
Journal of Computational Physics 501 (2024) 112787

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Numerical evaluation of oscillatory integrals via automated 

steepest descent contour deformation

A. Gibbs a,∗, D.P. Hewett a, D. Huybrechs b

a Department of Mathematics, University College London, London, UK
b Department of Computer Science, KU Leuven, Leuven, Belgium

A R T I C L E I N F O A B S T R A C T

Keywords:

Oscillatory quadrature

Numerical steepest descent method

Saddle point method

Integrals with coalescing saddles

Steepest descent methods combining complex contour deformation with numerical quadrature 
provide an efficient and accurate approach for the evaluation of highly oscillatory integrals. 
However, unless the phase function governing the oscillation is particularly simple, their 
application requires a significant amount of a priori analysis and expert user input, to determine 
the appropriate contour deformation, and to deal with the non-uniformity in the accuracy of 
standard quadrature techniques associated with the coalescence of stationary points (saddle 
points) with each other, or with the endpoints of the original integration contour. In this paper 
we present a novel algorithm for the numerical evaluation of oscillatory integrals with general 
polynomial phase functions, which automates the contour deformation process and avoids the 
difficulties typically encountered with coalescing stationary points and endpoints. The inputs to 
the algorithm are simply the phase and amplitude functions, the endpoints and orientation of 
the original integration contour, and a small number of numerical parameters. By a series of 
numerical experiments we demonstrate that the algorithm is accurate and efficient over a large 
range of frequencies, even for examples with a large number of coalescing stationary points and 
with endpoints at infinity. As a particular application, we use our algorithm to evaluate cuspoid 
canonical integrals from scattering theory. A Matlab implementation of the algorithm is made 
available and is called PathFinder.

1. Introduction

In this paper we consider numerical evaluation of the integral

𝐼 = ∫
Γ

𝑓 (𝑧)ei𝜔𝑔(𝑧) d𝑧, (1)

where Γ is a contour in C, possibly starting and/or ending at infinity, 𝑓 and 𝑔 are functions of a complex variable, and 𝜔 > 0 is a 
frequency parameter. Such integrals arise in numerous application areas, particularly in wave phenomena and quantum mechanics, 
and are generally challenging to evaluate numerically, especially when 𝜔 is large, because the presence of the exponential factor 
ei𝜔𝑔(𝑧) means that the integrand may undergo rapid oscillations and/or significant variations in amplitude along the integration 
contour.
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The numerical evaluation of oscillatory integrals is a well-studied topic, and a number of different approaches have been devel-

oped for integrals of the form (1), applicable under certain assumptions on 𝑓 , 𝑔 and Γ. For an overview of the field and links to 
relevant literature we refer the reader to [7] and [1, §36.15].

When 𝑓 and 𝑔 are analytic, Cauchy’s theorem provides the possibility of deforming the integration contour so as to make 
numerical evaluation easier. This is the basis of steepest descent (SD) methods, in which one aims to deform Γ onto a contour, or, 
more typically, a union of contours, which we term the steepest descent (SD) deformation, on which ℜ[𝑔(𝑧)] is constant, so that 
the exponential factor ei𝜔𝑔(𝑧) is no longer oscillatory. By the Cauchy-Riemann equations, these contours coincide with the steepest 
descent curves of −ℑ[𝑔(𝑧)], and they connect endpoints of the original integration contour, valleys at infinity (sectors in which the 
integrand decays rapidly as |𝑧| →∞), and stationary points of 𝑔, which are points 𝜉 ∈ C at which 𝑔′(𝜉) = 0.1 Along each SD contour, 
away from stationary points the integrand typically decays exponentially, with the rate of decay increasing with increasing 𝜔, and as 
𝜔 →∞ the value of the integral is dominated by local contributions close to the endpoints of Γ and any stationary points traversed 
by the SD deformation. In the asymptotic steepest descent method (described e.g. in [3,21]), one exploits this to obtain an asymptotic 
expansion for the integral, valid as 𝜔 → ∞, by performing a local Taylor expansion of the integrand around the endpoints and 
relevant stationary points, and reducing the local integrals along the SD contours to simpler integrals that can be expressed in terms 
of known special functions.

In the numerical steepest descent (NSD) method (described e.g. in [7, §5]) one evaluates the integrals along the SD contours 
numerically. This involves numerically tracing an appropriate segment of each SD contour in the SD deformation and applying 
suitable numerical quadrature rules to evaluate the associated contributions to the integral.

In principle, NSD is a highly accurate and efficient method for evaluating integrals of the form (1) for moderate or large 𝜔. 
Indeed, under appropriate assumptions, the NSD method outputs approximations which, for a fixed number of quadrature points 𝑁 , 
are asymptotic to (1) as 𝜔 →∞, with the asymptotic accuracy improving with increasing 𝑁 (see, e.g., [7, Thm 5.7]). Furthermore, 
if 𝑓 and 𝑔 are sufficiently well behaved it can also be the case that the NSD approximation converges to (1) as 𝑁 →∞, for fixed 
𝜔 > 0, with a cost that remains bounded as 𝜔 →∞.

In practice, however, applying the NSD method to an integral of the form (1) often requires significant expert user input. This is 
because:

(P1) Determining the SD contour deformation corresponding to a given 𝑔 and Γ requires careful a priori analysis.

(P2) Parametrizing SD contours from or near stationary points, and evaluating integrals along them, is fraught with numerical 
difficulties, especially when stationary points are close to other stationary points or endpoints of Γ.

The issues described in (P1) and (P2) are particularly troublesome when one wishes to evaluate (1) for multiple instances of a phase 
function 𝑔(𝑧) = 𝑔(𝑧, 𝐜) depending on a set of parameters 𝐜 ∈ C

𝑞 . This is because, firstly, the number and location of the stationary 
points, and the nature of the SD deformation, have to be determined for each different value of 𝐜, and, secondly, stationary points 
may coalesce as 𝐜 approaches certain regions in parameter space, leading to a non-uniformity in the accuracy of the resulting NSD 
approximations.

The problem of stationary point coalescence in the context of NSD was studied in detail in [11] in the special case of the cubic 
phase function 𝑔(𝑧, 𝑐) = 𝑧3

3 − 𝑐𝑧, for 𝑐 ∈ C, which for 𝑐 ≠ 0 has a pair of order one stationary points which coalesce as 𝑐→ 0 (at 𝑧 = 0) 
into a single stationary point of order two for 𝑐 = 0.2 In this case, the SD deformation and contour parametrization were carried out 
manually by analytically inverting the phase (illustrating (P1)), but the resulting integrals were found to be nearly singular for small 
𝑐, leading to poor accuracy of standard NSD approximations (illustrating (P2)). It was shown in [11] how to construct a family of 
non-standard quadrature rules for this integral which perform uniformly well for 𝑐 ≈ 0 using complex-valued Gaussian quadrature, 
producing quadrature nodes that in general lie off the SD deformation. In principle, similar rules could be developed for more 
complicated coalescences involving higher order stationary points and/or endpoints of Γ. However, for each type of coalescence a 
bespoke quadrature rule would have to be developed, and a general catalogue of such rules is not yet available in the literature.

In contrast to [11], our aim is not to develop an optimized method for a specific instance of (1), but rather to present a relatively 
simple algorithm that can evaluate (1) accurately, for a general class of 𝑓 and 𝑔, without the need for expert user input or a priori 
analysis, even in the case of coalescing stationary points, thus addressing problems (P1) and (P2). Our specific focus in this paper 
is on the case where 𝑓 is entire and 𝑔 is a polynomial. The extension of our approach to more general cases where 𝑓 and/or 𝑔
have pole or branch point singularities is the subject of ongoing research.3 Necessarily, in aiming for generality and robustness we 
will sacrifice some efficiency. In particular, in contrast to standard NSD, the error in the approximations produced by our algorithm 
does not in general decay as 𝜔 →∞. Nonetheless, our algorithm is designed to be rapidly convergent as 𝑁 →∞ with approximately 
𝜔-independent error and 𝜔-independent computational cost, and the fact that this is realised in practice is demonstrated by extensive 
numerical experiments in §5.

1 Stationary points are often referred to as “saddle points” because they are saddle points of the functions ℑ[𝑔(𝑧)] and ℜ[𝑔(𝑧)], which cannot possess local maxima 
or minima by the maximum modulus principle.

2 The order of a stationary point 𝜉 is the multiplicity of 𝜉 as a root of 𝑔′ .
3 We note that NSD-based methods for cases where 𝑓 has a singularity at or close to the endpoint of the integration contour have been presented previously - see 
2

e.g. [12,9], where such methods are applied in the context of integral equation methods for high frequency scattering.
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Our algorithm follows the basic principles of NSD, combining complex contour deformation with numerical quadrature. However, 
in contrast to standard NSD our algorithm does not trace SD contours directly from stationary points. Instead, stationary points are 
enclosed in a bounded “non-oscillatory region” within which the integrand is guaranteed to undergo at most a fixed number of 
oscillations. The original contour Γ is replaced by a “quasi-SD deformation” comprising a union of straight-line contours in the 
non-oscillatory region, for which numerical quadrature is straightforward, and SD contours outside the non-oscillatory region, on 
which standard NSD quadrature techniques can be applied. By excluding a neighbourhood of the stationary points from the region in 
which SD contours are traced, our algorithm avoids the problems mentioned in (P2) associated with stationary-point/stationary-point 
and/or stationary-point/endpoint coalescence. This not only “uniformizes” the accuracy of our algorithm compared to standard NSD, 
but it also enables us to tackle the problem (P1) by automating the contour deformation step. For the latter, we first perform low 
accuracy SD contour tracing outside the non-oscillatory region to build a graph describing the global connections (via SD contours) 
between the endpoints of Γ, the different components of the non-oscillatory region, and the valleys at infinity, and then determine 
the quasi-SD deformation using a shortest path algorithm, before refining the accuracy of the SD contour tracing at the quadrature 
stage.

One other problem with standard NSD is that it typically degenerates as 𝜔 → 0, because the quadrature points diverge to infinity 
[7, §5.2.4]. This issue has been addressed in the special case 𝑔(𝑧) = 𝑧 for bounded Γ in [2,6]; however, it remains an open problem 
for general 𝑔(𝑧). Our algorithm is well-behaved in the limit as 𝜔 → 0 for general polynomial 𝑔(𝑧), since it reduces to standard 
non-oscillatory quadrature for sufficiently small 𝜔 for any bounded Γ.

Our algorithm is implemented in the open-source Matlab code “PathFinder”, available at github.com/AndrewGibbs/PathFinder
[8]. The basic user input to the code is a function handle for the amplitude f, the coefficients of the polynomial phase g, endpoints a
and b (complex numbers, or angles in the case of infinite endpoints), the frequency parameter omega, and a parameter N controlling 
the number of quadrature points to be used. Approximating the integral (1) using PathFinder can be done with the following Matlab 
command:

PathFinder(a,b,f,g,omega,N,'infcontour',[A B]) (2)

Here 'infcontour' is an optional input for which the user should supply a Boolean array [A B] (whose default value is [false 
false]) such that A (respectively B) is true if the endpoint a (resp. b) is infinite and false if it is finite. Examples of PathFinder 
code will be given in §5. Advanced users can also adjust a small number of other tuning parameters, whose role will be discussed 
during the presentation of our algorithm.

