst an unidentifiable subset of the sample population. Importantly, this

subset is not invariant and is sensistive to the institutions and cultural norms that are present, and can

lead to estimates that are not necessarily representative of the effect of children across a population. For

instance, Angrist and Evans (1998) finds that additional children reduce the probability that a mother

is employed in the context of the U.S. labour market, whereas Iacovou (2001) and Al-Khaja (2016)

find the opposite in the context of the British and Egyptian labour markets, respectively. It is unclear

whether these reported differences represent an actual difference in maternal labour supply across the

three countries, or whether they are due to differences in preferences over family composition and who

is affected by the plurality or sex of a child.

I, instead, adopt a structural perspective, and focus on identifying and estimating an Average Treatment

Effect—and its primitives, the Average Structual Functions (Blundell and Powell, 2004)—that can

inform both ex-ante policy design and ex-post policy evaluation.2,3 A similar approach is taken by

Chesher and Rosen (2020)—that subsumes Chesher and Rosen (2013)—with the stated aim of

illustrating how to apply minimally restrictive models to data and to demonstrate what such models

deliver.

The model that I study generalises the non-parametric model of treatment non-compliance that is studied

by Balke and Pearl (1997; hereafter, the Balke–Pearl model). The Balke–Pearl model permits any

form of dependence between the employment decision and the fertility decision in the context of maternal

labour supply, and constitutes a useful benchmark. Put differently, the Balke–Pearl model does not

preclude the existence of any response types. This property contrasts favourably with control function

approaches (see Wooldridge, 2015 for a discussion of control functions) and special regressor methods

(see Racine et al., 2014 §I.2 for a discussion of special regressors) that either restrict these unobservable

components of the economic environment or rely upon continuous variation that may not be present.

2 The Average Treatment Effect is sometimes called the Average Causal Effect.
3 The Average Structural Functions are the means of the so-called potential outcome distributions introduced in D. B.

Rubin (1974)—and arguably preceding that in Splawa-Neyman (1923).
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The inherent freedom of the Balke–Pearl framework does, however, mean that multiple behaviours—the

measures of each of which combine to constitute the object of interest—are associated with a single

outcome, which is the issue at the core of the anatomy of the selection problem (Manski, 1989). The

Balke–Pearl model only partially identifies the Average Treatment Effect and its primitives, and this

property is shared by the model that I study.

I generalise the Balke–Pearl model in two ways. First, I allow covariates to directly influence both

response and treatment. For example, I allow mothers of different ethnicities to hold different preferences

over how many children to have and whether to work. Second, I allow the instrument to have discrete—

rather than dichotomous—support. For example, I allow for the birthdate and sex of children to be

used in combination. The model—or, more precisely, models—that Chesher and Rosen (2020) studies

also embeds these features, but maintains a monotonicity restriction that I do not. By relaxing the

assumption of weak separability (or monotonic response) that is made in that paper,4 I allow for a richer

set of behaviours. In particular, I allow some mothers to move into employment given an increase in

family size, and for others to move out-of employment given a similar increase. Such behaviour is ruled-

out by monotonic response, but is an important feature of the model of Gronau (1977); there, differences

in the endowments of and prices that are faced by families generate different employment responses at the

extensive margin. To accommodate both generalisations, I extend the statistical independence restriction

that the Balke–Pearl model embeds.

Aside from relaxing the assumption of weak separability, I also extend Chesher and Rosen (2020) by

providing more recent evidence of the effect of additional children on maternal employment. Whereas

Chesher and Rosen (2020) exclusively uses data from 1980—the original sample considered by An-

grist and Evans (1998)—I additionally use data from 2010 and 2015, and so can provide some insight

into whether this effect has changed over time. I do, however, differ from Chesher and Rosen (2020)

in which covariates I include, focusing on age and ethnicity or race rather than education level.

An interesting property of the Balke-Pearl model is the lack of information content that the treatment

equation provides; the response equation and the statistical independence restriction constitute a suf-

ficient representation of the model. In this sense, both the Balke-Pearl model and the model that is

studied in Chesher and Rosen (2020) can be expressed as single-equation models, with the only differ-

ence between them being the assumption of weak separability that is present in the analysis of Chesher

and Rosen (2013). Monotonicity is a powerful restriction, in that it effectively guarantees identification

of a non-zero effect and, in many cases, the sign of a treatment effect. Mourifié (2015) also studies a tri-

4 I reiterate that the stated aim of Chesher and Rosen (2020) is to illustrate how to apply minimally restrictive models
to data and to demonstrate what such models deliver. Imposing weak separability—irrespective of its merits—is
compatible with this objective, since it leads to a simpler and more intuitive identification analysis.
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angular model (i.e., a model featuring both a response equation and a treatment equation, as laid-out in

Strotz and Wold, 1960), and imposes weak separability on both of these equations. Mourifié (2015)

states sharp bounds on the Average Treatment Effect and its primitives that are robust to the failure

of the support condition that is required in Shaikh and Vytlacil (2011). Unlike for the Balke-Pearl

model, however, the treatment equation is not redundant and has information content.

Richardson and Robins (2014) extends Balke and Pearl (1997) in allowing instruments to be

discrete rather than dichotomous, and is the closest paper to this work. Richardson and Robins (2014)

also varies the strength of the statistical independence restriction therein, with the presented bounds

coinciding with those that I obtain when covariates are assumed to have a single point of support.

Kitagawa (2021) extends Balke and Pearl (1997) in allowing for continuous response and varies

the strength of the statistical independence restriction therein. The model that is studied in Kitagawa

(2021) is, like the Balke-Pearl model that it nests, partially identifying and is falsifiable via the generalised

instrumental inequalities of Kédagni and Mourifié (2020). Chesher and Rosen (2017) provides a

general characterisation of sharp bounds on the identified set for a large of class of models and a wide

choice of criteria using results from random set theory, with the analysis therein able to replicate the

findings of Balke and Pearl (1997) and Kitagawa (2021). Although this characterisation equally

applies when treatment is discrete or continuous, Gunsilius (2020) advances a path-sampling approach

as a more tractable alternative for triangular models featuring large support.

A common issue for the application of the aforementioned models and their associated methods is

that naïve estimation of the Average Treatment Effect and other partially identified objects is typically

biased. I adopt a frequentist perspective and a method described in Chernozhukov et al. (2013) that

is half-median unbiased. Chernozhukov et al. (2013) is but one paper that discusses inference on

moment inequalities—other papers in the literature include Andrews and Soares (2010), and Bugni

(2010), and references therein. One paper of particular note is Kaido et al. (2019), which proposes a

bootstrap procedure to correct for projection conservatism. Projection conservatism—that confidence

regions do not have the correct size, and contain the truth in more than the pre-specified proportion

of samples—is of concern in partially identifying models where structural characteristics of interest are

not identified directly but as the projection of an identified set of several parameters. For instance,

the Average Treatment Effect is identified as a projection of the Average Structural Functions (their

difference).

An alternative approach is to undertake Robust Bayesian inference, which is the subject of Giaco-

mini and Kitagawa (2021b) and Kline and Tamer (2016). The principal distinction between ro-

bust Bayesian inference and Bayesian inference is that the former specifies multiple priors. Moon and
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Schorfheide (2012) shows that Bayesian credible regions differ substantially from frequentist confi-

dence regions, even asymptotically, in partially identifying settings. Robust Bayesian credible regions

though do not share this property; Kitagawa (2021) shows that robust Bayesian inference using the

lower envelope (the posterior lower probability) has a frequentist interpretation under certain condi-

tions.5 Attractive features of robust Bayesian inference are that they do not suffer from projection

conservatism and are often less expensive than frequentist approaches that rely on grid-based inversion

of a test-statistic. I do not adopt a Bayesian perspective (robust or otherwise) in this chapter.

—| Section 1 |—

Framework

I suppose that the social planner (or the econometrician acting on her behalf) observes experimental

or observational data that comprises a probability distribution over {𝑌 , 𝑇 , 𝑍, 𝑋} that I denote by 𝑃 𝑛

and that is constructed from 𝑛 independent and identically distributed draws. Here, 𝑌 ∈ {0, 1} denotes

response, which is some measured binary outcome of interest; 𝑇 ∈ {0, 1} denotes treatment, which is

an indicator for some measured binary choice; 𝑍 ∈ R denotes an instrument, which is an indicator

for the occurence of some event; and 𝑋 ∈ R denotes covariates, which are some measured individual

characteristics. The population from which the experimental or observational data is drawn comprises

a probability distribution over {𝑈, 𝑍, 𝑋} that I denote by 𝑃 . Here, 𝑈 is unobserved heterogeneity that

relates to 𝑌 and 𝑇 via the relationship

𝑦 = 1 (𝑠𝑦 (𝑡, 𝑧, 𝑥, 𝑢) ≥ 0)

𝑡 = 1 (𝑠𝑡 (𝑦, 𝑧, 𝑥, 𝑢) ≥ 0)
E.1

I refer to 𝑃 𝑛 as the empirical distribution and to 𝑃 (together with Equation E.1) as the data-generating

process.

Throughout my analysis, I maintain several assumptions that I collectively refer to as the generalised

Balke-Pearl model for their resemblence to the assumptions that the eponymic model embeds.

Assumption E.1 (Exclusion). The data generating process satisfies

𝑠𝑦 = ℎ𝑦 (𝑡, 𝑥, 𝑢)

𝑠𝑡 = ℎ𝑡 (𝑧, 𝑥, 𝑢)
E.2

such that the generalised Balke-Pearl model is triangular in 𝑌 , 𝑇 and 𝑍.

5 Kitagawa (2021) notes that at least one of these conditions is fragile; equality of bounds, such as when an instrumental
variable has no influence over treatment, invalidates this frequentist interpretation.
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The Balke-Pearl model is a structural equation model, such that each structural equation specifies a

causal relationship. Given its recursive nature, the Balke-Pearl model induces a probability distribution

that is Markovian; together with the statistical independence restrictions that it embeds, I note that the

Balke-Pearl model can instead be presented as a (Pearlian) Directed Acyclic Graph (DAG; see Pearl,

2009 for a comprehensive treatment of the equivalence of structural equation models and DAGs, and

Dawid, 2008 for a discussion of the difference between Pearlian DAGs and probabilistic DAGs). The

generalised Balke-Pearl model also has this dual representation.

Assumption E.2 (Discrete support). The data generating process satisfies 𝔷 < ∞ and 𝔵 < ∞, with

𝔷 ↤ 𝑥 ≥ 2 holding over 𝔛.

