
PHYSICAL REVIEW E 95, 062219 (2017)

Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays
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We study two identical FitzHugh-Nagumo oscillators which are coupled with one or two different time delays.
If only a single-delay coupling is used, the length of the delay determines whether the synchronization manifold
is transversally stable or unstable, exhibiting mixed-mode or chaotic oscillations in which the small amplitude
oscillations are always in phase but the large amplitude oscillations are in phase or out of phase, respectively. For
two delays we find an intricate dynamics which comprises an irregular alteration of small amplitude oscillations,
in-phase and out-of-phase large amplitude oscillations, also called extreme events. This transient chaotic dynamics
is sandwiched between a bubbling transition and a blowout bifurcation.
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I. INTRODUCTION

Extreme events have long been considered phenomena
of crucial importance impacting various spheres of life [1].
Hence, extreme events have gained increasing attention in
research areas ranging from social dynamics [2] oceanography
[3–7], optics [8–10], and geophysics [11], to economics
[12,13] as well as power and communication grids [14]. Based
on utility and relevance in the field under consideration, some
studies focus on the statistical properties of extreme events. In
such cases, extreme events are characterized by “extreme value
statistics” [15]. From a statistical perspective, extreme events
occur in the tails of probability distributions that define the
occurrence of events of a given size. Other studies, including
the one presented here, approach extreme events from a dy-
namical systems perspective, where extreme events are defined
as rare and recurrent events during which a specific dynamical
variable exhibits an extremely large or small value [16,17].

Previous investigations have revealed various mechanisms
by which extreme events might be generated. For instance,
finite dissipation in the complex Ginzburg-Landau equation
leads to the generation of an incoherent background of
interacting waves which occasionally initiates large amplitude
events which can be considered as extreme events [18].
Localized excitations in arrays of coupled laser oscillators
with random frequencies are known to wander in well-
defined trajectories, progressively increasing in synchrony as
the coupling strength is increased, and resulting in extreme
events [19]. Optical rogue waves, another example of extreme
events, are generated due to noise-induced attractor hopping
in multistable laser systems [20–22]. Studies performed with
integrate-and-fire oscillators in a pulse-coupled small world
network also show that chimera states in such a network
show irregular macroscopic dynamics with extreme synchrony
under certain conditions [23].

Many physical systems that exhibit extreme events can
be modeled as networks of excitable or oscillatory systems
[16,24]. Thereby, the FitzHugh-Nagumo (FHN) model is
widely used as a paradigmatic model which describes the
dynamics of such systems on the nodes of the network.
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Investigations on networks of instantaneously coupled FHN
oscillators with nonhomogeneous parameters reveal that such
networks are capable of generating extreme events [16,17]
and a switching between various space-time patterns, extreme
events being one of them [25].

Here, we analyze a system of FitzHugh-Nagumo oscillators
coupled with two time delays with identical parameters and
show that delay coupling can induce extreme events, and hence
constitutes another generating mechanism of such events.
The study has been motivated by various physical systems
exhibiting extreme events where localized dynamical systems
are connected via time-delayed connections. Examples include
harmful algal blooms where concentrations of certain toxic
plankton species occasionally increase to very high levels for a
short interval of time. The resulting increase in concentrations
of harmful, potentially toxic plankton species leads to a large
impact on the ecosystem or even to human health. In addition to
the local interplay between nutrients and competing species,
oceanic currents which transport nutrients and species from
one region of blooming activity to another are also important
factors shaping the dynamics and transport of blooms in the
ocean [26,27]. In optical systems such as lasers, rogue waves
might be generated in systems where the finite travel time
of signals may induce time delays [28]. Another example is
neuronal communication between various regions of the brain
which affects the levels of synchrony among these regions
and leads to phenomena such as epileptic seizures, which are
extreme events for the affected person [29,30]. In the latter
case, communication between various regions of the brain is
delayed due to the finite speed of signals through neurons.
In general, complex systems with time delays are known to
exhibit various spatiotemporal patterns [31].