An outline of the paper is as follows. In §2 we provide a detailed description of our algorithm, first presenting an overview of the 
main steps, and then providing details of how each step is realised in PathFinder. In §3 we present some theoretical results under-

pinning our approach. In §4 we discuss some further implementation details, and in §5 we exhibit numerical results demonstrating 
the performance of our algorithm on a range of challenging integrals with large 𝜔 and complicated stationary point configurations.

We end this introduction by remarking that integrals with coalescing stationary points are of fundamental importance in numerous 
applications, including the study of optics and high frequency (short wavelength) acoustics, where they describe the wave field in 
the vicinity of geometrical singularities (or “catastrophes”) in the classical ray-theoretic framework, Kelvin’s celebrated ship-wave 
problem, and the theory of molecular collisions in quantum mechanics and theoretical chemistry. A catalogue of such integrals, along 
with links to relevant literature, can be found in [1, §36]. In §5.5 we show how PathFinder can be applied to accurately calculate 
these types of integrals.

2. Algorithm description

In this section we present our algorithm for the numerical approximation of (1) when 𝑓 is entire4 and 𝑔 is a polynomial.

We start with some definitions and basic facts. Let

𝑔(𝑧) =
𝐽∑
𝑗=0

𝛼𝑗𝑧
𝑗 , (3)

for some 𝐽 ∈ N, 𝐽 ≥ 1, and 𝛼𝑗 ∈ C, 𝑗 = 0, … , 𝐽 , with 𝛼𝐽 ≠ 0. Then 𝑔 has at most 𝐽 − 1 stationary points, which are the solutions of

𝑔′(𝑧) =
𝐽∑
𝑗=1

𝑗𝛼𝑗𝑧
𝑗−1 = 0. (4)

We denote the set of all stationary points by stat . We define the valleys at infinity to be the sectors of angular width 𝜋∕𝐽 centred on 
the angles

 ∶=
{

(2(𝑚− 1) + 1∕2)𝜋 − arg (𝛼𝐽 )
𝐽

∶ 𝑚 = 1,… , 𝐽

}
. (5)

4 When Γ is infinite we additionally implicitly assume that 𝑓 is sufficiently well-behaved at infinity (i.e., does not grow too fast at infinity in the relevant directions) 
for the integral (1) to converge. Note that in many cases of interest, numerical evaluation of the integral to high accuracy after path deformation only requires 𝑓 to 
3

be analytic in a small (and shrinking with increasing 𝜔) neighbourhood of the stationary points.
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These have the property that if 𝑧 = 𝑟ei𝜃 with 𝜃 ∈ (𝑣 − 𝜋∕(2𝐽 ), 𝑣 + 𝜋∕(2𝐽 )) for some 𝑣 ∈  then ei𝜔𝑔(𝑧) → 0 as 𝑟 → ∞. For each 
𝜂 ∈ C ⧵stat there exists a unique SD contour 𝛾𝜂 beginning at 𝜂 and ending either at a stationary point 𝜉 ∈ stat or at a valley 𝑣 ∈  , 
on which ℜ𝑔(𝑧) =ℜ𝑔(𝜂) for 𝑧 ∈ 𝛾𝜂 (see, e.g., [4]).

We let endp denote the set of finite endpoints of the integration contour Γ, which could have zero, one or two elements. We 
assume for now that any infinite endpoint of Γ is at one of the valleys 𝑣 ∈  ; see §4.4 for extensions.

We now provide a high-level overview of our algorithm. The following steps will be explained in more detail in sections 2.1-2.6.

1. Compute the set of stationary points stat (the solutions of (4)).

2. For each 𝜉 ∈ stat , select a radius 𝑟𝜉 > 0 for which the function ei𝜔𝑔(𝑧) is considered “non-oscillatory” on the closed ball Ω𝜉 of 
radius 𝑟𝜉 centred at 𝜉. These balls may overlap. However, if two balls overlap significantly, indicating near coalescence, one of 
the stationary points (along with its associated ball) is removed from the set stat . This removal process continues recursively 
until no pair of balls is judged to overlap too much.

We call {Ω𝜉}𝜉∈stat
the non-oscillatory balls, and their union

Ω ∶=
⋃

𝜉∈stat

Ω𝜉 (6)

the non-oscillatory region.

3. Find the local minima of |ei𝜔𝑔(𝑧)| on the boundary of the non-oscillatory region Ω. We call these points exits, and denote by exit
the set of all exits.

4. For each 𝜂 ∈ exit ∪ (endp ⧵Ω), trace the SD contour 𝛾𝜂 from 𝜂, and determine whether

(i) 𝛾𝜂 enters Ω at some point 𝑧 ∈ 𝜕Ω ⧵ {𝜂}, or

(ii) 𝛾𝜂 converges towards a valley 𝑣 ∈  without entering Ω.

We call points 𝑧 ∈ 𝜕Ω determined in case (i) entrances, and denote by entr the set of all entrances.

5. Construct a graph 𝐺 with a vertex for each of the elements of stat , endp, exit , entr and  . Add edges between the vertices of 
𝐺 as follows:

• For each 𝜉 ∈ stat , add an edge between each pair of elements of (stat ∪endp ∪exit ∪entr ) ∩Ω𝜉 .

• For each pair 𝜉, 𝜉′ ∈ stat , 𝜉 ≠ 𝜉′, for which Ω𝜉 ∩Ω𝜉′ ≠ ∅, add an edge between 𝜉 and 𝜉′, if not already added in the previous 
step.

• For each 𝜂 ∈ exit ∪ (endp ⧵Ω), add an edge between 𝜂 and the entrance 𝑧 ∈ entr or the valley 𝑣 ∈  to which the SD contour 
𝛾𝜂 leads.

Find the shortest path (in the graph-theoretic sense) between the vertices corresponding to the endpoints of Γ.

6. Generate quadrature nodes and weights for the evaluation of each of the contour integrals corresponding to the edges in the 
shortest path. For an edge between two points in the non-oscillatory region, use a straight-line contour. For an edge between an 
exit or an endpoint of Γ to an entrance or a valley, use a refined version of the SD contour traced in step 4. The union of all the 
contours corresponding to the edges of the shortest path defines the “quasi-SD deformation” of the original integration contour.

Finally, use the quadrature nodes and weights to approximate the integrals over the contours in the quasi-SD deformation and 
sum them to obtain an approximation of the original integral (1).

In Figs. 2.1 and 2.2 we illustrate the outcome of the above steps for the particular choice of phase function

𝑔(𝑧) =𝑧
7

7
+ 𝑧6

( 7
20
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i
)
+ 𝑧5

(
−1047
2000
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i
)
+ 𝑧4

(
−4409
8000
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8000

i
)

+ 𝑧3
( 711
2000
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6000

i
)
+ 𝑧2

(237
800

− 207
800

i
)
+ 𝑧

( 63
1000

− 77
2000

i
) (7)

and the parameters 𝜔 = 40, 𝑎 = −1.5, 𝑏 = 2, 𝑁 = 10, using the default parameter set for PathFinder (see Table 4.1). For this choice 
of 𝑔 there is one order 2 stationary point and 4 order one stationary points. In Fig. 2.1 we plot these stationary points, along with 
their non-oscillatory balls, and the SD contours traced from the exits. Such plots can be generated in PathFinder by adding the 
optional 'plot' flag. The ball centred at the stationary point 𝜉 = −i contains two entrances, reached by SD contours from the balls 
above. In Fig. 2.2 we plot the graph 𝐺, using the optional PathFinder input flag 'plot graph'. This graph, in addition to edges 
corresponding to the SD contours shown in Fig. 2.1, contains edges corresponding to contours between points in the non-oscillatory 
region, including connections within the two overlapping balls. The shortest path between 𝑎 and 𝑏, which is highlighted with thick 
lines in Fig. 2.2, corresponds to the quasi-SD deformation, the integral over which is equal to (1) by Cauchy’s Theorem. The integral 
is discretised using 𝑁 quadrature points on each contour in the quasi-SD deformation that makes a non-negligible contribution to 
the integral (see §2.6) - these points are plotted in Fig. 2.1 in red.

The process of computing all the SD contours and the selection of a subset thereof via the shortest path algorithm addresses 
problem (P1). Surrounding stationary points by balls, and only tracing SD contours outside the balls, means that we avoid having to 
determine the local structure of the SD contours and compute integrals along them near stationary points, addressing problem (P2).
4

In the following subsections we provide further details of how we carry out the steps outlined above in PathFinder.
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Fig. 2.1. Output of algorithm when applied with phase (7), 𝜔 = 40, 𝑎 = −1.5, 𝑏 = 2, 𝑁 = 10, and the default parameter set (see Table 4.1). Here we observe stationary 
points 𝜉 ∈ stat (black stars) surrounded by balls Ω𝜉 (grey) whose union is the non-oscillatory region Ω, SD contours (black lines) traced from exits 𝜂 ∈ exit and finite 
endpoints 𝜂 ∈ endp to either valleys 𝑣 ∈  at infinity or to entrances 𝑧 ∈ entr , and quadrature points (red points) allocated along the appropriate contours in the 
quasi-SD deformation. The “region of no return” 𝑅𝑣 (see §3.2) around each of the valleys 𝑣 ∈  at infinity is also shaded grey. (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

2.1. Step 1 - Computing stationary points

Computing the stationary points of 𝑔 (the roots of 𝑔′(𝑧)) requires us to find the complex roots of the polynomial (4). In our 
implementation we compute stationary points using the Matlab roots command, which applies a companion matrix approach. We 
note that obtaining highly accurate values for the positions of stationary points is not critical to our algorithm, since the stationary 
points are enclosed in the non-oscillatory region and we never trace SD contours from them. Indeed, the difficulty in distinguishing 
numerically between multiple roots and roots of higher order contributes to the motivation for considering such non-oscillatory 
regions.

2.2. Step 2 - Defining the non-oscillatory region

The non-oscillatory region Ω was defined in (6) to be a union of balls centred at the elements of stat . We choose the radii of the 
balls as follows. First fix some user-defined constant 𝐶ball > 0. Then, given 𝜉 ∈ stat , define

𝑟𝜉 ∶= max{𝑟 > 0 ∶ |𝑧− 𝜉| ≤ 𝑟⇒ 𝜔|𝑔(𝑧) − 𝑔(𝜉)| ≤ 𝐶ball}. (8)

This definition enforces an upper bound on the number of oscillations within each ball. Accordingly, the region Ω shrinks to the 
stationary points as 𝜔 →∞ and expands to fill the whole complex plane as 𝜔 → 0.