Assumption E.3 (Statistical independence). The data generating process satisfies

𝑈| {𝑍, 𝑋} ∼ Uniform (0, 1) E.3

for which ℎ is appropriately normalised.

The generalised Balke-Pearl model exhibits a number of features that make it ideally suited to the study

of the effect of additional children on female employment.

First, the generalised Balke-Pearl model permits endogenous selection of 𝑇 . That is, the model allows

for dependence between the employment and fertility decisions of mothers. In particular, it is likely that

mothers factor their opportunities for employment into their decision about whether to have additional

children, and vice versa. For example, mothers who face poor employment opportunities (and a low

opportunity cost of pregnancy) relative to others may choose to have an additional child. This story

hints at mothers with three or more children also being mothers who are in any case less likely to be

employed; whilst this may or may not be true, the existence of some indirect mechanism that generates

correlation between response and treatment is widely accepted.

Second, the generalised Balke-Pearl model permits rich heterogeneity of response both across and within

sub-populations labelled by 𝑋. Heterogeneity of response across sub-populations can be generated by

parametric models and so does not warrant much discussion.6,7 Of greater interest, however, and war-

ranting more-detailed discussion, is heterogeneity of response to treatment within sub-populations. The

6 As a simple example, the generalised Balke-Pearl model can allow Hispanic and non-Hispanic mothers (if ethinicity,
or race, is an observable individual characteristic) to have different employment rates and to exhibit different effects
of additional children on maternal employment (as an extreme case, if the effect of additional children on maternal
employment amongst Hispanic mothers has the opposite sign to that for non-Hispanic mothers, say).

7 The non-parametric specification does, however, mean that 𝑋 can always be written as a scalar without loss of
generality, a restatement that is with loss in a parametric specification.
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flexible nature of both the response equation and the treatment equation means that the generalised

Balke-Pearl model can allow different mothers to experience different effects of additional children.

Broadly speaking, a mother may increase her labour supply in response to additional children, may de-

crease her labour supply, or may leave her labour supply unchanged. The generalised Balke-Pearl model

can generate all three forms of response. In particular, I emphasise that response can be non-monotonic,

in that some mothers may increase their labour supply whilst others decrease their labour supply. That

mothers may exhibit opposite responses at the extensive margin is due to non-separability of the response

equation in unobserved heterogeneity.8 Such behaviour is ruled-out by monotonic treatment response,

but is an important feature of the model of Gronau (1977); there, differences in the endowments of

and prices that are faced by families generate different employment responses at the extensive margin.

For example, it is intuitive to think of children as both affecting the cost of employment (the need to

provide childcare) and the value of employment (children increase the marginal utility of income); if the

first effect dominates the second then it is feasible that a mother increases her labour supply in response

to additional children, but the opposite will occur if the reverse is true.

Third, the generalised Balke-Pearl model features a lack of restrictions on both the dimension and the

distribution of unobserved heterogeneity. Underpinning this feature of the generalised Balke-Pearl model

is the flexibility of the structural equations, which I discuss in Section 2; specifically, that unobserved

heterogeneity may be partitioned into a finite number of equivalence classes. Generally, restrictions on

unobserved heterogeneity are not verifiable, and may impose non-trivial constraints on the economic

environment—particularly in parametric models. These constraints may include restrictions on the

distributions of endowments and of prices. The credibility of the generalised Balke-Pearl model is that

it imposes no constraint of the shape of these distributions, and can allow for a large class of features of

the economic environment to influence the employment decision and the fertility decision.

—| Subsection 1.a |—

The meaning and credibility of the restrictions

Although the generalised Balke-Pearl model is minimally restrictive, it is not entirely non-restrictive.

In particular, the model embeds several explicit restrictions—Assumptions E.1 to E.3—on the data

generating process and a further restriction that is implicit—a rank condition. I discuss each of these

assumptions in turn, suggesting an interpretation for each and scenarios that would lead to their viola-

tion.

The exclusion restriction—Assumption E.1—can be restated as 𝑌 ⟂⟂ 𝑍| {𝑇 , 𝑋, 𝑈}, so precluding the

8 Vytlacil (2002) shows that monotonicity is equivalent to weak separability, which precludes one of these responses.
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instrument from directly influencing response (contigent upon its antecedents, response is deterministic).

In the context of maternal employment, the exclusion restriction requires that having twins or higher

plurality siblings does not directly influence the employment decision. Violation of the restriction occurs

if twins incur additional costs versus non-plural siblings; for example, if having children of the same

age requires duplication, versus handing-down or re-using. This reasoning similarly applies if the sex

of existing children is used in place of plurality of birth; for example, if female and male children

participate in different activities at distinct venues, or if they attend different schools. The argument in

both scenarios is that the instrument—whether a plural second birth or the sex of existing children—

influences the employment decision via its effect on the budget constraint, and not simply through its

influence on the decision of whether to have additional children.

The rank condition can be stated as 𝑇 ⊥̸⊥𝑍, so that the treatment equation is a non-trivial function of

the instrument. In the context of maternal employment, a plural second birth means that a mother has

three or more children, and so automatically satisfies this requirement by definition. If the sex of existing

children is used in place of plurality of birth, violation of the restriction occurs if parents either do not

hold a preference over the sexes of their children or if parents are equally balanced over all possible

combinations (i.e., as many parents prefer mixtures of female and male children as prefer just female or

just male).

The discrete support restriction—Assumption E.2—is a statement about both the amount of variation

in the instrument and the sort of covariates that can be incorporated. The discrete support restriction

does not, however, otherwise impose any constraint on the marginal distribution of the instrument and

the covariates—pairs of realisations can exhibit dependence or not occur at all. As a restriction on

the observable exogenous economic variates, the discrete support restriction is verifiable (i.e., it can be

tested and either accepted or rejected). In the context of maternal employment, the discrete support

restriction requires that there are at least some mothers for every combination of age, age at first birth,

and ethnicity and race that experience a plural second birth. Violation of the restriction occurs if a

plural second birth is too rare an event; for example, if the aforementioned characteristics are so finely

granulated that there are fewer plural second births than there are groups. If the sex of existing children

is used in place of plurality of birth, violation of the restriction is unlikely due to the natural sex ratio

(i.e., it is nearly—although not equally—as likely that a mother has a female child as a male child).

The statistical independence restriction—Assumption E.3—can be restated as 𝑈 ⟂⟂ {𝑍, 𝑋}, since the

distributional assumption (i.e., that unobserved heterogeneity is uniformly distributed) is simply a nor-

malisation accorded by the non-parametric nature of the structural equations. In the context of maternal

employment, the statistical independence restriction implies that mothers do not base their age, age at
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first birth, and ethnicity and race on their opportunities for employment, nor is the probability of a

plural second birth dependent upon these opportunities. Given the immutable and predetermined na-

ture of these characteristics, there is strong reason to suppose that this restriction is satisfied in this

regard. Of greater concern is whether any of these economic variates are statistically associated with

a further variable that influences 𝑌 but that is not included explicitly in the model. For example, the

statistical independence restriction is violated if education is statistically associated with age at first

birth or ethnicity and race, since education likely influences the probability of employment (through

spousal income if more highly educated mothers marry equally educated men, and through the offered

wage). This reasoning similarly applies if the sex of existing children is used in place of plurality of

birth.

Together, these restrictions define 𝑍 as an instrumental variable (for the effect of treatment on response).9

I note that the statistical independence restriction may be weakened; specifically, the statistical inde-

pendence restriction may be weakened by partitioning 𝑈 into a part that enters the response equation

and a part that enters the treatment equation. A sufficient restriction is then that 𝑍 is statistically in-

dependent of that part of 𝑈 that enters the response equation, although it can be statistically associated

with the part that enters the treatment equation. Kitagawa (2021) further weakens this restriction

to marginal statistical independence, but it is unclear what the interpretation of this restriction is in a

structural equation model.

—| Section 2 |—

Equivalence classes and latent types

The generalised Balke-Pearl model is a structural equation model, such that each structural equation

specifies a causal relationship. The response equation and the treatment equation then fully describe

behaviour; in particular, the outcome equation describes maternal employment for both the realised

treatment and the unrealised treatment. The potential outcome notation that is developed in D. B.

Rubin (1974) advances this idea by defining both the realised outcome and the unrealised outcome

as variates, and is complementary to the structural approach that I take in this chapter. I adopt

the potential outcome notation briefly so as to illustrate an important point that is made in Pearl

(2009).

𝑦𝑡 (𝑥) ≐ 1 (ℎ𝑦 (𝑡, 𝑥, 𝑢) ≥ 0)

𝑡𝑧 (𝑥) ≐ 1 (ℎ𝑡 (𝑧, 𝑥, 𝑢) ≥ 0)
E.4

9 This definition of an instrumental variable is consistent with the definition that is stated in Pearl (2009).
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From the definition of the potential outcomes, it is evident that the potential outcomes share the support

of the response and of treatment—the potential outcomes are dichotomous random variables. Moreover,

all variation in the potential outcomes is due to variation in 𝑈 , since each potential outcome designates

𝑡, 𝑧 and 𝑥. It immediately follows that unobserved heterogeneity may be collected into sets that deliver

common values of the potential outcomes—equivalence classes.

An equivalence class is a set in 𝑢-space such that any two members of a given class induce the same

potential outcomes as each other for every possible designation of the observable exogenous random

variates. I note that this definition of an equivalence class does not rely on a support condition (for

unobserved heterogeneity)—the definition is valid regardless of the dimension and distribution of unob-

served heterogeneity. This observation is consistent with the claim that is made in Balke and Pearl

(1997) that the Balke-Pearl model can allow for unobserved heterogeneity of arbitrary dimension. Each

equivalence class collects values of unobserved heterogeneity that deliver common values of the poten-

tial outcomes. Given that each potential outcome may take a finite number of values and there are a

finite number of potential outcomes, unobserved heterogeneity may be collected into a finite number of

equivalence classes (Pearl, 2009). The number of equivalence classes increases exponentially in 𝔷 and

𝔵.

It is convenient to think of each equivalence class as a latent type (Pearl, 2009), in that each class

describes a common set of behaviours. By appropriately defining the structural equations as index

functions, the Balke-Pearl model and its generalisation can be restated in terms of response types. Doing

so establishes an equivalence between the potential outcome framework and the structural equation

framework that is often disregarded by proponents of each approach. Moreover, these latent types can

always be projected onto the unit continuum using a probability transformation, thereby confirmation

the normalisation that I impose.