A common and important feature of some of the real-life
networks with time-delayed coupling is the possibility of
having more than one connection associated with the same pair
of nodes in the network, each corresponding to a different time
delay. For example, water currents originating from one region
in the ocean might take two or more different paths to reach the
same destination due to the presence of eddies or other barriers
to hydrodynamic transport [27]. Similarly, a neuronal signal
originating from one region of the brain might take multiple
pathways in the neuronal network to reach the same destination
[32,33]. In this study, we focus on the consequences of having
multiple delays in the coupling of components and its impact
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on the dynamics of the system. Thereby, our main focus lies
in the identification of the mechanism of generating extreme
events.

The paper is organized as follows. In Sec. II, we introduce
the FHN model and the way how two FHN units are connected
for this study. Furthermore, we discuss the emergence of
additional fixed points due to coupling. Thereafter, in Sec. III,
we analyze the qualitative dynamics of the system with respect
to various parameter regimes. We start with investigating
the long-term dynamics when only one delay is present
and show the emergence of in-phase and out-of-phase large
amplitude oscillation. Furthermore, we show the generation
of extreme events upon the introduction of a second delay
and classify the observed extreme events as belonging to two
categories based on phase synchrony. We further demonstrate
that the emergence of extreme events is not restricted to
a single parameter set but occurs in a whole strip in the
parameter plane spanned by the second delay time and the
corresponding coupling strength. This strip is bounded by a
bubbling transition on one side and a blowout bifurcation on
the other side. We finally discuss the implications of the results
obtained in Sec. IV and present an outlook for future research.

II. THE MODEL AND THE STRUCTURE
OF THE PHASE SPACE

Let us consider a system of two coupled FHN units (Fig. 1)
whose dynamics is given as

ẋi = xi(ai − xi)(xi − 1) − yi +
L∑

k=1

Mk

(
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(τk )
j − xi

)
,

(1)
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)
.

1 2

M1, τ1

M1, τ1

M2, τ2

M2, τ2

FIG. 1. Schematic representation of couplings between the two
FHN units.

where i,j ∈ {1,2}, i �= j , and,

x
(τk )
i = xi(t − τk),

(2)
y

(τk )
i = yi(t − τk).

Here, the two FHN units—with internal parameters ai , bi ,
and ci—are coupled to each other by L delay couplings.
Each delay coupling is characterized by its delay time τk and
coupling strength Mk . For our study, we chose the internal
parameters of the independent units to be identical, i.e.,
a1 = a2 = a = −0.025, b1 = b2 = b = 0.006 52, and c1 =
c2 = c = 0.02. These values are chosen such that in the
absence of any coupling, the FHN units are in the oscillatory
regime. Furthermore, for the numerical results presented, we
assume that for all times t < 0, the units have the same values
as the initial condition. The results for some other functional
forms of histories were also checked and were found to give
identical results in the long-term limit.

Having identical parameters for individual FHN oscilla-
tors implies that the phase space is partitioned into two
symmetric halves by an invariant synchronization manifold
defined by x1(t − τ ) = x2(t − τ ); y1(t − τ ) = y2(t − τ ) for
0 � τ � max{τk}. In particular, if the system possesses a fixed
point (x1,y1,x2,y2) which does not lie on the synchronization
manifold, then the point (x2,y2,x1,y1) is another fixed point
with the same stability. Moreover, the symmetry of the system
forces any fixed point away from the synchronization manifold
to occur in pairs. Note that in absence of any coupling, the only
fixed point of the system is the origin located on the invariant
manifold. We now show that additional fixed points might be
created in the system for sufficiently strong couplings.