In our implementation we approximate 𝑟𝜉 numerically as follows. Let 𝑁ball ∈ N be a user-defined parameter. For each 𝑛 ∈
{1, … , 𝑁ball} we consider the ray {𝑧 = 𝜉 + 𝑟ei2𝜋𝑛∕𝑁ball , 𝑟 > 0}, and compute the smallest positive root 𝑟𝑛 > 0 of the function 𝑢𝑛(𝑟) ∶=
𝜔2|𝑔(𝜉 + 𝑟ei2𝜋𝑛∕𝑁ball ) − 𝑔(𝜉)|2 − 𝐶2

ball, which is a polynomial in 𝑟 of degree 2𝐽 . For this root-finding problem we use the Matlab 
roots command; in case this command produces no positive real roots (because of stability issues) we resort to a bisection approach 
instead. We then take as our approximation to 𝑟𝜉 the positive number min𝑛∈{1,…,𝑁ball} 𝑟𝑛.

When elements of stat are close it is natural to amalgamate their respective non-oscillatory balls. To do this systematically we 
adopt an iterative approach. Let 𝛿ball > 0 be a user-defined parameter.

• For each pair 𝜉1, 𝜉2 ∈ stat compute

𝑑𝜉1 ,𝜉2
∶= |𝜉1 − 𝜉2|∕max(𝑟𝜉1 , 𝑟𝜉2 ).

• If min𝜉1 ,𝜉2 𝑑𝜉1 ,𝜉2 < 𝛿ball let 𝜉1, 𝜉2 be a pair realising the minimum. Remove from stat whichever of 𝜉1, 𝜉2 has the smaller associated 
ball radius (or choose arbitrarily between them if 𝑟𝜉1 = 𝑟𝜉2

).
5

• Repeat the previous step until either min𝜉1 ,𝜉2 𝑑𝜉1 ,𝜉2 ≥ 𝛿ball, or there is only one element of stat remaining.
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Fig. 2.2. The graph 𝐺 corresponding to the problem considered in Fig. 2.1. The thick line represents the shortest path between the endpoints of Γ, which in this case 
are both finite. The balls (shaded grey) are included for ease of comparison with Fig. 2.1. The lower figure zooms in on the centre of the upper figure, showing the 
multiple edges that are constructed inside the balls.

2.3. Step 3 - Determining the exits

The exits associated with each 𝜉 ∈ stat are defined to be the local minima on 𝜕Ω𝜉 ⧵
⋃

𝜉′∈stat ,𝜉′≠𝜉 Ω
◦
𝜉′

of the function |ei𝜔𝑔(𝑧)|, 
equivalently of the function −ℑ𝑔(𝑧).

For each 𝜉 ∈ stat the function −ℑ𝑔(𝑧) restricted to the 𝜕Ω𝜉 is a trigonometric polynomial. Using this fact, in our implementation 
we determine the local minima of −ℑ𝑔(𝑧) on 𝜕Ω𝜉 by finding the roots of the derivative of −ℑ𝑔(𝑧) in the angular direction (which 
is also a trigonometric polynomial) by the companion matrix approach of [5, §2.2], and keep only the real roots corresponding to 
local minima. We discard all those minima corresponding to points inside 

⋃
𝜉′∈stat ,𝜉′≠𝜉 Ω◦

𝜉′
, and add the remaining minima to the set 

exit .

2.4. Step 4 - Tracing the SD contours

Given 𝜂 ∈ exit ∪ (endp ⧵ Ω), the SD contour 𝛾𝜂 beginning at 𝜂 is the unique curve on which ℜ𝑔(𝑧) is constant, with −ℑ𝑔(𝑧)
decreasing along 𝛾𝜂 . It can be parametrized in terms of a parameter 𝑝 ≥ 0 as 𝑧 = ℎ𝜂(𝑝), where ℎ𝜂(𝑝) is defined implicitly by

𝑔(ℎ𝜂(𝑝)) = 𝑔(𝜂) + i𝑝, ℎ𝜂(0) = 𝜂. (9)

Differentiating (9) with respect to 𝑝 gives

ℎ′
𝜂
(𝑝) = i

𝑔′(ℎ𝜂(𝑝))
=∶ 𝐹 (ℎ𝜂(𝑝)), ℎ𝜂(0) = 𝜂, (10)

which is a first order ODE initial value problem for ℎ𝜂(𝑝). By solving (10) numerically one can trace the contour 𝛾𝜂 until it either (i) 
6

enters the non-oscillatory region Ω, or (ii) one can be sure that it will tend to a valley 𝑣 ∈  , without entering Ω. For (ii) we appeal 
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to the theoretical result in Theorem 3.3, which provides a “region of no return” 𝑅𝑣 associated with each valley 𝑣 ∈  for which it is 
guaranteed that if an SD contour enters 𝑅𝑣 it will never leave 𝑅𝑣, and will converge to 𝑣.

Staying away from stationary points ensures that the factor 1∕𝑔′ in the right-hand side of (10) does not get too large.

In our implementation we trace the SD contour using a predictor-corrector approach, combining a forward Euler step for (10)

and a Newton iteration for (9), to generate approximations ℎ(𝑛)𝜂 ≈ ℎ𝜂(𝑝𝑛) on a mesh 0 = 𝑝0 < 𝑝1 < 𝑝2 <… < 𝑝𝑛max
, where the total 

number of steps 𝑛max is determined as part of the algorithm, as discussed below.

As the initial value we take ℎ(0)𝜂 = 𝜂. Then, given ℎ(𝑛)𝜂 , to compute ℎ(𝑛+1)𝜂 we first apply a forward Euler step for the ODE (10), 
with adaptive step length

𝑝𝑛+1 − 𝑝𝑛 = 𝛿ODE min

(
2
|𝑔′(ℎ(𝑛)𝜂 )|2|𝑔′′(ℎ(𝑛)𝜂 )| , |𝑔′(ℎ(𝑛)𝜂 )|dist(ℎ(𝑛)

𝜂
,stat )

)
,

where 𝛿ODE ∈ (0, 1) is a user-specified parameter. The first argument of the minimum is included to ensure stability of the solver -
note that 𝐹 ′(ℎ) = − i𝑔′′(ℎ)

(𝑔′(ℎ))2 and we might expect instability if the local step length were as large as 2∕|𝐹 ′(ℎ)| = 2 |𝑔′(ℎ)|2|𝑔′′(ℎ)| . The second 
argument is included to ensure that the solver “slows down” as it approaches the non-oscillatory region Ω, so that we can detect 
whether 𝛾𝜂 enters Ω or not. To ensure that |ℎ(𝑛+1)𝜂 − ℎ

(𝑛)
𝜂 | ≤ 𝛿ODE𝑑, where 𝑑 ∶= dist(ℎ(𝑛)𝜂 , stat ) =min𝜉∈stat

|ℎ(𝑛)𝜂 − 𝜉|, we require that 
𝑝𝑛+1 − 𝑝𝑛 ≤ 𝛿ODE𝑑|𝐹 (ℎ(𝑛)𝜂 )| = 𝛿ODE𝑑|𝑔′(ℎ(𝑛)𝜂 )|. This also ensures that ℎ(𝑛+1)𝜂 remains far enough from stat , so that (10) doesn’t get too large.

After each forward Euler step, we correct ℎ(𝑛+1)𝜂 by running a Newton iteration to enforce (9) (with 𝑝 = 𝑝𝑛+1 fixed), until the 

Newton step size | 𝑔(ℎ(𝑛+1)𝜂 )−𝑔(𝜂)−i𝑝𝑛+1

𝑔′(ℎ(𝑛+1)𝜂 )
| is smaller than 𝛿coarse dist(ℎ

(𝑛+1)
𝜂 , stat ), for some user-specified tolerance 𝛿coarse > 0.

We repeat this process for 𝑛 = 0, 1, 2, … until either

(i) ℎ
(𝑛)
𝜂 ∈ Ω𝜉 for some 𝜉 ∈ stat , in which case we add 𝑧 = ℎ

(𝑛)
𝜂 to the set entr of entrances. Note that in general the point 𝑧 = ℎ

(𝑛)
𝜂

will lie inside Ω◦
𝜉

rather than on 𝜕Ω𝜉 , but will be closer to 𝜕Ω𝜉 the smaller 𝛿ODE is;

or

(ii) ℎ
(𝑛)
𝜂 ∈ 𝑅𝑣 for some 𝑣 ∈  , in which case, by Theorem 3.3, 𝛾𝜂 converges to the valley 𝑣. Here the “region of no return” 𝑅𝑣 is 

defined by

𝑅𝑣 ∶= {𝑧 ∈ C ∶ | arg𝑧− 𝑣|2𝜋 < 𝜋∕(2𝐽 ) and 𝐺(|𝑧|, | arg𝑧− 𝑣|2𝜋) > 0}, (11)

where

|𝜃|2𝜋 ∶= min
𝑚∈Z

|𝜃 − 2𝜋𝑚|, (12)

and, for 𝑟 > 0 and 𝜃 ∈ (0, 𝜋∕(2𝐽 )),

𝐺(𝑟, 𝜃) ∶= 𝐽 |𝛼𝐽 |𝑟𝐽−1 min
(
1∕

√
2, cos𝐽𝜃

)
−

𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 |𝑟𝑗−1. (13)

For further explanation of the meaning of 𝑅𝑣 see §3.2 below.

A necessary condition for a point 𝑧 to lie in 𝑅𝑣 is that |𝑧| ≥ 𝑟∗, where 𝑟∗ > 0 is the unique positive solution of the polynomial 
equation 𝐺(𝑟∗, 𝜋∕(4𝐽 )) = 0, i.e. the solution of

𝐽 |𝛼𝐽 |𝑟𝐽−1∗√
2

=
𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 |𝑟𝑗−1∗ .

Having found 𝑟∗ once and for all (using the Matlab roots command), to check that a point 𝑧 lies in 𝑅𝑣 we first check that |𝑧| ≥ 𝑟∗. If so, we then check that | arg𝑧 − 𝑣|2𝜋 < 𝜋∕(2𝐽 ). If so, we then check that 𝐺(|𝑧|, | arg𝑧 − 𝑣|2𝜋) > 0. The point of 
introducing 𝑟∗ is so that we don’t compute 𝐺(|𝑧|, | arg𝑧 − 𝑣|2𝜋) unless absolutely necessary.

In either case, tracing of the SD contour stops and we set 𝑛max = 𝑛 for this contour.

2.5. Step 5 - Finding the shortest path

The construction of the graph 𝐺 requires no further explanation. To find the shortest path in 𝐺 between the endpoints of the 
original contour Γ we apply the standard Dijkstra shortest path algorithm [15, §10.6.2].

2.6. Step 6 - Evaluating the contour integrals

The quasi-SD contour deformation corresponding to the graph-theoretic shortest path between the endpoints of 𝐺 calculated 
7

during step 5 involves integrals over three types of contour:
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Type 1: Straight line contours between points in the non-oscillatory region;

Type 2: Infinite SD contours from exits/endpoints to valleys;

Type 3: Finite SD contours from exits/endpoints to entrances.

