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Riddled basins of attraction in systems exhibiting extreme events
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Using a system of two FitzHugh-Nagumo units, we demonstrate the occurrence of riddled basins of

attraction in delay-coupled systems as the coupling between the units is increased. We characterize

riddled basins using the uncertainty exponent which is a measure of the dimensions of the basin

boundary. Additionally, we show that the phase space can be partitioned into pure and mixed

regions, where initial conditions in the pure regions certainly avoid the generation of extreme events,

while initial conditions in the mixed region may or may not exhibit such events. This implies that

any tiny perturbation of initial conditions in the mixed region could yield the emergence of extreme

events because the latter state possesses a riddled basin of attraction. Published by AIP Publishing.
https://doi.org/10.1063/1.5012134

Extreme events are rare, recurrent, irregular events

which have a large impact on the system. Examples of

such events include natural disasters, financial crises,

harmful algal blooms, and rogue waves. Due to the huge

and potentially disastrous consequences that such events

might have, it is crucial to understand the mechanisms

and initial configurations of the systems, leading to the

occurrence of such events. In a recent study, we showed

that extreme events can emerge in a system of delay-

coupled relaxation oscillators. Here, we focus on the anal-

ysis of multistability, i.e., the coexistence of several states

for a given set of parameters. This implies that it depends

crucially on the initial condition which of those stable

states will be realized in the long-term limit. We find for

that system of delay-coupled oscillators that the basins of

attraction, i.e., the set of initial conditions converging to

one particular attractor, become progressively complex

as we approach the parameter region in which extreme

events occur. Our main finding is that the phase space of

the system which contains all possible initial configura-

tions of the system can be partitioned into “pure” regions

where extreme events certainly do not occur and “mixed”

regions where extreme events may or may not occur.

Furthermore, points in the mixed region are scattered

in a way that very tiny perturbations can change the

dynamics from the one which exhibits extreme events to

the one which does not. In particular, our analysis indi-

cates that specifically the basin of attraction of the exis-

tence of extreme events possesses a riddled structure.

I. INTRODUCTION

Recurring events which have a large impact on the system

and are infrequent and irregular are known in the literature as

extreme events.1,2 Due to their occurrence in a large class of

physical systems,3–6 a large body of research has been devoted

to understanding such events in specific systems such as rogue

waves in oceans7–9 and coupled laser systems,10–13 harmful

algal blooms in marine ecosystems,14,15 epileptic seizures in

the brain,16,17 and adverse weather conditions such as floods,

droughts, and cyclones. Additionally, studies using theoretical

models have shown that extreme events can be generated

via various mechanisms including the incoherent background

of interacting waves,18 noise-induced attractor hopping,19,20

pulse-coupled small world networks,21 inhomogeneous net-

works of oscillators,1,2 and delay coupled relaxation oscilla-

tors.22 For some of those systems, parameter regions have been

identified in which several attractors can coexist. Particularly

interesting is the coexistence of attractors containing extreme

events and attractors exhibiting only regular motion. In those

cases, it depends crucially on the initial conditions whether

extreme events would occur. The structure of basins of attrac-

tion is essential for assessing the risk of the emergence of

extreme events, but this question has rarely been addressed in

the literature.

For several decades, significant research has been done

in the field of basin structures and their boundaries in general

dynamical systems. Some of the interesting basin structures

include fractal basins,23–25 Wada basins,26,27 intermingled

basins,28–30 and riddled basins.31–33 Various studies have

analyzed the specific conditions which lead to the emergence

of each of these basin types.34–37 For the study presented

here, riddled basins are of particular interest. A basin is said

to be riddled if any arbitrary neighborhood of every point

of the basin contains points from another basin of attrac-

tion.38,39 An important consequence of this property is that,

if the basin of any attractor is riddled, an arbitrary small per-

turbation in any initial condition from the basin of attraction

of this particular attractor can make the system converge to

another attractor. It is known that riddled basins are often

formed in systems with certain symmetries which manifest

themselves as invariant manifolds of the system.40 In previ-

ous studies, riddled basins have been found in a variety of

systems including simple maps,41,42 electronic circuits,43 and

instantaneously coupled chaotic oscillators.32,44 Here, we

present the occurrence of riddled basins in delay-coupled

relaxation oscillators. This very complicated basin structure

leads to an extremely high sensitivity of the system with
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respect to perturbations. The latter property can have a

strong impact on the system’s dynamics since the attractor

possessing the riddled basin is the one containing extreme

events.

In this paper, we present a system of delay-coupled

FitzHugh Nagumo (FHN) oscillators which have been recently

shown to exhibit extreme events22 and investigate the emer-

gence of various types of multistability, i.e., the coexistence of

different attractors and their respective basins of attraction. In

particular, we show that this system exhibits riddled basins of

attraction in the parameter regime where extreme events are

observed. After introducing the model in Sec. II, we discuss

various regimes of multistability in Sec. III. We show that the

basins of attraction become more and more complex as the

coupling strength is increased. In particular, we identify a rid-

dled basin of attraction belonging to an attractor exhibiting

extreme events in Sec. IV by extending the concept of final

state sensitivity to infinite-dimensional dynamical systems and

providing further evidence for the riddled structure by classi-

fying points as interior or boundary points. We underline the

consequences of a riddled basin structure in a system exhibit-

ing extreme events in the conclusions (Sec. V).