FIG. 2. Bifurcation diagram showing the position of the fixed
points for varying coupling strengths M . The solid circles represent
stable fixed points and the small dots represent their unstable
counterparts. In addition to the unstable origin, the plot shows the
creation of two pairs of unstable fixed points via a fold bifurcation F
at M ≈ 0.0058. One of these pairs stabilizes due to a Hopf bifurcation
H at M ≈ 0.0105 (denoted by H). The region in gray denotes the
default parameter range chosen for our analysis. For this plot the
FHN units using are connected by a single-delay with τ = 80.
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i for all i and k. Imposing these
conditions on Eq. (1) and setting L = 2, we get
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Note that the position of the fixed point is independent of
the delays τk and depends on the total coupling strength, M =
M1 + M2, rather than the individual ones. For M values close
to zero, we have the origin as our only fixed point. However, as
M exceeds a threshold (see Fig. 2), two unstable pairs of fixed
points emerge simultaneously via a fold bifurcation. If M is
increased further, one of the pairs gets stabilized by a reverse
Hopf bifurcation.

In order to investigate the dynamics of the system both in
absence and presence of the nontrivial stable fixed points, we
vary M from 0.01 to 0.014 in this study.

III. DYNAMICAL FEATURES OF THE SYSTEM

In this section we describe the general qualitative dynamics
exhibited by the coupled FHN units for different coupling
strengths and delay times. Since the range of possible dynamics
that can be observed in this system is very diverse, we focus on
the dynamical features that help us understand the emergence
of extreme events in such systems. Before studying systems
with two delays where extreme events appear, we first analyze
single-delay systems. The dynamics of the latter are similar to
two-delay systems but easier to understand.

Throughout this section, we use the terms “large amplitude
oscillations” and “small amplitude oscillations” in the follow-
ing sense: “Large amplitude oscillations” refer to oscillations
with amplitude of the x component larger than 0.5, otherwise
they are called “small amplitude oscillations.”

A. Single delay

We now study the dynamics of FHN units which are coupled
by a single time delay. Setting the number of couplings L = 1
and dropping the subscript k in Eq. (1), we have

ẋi = xi(a − xi)(xi − 1) − yi + M
(
x

(τ )
j − xi

)
,

ẏi = bxi − cyi + M
(
y

(τ )
j − yi

)
,

(4)

with i,j ∈ {1,2}.
For such a system, the synchronization manifold is either

transversally stable or unstable, as discussed in the following.

1. Transversally stable synchronization manifold

For τ = 80, M = 0.01, there are no stable fixed points in
the system, and the synchronization manifold is stable and
contains the only attractor of the system. In such a case, the
oscillators converge to the invariant synchronization manifold
and execute mixed-mode oscillations on it, as shown in Fig. 3.
The oscillators are in complete synchrony and spend large time
intervals near the origin executing small amplitude oscillations
(shown in black) around it. During these oscillations, the units

FIG. 3. Various representations of the synchronized long-term
dynamics of two FHN units coupled with a single delay when the
synchronization manifold is stable. Top-left panel: Time evolution
of the x coordinates of the oscillators. Top-right panel: Trajectories
of the two oscillators in phase space. Bottom panel: Trajectory in a
three-dimensional representation. The plane is the synchronization
manifold. Color code: Small amplitude oscillations in black; syn-
chronous large amplitude oscillations in cyan (light gray). Parameters:
M = 0.01, τ = 80.

spiral away from the origin and their amplitude of oscillation
increases over time. After a fixed number of small amplitude
oscillations, the units execute one large amplitude oscillation
(shown in cyan). The amplitude of such an oscillation is more
than five times larger than the largest of the small amplitude
oscillations. At the end of this oscillation, the system ends up
close to the origin and the small amplitude oscillations begin
again. Note that the entire long-term dynamics—comprising
small and large amplitude oscillations—occurs on the invariant
synchronization manifold.

As the coupling strength M is increased, the system under-
goes a sequence of period-adding bifurcations (see Fig. 4).
At each such bifurcation, the number of small amplitude
oscillations separating any two large amplitude oscillations
increases by one. The sequence of period adding is interspersed
with intervals of chaotic dynamics, i.e., the two oscillators
exhibit completely synchronized chaotic dynamics on the
synchronization manifold.