Some of these contours will make a larger contribution to the value of the original integral (1) than others. It is natural to neglect 
contours that make a negligibly small contribution. In our implementation, we only compute the contribution from a contour 𝛾
in the quasi-SD deformation if at least one of the finite endpoints 𝜂 of 𝛾 satisfies |ei𝜔𝑔(𝜂)|∕𝑀 > 𝛿quad, where 𝛿quad ≥ 0 is a small, 
user-specified parameter and

𝑀 ∶= max |ei𝜔𝑔(𝜉)|,
where the maximum is taken over all 𝜉 ∈ stat ∪endp∪exit appearing in the shortest path corresponding to the quasi-SD deformation.

In our implementation, for Type 1 contours we use Gauss-Legendre quadrature, for Type 2 contours we use either Gauss-Laguerre 
quadrature (which is the default choice in PathFinder) or truncated Gauss-Legendre quadrature, and for Type 3 contours we use 
(possibly truncated) Gauss-Legendre quadrature, as detailed below. By default our implementation uses the same number 𝑁 of 
quadrature points on each contour in the quasi-SD deformation whose contribution we compute, regardless of the type of integral 
(we comment on this in §3.3.4). Accordingly, if 𝑁cont is the number of these contours then the total number of quadrature points 
used in the algorithm, 𝑁tot , is given by

𝑁tot =𝑁𝑁cont . (14)

2.6.1. Evaluation of integrals over Type 1 contours

Let 𝑧0, 𝑧1 ∈ Ω, and let 𝛾 be the straight-line contour in C starting at 𝑧0 and ending at 𝑧1, parametrized by

𝑧[𝑧0 ,𝑧1](𝑡) =
1
2

(
(𝑧1 − 𝑧0)𝑡+ (𝑧0 + 𝑧1)

)
, 𝑡 ∈ [−1,1]. (15)

Given 𝑁 ∈ N, let 𝑡Leg𝑚 and 𝑤Leg
𝑚 , for 𝑚 = 1, … , 𝑁 , denote the nodes and weights for standard 𝑁 -point Gauss-Legendre quadrature on 

[−1, 1]. Our quadrature approximation to the integral over 𝛾 is then:

∫
𝛾

𝑓 (𝑧)ei𝜔𝑔(𝑧) d𝑧 ≈
𝑧1 − 𝑧0

2

𝑁∑
𝑚=1

𝑤
Leg
𝑚 𝑓 (𝑧[𝑧0 ,𝑧1](𝑡

Leg
𝑚 ))ei𝜔𝑔(𝑧[𝑧0 ,𝑧1](𝑡

Leg
𝑚 ))

. (16)

2.6.2. Evaluation of integrals over Type 2 contours

Let 𝜂 ∈ exit ∪ (endp ⧵Ω) be such that the SD contour 𝛾 from 𝜂 leads to a valley. Parametrizing 𝛾 by (9), for 𝑝 ∈ [0, ∞), noting 
(10), and rescaling 𝑝 = 𝑝̃∕𝜔, we have

∫
𝛾

𝑓 (𝑧)ei𝜔𝑔(𝑧) d𝑧 = ei𝜔𝑔(𝜂)

𝜔

∞

∫
0

𝑓 (𝑝̃)e−𝑝̃ d𝑝̃, (17)

where

𝑓 (𝑝̃) ∶= 𝑓 (ℎ𝜂(𝑝̃∕𝜔))ℎ′𝜂(𝑝̃∕𝜔) = i
𝑓 (ℎ𝜂(𝑝̃∕𝜔))
𝑔′(ℎ𝜂(𝑝̃∕𝜔))

.

By tracing contours outside of Ω, the contours remain a positive distance from stat . This ensures that 𝑓 is analytic in a complex 
neighbourhood of [0, ∞).

By default, PathFinder evaluates the integral on the right-hand side of (17) by Gauss-Laguerre quadrature. Let 𝑡Lag𝑚 and 𝑤Lag
𝑚 , for 

𝑛 = 1, … , 𝑁 , denote the standard Gauss-Laguerre nodes and weights on [0, ∞). Our quadrature approximation to the integral over 𝛾
is then:

∫
𝛾

𝑓 (𝑧)ei𝜔𝑔(𝑧) d𝑧 ≈ ei𝜔𝑔(𝜂)

𝜔

𝑁∑
𝑚=1

𝑤
Lag
𝑚 𝑓 (𝑡Lag𝑚 ). (18)

To evaluate 𝑓 (𝑡Lag𝑚 ) we need accurate computations of ℎ𝜂(𝑡
Lag
𝑚 ∕𝜔) for 𝑚 = 1, … , 𝑁 . For this, for each 𝑚 we run a Newton iteration 

on (9) with 𝑝 = 𝑡
Lag
𝑚 ∕𝜔 fixed, until the magnitude of the increment is smaller than a user-specified tolerance 𝛿f ine > 0. Typically 

we take 𝛿f ine to be considerably smaller than the tolerance 𝛿coarse used in the Newton iteration in step 4, since when carrying out 
quadrature we require higher accuracy in our approximation of the SD contour than is required for determining the global structure 
of the quasi-SD deformation in step 4. As the initial guess for the Newton method we use a piecewise linear interpolant of the points 
{(𝑝0, ℎ

(0)
𝜂 ), (𝑝1, ℎ

(1)
𝜂 ), … , (𝑝𝑛max

, ℎ(𝑛max)
𝜂 )} computed in step 4, where 𝑛max denotes the total number of steps taken in the ODE solve in 
8

step 4 before the contour tracing algorithm terminated. If 𝑝𝑛max
< 𝑡

Lag
𝑁

∕𝜔 then before running the Newton iteration we first need to 
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restart the contour tracing algorithm of step 4 to extend the SD contour until 𝑝𝑛max
≥ 𝑡

Lag
𝑁

∕𝜔, so that there are points to interpolate 
between.

As an alternative, one can evaluate the integral over a Type 2 contour using truncated Gauss-Legendre quadrature, as suggested 
in [18]. To activate this alternative in PathFinder one should add the optional input 'inf quad rule', 'legendre'. In this 
case we truncate the integral to

∫
𝛾

𝑓 (𝑧)ei𝜔𝑔(𝑧) d𝑧 ≈ ei𝜔𝑔(𝜂)

𝜔

𝑃

∫
0

𝑓 (𝑝̃)e−𝑝̃ d𝑝̃, (19)

for some 𝑃 > 0, then apply Gauss-Legendre quadrature on [0, 𝑃 ], to obtain the approximation

∫
𝛾

𝑓 (𝑧)ei𝜔𝑔(𝑧) d𝑧 ≈ 𝑃 ei𝜔𝑔(𝜂)

2𝜔

𝑁∑
𝑚=1

𝑤
Leg
𝑚 𝑓 (𝑧[0,𝑃 ](𝑡

Leg
𝑚 ))e−𝑧[0,𝑃 ](𝑡

Leg
𝑚 ), (20)

where we compute ℎ𝜂(𝑧[0,𝑃 ](𝑡
Leg
𝑚 ∕𝜔)) (which is required for the evaluation of 𝑓 (𝑧[0,𝑃 ](𝑡

Leg
𝑚 ))) by the same Newton iteration discussed 

above for ℎ𝜂(𝑡
Lag
𝑚 ∕𝜔). For the truncation point 𝑃 we take

𝑃 =𝐿, (21)

where

𝐿 ∶= − log
(
𝛿quad𝑀∕|ei𝜔𝑔(𝜂)|) , (22)

which describes the point at which the magnitude of the exponential part of the integrand drops below 𝛿quad times its maximum 
value 𝑀 on the quasi-SD deformation.

2.6.3. Evaluation of integrals over Type 3 contours

Let 𝜂 ∈ exit ∪ (endp ⧵ Ω) be such that the SD contour 𝛾 from 𝜂 leads to an entrance 𝑧 ∈ entr . In this case we apply (possibly 
truncated) Gauss-Legendre quadrature as in formulas (19) and (20), but now with

𝑃 =min(𝑝𝑛max
∕𝜔,𝐿), (23)

where 𝑝𝑛max
is defined as in §2.4 and 𝐿 is defined as in §2.6.2.

In the case where the minimum is attained by 𝑝𝑛max
∕𝜔, so that the whole contour is considered, a potential inconsistency arises, 

because the application of the higher accuracy Newton iteration described in §2.6.2 for the calculation of ℎ𝜂(𝑧[0,𝑃 ](𝑡
Leg
𝑚 ∕𝜔)) corre-

sponds implicitly to a slight shifting of the endpoint of the contour 𝛾 away from the entrance 𝑧 = ℎ
(𝑛max)
𝜂 added to the graph 𝐺 in 

step 5. To avoid this inconsistency, in our implementation, in step 4, whenever the contour tracing terminates in case (i), we run a 
Newton iteration on the final point ℎ(𝑛max)

𝜂 with the high accuracy tolerance 𝛿f ine, before adding it to the list of entrances entr . Note 
that this may mean that ℎ(𝑛max)

𝜂 lies very slightly outside Ω.

3. Theoretical results

In this section we collect some theoretical results that motivate the design of our algorithm.

3.1. Removal of stationary points

In §2.2 we described our algorithm for removing stationary points from the set stat when they are close. When removing 
stationary points and their associated non-oscillatory balls, we need to ensure that the removed stationary points still lie inside one 
of the remaining non-oscillatory balls, so that we don’t encounter any stationary points along the trajectory in our ODE solve for the 
SD contour tracing (see the discussion in §3.3.2 below). In this section we provide a sufficient condition on the parameter 𝛿ball for 
this to be guaranteed.

Proposition 3.1. Suppose that in the removal algorithm of §2.2, 𝑛 stationary points have been removed from stat . Then for any stationary 
point 𝜉 that was removed, there exists 𝜉′ ∈ stat such that |𝜉 − 𝜉′| ≤ 𝑛𝛿ball𝑟𝜉′ .

Proof. We proceed by induction on 𝑛. The result is trivially true for 𝑛 = 0. Assume that it is true after the removal of 𝑛 points, and 
suppose that the (𝑛 + 1)st point is now to be removed. Let 𝜉1, 𝜉2 denote the pair of points selected as realising min𝜉1 ,𝜉2 𝑑𝜉1 ,𝜉2 , and 
without loss of generality suppose that 𝜉2 is the point to be removed (so that 𝑟𝜉1 ≥ 𝑟𝜉2

). Then |𝜉2 − 𝜉1| ≤ 𝛿ball𝑟𝜉1 ≤ (𝑛 +1)𝛿ball𝑟𝜉1 , so the 
claimed property holds for 𝜉2. Furthermore, by the inductive hypothesis, for each point 𝜉 previously removed, there exists 𝜉′ ∈ stat
such that |𝜉−𝜉′| ≤ 𝑛𝛿ball𝑟𝜉′ . If 𝜉′ ≠ 𝜉2 then 𝜉′ will still be present in stat after the removal of 𝜉2, and |𝜉−𝜉′| ≤ 𝑛𝛿ball𝑟𝜉′ ≤ (𝑛 +1)𝛿ball𝑟𝜉′ . 
9

On the other hand, if 𝜉′ = 𝜉2 then 𝜉′ will not be present in stat after the removal of 𝜉2, but 𝜉1 will be, and by the triangle inequality
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|𝜉 − 𝜉1| ≤ |𝜉 − 𝜉2|+ |𝜉2 − 𝜉1| ≤ 𝑛𝛿ball𝑟𝜉2 + 𝛿ball𝑟𝜉1 ≤ (𝑛+ 1)𝛿ball𝑟𝜉1 ,

completing the inductive step. □

As a consequence, we obtain the following.