The appropriate interpretation of the associated statistical independence restriction that arises in this

potential outcome–cum–structural equation framework is that latent types are statistically independent

of covariates and the instrument. In the context of maternal employment, this restriction is effectively

equivalent to the statement that mothers are ex-ante identical up to a finite number of latent types and

that covariates and the instrument are randomly allocated. Put differently, mothers of the same latent

type would make the same employment and fertility decisions but make (possibly) different decisions

due to ex-post variation in their covariates and the instrument.
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—| Section 3 |—

Identification

I extend Balke and Pearl (1997) in allowing covariates to influence the economic system, as a cause of

the response and of treatment. A contribution of this chapter is that I state sharp bounds on structural

parameters of interest for this case, which represents a simple extension of Balke and Pearl (1997).

These bounds coincide with those that are stated in Balke and Pearl (1997) for the special case in

which the analysis of Balke and Pearl (1997) is applied to a sub-population 𝑥 rather than the full

population. Such a refinement of the population does not invalidate the analysis of Balke and Pearl

(1997) due to the independence restriction that I invoke (that covariates are statistically independent of

unobserved heterogeneity). However, a refinement of the population also alters the object that Balke

and Pearl (1997) bounds; specifically, I state sharp bounds on the Average Treatment Effect in the

sub-population 𝑥 and its primitives (as opposed to the ATE and its primitives). I follow Heckman et al.

(2006) in shortening the Average Treatment Effect in the sub-population 𝑥 to ATE (𝑥).10

An intuitive interpretation of ATE (𝑥) is the change in the employment rate between two counterfactuals,

which I write as

ATE (𝑥) ≐ ̄𝑌1 (𝑥) − ̄𝑌0 (𝑥) E.5

The first counterfactual is where all mothers in the sub-population 𝑥 have three or more children.

̄𝑌1(𝑥) ≐ Pr (𝑌1 (𝑥) = 1|𝑥) E.6

The second counterfactual is where all mothers in the sub-population 𝑥 have two children.

̄𝑌0 (𝑥) ≐ Pr (𝑌0 (𝑥) = 1|𝑥) E.7

If the employment rate of the first counterfactual is greater than that of the second counterfactual then

ATE (𝑥) is positive, such that additional children increase maternal employment.

Broadly speaking, a mother may increase her labour supply in response to additional children, may

decrease her labour supply, or may leave her labour supply unchanged. This motivates a further intuitive

interpretation of ATE (𝑥): as the difference in the measures of the first two types of behaviour in the sub-

population 𝑥. Although these behaviours are distinct from the compliers and defiers that are introduced

10 This parameter is otherwise referred to as CATE(𝑥) in Abrevaya et al. (2015) and is closely related to the Average
Structural Functions in Blundell and Powell (2004).
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in Imbens and D. B. Rubin (1997)—in that they relate to the response equation rather than the

treatment equation—they, nonetheless, have a similar flavour to those two concepts. It follows that

ATE (𝑥) is positive if the proportion of mothers who move into employment exceeds the measure of

proportion of mothers who move out of employment, such that there is a net increase in employment.

These behaviours are exactly defined by the response type. I note that this interpretation of ATE (𝑥)
applies only when the outcome and treatment are dichotomous.

I let 𝑄𝑦𝑡.𝑧 (𝑥) ≐ Pr (𝑌 = 𝑦, 𝑇 = 𝑡|𝑥, 𝑧), which extends the notation in Balke and Pearl (1997). The

generalised Balke-Pearl bounds are, for all {𝑎, 𝑏} ∈ ℨ ↦ 𝑥,

⎧{
⎨{⎩

𝑄10.𝑎 (𝑥)
(𝑄10.𝑎 + 𝑄11.𝑎 − 𝑄00.𝑏 − 𝑄11.𝑏) ∘ (𝑥)

⎫}
⎬}⎭

≤ ̄𝑌0 (𝑥) ≤
⎧{
⎨{⎩

1 − 𝑄00.𝑎 (𝑥)
(𝑄01.𝑎 + 𝑄10.𝑎 + 𝑄10.𝑏 + 𝑄11.𝑏) ∘ (𝑥)

⎫}
⎬}⎭

E.8

and

⎧{
⎨{⎩

𝑄11.𝑎 (𝑥)
(𝑄00.𝑎 + 𝑄11.𝑎 − 𝑄00.𝑏 − 𝑄01.𝑏) ∘ (𝑥)

⎫}
⎬}⎭

≤ ̄𝑌1 (𝑥) ≤
⎧{
⎨{⎩

1 − 𝑄01.𝑎 (𝑥)
(𝑄00.𝑎 + 𝑄11.𝑎 + 𝑄10.𝑏 + 𝑄11.𝑏) ∘ (𝑥)

⎫}
⎬}⎭

E.9

These bounds are sharp.11

Although the ATE (𝑥) and its primitives are informative, they may be of limited policy relevance; policy-

makers are often unable to discriminate on the basis of covariates. For instance, equality legislation often

prevents policy-makers from discriminating on the basis of ethnicity or race. Of greater importance

to policy-makers in such an environment is ATE and its primitives. The policies that were recently

announced by the U.K. government, and that are discussed earlier, are examples of policies that are

applied uniformly. What is of interest to the policy-maker then is whether the effect of the policy is

positive or negative on average across the population. To obtain the aggregate outcome or effect, it is

sufficient to take the weighted Minkowski sum over ATE (𝑥) or its primitives (i.e., take the weighted

average over the minimum of each set to obtain the aggregate lower bound, and the weighted average

over the maximum of each set to obtain the aggregate upper bound).12 Here, each weight corresponds

to the relative size of the sub-population 𝑥 in the population, and can be calibrated to the population

that is observed or else to some other hypothetical population for ex-ante analysis.

11 Proof of this immediately follows from Chesher and Rosen (2017). I, nonetheless, include a discussion of the result
in the appendices, and a formal derivation in Section 6.

12 The continuous equivalent of the Minkowski sum is the Aumann integral (Aumann, 1965).
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—| Section 4 |—

Data and sample composition

I use data from the Integrated Public Use Microdata Series (IPUMS; Ruggles et al., 2015); the data

consist of individual-level observations of households in the U.S., and were collected as part of the

decennial census of 1980, and the American Community Survey (ACS) of 2010 and of 2015.

A notable difference between the earlier census and the ACS is the timing of collection—whereas the

earlier census presents a snapshot of society on April 1st of that year, the ACS is collected throughout

a calendar year. The ACS is less informative, in that the birth year that is imputed by the U.S.

Census Bureau is incorrect for all individuals who have a birthday that falls after the date of survey.

Although this error is random, and averages across the sample, an unfortunate consequence is that it

is not necessarily possible to distinguish two children that are born ten or 11 months apart from twins.

Furthermore, the ACS does not contain information about the number of children ever born (a measure

of fertility and infant mortality), nor does it contain data on the age at or quarter of marriage.

I refine the census and ACS data according to a number of rules. First, I include only women who are

aged between 21 and 35 years that are married and whose spouse is present. I exclude women who

belong to a married couple where either the woman or her spouse have been married more than once.

Second, I include only women who have at least two children. I exclude women who are identified as

the adopted- or step-mother of any child, or whose spouse is identified as the adopted- or step-father of

any child. I exclude women whose first child is 18 years old or older, or whose second child is less than

one year old. Third, I exclude women whose first child was born before her 15th birthday or that of her

spouse. Fourth, I exclude women whose age or sex, or that of her children, has been imputed by the

U.S. Census Bureau.

I restrict attention to married women for two reasons. First, to retain comparability with Angrist and

Evans (1998), which follows many of the same sample selection rules.13 Second, by restricting attention

to married women, I am able to investigate the effect of children on maternal employment for a stable

sub-population. If I do not impose this focus, then it is possible that any observed change in the effect

of children on maternal employment over time is not due to a change in the employment response of

mothers, but due to changes in household composition.

I report summary statistics for the sample in Table E.1 and in Table E.2. Married women represent a

13 I differ from Angrist and Evans (1998) in that I do not exclude women whose first child was born before marriage,
and I do not exclude women whose reported number of children ever born differs from their reported number of
children. The ACS does not contain the information that is required for these rules.
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particularly high fertility group in the population, and have exhibited a slight upward trend in fertility

since 1980 that has partially offset declining fertility amongst unmarried women. The most striking

statistic as evidence of this overall decline in fertility is a fall in the number of children that all women

aged between 21 and 35 years report having, from 1.153 children in 1980 to 0.844 in 2015. Set against this

decline in fertility is an increase in the female employment rate, both amongst married and unmarried

women. The principal objective of this chapter is to discover whether this increase in female employment

is (in part) due to the documented decline in fertility, or is despite it; and in the context of maternal

employment, whether the observed increase in the employment rate of mothers has been dampened by

an increase in family size.

I remark upon two further trends that are evident in Figure E.2 . First, that a husband’s labour supply

remains stable across the study period, both at the extensive margin and at the intensive margin. This

trend is well-documented elsewhere, and suggests that male labour supply is inelastic. If children do

influence the employment decision then it is likely that this effect accrues on the employment decision of

the mother. Second, (deflated) household income increases from (1999) $50,900 in 1980 to (1999) $55,034

in 2015 amongst married couples. This change in household income is of the order of ten percentage

points, and is much more subdued than historic growth rates would imply. Indeed, decomposing house-

hold income into wife’s labour income and husband’s labour income, it is apparent that this increase

is driven purely by an increase in wife’s labour income—real wage growth is otherwise stagnant. It is

reasonable to suggest that this increase in wife’s labour income is due to the documented increase in

maternal employment.

—| Subsection 4.a |—

Variable definition

In presenting the Balke-Pearl model in the context of maternal employment, I have stated particular

definitions for each of the variables. I note that I subject some of these definitions to change—I pro-

pose various definitions of covariates and of the instrument. I emphasise that I continue to define the

outcome as a dichotomous indicator for whether a mother worked for pay in the previous year; and I

define treatment as a dichotomous indicator for whether a mother has two children, or three or more

children.

I continue to define age, age at first birth, and ethnicity and race as covariates. However, in some

instances I restrict the vector of covariates that I include to be a proper subset of these covariates.

Including the full set of covariates is not feasible in all cases, and leads to degeneracy of the estimator.