When the coupling strength M is increased even further
such that a pair of fixed points becomes stable, the system
shows multistability with some of the trajectories converging
to one of the fixed points. However, any trajectory that comes
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FIG. 4. Bifurcation diagram illustrating the period-adding
cascade observed with increasing coupling strength M and fixed
time delay τ = 80. On the vertical axis the maxima corresponding
to the oscillations are plotted. The upper panel shows the complete
diagram, while the lower panel shows a closeup view of the regions
corresponding to small amplitude oscillations. The gray regions in the
lower panel correspond to the chaotic dynamics which intersperse the
mixed-mode oscillations.

sufficiently close to the invariant synchronization manifold
will never converge to the fixed points as it is attracted to
that manifold and forever executes mixed-mode or chaotic
oscillations as described above.

2. Transversally unstable synchronization manifold

If the delay is reduced to τ = 70 and the coupling strength
kept at M = 0.01, the synchronization manifold is found
to be transversally unstable. Therefore, trajectories starting
away from the synchronization manifold no longer converge
to it. Nonetheless, they spend long time intervals near that
manifold: A typical trajectory which does not start on the
invariant synchronization manifold is attracted towards it.
When it comes sufficiently close to the manifold, it starts
executing small amplitude oscillations (see Fig. 5). After
some oscillations, the system is ejected far away from the
invariant manifold and it executes a large amplitude oscillation

FIG. 5. Various representations of the long-term dynamics of two
FHN units coupled with a single delay when the synchronization man-
ifold is unstable. Top-left panel: Time evolution of the x coordinates
of the oscillators. Top-right panel: Trajectories of the two oscillators
in phase space. Bottom panel: Trajectory in a three-dimensional
representation. The plane is the synchronization manifold. Color
code: Small amplitude oscillations in black; asynchronous large
amplitude oscillations in magenta (dark gray). Parameters: M = 0.01,
τ = 70.

away from the synchronization manifold. At the end of this
oscillation, the trajectory returns to the neighborhood of the
manifold near the origin, again executing small amplitude
oscillations, spiraling out from the neighborhood of the origin.
Since there are no stable fixed points in the system for the
chosen parameters, this motion continues forever. Though this
dynamics is chaotic, the time spans between two subsequent
large amplitude oscillations varies only a little so that the whole
dynamics appears as almost periodic with respect to the large
excursions in phase space.

Note that although the trajectory described above comprises
both small and large amplitude oscillations, it is qualitatively
different from the typical trajectory described in the previous
section where the synchronization manifold is stable. When
the synchronization manifold is transversally stable, the entire
long-term dynamics of the system occurs on that manifold. By
contrast, when the synchronization manifold is transversally
unstable, the trajectory never reaches that manifold. This
implies that even during the small amplitude oscillations, when
the system is very close to synchrony, there is a finite separation
between the trajectory and the synchronization manifold. More
importantly, this difference does not monotonically decrease
if the system is allowed to evolve for extremely long time
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FIG. 6. Closeup view of typical time series showing in-phase
(left panel) and out-of-phase (right panel) events. Color code:
Small amplitude oscillations in black; synchronous large amplitude
oscillations in cyan (light gray); asynchronous large amplitude
oscillations in magenta (dark gray). Parameters: M = 0.01, τ = 80
for the left panel; M = 0.01, τ = 70 for the right panel.

spans. The difference between the two cases is even more
evident when comparing the large amplitude oscillations.
Since the large amplitude oscillations are on the invariant
synchronization manifold when it is transversally stable,
the two oscillators are in complete synchrony during the
oscillation. By contrast, when the manifold is transversally
unstable, the oscillators entirely lose their nearly synchronized
state during the large amplitude oscillation. The excursion is so
far away from the synchronization manifold that it is clearly
seen in the time series plots as two different shapes for the
two oscillators (see Fig. 6). The oscillation in one of the units
starts before and ends after the oscillation in the other unit.
The duration of the large amplitude oscillation in the two units
is therefore different.

Finally, we note that trajectories starting precisely on
the synchronization manifold converge to a low-amplitude
limit cycle residing on that manifold. Since every trajectory
starting on the manifold converges to the limit cycle and
no trajectory starting away from the manifold converges
to it, we conclude that this limit cycle is stable along the
synchronization manifold and unstable transverse to it. This
transverse instability of the limit cycle causes the ejection of
trajectories that do not start on the synchronization manifold.