Corollary 3.2. If 𝐽 > 2 and 0 < 𝛿ball ≤ 1∕(2(𝐽 − 2)) then, after the removal algorithm has run, for every stationary point 𝜉 there exists 
𝜉′ ∈ stat such that 𝜉 ∈Ω𝜉′ and dist(𝜉, 𝜕Ω𝜉′ ) ≥ 𝑟𝜉′ ∕2.

3.2. Region of no return for SD contours

The following result establishes a region of no return: once an SD contour enters this region, we can say with certainty which valley 
it will converge to. The idea behind this result is that in the region of no return the highest degree term 𝛼𝐽 𝑧𝐽 of the polynomial 
𝑔 is sufficiently dominant over the lower degree terms that the SD contours inside the region converge to the same valley as those 
corresponding to the monomial phase 𝛼𝐽 𝑧𝐽 .

Theorem 3.3 (Region of no return). Let 𝑔,  and 𝑅𝑣, for 𝑣 ∈  , be as in (3), (5) and (11). The regions 𝑅𝑣, 𝑣 ∈  , contain no stationary 
points of 𝑔. Furthermore, if an SD contour enters 𝑅𝑣 for some 𝑣 ∈  , it never leaves 𝑅𝑣.

Proof. That 𝑅𝑣 contains no stationary points follows because if 𝐺(𝑟, 𝜃) > 0 then

𝐽 |𝛼𝑗 ||𝑧|𝐽−1 > 𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 ||𝑧|𝑗−1 ≥ ||||||
𝐽−1∑
𝑗=1

𝑗𝛼𝑗𝑧
𝑗−1

|||||| ,
so that 𝑔′(𝑧) ≠ 0.

Now fix 𝑣 ∈  . Given 𝜃′ ∈ (0, 𝜋∕(2𝐽 )) and 𝑅 > 0 we define the sector

𝑆𝑣(𝑅,𝜃′) ∶= {𝑧 ∈ C ∶ | arg𝑧− 𝑣|2𝜋 < 𝜃′ and |𝑧| >𝑅},

with | ⋅ |2𝜋 defined as in (12). We also define the function

𝐺̃(𝑅,𝜃′) ∶= |𝐽 ||𝛼𝐽 |𝑅𝐽−1 min
(
sin𝐽𝜃′, cos𝐽𝜃′

)
−

𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 |𝑅𝑗−1, (24)

which for each fixed 𝜃′ is a polynomial in 𝑅 of degree 𝐽 − 1.

We claim that if 𝜃′ ∈ (0, 𝜋∕(2𝐽 )) and 𝐺̃(𝑅, 𝜃′) > 0, then if an SD contour enters 𝑆𝑣(𝑅, 𝜃′) it never leaves 𝑆𝑣(𝑅, 𝜃′). To prove this, 
we show that if an SD contour intersects 𝜕𝑆𝑣(𝑅, 𝜃′) then the direction of descent always points into 𝑆𝑣(𝑅, 𝜃′). Since 𝜕𝑆𝑣(𝑅, 𝜃′) is the 
union of the sets

{𝑧 ∈ C ∶ | arg𝑧− 𝑣|2𝜋 ≤ 𝜃′ and |𝑧| =𝑅}

and

{𝑧 ∈ C ∶ | arg𝑧− 𝑣|2𝜋 = 𝜃′ and |𝑧| ∈ [𝑅,∞)},

it suffices to show that, in polar coordinates (𝑟, 𝜃),

ℑ
𝜕𝑔

𝜕𝑟
> 0, for |𝜃 − 𝑣|2𝜋 ≤ 𝜃′ and 𝑟 =𝑅, (25)

∓ℑ1
𝑟

𝜕𝑔

𝜕𝜃
> 0, for 𝜃 = 𝑣± 𝜃′ (mod 2𝜋) and 𝑟 ≥𝑅. (26)

For (25), let |𝜃 − 𝑣|2𝜋 ≤ 𝜃′. Since

𝜕𝑔(𝑟ei𝜃)
𝜕𝑟

=
𝐽∑
𝑗=1

𝑗𝛼𝑗ei𝑗𝜃𝑟𝑗−1

and ℑ[𝛼𝐽 ei𝐽𝜃] = |𝛼𝐽 | cos (𝐽 |𝜃 − 𝑣|2𝜋) (using the definition of 𝑣) we have that

ℑ
𝜕𝑔(𝑟ei𝜃)

𝜕𝑟
≥ 𝐽 |𝛼𝐽 |𝑟𝐽−1 cos(𝐽 |𝜃 − 𝑣|2𝜋) − 𝐽−1∑

𝑗=1
𝑗|𝛼𝑗 |𝑟𝑗−1,
10

so a sufficient condition for (25) to hold is that
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𝐽 |𝛼𝐽 |𝑅𝐽−1 cos(𝐽𝜃′) −
𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 |𝑅𝑗−1 > 0. (27)

For (26), let 𝜃 = 𝑣 ± 𝜃′ (mod 2𝜋). Since

1
𝑟

𝜕𝑔(𝑟ei𝜃)
𝜕𝜃

=
𝐽∑
𝑗=1

i𝑗𝛼𝑗ei𝑗𝜃𝑟𝑗−1,

and ℑ[i𝛼𝐽 ei𝐽𝜃] =ℑ[i𝛼𝐽 ei𝐽 (𝑣±𝜃′)] = ∓|𝛼𝐽 | sin(𝐽𝜃′) we have that

∓ℑ1
𝑟

𝜕𝑔(𝑟ei𝜃)
𝜕𝜃

|||||𝜃=𝑣±𝜃′ ≥ 𝐽 |𝛼𝐽 |𝑟𝐽−1 sin(𝐽𝜃′) − 𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 |𝑟𝑗−1 =∶ 𝜙(𝑟).
The function 𝜙(𝑟) has the property that if 𝑅 > 0 and 𝜙(𝑅) > 0 then 𝜙(𝑟) > 0 for all 𝑟 ≥𝑅. To see this, note that

𝜙(𝑟) = 𝑟𝐽−1
(
𝐽 |𝛼𝐽 | sin(𝐽𝜃′) − 𝐽−1∑

𝑗=1
𝑗|𝛼𝑗 |𝑟𝑗−𝐽),

and that the term in brackets is a strictly decreasing function of 𝑟, which tends to −∞ as 𝑟 → 0 and to 𝐽 |𝛼𝐽 | sin(𝐽𝜃′) > 0 as 𝑟 →∞. 
Hence a sufficient condition for (26) is that 𝜙(𝑅) > 0, i.e.

𝐽 |𝛼𝐽 |𝑅𝐽−1 cos(𝐽𝜃′) −
𝐽−1∑
𝑗=1

𝑗|𝛼𝑗 |𝑅𝑗−1 > 0. (28)

Since the assumption 𝐺̃(𝑅, 𝜃′) > 0 implies both (27) and (28), our claim is proved.

The statement of the theorem then follows by noting that the region 𝑅𝑣 is the union of all the sectors 𝑆𝑣(𝑅, 𝜃′) such that 
0 < 𝜃′ ≤ 𝜋∕(2𝐽 ) and 𝐺̃(𝑅, 𝜃′) > 0. We note that if 0 < 𝜃′ < 𝜋∕(4𝐽 ) then sin𝐽𝜃′ < sin𝜋∕4, so that if 𝐺̃(𝑅, 𝜃′) > 0 then 𝐺̃(𝑅, 𝜋∕(4𝐽 )) > 0. 
This implies that the union can actually be taken over 𝜋∕(4𝐽 ) ≤ 𝜃′ < 𝜋∕(2𝐽 ) only, justifying the definition of the function 𝐺 in 
(13). □

3.3. Quadrature error

In §2.2 we defined the non-oscillatory region as a union of balls on which the exponential ei𝜔𝑔(𝑧) undergoes a bounded number of 
oscillations. In this section we show that the definition (8) strikes a balance between the accuracy of our quadrature approximations 
to the integrals outside and inside this region.

We note that, as already mentioned in §1, in contrast to standard NSD approximations the error in our method does not in general 
decay as 𝜔 →∞. In the special case where we are tracing a single infinite SD contour from a fixed (𝜔-independent) endpoint to a 
valley at infinity, without stationary points nearby, the error in our method would indeed decay as 𝜔 →∞ in the same way as for 
standard NSD (e.g., [7, Thm. 5.5]), up to errors introduced by our ODE for SD contour tracing. However, in the general case our 
algorithm traces steepest descent contours from points on the edges of the non-oscillatory balls, whose radii depend in a non-trivial 
way on 𝜔 and the distribution of stationary points, so the standard NSD theory does not apply. Also, the NSD-style Gauss-Laguerre 
quadrature along SD contours forms just one step in our algorithm, and other steps (such as the quadrature inside the non-oscillatory 
region) have their own non-trivial 𝜔-dependence. As a result, the 𝜔-dependence of the overall error is much harder to predict for our 
algorithm than for standard NSD in the simplest setting. Nonetheless, in practice we observe errors that remain bounded as 𝜔 →∞
for fixed 𝑁 . We shall provide some theoretical justification for this below, and back this up with extensive numerical evidence in §5.

3.3.1. Quadrature in the non-oscillatory region

The Type 1 straight line contour integrals between points in the non-oscillatory region are evaluated using Gauss-Legendre 
quadrature, as detailed in §2.6.1. To assess the accuracy of this we note the following theorem, which is a simple consequence of the 
standard error analysis presented in [17, Chap. 19].

Theorem 3.4. Let 𝑧0, 𝑧1 ∈ C. Suppose that 𝛾 is a straight-line contour in C starting at 𝑧0 and ending at 𝑧1 and that there exists 𝜌 > 0, 𝐶 > 0
and 𝜉∗ ∈ C such that 𝑓 is analytic and bounded in 𝑧[𝑧0 ,𝑧1](𝐵𝜌), where 𝐵𝜌 is a standard Bernstein ellipse (relative to [−1, 1]) and 𝑧[𝑧0 ,𝑧1] is 
defined as in (15), and

𝜔|𝑔(𝜉∗) − 𝑔(𝑧)| ≤ 𝐶, 𝑧 ∈ 𝑧[𝑧0 ,𝑧1](𝐵𝜌). (29)

Let 𝐼 and 𝑄 denote the left- and right-hand sides of (16), respectively. Then, for some 𝐶̃ > 0, depending only on 𝜌,

̃ −𝜔ℑ[𝑔(𝜉∗)] 𝐶 −2𝑁
11

|𝐼 −𝑄| ≤ 𝐶|𝑧1 − 𝑧0|‖𝑓‖𝐿∞(𝑧[𝑧0 ,𝑧1](𝐵𝜌))
e e 𝜌 . (30)
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Proof. Noting that

𝐼 = ei𝜔𝑔(𝜉∗) ∫
𝛾

𝑓 (𝑧)ei𝜔(𝑔(𝑧)−𝑔(𝜉∗)) d𝑧

and that

|𝑓 (𝑧)ei𝜔(𝑔(𝑧)−𝑔(𝜉∗))| ≤ ‖𝑓‖𝐿∞(𝑧[𝑧0 ,𝑧1](𝐵𝜌))
e𝐶 , 𝑧 ∈ 𝑧[𝑧0 ,𝑧1](𝐵𝜌),

the result follows from [17, Thm 19.3]. □

Theorem 3.4 motivates the definition of the non-oscillatory region in (8). Indeed, if the assumptions of Theorem 3.4 hold with 
𝜌 and 𝐶 independent of 𝜔 then the bound (30) guarantees 𝜔-independent exponential convergence for 𝜔 bounded away from zero. 
However, even when (8) is satisfied, the relationship between 𝜉∗, 𝜌, 𝐶 and 𝜔 is beyond our control in general because the ellipse 
may extend beyond the non-oscillatory region, so that 𝐶 > 𝐶ball. Thus we cannot control the factor e𝐶 entirely based on condition 
(8).