To guarantee non-degeneracy of the estimator whilst retaining as much detail of covariates as possible,
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Figure E.1
Fertility and labour supply measures

Means (and standard deviations)
PUMS 1980 ACS 2010 ACS 2015

Women aged 21-35

Children ever born 1.238 (1.295) - - - -
Reported number of children 1.153 (1.236) 0.929 (1.216) 0.844 (1.186)
Has two or more children 0.374 (0.484) 0.292 (0.455) 0.263 (0.440)
Worked in previous year 0.732 (0.443) 0.773 (0.419) 0.787 (0.409)

Observations 1,380,870 263,009 271,322

Women aged 36-50

Children ever born 2.818 (1.921) - - - -
Reported number of children 1.725 (1.454) 1.344 (1.247) 1.386 (1.258)
Has two or more children 0.531 (0.499) 0.439 (0.496) 0.455 (0.498)
Worked in previous year 0.665 (0.472) 0.768 (0.422) 0.772 (0.419)

Observations 885,405 313,578 285,436

Women aged 21-35 with two or more children and no adopted children

Children ever born 2.588 (0.905) - - - -
Reported number of children 2.500 (0.797) 2.532 (0.815) 2.538 (0.828)
Has three or more children 0.359 (0.480) 0.380 (0.485) 0.380 (0.485)
Worked in previous year 0.560 (0.496) 0.668 (0.471) 0.679 (0.467)

Observations 486,736 67,073 60,216

Married women aged 21-35 with two or more children and no adopted children

Children ever born 2.530 (0.842) - - - -
Reported number of children 2.476 (0.770) 2.494 (0.785) 2.506 (0.811)
Has three or more children 0.349 (0.477) 0.361 (0.480) 0.361 (0.480)
Worked in previous year 0.532 (0.499) 0.631 (0.482) 0.628 (0.483)

Observations 333,334 38,958 35,036

The table reports means of variables (that are equivalent to probabilities in some cases). Standard deviations are reported
in parentheses. Children ever born is the number of biological children that a mother reports ever having, and is available
only in the PUMS. Reported number of children is the number of children that a mother reports having in the household;
Has two or more children and Has three or more children are defined in terms of Reported number of children. Worked
in previous year indicates whether a mother worked for profit, pay, or as an unpaid family worker in the previous year.
All samples exclude mothers whose age or gender have been imputed by the Census Bureau or have children whose age
or gender have been imputed. The married sample consists of women who are married and have been married only once

and are married to spouses that have been married only once.

I discretise both age and age at first birth, and partition ethnicity and race into several broad classes.

I partition age and age at first birth into five sets: 15 to 18 years, 18 to 22 years, 22 to 25 years, 25 to

30 years, and 30 to 35 years. I design these partitions—specifically the first three partitions—to reflect

the current U.S. education system, noting that individuals who are currently undertaking an education
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programme may postpone having children until after they have completed that programme. I define

ethnicity as a dichotomous indicator for whether a mother is of Hispanic origin. I define race as a

three-valued indicator for whether a mother is black, white, or other race.

I propose four definitions of the instrument. First, I define the instrument as a dichotomous indicator

for a plural second birth (a mother gives birth to twins or higher plurality siblings). Second, I define

the instrument as a dichotomous indicator for whether a mother’s first two children share the same sex.

Third, I propose separating the sex composition of a mother’s first two children into its constituent

pairs. That is, I define the instrument as a four-valued variable that takes different values depending

upon the sex of the first child and of the second child. Fourth, I combine a plural second birth with

the sex composition of a mother’s first two children. I note that the influence on the fertility decision is

different for a plural second birth and sex; in particular, a plural second birth acts mechanically, in that

a mother that experiences a plural second birth has three or more children by definition. In contrast,

sex influences the fertility decision through parental preferences. If a mother experiences a plural second

birth though, parental preferences are irrelevant to the fertility decision. To reflect this asymmetry, I

define the instrument as a five-valued variable with a hierarchical structure that assigns priority to a

plural second birth; if a mother does not experience a plural second birth then the instrument takes

either the second through fifth value, depending upon the sex composition of her first two children.

The generalised Balke-Pearl model imposes an exclusion restriction on the assumed data generating

process. Such a restriction is violated if twins incur additional costs versus non-plural siblings; for

example, if having children of the same age requires duplication, versus handing-down or reusing. These

additional costs also include non-pecuniary costs that are especially high during early childhood, and

that may extend beyond a year (recall that I exclude mothers whose second child is less than one year

old) in the case of twins. Due to these early childhood considerations, I refine the sample to exclude

mothers whose second child is aged under five years whenever I define the instrument as a plural second

birth (either by itself or with sex composition). A plural second birth is a rare event, occurring in around

1-in-100 second births in the data that I study. Degeneracy of the estimator is of first-order concern

whenever I define the instrument as a plural second birth, and is exacerbated by the additional sample

refinement that I perform in this case.
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Figure E.3
Parental choice over family size given sex of children

Probabilities (and standard errors) of having another child
All women Married women

PUMS
1980

ACS
2010

ACS
2015

PUMS
1980

ACS
2010

ACS
2015

Sex of first child in families with one or more children

(1.) | 0.714 0.743 0.742 0.726 0.752 0.745
(0.001) (0.003) (0.003) (0.001) (0.003) (0.003)

(2.) ~ 0.713 0.749 0.744 0.726 0.756 0.749
(0.000) (0.003) (0.004) (0.001) (0.003) (0.004)

↪(1)-(2) 0.001 -0.006 -0.002 0.000 -0.004 -0.004
(0.001) (0.004) (0.005) (0.001) (0.005) (0.005)

Observations 564,445 60,576 54,146 456,066 50,839 45,983

Sex of first two children in families with two or more children

(3.) |~ or ~| 0.360 0.419 0.423 0.352 0.421 0.419
(0.001) (0.005) (0.005) (0.001) (0.005) (0.006)

|| 0.413 0.471 0.498 0.408 0.467 0.490
(0.002) (0.006) (0.007) (0.002) (0.007) (0.008)

~~ 0.432 0.488 0.490 0.430 0.491 0.494
(0.002) (0.006) (0.008) (0.002) (0.007) (0.008)

(4.) || or ~~ 0.422 0.479 0.494 0.419 0.479 0.492
(0.001) (0.004) (0.005) (0.001) (0.005) (0.005)

↪(3)-(4) -0.062 -0.060 -0.071 -0.056 -0.058 -0.073
(0.002) (0.006) (0.007) (0.002) (0.007) (0.007)

Observations 360,919 35,892 31,633 297,124 30,258 26,805

The table displays the probability of having an additional child given the sex of existing children in the household;
specifically, the probability of having a second child given the sex of the first-born child, and the probability of having a
third child given the sex of the first- and second-born child. The sample includes mothers aged between 21 and 35 years
with at least one child, whose age or sex (or that of any children) has not been imputed by the Census Bureau. Married

couples include only those couples that are married at the date of survey and have only been married to each other.

—| Section 5 |—

Local estimation

Existing empirical evidence as to the effect of children on maternal employment is mixed. Angrist

and Evans (1998) finds that additional children reduce the probability that a mother is employed.

Iacovou (2001) and Al-Khaja (2016) conduct comparable analyses in the context of the British and

Egyptian labour markets respectively, instead finding that additional children increase the probability

that a mother is employed. Common to all three papers is the parameter that is recovered; specifically,

Angrist and Evans (1998), Iacovou (2001) and Al-Khaja (2016) recover a Local Average Treatment

Effect (LATE; Imbens and Angrist, 1994) that is the effect of children on maternal employment
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Figure E.4
Differences in means for demographic variables by instrumental variable definition

Differences in means (and standard errors)
PUMS 1980 ACS 2010 ACS 2015

Samesex Plural
birth Samesex Plural

birth Samesex Plural
birth

Age -0.021 0.259 0.075 0.632 -0.006 -0.445
(0.015) (0.071) (0.047) (0.198) (0.045) (0.334)

Age at first birth 0.009 0.297 0.110 0.291 0.063 -0.770
(0.011) (0.067) (0.051) (0.270) (0.050) (0.336)

Black 0.000 0.019 0.003 0.014 0.000 -0.020
(0.001) (0.008) (0.004) (0.029) (0.004) (0.021)

White 0.000 -0.019 -0.007 0.089 0.003 -0.017
(0.001) (0.009) (0.006) (0.038) (0.007) (0.050)

Other race -0.000 -0.000 0.004 -0.102 -0.102 0.037
(0.001) (0.004) (0.005) (0.029) (0.006) (0.047)

Hispanic -0.001 -0.011 -0.009 -0.115 -0.008 -0.089
(0.001) (0.007) (0.006) (0.045) (0.008) (0.044)

Observations 297,124 171,515 30,258 13,784 26,805 12,232

The sample includes mothers aged between 21 and 35 years with at least two children, whose age or gender (or that of any
children) has not been imputed by the Census Bureau. Married couples include only those couples that are married at the
date of survey and have only been married to each other. The table displays the difference in the mean of each variable
between each the instrument, for each definition of the instrument. The columns titled Samesex state the difference in
mean when the first two children share the same gender versus when they do not. The columns titled Plural birth state
the difference in mean when a mother experiences a plural second birth versus when she does not. The variables in the

left-hand column are demographic and ethnic and racial indicators.

amongst an unidentifiable subset of the sample population. In Figure E.5 I report comparable estimates

for the census and ACS data that I study.14 Like Angrist and Evans (1998), I find that the local

effect of additional children in 1980 is negative and statistically significant. Estimates for 2010 and 2015,

however, vary. In particular, I find that the local effect of additional children in 2010 is positive and

statistically significant. Furthermore, the absolute magnitudes of these effects vary considerably, from

four percentage points up to 25 percentage points.

Although the local effects that I report are empirically interesting, I include these estimates for two

reasons. First, to emphasise that local effects may provide mixed evidence. I do not intend this as

a criticism. Instead, I view this ambiguity as a natural implication of allowing for heterogeneity of

response to treatment. I argue that it is interesting to think about how these local effects fit with

evidence about an effect in the wider population. For example, does the sub-population that is affected

by a policy represent a group that is particularly responsive to treatment? Second, to provide a numerical

benchmark that may be useful for interpreting subsequent estimates.

14 I note that the Two-stage least squares estimates that I report relies on a linear model. I specify this model to include
age and age at first birth (not discretised; in years), and a full set of interactions between ethnicity (Hispanic or
non-Hispanic) and race (black, white, and other race).
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Figure E.5
Estimates of local treatment effects

Estimates and predictions (with standard errors)
PUMS 1980 ACS 2010 ACS 2015

Samesex Plural birth Samesex Plural birth Samesex Plural birth

Wald estimator

Intercept 0.585 0.612 0.624 0.480 0.638 0.680
(0.011) (0.014) (0.053) (0.069) (0.048) (0.150)

LATE -0.131 -0.067 0.008 0.257 -0.043 -0.104
(0.027) (0.027) (0.118) (0.111) (0.104) (0.094)

Two-stage least squares estimator

Intercept 0.581 0.613 0.633 0.515 0.639 0.663
(0.010) (0.014) (0.050) (0.065) (0.045) (0.100)

LATE -0.121 -0.070 -0.015 0.199 -0.047 -0.080
(0.026) (0.027) (0.111) (0.104) (0.099) (0.159)

Observations 297,124 171,515 30,258 13,784 26,805 12,232

The sample includes mothers aged between 21 and 35 years with at least two children, whose age or gender (or that of any
children) has not been imputed by the Census Bureau. Married couples include only those couples that are married at the
date of survey and have only been married to each other. Estimates of local treatment effects using the Wald estimator
and the Two-stage least squares estimator are stated. The Two-stage least squares estimator includes as covariates all
variables in Table E.4 plus interaction terms between the racial and ethnic indicators. Intercept is reported at the mean

of the covariates for the Two-stage least squares estimator.