If the coupling strength is increased, such that there is
additionally a pair of stable fixed points in the system, any
trajectory which starts away from the invariant manifold
converges finally to one of the two fixed points. However,
the general characteristics of the very long transients observed
before convergence to the fixed points are similar to the one
described above in this section.

B. Two delays

Having analyzed the dynamics of FHN units coupled using
a single delay, we now add another coupling with a different
delay to the system and compare our results with the previous
case. Writing Eq. (1) for L = 2, we have

ẋi = xi(xi − 1)(a − xi) − yi + M1
(
x

(τ1)
j − xi

)+ M2
(
x

(τ2)
j − xi

)
,

(5)
ẏi = bxi − cyi + M1

(
y

(τ1)
j − yi

) + M2
(
y

(τ2)
j − yi

)
,

FIG. 7. Bifurcation diagram outlining the changes in the structure
of the invariant sets on the synchronization manifold with varying
coupling strength M2. The vertical axis corresponds to the maxima
of the oscillations. Upper panel: Complete diagram. Lower panel:
Closeup view of the region corresponding to small amplitude
oscillations. Fixed parameters: τ1 = 80, M1 = 0.005, τ = 70.

where i,j ∈ {1,2}. This system can exhibit extreme events
if the coupling parameters M1, M2, τ1, and τ2 are chosen
appropriately. For such a choice of parameters, the dynamics
exhibits a combination of properties similar to both the single-
delay cases considered earlier.

In order to analyze the system, we fix three of the four
parameters at τ1 = 80, M1 = 0.005, and τ2 = 70. We then
vary M2 and note the qualitative changes in the dynamics
of the system (see Fig. 7). If M2 = 0, the only effective
delay in the system is τ1 = 80 with total coupling strength
M = M1 = 0.005. Hence the oscillators execute synchronized
mixed-mode oscillations on the synchronization manifold
identical to the single-delay case. As M2 is increased to
small nonzero values, i.e., computing the bifurcation diagram
in Fig. 7 starting from its left end, the dynamics differs
quantitatively from that of the single-delay case. However, the
qualitative properties remain similar to the single-delay system
with a transversally stable synchronization manifold—that is,
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the system undergoes a period-adding cascade interspersed
with chaotic windows up to M2 ≈ 0.0048.

By contrast, when we start computing the bifurcation
diagram (Fig. 7) from its right end at large values of M2

and subsequently decreasing M2, we observe a qualitative
behavior of the system similar to the single-delay system at
τ = 70, exhibiting a transversally unstable synchronization
manifold. As in the single-delay case, the transverse instability
of the synchronization manifold is due to the presence of
a transversally unstable limit cycle located on the synchro-
nization manifold. Therefore, trajectories starting away from
the manifold execute small in-phase and large out-of-phase
oscillations, while trajectories starting on the synchronization
manifold get attracted to this limit cycle as it is stable along
the manifold. As M2 is gradually decreased, this limit cycle
undergoes a series of period-doubling bifurcations.

As M2 is decreased beyond M2 ≈ 0.0058, two distinct
changes occur in the structure of phase space: The syn-
chronization manifold gains transverse stability, and the
transversally unstable limit cycle loses its stability along the
synchronization manifold. Due to the loss of stability along
the synchronization manifold, the transversally unstable limit
cycle becomes inaccessible for trajectories starting on the
synchronization manifold. These trajectories now converge

FIG. 8. Various representations of the long-term dynamics of
two FHN units coupled with two delays. Top-left panel: Time
evolution of the x coordinates of the oscillators. Top-right panel:
Trajectories of the two oscillators in the phase space. Bottom panel:
Trajectory in a three-dimensional representation. The plane is the
synchronization manifold. Color code: Small amplitude oscillations
in black; synchronous large amplitude oscillations in cyan (light
gray); asynchronous large amplitude oscillations in magenta (dark
gray). Parameters: M1 = 0.005, τ1 = 80; M2 = 0.0053, τ2 = 70.