Still, the bound (30) shows that the quadrature error decreases with increasing 𝑁 . The precise rate of decrease depends on a 
balance between the decay of 𝜌−2𝑁 and the growth of e𝐶 and ‖𝑓‖𝐿∞(𝑧[𝑧0 ,𝑧1](𝐵𝜌))

for increasing 𝜌. We quantify this in the special case 
of monomial phase in §3.3.3.

3.3.2. Quadrature for the SD contours

For Type 2 or Type 3 integrals along SD contours we use either Gauss-Laguerre or (possibly truncated) Gauss-Legendre quadrature, 
as detailed in §2.6.2 and §2.6.3. We expect these rules to converge rapidly to the true value of the integral as the number of quadrature 
points 𝑁 tends to infinity, provided that the integrand is analytic and bounded in a suitable region of the complex 𝑝̃ plane.

For Gauss-Laguerre the following result appeared recently in [19, Thm 6.3].

Theorem 3.5. Suppose that 𝑓 is analytic inside and on the parabola 𝑃𝜌 ∶= {𝑧 ∈ C ∶
√
−𝑧 = 𝜌} for some 𝜌 > 0, where the branch cut is 

along the positive real axis and 
√
−𝑧 is real and positive on the negative real axis, that 𝑓 grows at most algebraically as 𝑧 →∞ inside the 

parabola, and that the integral

𝜌 ∶= ∫
𝑃𝜌

|e−𝑧√−𝑧𝑓 (𝑧)| d𝑧
is finite. Let 𝐼 and 𝑄 denote the left- and right-hand sides of (18), respectively. Then

|𝐼 −𝑄| ≤𝜌

e−𝜔ℑ[𝑔(𝜂)]

𝜔
e−4𝜌

√
𝑁. (31)

This result implies that our Gauss-Laguerre quadrature approximation should converge root-exponentially as 𝑁 →∞, provided 
that 𝑓 is sufficiently well-behaved at infinity. The presence of singularities in the complex 𝑝̃-plane limits the size of 𝜌, and hence the 
convergence rate. We know from (17) that our integrand is singular at points 𝑝̃∈ C where 𝑔′(ℎ𝜂(𝑝̃∕𝜔)) = 0, i.e. where ℎ𝜂(𝑝̃∕𝜔) = 𝜉 for 
some stationary point 𝜉. Since we only trace SD contours outside the non-oscillatory region (which contains the stationary points), 
we know that there cannot be singularities on the SD contour itself. If the start point 𝜂 lies on an SD contour emanating from a 
stationary point 𝜉 then we expect there to be a singularity in the 𝑝̃-plane at 𝑝̃ = 𝜔ℑ[𝑔(𝜉) − 𝑔(𝜂)] < 0. We show in §3.3.3 that in the 
special case of monomial phase this singularity lies at 𝑝̃ = −𝐶ball, which implies root-exponential convergence independent of 𝜔 for 
𝜔 bounded away from zero. Determining the locations of the other possible singularities in the complex 𝑝̃-plane is more challenging, 
since it involves study of the (multivalued) inverse of 𝑔. We leave further theoretical investigation of this to future work.

3.3.3. Results for monomial phase

It is instructive to consider the special case of a monomial phase 𝑔(𝑧) = 𝑧𝐽 for some 𝐽 ∈ N. In this case there is a single stationary 
point of order 𝐽 − 1 at 𝜉 = 0, and 𝑔(0) = 0. Following the prescription (8), we obtain a ball radius

𝑟0 = (𝐶ball∕𝜔)1∕𝐽 .

We first consider a Type 1 integral in the non-oscillatory region. For simplicity we choose 𝑓 (𝑧) ≡ 1. Specifically, we consider the 
evaluation of the integral

𝑟0ei𝜃

∫
0

ei𝜔𝑔(𝑧) d𝑧,

for some 𝜃 ∈ [0, 2𝜋]. Taking 𝜉∗ = 0, we can apply Theorem 3.4 with any 𝜌 > 1, and the resulting scaled and translated Bernstein 
12

ellipse surrounding [0, 𝑟0ei𝜃] is contained in the disc |𝑧| ≤ 𝑠𝑟0, where 𝜌 and 𝑠 are related by
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𝜌 = 2𝑠− 1 +
√
(2𝑠− 1)2 − 1 = 2𝑠− 1 + 2

√
𝑠2 − 𝑠.

Hence condition (29) is satisfied, independently of 𝜃, with

𝐶 = 𝐶ball𝑠
𝐽 ,

which is independent of 𝜔 but dependent on 𝐽 . When 𝑠 is large, we have 𝜌 ≈ 4𝑠, and in this regime the error bound provided by (30)

for Gauss-Legendre quadrature is approximately proportional to

(𝐶ball∕𝜔)1∕𝐽 e𝐶ball𝑠
𝐽 (4𝑠)−2𝑁.

As a function of 𝑠, with 𝐽 and 𝑁 fixed, this quantity is minimised where its 𝑠-derivative vanishes, which occurs where

𝐶ball𝐽𝑠
𝐽 − 2𝑁 = 0,

i.e. where

𝑠 =
(

2𝑁
𝐶ball𝐽

)1∕𝐽
.

Accordingly, the error bound is approximately proportional to

(𝐶ball∕𝜔)1∕𝐽 16𝐽
(

8𝑒𝑁
𝐶ball𝐽

)−2𝑁∕𝐽
.

Thus we expect super-exponential convergence as 𝑁 →∞ for fixed 𝐽 . However, we expect the convergence to be slower the larger 
𝐽 is.

Next we consider a Type 2 integral over an SD contour, again with 𝑓 (𝑧) ≡ 1. Specifically, we consider the evaluation of the 
integral

∞ei𝑣

∫
𝑟0ei𝑣

ei𝜔𝑔(𝑧) d𝑧,

where 𝑣 = ((2𝑗 + 1∕2)𝜋)∕𝐽 for some 𝑗 ∈ {1, … , 𝐽}. Following our method, the contour is parametrized by

ℎ𝜂(𝑝) = (𝑟𝐽0 + 𝑝)1∕𝐽 ei𝑣, 𝑝 ∈ [0,∞),

and, recalling (10) and (17), after rescaling 𝑝 = 𝑝̃∕𝜔 the integral becomes

e−𝐶ballei𝑣

𝜔1∕𝐽 𝐽

∞

∫
0

(𝐶ball + 𝑝̃)1∕𝐽−1e−𝑝̃ d𝑝̃.

The integrand has a branch point at

𝑝̃ = −𝐶ball,

but we note that the distance between the branch point and the positive real 𝑝̃-axis equals 𝐶ball, which is independent of both 𝜔 and 
𝐽 .

For truncated Gauss-Legendre the relevant theory can be found in [17, Chap. 19] (and see also [18]). Due to the branch point at 
𝑝̃ = −𝐶ball, as 𝑁 →∞ we obtain exponential convergence to the integral over the interval [0, 𝑃 ], where 𝑃 is given by either (21) or 
(23). In the case where 𝑃 =𝐿, by the definition of 𝐿 in (22), we expect the truncation error to have relative order 𝛿quad .

3.3.4. Number and distribution of quadrature points

PathFinder uses a fixed number 𝑁 of quadrature points on each contributing contour, and that number is the same both for 
integrals within and outside the non-oscillatory region, i.e., for Gauss–Legendre and Gauss–Laguerre quadrature. Thus, increasing 
the single parameter 𝑁 provides a way of uniformly improving accuracy.

The theoretical results in this section (specifically, Theorems 3.4 and 3.5) imply that the precise rate of improvement with 
respect to 𝑁 depends on the type of integral being approximated. They suggest even that a different strategy for the distribution of 
quadrature points may be superior. Indeed, exponential convergence of Gauss–Legendre for Type 1 integrals in the non-oscillatory 
region is not balanced with root-exponential convergence of Gauss–Laguerre for Type 2 integrals outside. Similarly, convergence rates 
of Gauss-Laguerre and truncated Gauss-Legendre outside the non-oscillatory region are different. Our choice of a fixed parameter 𝑁
is inspired on the one hand by simplicity, and on the other hand by the lack of robust methods to optimize parameters in alternative 
schemes. For example, we have shown in §3.3.3 that the convergence rate of Gauss-Legendre for Type 1 integrals may depend on 
the order of nearby stationary points. While this can be quantified precisely for the case of monomial phase, it is not at all clear how 
13

to generalise this analysis when a cluster of multiple stationary points is present. Hence, stationary point order is a quantity that we 
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deliberately do not explicitly compute, estimate or rely on in any way. Implicitly, of course, it plays a big role, and it does so mainly 
via the definition of the ball of the radius in (8).

The main practical benefit of the theoretical analysis of quadrature error in this section is the guarantee that 𝑁 is a robust 
parameter for improving accuracy. Concerning possible future improvements, rather than attempting to optimize the quadrature 
point distribution a priori, we believe a more promising development would be the ability to invoke standard adaptive quadrature 
schemes along the contours for a given function 𝑓 . However, it should be borne in mind that quadrature forms just one step in 
our algorithm, and that the other steps (particularly the SD path tracing) incur a non-negligible cost overhead, that should also be 
considered when trying to further optimize performance.

4. Further implementation aspects

In this section we discuss some additional aspects of the implementation of our algorithm in PathFinder.

4.1. Default parameter values

In Table 4.1 we list the user-specified parameters in our algorithm, along with the default values used in all our numerical results 
in §5. These were determined as the result of extensive numerical experiments on a range of examples, not detailed here. Instructions 
on how to adjust these parameters away from their default values can be found at github.com/AndrewGibbs/PathFinder.

Table 4.1

User-specified parameters and their default values in PathFinder.