—| Section 6 |—

Estimation

I focus on the ATE and its primitives, the so-called potential outcome distributions (D. B. Rubin,

1974), that may inform both ex-ante policy design and ex-post policy evaluation. I report estimates

of these objects in Figure E.6 and in Figure E.7. Each estimate is a non-trivial set, reflecting the fact

that the Balke-Pearl model partially identifies the ATE and its primitives. Each estimate is obtained

as the sample analogue of a set of bounds that are implied by the model, and are calculated using a

half-median unbiased estimator that is described in Chernozhukov et al. (2013). Focusing on the

ATE, the interpretation of an estimate is then as a set that contains the sample analogue of the ATE

with probability one; the sample analogue of the ATE may then take any value in this set.

I separate the analysis into two parts, by estimating the ATE and its primitives with and without

covariates. I note that the model without covariates implies the generalised Balke-Pearl bounds when

the sub-population 𝑥 is taken to be the population. By separating the analysis into these two parts, I
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am able to study the influence that covariates have on estimates.15 If covariates and the instrument are

not statistically independent then it is (theoretically) necessary to include covariates. Such a statement,

however, does not preclude the possibility that there is no empirical benefit to including covariates.

I make the following observations. First, that estimates are broadly uninformative. In particular, I fail

to recover the sign of the effect of additional children on maternal employment. Effects of 20 percentage

points or more cannot be ruled-out in many cases. Second, I cannot reject the hypothesis that the effect

of additional children on maternal employment is unchanged over the study period, although I note that

I also am unable to reject the competing hypotheses that the effect is increasing or is decreasing. Third,

that there is little difference between the estimates that are presented in Figure E.6 versus those that

are presented in Figure E.7. One comparison where this observation does not hold is when I define the

instrument as a plural second birth and allow age to influence the employment decision and the fertility

decision. In this instance, there is considerable difference between the estimates that are delivered under

each model. As can be seen in Figure E.4, there is strong correlation between the age of a mother

and the probability of a plural second birth. I identified such a case as (theoretically) necessitating the

inclusion of covariates, and I find that this is supported empirically. I note that the confidence regions

that I report suffer from projection conservatism, and it is possible that this observation is driven simply

by the inclusion of an exogenous characteristic with (relatively) many points of support. Fourth, that

estimates that use the definition of the instrument as a plural second birth are more informative than

those that use the definition of the instrument as the sex composition of a mother’s first two children. I

note that a plural second birth is a monotonic variable; plural second birth acts mechanically, in that a

mother that experiences a plural second birth has three or more children by definition. Put differently,

a mother that experiences a plural second birth cannot have two children. It follows that this definition

of the instrument precludes some response types and has strong identifying power. Fifth, that the local

effects that I report in Figure E.5 do not appear to be extreme in relation to the estimates of the ATE

that I report.

—| Appendix E.1 |—

The suitability of an auxiliary model

An interesting question that naturally arises is whether it is necessary to include covariates. More

precisely, does omitting relevant covariates constitute a form of model misspecification? Or, is an

analysis à la Balke and Pearl (1997) sufficient? The short answer is that it depends. If covariates and

the instrument are statistically independent then it is not necessary to include covariates, although the

15 I address the question of whether it is necessary to include covariates in an appendix.
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bounds that are stated in Balke and Pearl (1997) are not sharp and instead define an outer region. If

many covariates are observed—so that there is a high-dimension vector of covariates—then there may be

good reason to prefer to ignore covariates with the loss of some precision. If covariates and the instrument

are not statistically independent then it is (theoretically) necessary to include covariates.

To develop a (hopefully) satisfactory explanation, I posit the following simple example. Imagine that ℎ
is a non-trivial function of 𝑥 (i.e., ℎ varies in 𝑥) so that covariates are in some sense relevant. I compare

what can be learnt from the generalised Balke-Pearl model—Assumptions E.1 to E.3—with what can

be learnt from Assumption E.2 combined with the following two assumptions.

Assumption E.4 (Simple exclusion). The data generating process satisfies

𝑠𝑦 = 𝑔𝑦 (𝑡, 𝑢)

𝑠𝑡 = 𝑔𝑡 (𝑧, 𝑢)
E.10

such that the generalised Balke-Pearl model is triangular in 𝑌 , 𝑇 and 𝑍.

Assumption E.5 (Simple statistical independence). The data generating process satisfies

𝑈| {𝑍} ∼ Uniform (0, 1) E.11

for which 𝑔 is appropriately normalised.

I note that Assumptions E.2, E.4 and E.5 are equivalent to the Balke-Pearl model. I intend Assump-

tions E.2, E.4 and E.5 to constitute an auxiliary model for Assumptions E.1 to E.3. To fix ideas, suppose

that Assumptions E.1 to E.3 identify the ATE (𝑥) and the ATE( ̃𝑥), for some 𝑎, 𝑏 ∈ ℨ ↦ (𝑥, ̃𝑥), up to

the half-lines

⎧{
⎨{⎩

𝑞 (𝑎)
𝑞 (𝑏)

⎫}
⎬}⎭

≤ ATE (𝑥) and
⎧{
⎨{⎩

̃𝑞 (𝑎)
̃𝑞 (𝑏)

⎫}
⎬}⎭

≤ ATE ( ̃𝑥) E.12

Of course, these bounds are overly simplistic and I do not claim that they reflect all of the identifying

information that Assumptions E.1 to E.3 contains—they are a tool for exposition and serve only to

convey a point. Given these bounds though, it follows that Assumptions E.1 to E.3 identify the ATE
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up to the half-line

⎧{{{{
⎨{{{{⎩

𝑞 (𝑎) ⋅ Pr (𝑋 = 𝑥) + ̃𝑞 (𝑎) ⋅ Pr (𝑋 = ̃𝑥)
𝑞 (𝑎) ⋅ Pr (𝑋 = 𝑥) + ̃𝑞 (𝑏) ⋅ Pr (𝑋 = ̃𝑥)
𝑞 (𝑏) ⋅ Pr (𝑋 = 𝑥) + ̃𝑞 (𝑎) ⋅ Pr (𝑋 = ̃𝑥)
𝑞 (𝑏) ⋅ Pr (𝑋 = 𝑥) + ̃𝑞 (𝑏) ⋅ Pr (𝑋 = ̃𝑥)

⎫}}}}
⎬}}}}⎭

≤ ATE E.13

In contrast, Assumptions E.2, E.4 and E.5 do not identify either the ATE (𝑥) or the ATE( ̃𝑥) but do

identify the ATE—albeit incorrectly—up to the half-line

⎧{
⎨{⎩

𝑞 (𝑎) ⋅ Pr (𝑋 = 𝑥|𝑍 = 𝑎) + ̃𝑞 (𝑎) ⋅ Pr (𝑋 = ̃𝑥|𝑍 = 𝑎)
𝑞 (𝑏) ⋅ Pr (𝑋 = 𝑥|𝑍 = 𝑏) + ̃𝑞 (𝑏) ⋅ Pr (𝑋 = ̃𝑥|𝑍 = 𝑏)

⎫}
⎬}⎭

≤ ATE E.14

There are two differences between the half-lines defined by Equations E.13 and E.14. First, the number

of unique constraints is different. Second, each constraint assigns (possibly) different weights to each

lower bound. If the conditional and unconditional probabilities are equal then it is immediately apparent

that the first and fourth constraints of Equation E.13 coincide with the two constraints of Equation E.14.

I note that this condition is equivalent to strict randomisation (of 𝑍, independently of 𝑋). An obvious

consequence is that the auxiliary model identifies an outer region of the identified set. If the conditional

and unconditional probabilities are not, however, equal then it is not possible to determine how the two

half-lines relate to each other. It is in this specific sense that that the auxiliary model is misspecified—

the auxiliary model does not necessarily identify an outer region. I suggest that it is sensible to test for

randomisation—something that can be done—before deciding whether to use an auxiliary model.

—| Appendix E.2 |—

Discussion of the generalised Balke-Pearl bounds

Bounding the Average Structural Functions in the context of the generalised Balke-Pearl model is equiv-

alent to constructing a cover in 𝑢-space and mapping this to observable probabilities—an insight that

Chesher and Rosen (2017) makes and exploits in a more general framework. Even in simple settings

though, there are many possible ways to partition a set of latent types. Fortunately, Chesher and

Rosen (2017) describes an algorithm that reduces the number of possible sets in 𝑢-space that must

be considered to a smaller class that Galichon and Henry (2011) names the core-determining sets.

Importantly, any undominated cover in 𝑢-space can be expressed in terms of the core-determining sets
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Figure E.8
Latent types and the identification problem

𝑌1 (𝑥) 𝑌0 (𝑥) 𝑇1 (𝑥) 𝑇0 (𝑥) Observable probabilities
1 1 1 1 𝑄11.1 (𝑥) 𝑄11.0 (𝑥)
1 1 1 0 𝑄11.1 (𝑥) 𝑄10.0 (𝑥)
1 1 0 1 𝑄10.1 (𝑥) 𝑄11.0 (𝑥)
1 1 0 0 𝑄10.1 (𝑥) 𝑄10.0 (𝑥)
1 0 1 1 𝑄11.1 (𝑥) 𝑄11.0 (𝑥)
1 0 1 0 𝑄11.1 (𝑥) 𝑄00.0 (𝑥)
1 0 0 1 𝑄00.1 (𝑥) 𝑄11.0 (𝑥)
1 0 0 0 𝑄00.1 (𝑥) 𝑄00.0 (𝑥)
0 1 1 1 𝑄01.1 (𝑥) 𝑄01.0 (𝑥)
0 1 1 0 𝑄01.1 (𝑥) 𝑄10.0 (𝑥)
0 1 0 1 𝑄10.1 (𝑥) 𝑄01.0 (𝑥)
0 1 0 0 𝑄10.1 (𝑥) 𝑄10.0 (𝑥)
0 0 1 1 𝑄01.1 (𝑥) 𝑄01.0 (𝑥)
0 0 1 0 𝑄01.1 (𝑥) 𝑄00.0 (𝑥)
0 0 0 1 𝑄00.1 (𝑥) 𝑄01.0 (𝑥)
0 0 1 0 𝑄00.1 (𝑥) 𝑄00.0 (𝑥)

The table associates latent types—as defined in Equation E.4—with observable probabilities in a wholly dichotomous
framework in which covariates can take only one value.

and their intersection with those latent types that underpin the structural characteristic of interest.16,17

Moreover, the core-determining sets can be stratified according to covariates, which is especially useful

in practice given that the support of covariates is responsible for a curse of dimensionality on the number

of latent types. The question that I ask here—and that I attempt to provide an intuitive answer to—is

what motivates and rationalises this stratification?