to the stable chaotic attractor on the synchronization manifold
formed by the period-adding cascade. The unstable limit cycles
formed due to period-doubling bifurcations get embedded in
the stable chaotic attractor. This leads to the creation of an intri-
cate dynamics for trajectories starting away from the manifold,
which is illustrated in Fig. 8 and described as follows: First, the
trajectories are attracted towards the synchronization manifold
and execute small amplitude oscillations near that manifold,

FIG. 9. Loss of phase synchrony much before each “out-of-
phase” extreme event. Top panel: Typical time series. Middle panel:
Repeated approach to the synchronization manifold. Bottom panel:
Sine of differences in phases of the oscillators. Color code: Small
amplitude oscillations in black; synchronous large amplitude oscilla-
tions in cyan (light gray); asynchronous large amplitude oscillations
in magenta (dark gray). Parameters: M1 = 0.005, M2 = 0.0053,
τ1 = 80, and τ2 = 70.
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FIG. 10. Sketch representing the mechanisms of transition between the three major dynamical regimes obtained by varying M2. For all
three panels in the diagram, the synchronization manifold S of the system is represented by the dotted horizontal line. The transversally unstable
limit cycle responsible for the ejection of trajectories away from the synchronization manifold is represented by a solid red (dark gray) dot
on the synchronization manifold. All other nontrivial invariant subsets on the manifold S are represented by a thick black line which is solid
(dashed) if the invariant subset is stable (unstable). Note that the periodic orbits which are transversally unstable are in fact embedded in the
chaotic attractor but shown outside it for better visibility. Chaotic attractors and chaotic saddles which are not on the synchronization manifold
are represented by the gray region. Attracting and repelling directions are represented by straight colored arrows and the curved or wiggly
black arrows represent the trajectories in phase space.

imitating the dynamics of the chaotic attractor. During these
oscillations, if the trajectory approaches the vicinity of the
embedded transversally unstable limit cycle, it is ejected away
from the synchronization manifold, and it executes an out-of-
phase large amplitude oscillation, leading to an “out-of-phase”
event. The other possibility is that the trajectory avoids the
vicinity of the transversally unstable limit cycle sufficiently
long during the chaotic small amplitude oscillations and
executes a large amplitude oscillation while still being close to
the stable chaotic attractor on the synchronization manifold.
This case leads to the formation of an “in-phase” event.
This dynamical behavior continues until the trajectory has
converged to the stable chaotic attractor on the synchronization
manifold and finally only “in-phase” events are observed. This
rich dynamics can be seen up to M2 ≈ 0.0048 beyond which
the chaotic attractor ceases to exist and stable mixed-mode
oscillations are observed.

To further illustrate the irregular switching between in-
phase and out-of-phase events, we present in Fig. 9 a longer
time series together with the corresponding time evolution of
the distance of excitatory variable from the synchronization
manifold |x1 − x2| and the differences in the phases of the
oscillators sin (θ1 − θ2) with θi = arctan ( yi

xi
). We note that a

large deviation from the synchronization manifold S happens
only during out-of-phase events while in-phase events stay
close to S. Moreover, whenever an out-of-phase event occurs,
the phase synchrony is lost well before that event and is
restored only a long time after it.

The observed dynamics in this parameter range can be
explained by the appearance of a bubbling transition [34–37]
and a blowout bifurcation [38,39]. A sketch of the bifurcation
sequence is presented in Fig. 10. For small M2 the synchroniza-
tion manifold is transversally stable and the only attractor is a
mixed-mode oscillation located in that manifold (see Fig. 10,
left panel). With increasing M2 we observe the appearance of
a chaotic attractor within the synchronization manifold (see
Fig. 10, middle panel). At M2 ≈ 0.0048 a bubbling transition
occurs, leading to a loss of transverse stability of one (and