Parameter Domain Meaning Default

𝐶ball (0,∞) Governs maximum number of 2𝜋
oscillations across each non-oscillatory

ball (and hence the ball radius)

𝑁ball N Number of rays used 16

when determining the ball radius

𝛿ball (0,1) Governs when overlapping balls 10−3∕(2max(𝐽 − 2,1))
should be amalgamated

𝛿ODE (0,1) Governs the local step size in 0.1
the ODE solver for SD path tracing

𝛿coarse (0,1) Tolerance for the increment in the 10−2
Newton iteration in the SD path tracing

𝛿f ine (0,1) Tolerance for the increment in the 10−13
(< 𝛿coarse) Newton iteration in the quadrature

𝛿quad (0,1) Governs when the contribution 10−16
from an integral on the quasi-SD

deformation is computed

𝑁 N Number of quadrature points to use no default

in each integral evaluated in step 6

4.2. Small 𝜔

While our algorithm is geared towards the case where 𝜔 is moderate or large, we make a brief comment on the case where 𝜔 is 
small. If Γ is infinite then the integral (1) typically diverges for 𝜔 = 0. However, if Γ is finite then the integral converges for 𝜔 = 0
and for small enough 𝜔 it is non-oscillatory. In PathFinder we detect and deal with this case in the following way. If both endpoints 
are finite, then before starting step 1 of the algorithm we construct non-oscillatory balls around the endpoints (using the process in 
§2.2) and check whether the balls intersect non-trivially. If so, we apply standard Gauss-Legendre quadrature to evaluate (1); if not, 
the balls are discarded and we proceed with the rest of the algorithm.

4.3. The case 𝐽 = 1

In the case 𝐽 = 1 (linear phase) there are no stationary points, and our algorithm simplifies dramatically. Furthermore, the SD 
contours are simply parallel straight lines in the direction of the single valley at angle 𝜋∕2 − arg(𝛼1), and there is no need to trace 
them numerically. Hence when 𝐽 = 1 PathFinder skips the ODE contour tracing step and exploits the exact characterization of the 
14

SD contours mentioned above.
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4.4. Specifying infinite endpoints

In the description of our algorithm in §2 we made the assumption that any infinite endpoint of the contour Γ should be at 
a valley 𝑣 ∈  . PathFinder is actually more flexible than this. The user is permitted to specify an infinite endpoint at any 𝜃 ∈
[𝑣 − 𝜋∕(2𝐽 ), 𝑣 + 𝜋∕(2𝐽 )] and the code will automatically adjust this to equal 𝑣. The case 𝜃 = 𝑣 ± 𝜋∕(2𝐽 ) is delicate because the 
highest order term in the phase does not provide exponential decay along the contour. Nonetheless, we include it, because in 
applications one often encounters this case, with the integral converging conditionally (under appropriate assumptions on 𝑓 ) and 
the contour deformation to 𝑣 being justified by Jordan’s Lemma.

5. Numerical results

In this section we present numerical results illustrating the performance of our algorithm and its implementation in PathFinder. 
All results in this section were produced using PathFinder Version 1.0 [8].

5.1. A “generic” example

We begin by illustrating the performance of PathFinder on the integral

𝐼 =

1

∫
−1

(2𝑧4 + 7𝑧3 + 𝑧2 + 8𝑧+ 2)ei𝜔(3𝑧9+𝑧8+4𝑧7+𝑧6+5𝑧5+9𝑧4+2𝑧3+6𝑧2+5𝑧+3) d𝑧, (32)

where, to convey the message that our approach is applicable to truly “generic” amplitudes and polynomial phase functions, the 
coefficients of 𝑓 and 𝑔 are chosen to be the first 5 digits of e and the first 10 digits of 𝜋, respectively. This can be approximated by 
PathFinder via the Matlab code (cf. (2))

PathFinder(-1,1,@(z) 2*z.^4+7*z.^3+z.^2+8*z+2,[3 1 4 1 5 9 2 6 5 3],omega,N)

In Fig. 5.1 we plot the quasi-SD deformations and quadrature point distributions (using the PathFinder 'plot' option) for (32) for 
𝜔 ∈ {0.01, 1, 5, 50} and 𝑁 = 10. As explained in §2.2, for smaller 𝜔 the non-oscillatory balls are larger, and can overlap, while for 
larger 𝜔 they shrink around the stationary points. In more detail, in Fig. 5.1(a) (𝜔 = 0.01), 𝜔 is small enough that both endpoints 
are inside the same non-oscillatory ball. Hence the integral is treated as non-oscillatory and is approximated by Gauss-Legendre 
quadrature along a single straight-line contour. In Fig. 5.1(b) (𝜔 = 1), 𝜔 is still small enough that many of the balls overlap, and the 
quasi-SD deformation comprises two SD contours (one from an exit and one from an endpoint) plus four straight-line contours in the 
non-oscillatory region. In Fig. 5.1(c) (𝜔 = 5), 𝜔 is large enough that only two balls overlap, and the quasi-SD deformation comprises 
five SD contours (two from endpoints, two from exits to valleys, and one from an exit to an entrance), plus four straight-line contours 
in the non-oscillatory region. Finally, in Fig. 5.1(d) (𝜔 = 50), 𝜔 is so large that none of the balls overlap, and the quasi-SD deformation 
comprises eight contributing SD contours (two from endpoints and six from exits to valleys), plus three straight-line contours in the 
non-oscillatory region. However, in this case the two SD contours and one straight-line contour associated with the stationary point 
near 0.2 +0.5i are judged to make a negligible contribution to the integral, so are not assigned any quadrature points. We emphasize 
that this intricate behaviour is fully automated, with no expert input required from the user.

In Fig. 5.2(a) we plot the error in the PathFinder approximation of (32), compared to reference values computed using the Julia

QuadGK package when 𝜔 < 500, and using PathFinder with 𝑁 = 500 when 𝜔 ≥ 500. For fixed 𝜔 we observe rapid convergence as 
𝑁 →∞, at a rate that appears independent of 𝜔. In Fig. 5.2(b) we show the associated computation times, which remain bounded 
as 𝜔 increases.

5.2. Coalescence and the Airy function

The canonical example of an integral with two coalescing stationary points is provided by the integral representation for the Airy 
function, viz. (see [1, 9.5.4])

Ai(𝑥) = 1
2𝜋i

∞ei𝜋∕3

∫
∞e−i𝜋∕3

e𝑧
3∕3−𝑥𝑧 d𝑧 = 1

2𝜋i

∞ei𝜋∕3

∫
∞e−i𝜋∕3

ei(−i(𝑧3∕3−𝑥𝑧)) d𝑧, 𝑥 ∈ C, (33)

which is of the form (1) with 𝑓 ≡ 1, 𝜔 = 1 and 𝑔(𝑧; 𝑥) = −i(𝑧3∕3 −𝑥𝑧). Up to a change of variable this is the same example for which, 
as mentioned in §1, a bespoke, complex Gaussian quadrature rule was developed in [11]. Ai can be approximated by PathFinder via 
the Matlab code

Ai = @(x) 1/(2i*pi) * PathFinder(-pi/3,pi/3,[],...

-1i*[1/3 0 -x 0],1,N,'infcontour',[true true])
15

where the input [] for f indicates that 𝑓 ≡ 1.
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Fig. 5.1. PathFinder output (cf. Fig. 2.1) with 𝑁 = 10 for the approximation of (32).

Fig. 5.2. Accuracy (a) and timings (b) of the PathFinder approximation of (32).
16
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Fig. 5.3. PathFinder output with 𝑁 = 20 for the approximation of Ai(𝑥) via (33) at various 𝑥, showing the stationary point coalescence at 𝑥 = 0.

Fig. 5.4. Accuracy of PathFinder approximation of Ai(𝑥) for different 𝑁 .

In Fig. 5.3 we plot the quasi-SD deformations, along with the distribution of quadrature points for 𝑁 = 20, for the evaluation 
of Ai(𝑥) at 𝑥 ∈ {−5, −1, −0.5, 0, 5}. Here one observes in detail how our algorithm deals with stationary point coalescence, as the 
non-oscillatory balls overlap, merge, then split. In Fig. 5.3(a) the quasi-SD deformation comprises four SD contours from exits, plus 
two straight-line contours inside balls (which do not go via stationary points). In Fig. 5.3(b) the balls overlap and this changes to 
two SD contours from exits plus three straight-line contours inside balls (which go via both stationary points). In Fig. 5.3(c) the 
balls overlap enough that both stationary points are contained in both balls, so we get two SD contours from exits plus just two 
straight-line contours inside balls (which go via only one of the stationary points). In Fig. 5.3(d) the balls have merged completely 
and in addition to the two SD contours from exits there is just one straight-line contour inside a ball (which does not go via the 
stationary point). In Fig. 5.3(e) the balls have split again, but we see the same deformation structure as in Fig. 5.3(d). Again, we 
emphasize that these calculations are fully automated.

In Fig. 5.4 we show the accuracy of the PathFinder approximation for this example as a function of 𝑥 ∈ [−10, 4], for different 𝑁 . 
Our reference is the built-in Matlab command airy. We note that between 𝑥 = −3 and 𝑥 = 0 the error for the smaller values of 𝑁
undergoes some jumps. These are due to the fact that near stationary point coalescence the topology of the quasi-SD deformation, the 
number of contours constituting it, and hence the total number of quadrature points along it (recall (14)), all change discontinuously 
as a function of 𝑥 (as illustrated in Fig. 5.3). However, as 𝑁 increases we see a clear, approximately exponential decrease in the 
error, and, although the rate of decrease depends slightly on 𝑥 (because of the factors mentioned above), for 𝑁 = 30 we achieve 
approximately 10−13 error uniformly across the interval.

5.3. A high order stationary point - comparison with Mathematica’s implementation of Levin quadrature

We now consider the integral

𝐼 =

1

sin(𝑧)ei𝜔𝑧9 d𝑧, (34)
17

∫
−1
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Fig. 5.5. PathFinder output for (34) with 𝜔 = 100,000 and 𝑁 = 50.

Fig. 5.6. Accuracy (a) and timings (b) of the PathFinder approximation of (34), compared to Mathematica’s NIntegrate command.

which has a stationary point of order 8 at the origin. The integral (34) can be approximated by PathFinder via the command

PathFinder(-1,1,@(z) sin(z),[1 0 0 0 0 0 0 0 0 0],omega,N)

Fig. 5.5 shows the quasi-SD deformation and quadrature point distribution obtained by PathFinder for 𝜔 = 100, 000 and 𝑁 = 50. 
There are small contributions from the endpoints, but the main contribution comes from the ball containing the stationary point.