As a preliminary step, I focus on the case in which covariates can take only one value and—for

illustration—study a wholly dichotomous framework, which is sufficient to introduce a result that I

subsequently rely upon. As is stated in Balke and Pearl (1997) and its preceding works, this frame-

work is associated with a total of 16 latent types, each defined according to the potential outcomes

that they induce for different values of the observable exogenous random variates (in this case, simply

different values of the instrument). These latent types are listed in Figure E.8 alongside the observ-

able probabilities that they can map to, as determined by the capacity functional that is defined in

Molchanov (2005). What is immediately apparent is that several latent types are associated with the

same observable probabilities and it is these collections of latent types—that are disjoint for a single

value of the instrument, and overlapping for different values—that form the basis of the core-determining

sets. A consequence is that any cover of all 16 latent types must map to observable probabilities that

16 By undominated I mean any cover that maps to a sharp bound on the structural characteristic of interest.
17 Here I emphasise that the core-determining sets themselves are not necessarily proper subsets of those latent types

that underpin the structural characteristic of interest. Instead, they are unions of latent types, only some of which
need be latent types that underpin the structural characteristic of interest.
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sum to one or more, with violation of this a condition for falsification of the Generalised Balke-Pearl

model as is explored in Kédagni and Mourifié (2020).

Supposing instead that covariates can take two values, there are a total of 256 latent types even in this

simple setting, which serves to illustrate the aforementioned curse. Rather than extend Figure E.8, I

instead ask the reader to imagine a matrix comprising 16 rows and 16 columns—with each row cor-

responding to specific behaviour given one value of the covariates, and each column corresponding to

specific behaviour given the other. With this analogy in mind, the problem of bounding one of the

Average Structural Functions amounts to constructing a cover over some of the rows or some of the

columns. Since each row intersects every column though, the previously stated consequence implies that

using columns to cover a row—or vice versa—necessarily maps to a trivial unit bound. Such a cover is

clearly dominated by using groups of rows to cover rows and groups of columns to cover columns—what

amounts to stratification. It is for this reason that each value of the covariates can be considered in

isolation.

I remark that this argument does not specifically rely upon the dimensionality of the framework—whether

that is with respect to the support of the instrument or the support of the covariates. In particular, the

matrix can be expanded in any direction to accommodate the increased number of behaviours that are

created by additional points of support of the instrument conditional on a given value of the covariates;

the analysis of Beresteanu et al. (2012) can easily be extended to derive Equations E.8 and E.9 in

any direction in which the instrument has more than two points of support; and the dimension of the

matrix can be increased to accommodate additional points of support of the covariates, with rows and

columns transforming into planes and higher-dimensional equivalents.

—| Appendix E.3 |—

Deriving the generalised Balke-Pearl bounds*

This appendix formalises the ideas that are advanced in the preceding appendix, presenting a formal

proof of the statement that Equations E.8 and E.9 constitute sharp bounds on the Average Structural

Functions.

The proof itself adapts other works. In particular, I lean heavily on results in Beresteanu et al. (2012),

Chesher and Rosen (2017), and Richardson and Robins (2014), following the approaches taken in

Kédagni and Mourifié (2020) and Richardson and Robins (2024) to proving sharpness. To facilitate

this, I exploit the mapping that exists between the structural equation and potential outcome notations

* I thank my examiners—Professors Dennis Kristensen and Karim Chalak—for their helpful suggestions during my oral
examination. This appendix is designed to commit their required amendments.
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that is discussed in Section 2, using the notation that is more convenient for whichever result I wish to

show. I mirror Richardson and Robins (2024) in separating the proof of sharpness of Equations E.8

and E.9 into two parts—establishing that

𝑃(𝑌1(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0) ≤ 𝑄𝑦11.𝑧(𝑥) + 𝑄𝑦00.𝑧(𝑥)

𝑃(𝑌𝑡(𝑥) = 1 − 𝑦) ≤ 1 − 𝑄𝑦𝑡.𝑧(𝑥)
E.15

characterises 𝑃({𝑌1(𝑥), 𝑌0(𝑥) ∶ 𝑥 ∈ 𝔛}), which is Richardson and Robins (2024, §Theorem 1); and

then showing that Equations E.8 and E.9 are the vertices of the linear programme that is implied by

Equation E.15, which is Richardson and Robins (2024, §Theorem 2). The first part necessitates (i.)

showing that the set of structures that are admitted by the generalised Balke-Pearl model and that are

compatible with the observable distribution is contained within the set of structures that are implied

by Equation E.15, and (ii.) proposing a structure that is compatible with Equation E.15 and that is

admitted by the generalised Balke-Pearl model. To do (i.), I apply results from random set theory, as in

Beresteanu et al. (2012) and Chesher and Rosen (2017); to do (ii.), I propose a minor adaptation

of the marginal distribution that is proposed in Kédagni and Mourifié (2020)—a distribution that

exhibits many of the properties that I require—and invoke Richardson and Robins (2024, §Lemma

4) to establish the existence of a joint distribution with the required properties. The second part is

somewhat redundant, as Richardson and Robins (2024, §Theorem 2) can always be invoked upon

noting that any cover of the Average Structural Functions only uses observable quantities with the same

value of covariates—an implication of the idea that is pursued in the preceding appendix that only by

using all columns can a row or rows of a matrix be covered.

In what follows, I adopt the following convention. I signify the power set over a collection by including

a lemniscate in the superscript position (as I do for more general spaces). For example, 𝔘∞ denotes

the power set over 𝔘. Where the collection is the image of a correspondence, I position the lemniscate

before the parentheses enclosing the arguments.

To facilitate this identification analysis, I sequentially define

Contour(𝑦, 𝑡, 𝑧, 𝑥) ≐ {𝑢 ∶ 𝑦 = 1(ℎ𝑦(𝑡, 𝑥, 𝑢) ≥ 0) and 𝑡 = 1(ℎ𝑡(𝑧, 𝑥, 𝑢) ≥ 0)} E.16

Level(u, 𝑧, 𝑥) ≐ {𝑦, 𝑡 ∶ Contour(𝑦, 𝑡, 𝑧, 𝑥) ∩ u ≠ ∅} E.17

Capacity(u, 𝑧, 𝑥) ≐ 𝑄(Level(u, 𝑧, 𝑥)|z, x) E.18

which I emphasise are functionals that depend implicitly upon the population and structural equations,

and where u ∈ 𝔘∞.
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The most general characterisation of those admissible structures that are compatible with a given ob-

servable distribution is

Artstein(𝑄, 𝑧, 𝑥) ≐ {𝑃 , ℎ ∶ 𝑃 (u) ≤ Capacity(u, 𝑧, 𝑥) for all u ∈ 𝔘∞} E.19

which is sharp (Artstein, 1983). If the intersection of Equation E.19 is finite for every observable

distribution then the model has complete identification power; and if the intersection of Equation E.19

is empty for some observable distribution then the model is falsifiable.

I recall that heterogeneity is finite, in the sense that it reduces to a finite number of equivalence classes.

As such, the power set enumerates all closed sets and unions of closed sets on its support—as is required

by the theory of random sets from which Equation E.19 originates (Molchanov, 2005). Given that

the capacity functional and population are non-decreasing and increasing in heterogeneity, respectively,

there exists a proper subset of the power set that is sufficient to characterise the identification region

that is elsewhere labelled the class of core-determining sets (Galichon and Henry, 2011). I let

𝔖(𝑧, 𝑥) ≐ {Contour(𝑦, 𝑡, 𝑧, 𝑥) ∶ 𝑦, 𝑡 ∈ {1, 0} × {1, 0}} E.20

and

Θ(𝑄, 𝑧, 𝑥) ≐ {𝑃 , ℎ ∶ 𝑃 (u) ≤ Capacity(u, 𝑧, 𝑥) for all u ∈ 𝔖(𝑧, 𝑥)} E.21

for convenience. The generalised Balke-Pearl model identifies

𝛩𝑄 ≐ ∩𝑥∈𝔛 ∩𝑧∈ℨ↤𝑥 Θ(𝑄, 𝑧, 𝑥) E.22

as the identification region. That is, Equation E.19 reduces to Equation E.21, where Equation E.20

is the appropriate class of core-determining sets (Chesher and Rosen, 2017). Importantly, the class

of core-determining sets contains only images of the contour functional corresponding to the specified

values of the observable exogenous random variates, which is a consequence of how the contour functional

connects.25

The structural equations enact a labelling of heterogeneity (i.e., which realisation of heterogeneity in-

duces which responses and treatments for particular combinations of the observable exogenous random

25 The capacity functional is the complement of the containment functional (Molchanov, 2005). It is straightforward
to translate results from one to the other by, for example, substituting intersections for unions. The class of core-
determining sets contains only images of the contour functional and their unions (Chesher and Rosen, 2017, §Lemma
1) that cannot be partitioned into disjoint images (Chesher and Rosen, 2017, §Theorem 3).
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variates). Fixing this association normalises the structural equations and formulates the identification

region as a linear programme over the population—to be precise, over the marginal distribution of

heterogeneity. The identification region is, therefore, convex and non-finite due to the abundance of

equivalence classes relative to the number of possible realisations of instruments and covariates (i.e., the

linear programme has more unknowns than equations). Hence, the generalised Balke-Pearl model has

incomplete identification power and is partially identifying since the identification region is non-trivial

(Manski, 2003).

I reiterate that Equation E.22 is a sharp characterisation of the identification region. Although the

solving of linear programmes typically incur low computational cost, the formulation of the constraint

matrix above need not be feasible (the constraint matrix comprising 22⋅(𝔵+1)+∑𝑥∈𝔛 𝔷↤𝑥 columns and

∑𝑥∈𝔛 𝔷 ↤ 𝑥 rows). As such, it is of practical and theoretical importance to prove the earlier statement

that Equations E.8 and E.9 constitute sharp bounds on the Average Structural Functions.