subsequently more and more) unstable periodic orbit(s) in
the synchronization manifold. The invariant set within the
manifold is a chaotic attractor, but there exists a measure zero
set in the synchronization manifold, starting from which the
trajectories would be ejected from it. This loss of transverse
stability is connected with the emergence of trajectories
containing large out-of-phase excursions. These excursions
comprise small amplitude and large amplitude oscillations
which together make up a chaotic saddle outside the synchro-
nization manifold. From the chaotic saddle the trajectories
escape along its unstable directions and approach the attractor
in the synchronization manifold. Finally, they converge to the
chaotic attractor (see Fig. 10, middle panel). The dynamics
resulting from this bubbling transition can be characterized as
an in-out intermittency because the mechanisms of ejection
from and approach to the synchronization manifold are
different (see Fig. 9) [40]. A further increase of M2 leads finally
to a blowout bifurcation in which the synchronization manifold
loses its transverse stability completely and the chaotic saddle
outside the synchronization manifold becomes an attractor
(see Fig. 10, right panel). Beyond the blowout bifurcation, we
obtain the previously described behavior of chaotic trajectories
containing out-of-phase large amplitude oscillations separated
by small amplitude oscillations.

So far we have illustrated the intricate interplay between
the chaotic attractor, chaotic saddle, and the limit cycle only
with trajectories for which the occurrence of in-phase and
out-of-phase events seems to be almost periodic. However,
there are also large fractions of the parameter space shown
below where these events occur irregularly and are very rare,
so that their interevent intervals are distinctively high. A part of
such a trajectory is shown in Fig. 11, together with a probability
distribution of the interevent intervals. The irregularity of the
observed events is manifested by the Poisson-like distribution.
Therefore, we may call such events to be extreme events
because of the rarity of their emergence.

Until now, we have shown the emergence of extreme events
by varying only one of the four coupling parameters of the
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FIG. 11. Top panel shows part of a typical time series of two FHN
units coupled using two delays exhibiting extreme events. Bottom
panel shows the histogram of the interevent intervals tIEI for the
system. The observation time for the entire simulation is 2 × 109 time
units in which a total of 194 924 events were observed. The dashed
line is a multiple of exp (−rtIEI) with r = 1.15 × 10−4. Parameters:
τ1 = 80, M1 = 0.01, τ2 = 65, and M2 = 0.002 55.

system. However, extreme events as discussed above occur
over a much larger region of parameter space following a
very similar mechanism. To illustrate this point, we scan a
two-dimensional subsection of the parameter space using the
parameters M2 and τ2 and plot the variance of the interevent in-
tervals (see Fig. 12). Note that in order to highlight the changes
in qualitative properties of the invariant synchronization
manifold, all trajectories were chosen to start on that manifold.
Each pair of parameters (M2,τ2) is colored as follows: If the
long-term state of a trajectory starting from a random initial
condition on the invariant manifold is such that it exhibits large
amplitude oscillations (or events), we compute the variance of
the interevent intervals and color the point accordingly. If,
on the other hand, the long-term state is such that the entire
motion is composed of small amplitude oscillations, then such
a variance cannot be computed and the corresponding point
is colored white. Note that the regions corresponding to high
coupling strength M2 and small time delays τ2 exhibit no
large amplitude oscillations as they have converged to the
transversally unstable limit cycle on the invariant manifold

FIG. 12. Variance of interevent intervals for trajectories starting
on the synchronization manifold for varying parameters τ2 and M2.
The white region corresponds to small amplitude oscillations and the
brownish (dark gray) region corresponds to the formation of extreme
events with very large interevent intervals.

which is stable parallel to the synchronization manifold. If we
now decrease M2 or increase τ2, the limit cycle undergoes a
period-doubling cascade and subsequently loses its stability
parallel to the synchronization manifold. This marks the onset
of extreme events, as the trajectories now converge to the
chaotic attractor on the invariant manifold and exhibit large
amplitude oscillations with high irregularity (as marked by the
colored band surrounding the white region). Moving further
to the left or the top, we enter the region of the reverse
period-adding cascade where we have regions of mixed-mode
oscillations interspersed by small chaotic windows similar
to Fig. 4.