In the Mathematica documentation [20, pp. 75-86], it is stated that oscillatory integrals with monomial phase functions such as 
(34) can be evaluated efficiently using the built-in Mathematica function NIntegrate, via its implementation of Levin quadrature 
(which is described, e.g., in [7, §3.3]). To do this one can use the Mathematica command:

NIntegrate[Sin[x]Exp[omega*I*x^9],{x,-1,1},Method->{‘‘LevinRule”,”Kernel”->Exp[omega*I*x^9]}]

In Fig. 5.6(a) we show a plot of the relative accuracy of our PathFinder approximation, compared to the Mathematica approxima-

tion (using the default settings), as a function of 𝜔, for different 𝑁 values. For all three 𝑁 values the accuracy of our approximation 
is approximately uniform in 𝜔, and for 𝑁 = 50 our approximation agrees with Mathematica’s to approx 13 digits. In Fig. 5.6(b) we 
report the corresponding computation times (averaged over 100 identical runs) for the Mathematica routine and for the PathFinder 
approximation with 𝑁 = 50. These results were obtained on a laptop (i7-1185G7, 32 GB RAM) running Mathematica v13.0 and 
Matlab v2021b. The results suggest that PathFinder is highly competitive with Mathematica for this problem, especially for large 𝜔.

5.4. Coalescence to a high order stationary point

We now investigate the robustness of our algorithm in the presence of a large number of coalescing stationary points. Specifically, 
we consider the integral

1

∫
−1

ei𝜔(𝑧7∕7−𝑟6𝑧) d𝑧, (35)

where 𝑟 ≥ 0 is a parameter controlling the coalescence. For 𝑟 > 0 there are 6 stationary points with |𝜉| = 𝑟, namely the solutions of 
𝜉6 = 𝑟6, and for 𝑟 = 0 there is a single stationary point of order 6. To evaluate this integral in PathFinder for a given 𝑟, one can use 
the command
18

PathFinder(-1,1,[],[1/7 0 0 0 0 0 -r^6 0],omega,N)
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Fig. 5.7. PathFinder output for the approximation of (35) with 𝜔 = 1000 and 𝑁 = 15.

Fig. 5.8. Accuracy (a) and timings (b) for (35) for 𝑝 = 6 and 𝑟 = 0.01.

In Fig. 5.7 we plot the quasi-SD deformations and quadrature point distributions for a some different 𝑟 values, showing how the balls 
first intersect and then merge as 𝑟 → 0.

In Fig. 5.8 we show convergence (with respect to a PathFinder reference with 𝑁 = 500) and CPU times (averaged over 100 runs) 
for fixed 𝑟 = 0.01. We see that both the error and the CPU time are essentially independent of 𝜔 in this case. In Fig. 5.9 we plot 
errors for two fixed 𝑁 values 𝑁 = 10, 50, as a function of 𝑟. We observe that as 𝑟 → 0, the error stays bounded. For 𝑁 = 10 the 
error jumps up between 𝑟 = 10−3 and 𝑟 = 10−2, at a point depending on 𝜔. This represents the point at which the balls around 
the stationary points merge, resulting in a reduction of 𝑁tot , and hence a reduction in accuracy. But after this point we observe 
no further reduction in accuracy as 𝑟 → 0. We remark that for sufficiently small 𝑟 > 0 the six stationary points are numerically 
indistinguishable, but this isn’t a problem for our algorithm because in that case the problem will be treated identically to that of a 
19

monomial phase.
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Fig. 5.9. Accuracy for (35) as 𝑟→ 0 for 𝑝 = 6, for 𝑁 = 10 (a) and 𝑁 = 50 (b).

5.5. Canonical cuspoid integrals and their generalisations

In this section we show how our algorithm can be applied to the computation of some of the canonical integrals catalogued 
by Berry and Howls in [1, §36], which, as mentioned already in §1, are of fundamental importance in numerous application areas 
including optics, acoustics and quantum mechanics.

In this context, our algorithm is related to that of [13], where an adaptive contour deformation approach was applied to evaluate 
the cuspoid integrals considered in §5.5.1. The algorithm in [13] is similar in spirit to our approach, in that it deforms the integration 
contour so that it terminates in valleys at infinity, and splits the contour into portions close to stationary points plus portions away 
from stationary points. However, in contrast to our approach, the algorithm in [13] does not attempt to trace SD contours, and hence 
is susceptible to rounding errors associated with the “violent” behaviour of the exponential factor ei𝜔𝑔(𝑧) when one is not on a true 
SD contour - see [13, §2]. Furthermore, while the algorithm in [13] was specialised to the case of integration over the real line, our 
algorithm can handle much more general contours, as we illustrate in §5.5.2.

5.5.1. Cuspoid integrals

The so-called “cuspoid integrals” listed in [1, §36.2.4] are all of the form (1) with polynomial phase 𝑔 and unit amplitude 𝑓 ≡ 1, 
unit frequency 𝜔 = 1, and integration along the real line. Our algorithm is ideally suited to the evaluation of these integrals, and to 
demonstrate this we compute two of them. In the notation of [1, §36], we consider the cusp catastrophe integral

Ψ2(𝑥, 𝑦) = 𝑃 (𝑦,𝑥) =

∞

∫
−∞

ei(𝑡4+𝑦𝑡2+𝑥𝑡) d𝑡, (36)

where 𝑃 is the Pearcey function, and the swallowtail catastrophe integral

Ψ3(𝑥, 𝑦, 𝑧) =

∞

∫
−∞

ei(𝑡5+𝑧𝑡3+𝑦𝑡2+𝑥𝑡) d𝑡. (37)

Both exhibit coalescence of stationary points on certain algebraic varieties (see [1, §36.5(ii)]) on which both the first and second 
derivatives of the phase function vanish. In the case of (36) this occurs when

𝑦 = −3
2
|𝑥|2∕3, (38)

and for (37) this occurs when

400𝑥3 − 360𝑥2𝑧2 − 135𝑦4 − 27𝑦2𝑧3 + 540𝑥𝑦2𝑧+ 81𝑥𝑧4 = 0. (39)

The integrals (36) and (37) can be computed in Pathfinder via the commands

Psi2 = @(x,y) PathFinder(pi,0,[],[1 0 y x 0],1,N,'infcontour',[true true])

Psi3 = @(x,y,z) PathFinder(pi,0,[],[1 0 z y x 0],1,N,'infcontour',[true true])

Fig. 5.10 shows plots of the magnitude of (36) and (37) (the latter over the plane 𝑧 = −7.5), computed using PathFinder with 
the default settings and 𝑁 = 50. The plots agree qualitatively with those presented in [1, Figs 36.3.1 & 36.6.5], and, for (36), agree 
quantitatively (to all five decimal places presented) with the values presented in [13, Table 1]. Computation times on a small desktop 
20

computer (Intel i7-4790, 32 GB RAM) were less than a minute for the cusp (which required the computation of 10000 instances of 
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Fig. 5.10. Magnitude plots of (36) and (37), with coalescence curves (38) and (39) (the latter with 𝑧 = −7.5) superimposed in black. The computational grid was of 
size 100 × 100 for (a) and 500 × 500 for (b).

(36), averaging 0.005 s per instance) and less than an hour for the swallowtail (which required 250000 instances of (37), averaging 
0.01 s per instance).

5.5.2. Generalisations

In [10] the authors considered a family of generalisations of certain canonical cuspoid integrals, with integration no longer over 
the real line, but rather over a complex contour starting and ending at valleys at infinity, and possibly with a non-unit amplitude 
function.

A specific aim of [10] was to investigate the relevance of such integrals to the study of the so-called “inflection point problem”, 
a canonical problem in wave scattering originally introduced over 50 years ago by Popov in [14]. This problem, which remains 
unsolved in closed form, concerns two-dimensional time-harmonic wave propagation near a boundary with an inflection point, and 
seeks a solution for the wave field near the inflection point that describes the transition from an incoming “whispering gallery wave” 
supported on the concave portion of the boundary, to outgoing “creeping waves” along the convex portion of the boundary, along 
with a scattered “searchlight” beam (for details and further references see [16]).

In this context, in [10, §3.3] the authors studied the family of integrals

𝐴𝑖𝑗 (𝑥, 𝑦) = ∫
Γ𝑖𝑗

𝑓 (𝑡)ei(2𝑡5∕5−𝑥𝑡4∕2−𝑦𝑡2) d𝑡, (40)

where 𝑓 (𝑡) is some amplitude to be specified, and Γ𝑖𝑗 denotes any contour from valley 𝑣𝑖 to valley 𝑣𝑗 , where 𝑣𝑗 ∶= (2(𝑗−1) +1∕2)𝜋∕5, 
𝑗 = 1, … , 5. These integrals have stationary point coalescence on the cubic curve 𝑦 +4𝑥3∕27 = 0, which suggests that, by appropriately 
choosing 𝑓 and Γ𝑖𝑗 , they might exhibit certain features of the solution of the inflection point problem. Indeed, in [10, §4] it was 
shown that as 𝑥 → −∞ near the cubic curve, the integral 𝐴32 has the character of an incoming whispering gallery type wave, and 
that, as 𝑥 → +∞ near the cubic curve, the integral 𝐴52 has the character of an outgoing creeping wave. However, plots of the 
resulting fields could not be presented in [10] due to the lack of a suitable numerical evaluation method and implementation.

Using PathFinder we are able to remedy this. In Figs. 5.11(a) and 5.11(b) we provide plots of the magnitude of 𝐴32 and 𝐴52 with 
𝑓 ≡ 1. To evaluate the integrals we used the PathFinder code

A32 = @(x,y) PathFinder(9*pi/10,pi/2,[],[2/5 -x/2 0 -y 0 0],1,N,'infcontour',[true true])

A52 = @(x,y) PathFinder(17*pi/10,pi/2,[],[2/5 -x/2 0 -y 0 0],1,N,'infcontour',[true true])

We only plot 𝐴52 above the cubic curve 𝑦 + 4𝑥3∕27 = 0, because below this curve 𝐴52 becomes exponentially large (cf. [10, 
Fig. 12(i)]). In Figs. 5.11(c) and 5.11(d) we present corresponding plots of the modulated plane wave

𝑢(𝑥0, 𝑦0) =𝐴𝑖𝑗 (𝑥, 𝑦)ei𝑘𝑥0 ,

where (𝑥0, 𝑦0) are outer variables, related to the inner variables (𝑥, 𝑦) by 𝑥 = 𝑘1∕5𝑥0, 𝑦 = 𝑘3∕5𝑦0, which is an asymptotic solution of 
the Helmholtz equation Δ𝑢 + 𝑘2𝑢 = 0 as 𝑘 →∞ in the region 𝑥0 =𝑂(𝑘−1∕5), 𝑦0 =𝑂(𝑘−3∕5) [10, §1]. Here one observes the predicted 
incoming whispering gallery type behaviour of 𝐴32 near the top of Fig. 5.11(c) between 𝑥0 = −2 and 𝑥0 = −1, with oscillations giving 
way to an exponentially small field in the caustic shadow, and the predicted creeping wave type behaviour of 𝐴52 near the bottom 
of Fig. 5.11(d) between 𝑥0 = 1 and 𝑥0 = 2, with waves propagating along the cubic curve, shedding rays tangentially.

In ongoing and future studies we plan to use PathFinder to further investigate the properties of integrals of the form (40), and 
generalisations involving different choices of 𝑓 and higher degree phase functions (see [10]), which we hope may shed new light on 
21

the inflection point problem and related problems in high frequency wave propagation.
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Fig. 5.11. Plots of (40) with 𝑓 ≡ 1, along with the associated approximate Helmholtz equation solutions for 𝑘 = 40.
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