Given Equation E.22, the first result that I am required to show—the set of structures that are admit-

ted by the generalised Balke-Pearl model and that are compatible with the observable distribution is

contained within the set of structures that are implied by Equation E.15—is immediate upon addition

of the inequalities. Specifically,

𝑃(𝑌𝑡(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0) = 𝑃(𝑌𝑡(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0, 𝑇𝑧(𝑥) = 1) + 𝑃(𝑌𝑡(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0, 𝑇𝑧(𝑥) = 0)
E.23

≤ 𝑃 (𝑌𝑡(𝑥) = 𝑦1, 𝑇𝑧(𝑥) = 1) + 𝑃(𝑌0(𝑥) = 𝑦0, 𝑇𝑧(𝑥) = 0) E.24

= 𝑃 (𝑢 ∈ Contour(𝑦1, 1, 𝑧, 𝑥)) + 𝑃(𝑢 ∈ Contour(𝑦0, 0, 𝑧, 𝑥)) E.25

≤ 𝑄𝑦11.𝑧(𝑥) + 𝑄𝑦00.𝑧(𝑥) E.26

and

𝑃(𝑌𝑡(𝑥) = 1 − 𝑦) ≤ 𝑃 (𝑌𝑡(𝑥) = 1 − 𝑦, 𝑇𝑧(𝑥) = 𝑡) + 𝑃(𝑇𝑧(𝑥) = 1 − 𝑡) E.27

= 𝑃 (𝑢 ∈ Contour(1 − 𝑦, 𝑡, 𝑧, 𝑥)) + ∑𝑦𝑃(𝑢 ∈ Contour(𝑦, 1 − 𝑡, 𝑧, 𝑥)) E.28

≤ 1 − 𝑄𝑦𝑡.𝑧(𝑥) E.29

which establishes the result. I could otherwise derive Equation E.15 directly via Equation E.19, as in

Beresteanu et al. (2012).

The fact that the class of core-determining sets contains only images of the contour functional corre-
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sponding to the specified values of the observable exogenous random variates (i.e., there is separation of

the marginal distributions) is an ever-present feature of this identification analysis. As a trivial extension

of Richardson and Robins (2024, §Lemma 4), if marginal distributions of the form

𝑃 ∗
𝑧,𝑥({𝑌1(𝑥), 𝑌0(𝑥) ∶ 𝑥 ∈ 𝔛}, 𝑇𝑧(𝑥)) E.30

such that

𝑃 ∗
𝑧,𝑥({𝑌1(𝑥), 𝑌0(𝑥) ∶ 𝑥 ∈ 𝔛}) = 𝑃 ∗({𝑌1(𝑥), 𝑌0(𝑥) ∶ 𝑥 ∈ 𝔛}) E.31

can be proposed then there exists a single joint distribution of the form

𝑃 ∗({𝑌1(𝑥), 𝑌0(𝑥) ∶ 𝑥 ∈ 𝔛}, {𝑇𝑧(𝑥) ∶ 𝑧 ∈ ℨ ↤ 𝑥, 𝑥 ∈ 𝔛}) E.32

that can be obtained from the marginal distributions. It is this result that motivates continued separation

of the marginal distributions in this identification analysis.

Kédagni and Mourifié (2020) proposes a collection of marginal distributions that that exhibit many of

the properties that I require; I adapt this collection to suit the framework of the generalised Balke-Pearl

model. I let

𝑝𝑦1𝑦0𝑡|𝑧(𝑥) ≐ 𝑃 ∗(𝑌1(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0, 𝑇𝑧(𝑥) = 𝑡|𝑧, 𝑥) E.33

and

𝑞𝑖+𝑗.𝑧(𝑥) ≐ min
𝑧∈ℨ↤𝑥

(𝑄𝑖1.𝑧 + 𝑄𝑗0.𝑧) ∘ (𝑥)

𝑄𝑦𝑡.𝑧(𝑥) ≐ max
𝑧∈ℨ↤𝑥

(𝑄𝑦𝑡.𝑧(𝑥))
E.34

for convenience, which is similar notation (although not exactly the same) to that used in Kédagni

and Mourifié (2020, in particular, I transpose the position of the first two subscripts relative to that

paper). I propose

𝑝100|𝑧(𝑥) = min(𝐴𝑥, 𝑄00.𝑧(𝑥), 𝐿𝑥 − 𝑄11.𝑧(𝑥), 𝑈𝑥 + 𝐴𝑥 − 𝑄11.𝑧(𝑥) − 𝑄10.𝑧(𝑥)) E.35

𝑝101|𝑧(𝑥) = 𝐴𝑥 − 𝑝100|𝑧(𝑥) E.36

𝑝110|𝑧(𝑥) = 𝐿𝑥 − 𝑄11.𝑧(𝑥) − 𝑝100|𝑧(𝑥) E.37

𝑝111|𝑧(𝑥) = 𝑄11.𝑧(𝑥) − 𝐴𝑥 + 𝑝100|𝑧(𝑥) E.38
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𝑝010|𝑧(𝑥) = 𝑄11.𝑧(𝑥) + 𝑄10.𝑧(𝑥) − 𝐿𝑥 + 𝑝100|𝑧(𝑥) E.39

𝑝011|𝑧(𝑥) = 𝑈𝑥 + 𝐴𝑥 − 𝑄11.𝑧(𝑥) − 𝑄10.𝑧(𝑥) − 𝑝100|𝑧(𝑥) E.40

𝑝000|𝑧(𝑥) = 𝑄00.𝑧(𝑥) − 𝑝100|𝑧(𝑥) E.41

𝑝001|𝑧(𝑥) = 1 − 𝑈𝑥 − 𝐴𝑥 − 𝑄00.𝑧(𝑥) + 𝑝100|𝑧(𝑥) E.42

where

𝐴𝑥 ≐ max(0, 1 − 𝑞1+0.𝑧(𝑥) − 𝑞0+0.𝑧(𝑥) − 𝑞0+1.𝑧(𝑥), 𝑄00.𝑧(𝑥) − 𝑞0+0.𝑧(𝑥), 𝑄11.𝑧(𝑥) − 𝑞1+1.𝑧(𝑥))

𝑈𝑥 ≐ min(1 − 𝑄00.𝑧(𝑥), 𝑞1+1.𝑧(𝑥) + 𝑞0+1.𝑧(𝑥))

𝐿𝑥 ≐ max(𝑄11.𝑧(𝑥), 1 − 𝑞0+0.𝑧(𝑥) − 𝑞0+1.𝑧(𝑥))

E.43

which is a minor modification—the only difference is that I append covariates—of the collection that is

proposed in Kédagni and Mourifié (2020). I then propose that

𝑃 ∗({𝑌1(𝑥) = 𝑦1𝑥, 𝑌0(𝑥) = 𝑦0𝑥 ∶ 𝑥 ∈ 𝔛}, 𝑇𝑧(𝑥) = 𝑡|𝑧, 𝑥) = 𝑝𝑦1𝑥𝑦0𝑥𝑡(𝑥) ⋅ ∏
𝑟∈𝔛−𝑥

∑
𝑡

𝑝𝑦1𝑟𝑦0𝑟𝑡.e⊺
1 ℨ↤𝑟(𝑟) E.44

such that the marginals of interest incorporate statistical independence of potential outcomes—

specifically, those pertaining to response—for different values of the covariates.26 By construction,

Equations E.35 to E.42 satisfy Equation E.15. It remains for me to show that Equations E.35 to E.42

are compatible with the generalised Balke-Pearl model (i.e., that 𝑃 ∗ is a proper distribution and that it

satisfies

𝑃 ∗({𝑌1(𝑥) = 𝑦1𝑥, 𝑌0(𝑥) = 𝑦0𝑥 ∶ 𝑥 ∈ 𝔛}|𝑧, 𝑥) = 𝑃 ∗({𝑌1(𝑥) = 𝑦1𝑥, 𝑌0(𝑥) = 𝑦0𝑥 ∶ 𝑥 ∈ 𝔛}) E.45

as is required) and generates the observable distribution.27

I reiterate that Equations E.35 to E.42 amount to a minor modification of the collection that is proposed

in Kédagni and Mourifié (2020). I am, therefore, able to use several of the results that are stated

therein: first, that Equations E.35 to E.42 are non-negative and sum to one (i.e., that the proposed

marginal distributions are proper); second, that 𝑃 ∗ more generally—being a product of proper marginal

26 Something that the generalised Balke-Pearl model does not impose, but does not exclude either.
27 I emphasise that I do not require that

𝑃 ∗({𝑌1(𝑥) = 𝑦1𝑥, 𝑌0(𝑥) = 𝑦0𝑥 ∶ 𝑥 ∈ 𝔛}, 𝑇𝑧(𝑥)|𝑧, 𝑥) = 𝑃 ∗({𝑌1(𝑥) = 𝑦1𝑥, 𝑌0(𝑥) = 𝑦0𝑥 ∶ 𝑥 ∈ 𝔛}, 𝑇𝑧(𝑥)) E.46

here. I recall that Richardson and Robins (2024, §Lemma 4) means that there exists a joint distribution satisfying
a stronger condition than this provided that I can find marginals that align on {𝑌1(𝑥) = 𝑦1𝑥, 𝑌0(𝑥) = 𝑦0𝑥 ∶ 𝑥 ∈ 𝔛}; I
claim that Equations E.35 to E.42 have this property.
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distributions—is also proper; and third, that

𝑝100|𝑧(𝑥) + 𝑝101|𝑧(𝑥) = 𝐴𝑥 E.47

𝑝110|𝑧(𝑥) + 𝑝111|𝑧(𝑥) = 𝐿𝑥 − 𝐴𝑥 E.48

𝑝010|𝑧(𝑥) + 𝑝011|𝑧(𝑥) = 𝑈𝑥 + 𝐴𝑥 − 𝐿𝑥 E.49

𝑝000|𝑧(𝑥) + 𝑝001|𝑧(𝑥) = 1 − 𝑈𝑥 − 𝐴𝑥 E.50

which supports Equation E.45.28 I remark that these properties can all be easily verified—the definition

in Equation E.35 corresponds, for instance, to the maximum amount that can be subtracted from

Equations E.36, E.37, E.40 and E.41 so that they remain non-negative, contingent upon an appropriate

specification of the terms that are defined in Equation E.43. Moreover,

𝑃 ∗(𝑌 = 𝑗, 𝑇 = 1|𝑧, 𝑥) = 𝑃 ∗(𝑌1(𝑥) = 𝑗, 𝑇𝑧(𝑥) = 1|𝑧, 𝑥) E.51

= 𝑝𝑗11.𝑧(𝑥) + 𝑝𝑗01.𝑧(𝑥) E.52

= 𝑄𝑗1.𝑧(𝑥) E.53

= 𝑃(𝑌 = 𝑗, 𝑇 = 1|𝑧, 𝑥) E.54

and

𝑃 ∗(𝑌 = 𝑗, 𝑇 = 0|𝑧, 𝑥) = 𝑃 ∗(𝑌0(𝑥) = 𝑗, 𝑇𝑧(𝑥) = 0|𝑧, 𝑥) E.55

= 𝑝1𝑗0.𝑧(𝑥) + 𝑝0𝑗0.𝑧(𝑥) E.56

= 𝑄𝑗0.𝑧(𝑥) E.57

= 𝑃(𝑌 = 𝑗, 𝑇 = 1|𝑧, 𝑥) E.58

such that 𝑃 ∗ and 𝑃 are observationally equivalent. Given Equation E.22 and its primitive Equation E.21,

however, this is also sufficient to determine that the proposed distribution is compatible with the restric-

tions that are imposed by the generalised Balke-Pearl model and that link the joint distribution over

unobservable variates to the joint distribution over observable variates (i.e., 𝑃 ∗ satisfies the inequalities

in Equation E.21 with equality).