IV. CONCLUSIONS

In this study, we have shown that time-delayed coupling
with two different delays can cause extreme events in excitable
systems by analyzing the dynamical properties of delay-
coupled identical FHN oscillators. First, we analyzed the
dynamics when two FHN units are coupled by a single-delay
coupling. In this case the FHN oscillators can exhibit a
combination of small and large amplitude oscillations either in
the form of mixed-mode oscillations or as chaotic oscillations.
We also find that the time delay divides the system into two
distinct parameter regimes: If the synchronization manifold is
transversally stable (corresponding to larger time delays), the
entire long-term dynamics of the system is synchronized. On
the other hand, if the synchronization manifold is transversally
unstable (corresponding to smaller time delays), the oscillators
remain nearly synchronized during the small amplitude oscil-
lations and are ejected completely out of synchrony during
the large amplitude oscillation. We also showed that the
ejection is due to the presence of a limit cycle on the invariant
synchronization manifold of the system which is attracting
along the manifold but repelling in the directions transverse
to it. Though oscillations in such single-delay coupled FHN
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units were too regular to be classified as extreme events, the
dynamical characteristics of the system proved to be crucial
to understand the scenario where the FHN units were coupled
using two distinct time delays.

The system consisting of two coupled FHN units with two
delays behaves similar to their single-delay counterpart when
one of the coupling strengths is largely dominant over the
other. However, if the two coupling strengths are comparable,
the structures close to or on the synchronization manifold
corresponding to both the single-delay regimes interact with
each other. This results in the system exhibiting dynamical
properties related to both single-delay regimes. In particular,
the large amplitude oscillations can irregularly switch between
being in phase or out of phase. It also results in the small
amplitude oscillations becoming chaotic. Furthermore, we
find regions in parameter space spanned by the second
time delay and the corresponding coupling strength where
interevent intervals, i.e., the time intervals between subsequent
large amplitude oscillations, exhibit a very large variability
including very rare events.

Furthermore, we identified the mechanism explaining the
emergence of these extreme events. The emergence of extreme
events occurs where the period-adding cascade of mixed-
mode oscillations located on the synchronization manifold
meets the period-doubling cascade of a limit cycle which
also lies in the synchronization manifold but is transversally
unstable. In the parameter region where both cascades meet,
we find a strip in which extreme events occur. This strip is
bounded on one side by a bubbling transition where a limit
cycle in the synchronization manifold loses its transverse
stability and a blowout bifurcation where the whole syn-
chronization manifold becomes transversally unstable. Within
this parameter range, we find a chaotic saddle comprising
small amplitude oscillations as well as in-phase and out-of-
phase large amplitude oscillations alternating irregularly. This
very long transient chaotic dynamics finally converges to a
chaotic attractor located on the synchronization manifold. The
alteration between in-phase and out-of-phase dynamics can be
interpreted as in-out intermittency as introduced by Blackbeard

et al. [40] because the mechanisms of approaching to and
ejection from the synchronization manifold are different.

Finally, we would like to point out that our findings are
similar to the ones by Flunkert et al. [41] who showed the
occurrence of a bubbling transition in relay-coupled lasers.
The relay coupling used acts effectively as a delay. Since
they have used only a single delay for the coupling, their
dynamics does not include the formation of extreme events
and the irregular alteration between in-phase and out-of-phase
events. For the latter, two different delays appear to be a
necessary condition. Extreme events as a result of bubbling
transitions, as demonstrated here, have also been found by
Cavalcante et al. [42] in a system of two diffusively coupled
electronic circuits. The difference between their and our results
lies in the fact that the sizes of the extreme events in the
electronic system possess a distribution function characteristic
for dragon kings. By contrast, our time-delay-coupled FHN
model does not exhibit such a distribution because the sizes of
the extreme events are almost equal. Experimentally, extreme
events containing chaotic small amplitude oscillations and
large amplitude events have been found in a diode laser subject
to a phase-conjugate feedback [28] and in a mode-locked fiber
ring laser [43]. Though the experimental setups do not consider
a coupling between two laser systems as studied here, they
show some similarities to the dynamics studied.
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