Having proved that Equation E.15 characterises 𝑃({𝑌1(𝑥), 𝑌0(𝑥) ∶ 𝑥 ∈ 𝔛}), I now turn my attention to

the problem of combining elements of Equation E.15 to derive tight bounds on the Average Structural

Functions. If a cover of the Average Structural Functions only uses observable quantities with the same

28 I emphasise that Equation E.44 defines the left-hand side of Equation E.45 as the product of elements of Equations E.47
to E.50 and so is invariant to the exogenous observable variates.
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value of covariates then Equations E.8 and E.9 are correct—Richardson and Robins (2024, §Theorem

2) enumerates the vertices of the linear programme in this case. The only thing that I need to show then

is that any bound that uses observable quantities with different values of covariates must be slack or

is trivial. Clearly, any bound that uses observable quantities with different values of covariates cannot

improve upon Equations E.8 and E.9 if it simply adds to Equations E.8 and E.9—all of the constituent

types of the Average Structural Functions are already covered by Equations E.8 and E.9 (i.e., it is

slack). As such, the only way that a bound that uses observable quantities with different values of

covariates might improve upon Equations E.8 and E.9 is if there exists 𝑃(𝑌1(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0)
that intersects with the Average Structural Function (or its complement) of interest and is not covered.

For example, if interest is in 𝑌 1(𝑥) then the only possibilities for improvement are if (i.) 𝑃(𝑌1(𝑥) =
1, 𝑌0(𝑥) = 1) is covered but 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 0) is not, (ii.) 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 0) is covered

but 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 1), or (iii.) if neither 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 1) nor 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 0)
are covered. Here, by covered, I mean that the probability is bounded in the sense of Equation E.15 by

a combination 𝑄11.𝑧(𝑥) + 𝑄𝑦0.𝑧(𝑥). There exists, therefore, some 𝑃(𝑌1(𝑥) = 𝑦1, 𝑌0(𝑥) = 𝑦0, 𝑇𝑧(𝑥) = 𝑡)
that intersects with the Average Structural Function (or its complement) of interest and is wholly

uncovered. For example, in (i.) 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 0, 𝑇𝑧(𝑥) = 0) is wholly uncovered, in (ii.)

𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 1, 𝑇𝑧(𝑥) = 0) is wholly uncovered, and in (iii.) 𝑃(𝑌1(𝑥) = 1, 𝑌0(𝑥) = 𝑦, 𝑇𝑧(𝑥) = 𝑡)
is wholly uncovered, which subsumes the other two instances. Extending this argument to observable

quantities with different values of covariates though, if a candidate does not cover the entirety of the

support then there exists

𝑃({𝑌1(𝑥∗) ∶ 𝑥∗ ∈ 𝔛 − 𝑥} = y1, {𝑌0(𝑥∗) ∶ 𝑥∗ ∈ 𝔛 − 𝑥} = y0, {𝑇𝑧(𝑥∗) ∶ 𝑧 ∈ ℨ ↤ 𝑥∗, 𝑥∗ ∈ 𝔛 − 𝑥} = t) E.59

that is wholly uncovered. This implies, however, that

𝑃({𝑌1(𝑥∗) ∶ 𝑥∗ ∈ 𝔛} = {y1, 𝑦1}, {𝑌0(𝑥∗) ∶ 𝑥∗ ∈ 𝔛} = {y0, 𝑦0}, {𝑇𝑧(𝑥∗) ∶ 𝑧 ∈ ℨ ↤ 𝑥∗, 𝑥∗ ∈ 𝔛} = {t, 𝑡})

E.60

(i.e., the intersection of the event in Equation E.59 with the event that is wholly uncovered in (i.), (ii.) or

(iii.), say) is wholly uncovered, and so such a candidate does not constitute a proper cover of the Average

Structural function. A proper cover involving observable quantities with different values of covariates

must therefore cover the entirety of the support of heterogeneity, and so must be at least one (i.e., it is

trivial); such a bound is clearly not an improvement upon Equations E.8 and E.9.
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—| Statement |—

Division of labour

This statement—regarding the division of labour for multi-authored work—supplements the preceding

declaration.

—| Declaration 1 |—

The 𝑓-divergence of a von Mises-Fisher distribution from some reference distributions

Chapter C extracted from a paper co-authored with Toru Kitagawa.

The idea for the paper was arrived at jointly by Toru and I. We recognised that there was an absence of

results concerning the statistical divergence of spherical distributions—in particular, von Mises-Fisher

distributions—having already identified a use for such results. I conducted preliminary research into the

topic and we agreed that it was feasible to proceed with the project.

Work on the project was divided as follows. I was responsible for obtaining the main theoretical results,

and for drafting and editing the resulting paper; Toru was responsible for reviewing the resulting paper,

and for providing helpful discussion and perspective throughout the project.

Given this allocation of responsibility, I find it appropriate to describe only Toru’s influence on the project

and its output. First, Toru suggested the use of the moment-generating function—with its well-known

form for exponential families—to derive the moments of a von Mises-Fisher distribution.1 This approach

was simpler than the approach that I had taken up until that point, which was to perform integration

by substitution involving products of trigonometric functions. This simplicity extended to the resulting

expressions of the moments. Second, Toru shaped the introduction by linking the subject-matter to

a common economic model—the canonical binary choice model—and then to several other economic

problems—optimisation of maximum score or empirical welfare criteria, and underidentifying linear

1 The moments of the distribution—specifically, the first moment—are necessary to obtain an closed-form expression
for the Kullback-Leibler divergence. We originally intended that the paper would also present the moments of a von
Mises-Fisher distribution as a result in itself, but Toru identified that some of these results were available elsewhere.
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simultaneous equation models. Third, Toru read-through the paper and suggested minor changes.

As a reflection of this attribution of work and output, I include the paper in its entirety herein.

—| Declaration 2 |—

Stochastic treatment choice with empirical welfare updating

Chapter D extracted from a paper co-authored with Toru Kitagawa and Hugo Lopez.

The idea for the paper was arrived at jointly by Toru and Hugo. I was assigned to the project to provide

research assistance and later upgraded to a co-author in recognition of my contribution to it. At the time

I was assigned to the project, some theoretical results had been obtained and organised into an initial

draft. I attribute these results to both Toru and Hugo since I am unaware of how work on the project

was divided prior to my involvement (although I presume that Hugo prepared the initial draft).

The initial draft included an introduction, a framework, and several of the main theoretical results (first

theorem and its proof, second theorem and its proof, third theorem and its proof, and first lemma and

its proof). I was directed to apply these theoretical results to data and to rewrite the initial draft, which

was incomplete and a work in progress. My influence on the paper can be seen throughout—due to my

preparation of it—but my contribution to its substance is apparent in the proof of the second theorem,

the third theorem and its proof, and parts that were not included in the initial draft.

Work on the project subsequent to my involvement was divided as follows. I was responsible for ver-

ifying the existing main theoretical results and for correcting any issues with these, for applying the

aforementioned results to data, for rewriting the initial draft, and for editing the resulting paper; Toru

was responsible for correcting any issues with the existing main theoretical results, and for providing

helpful discussion and perspective throughout the project; Hugo was responsible for correcting any issues

with the existing main theoretical results, and for editing the resulting paper.

Given this allocation of responsibility, I find it appropriate to describe the issues that I identified with

the initial draft before discussing how these issues were corrected. First, the proof of the second theorem

was incorrect and somewhat incomplete—although the theorem itself was correct. Second, the third

theorem was stated for a von Mises—rather than a von Mises-Fisher—distribution and was, therefore,

quite different.2 Third, the proof of the third theorem was also incomplete in those parts that remained

applicable.

2 Although the idea underpinning the third theorem remains the same—find an expression for the constant that appears
in the first lemma in terms of the sample size such that the right-hand side of the inequality converges—the substance
of this calculation is different.
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The issue with the second theorem was due to the non-convexity of the objective function, which made

establishing the veracity of the derivative as a solution for the case of a continuous prior difficult. Toru,

Hugo and I all worked on this issue for several months, holding regular meetings to discuss our progress,

with approaches ranging from contraction mapping to functional derivatives all rejected. The eventual

proof is the culmination of our collective effort—although I note that the key insight that the derivative

is monotone in the Lagrange multiplier is due to Toru.

The issue with the third theorem was that a von Mises distribution was—as I understand it—initially

selected for two reasons—one valid, and one based upon an erroneous assumption. I persuaded Toru and

Hugo to instead work with von Mises-Fisher distributions and provided the theoretical results that were

necessary to do this. Toru, Hugo and I worked together to adapt the initial proof of the third theorem

to incorporate these results. The eventual proof is the culmination of our collective effort.

The issue with those parts of the proof of the third theorem that remained applicable were that they

were rather vague as to the rate of convergence. I worked independently to derive an expression for the

constant and in doing so provided a concise expression of this rate.

As a reflection of this attribution of work and output, I include a partial reproduction of the paper

herein—I omit several proofs (proof of the first theorem and proof of the first lemma) but include the

associated theorems for the reader’s comprehension. My influence on the substance of the paper is

most apparent in the third theorem and its proof, and in the empirical application and its associated

appendix.

152