II. THE MODEL

We consider a pair of FHN units (i¼ 1, 2), which are

coupled to each other using two time delayed diffusive cou-

plings. If the coupling strengths of the system are given by

M1 and M2 and the respective time delays are given by s1

and s2, then the dynamical equations governing the system

are given as

_xi ¼ xiða� xiÞðxi � 1Þ � yi þ
X

k¼1;2

MkðxðskÞ
j � xiÞ

_yi ¼ bxi � cyi þ
X

k¼1;2

MkðyðskÞ
j � yiÞ;

(1)

where x
ðskÞ
j ¼ xjðt� skÞ; y

ðskÞ
j ¼ yjðt� skÞ, and i 6¼ j. The

two FHN units possess identical parameters a, b, and c. For

our investigations, we fix them at a¼ –0.025, b¼ 0.00652,

and c¼ 0.02. These parameter values correspond to the

regime where in the absence of coupling, each FHN unit exe-

cutes oscillatory behavior in the long term.

Having identical internal parameters for FHN units

implies the existence of an invariant manifold defined by

x
ðsÞ
1 ¼ x

ðsÞ
2 and y

ðsÞ
1 ¼ y

ðsÞ
2 for all s 2 ½0;max skf g�. This mani-

fold corresponds to the complete synchrony of the two units

and partitions the phase space of the system in two symmet-

ric halves. Note that this symmetry is particularly reflected

in the position of the fixed points of this system in phase

space. Hence, if ðx�1; y�1; x�2; y�2Þ is a fixed point of the system

outside the synchronization manifold, then ðx�2; y�2; x�1; y�1Þ is

also a fixed point with the same stability.

A useful way to exploit the symmetry of the system is

by transforming Eq. (1) to new coordinates, X1;2 ¼ x16x2

2
and

Y1;2 ¼ y16y2

2
. In these coordinates, ðX1; Y1Þ denotes the posi-

tion of the projection of a general point ðX1; Y1;X2; Y2Þ on

the synchronization manifold and ðX2; Y2Þ represents the sep-

aration between the point and the synchronization manifold.

Moreover, if we define X
ðskÞ
j ¼ Xjðt� skÞ, any point on the

synchronization manifold can be represented by X
ðsÞ
2 ¼ Y

ðsÞ
2

¼ 0 for all s 2 ½0;max skf g�. Here, we use the transformed

co-ordinates in figures to distinguish between attractors

located on the synchronization manifold and the ones outside

the synchronization manifold.

Moreover, we note that, due to the form of coupling

used in Eq. (1), it can be shown that the position of the fixed

points is dependent neither on the time delays nor on the

individual coupling strengths. Instead, it only depends on the

sum of coupling strengths, M ¼ M1 þM2. Explicit computa-

tion yields several fixed points (See Fig. 1) among which

the origin is the only one present for the whole interval of

coupling strength, even for zero coupling. As the coupling

strength increases from zero, a pair of unstable fixed points

appears on either side of the synchronization manifold via a

fold bifurcation F. Thereafter, one of the fixed points on

each side of the manifold stabilizes through a reverse Hopf

bifurcation H. Since we are mainly interested in the parame-

ter regions in which multistability occurs, we focus on that

interval of coupling strength in which two stable fixed points

outside the synchronization manifold exist. However, we

also consider the transition in which those two fixed points

become stable. The dynamical properties of the system with

no stable fixed points are studied in detail in our previous

work.22

III. MULTISTABILITY AND THE STRUCTURE OF
BASINS OF ATTRACTION

According to our aim, we analyze different regimes of

multistability in the system described in Eq. (1), while the

coupling parameters are varied. For the sake of simplicity,

we keep two of the coupling parameters fixed at M1 ¼ 0:01

and s1 ¼ 80 throughout the article and discuss the changes

in dynamics as parameters M2 and s2 are varied. To that end,

we first fix s2 ¼ 65 and vary M2. The effects of varying s2

with fixed M2 will be discussed briefly later in the article.

FIG. 1. Bifurcation diagram showing the position of the fixed points for

varying coupling strengths M. The green hollow circles represent unstable

fixed points, and the blue solid diamonds represent their stable counterparts.

The points of fold and Hopf bifurcations are marked by “F” and “H,”

respectively.
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The numerical simulations presented in this article were per-

formed using the Python package JITCDDE45 which integra-

tes systems of delay-differential equations using a modified

form46 of the Bogacki-Shampine Runge-Kutta method.

Varying M2 leads to various regimes, each of which is

characterized by its own set of coexisting attractors and their

corresponding basins of attraction. Due to the large number

of attractors encountered during the parameter sweep, we

index the ith attractor encountered by the symbol Ai and its

corresponding basin of attraction by Bi.

Since the system considered here is time-delayed, its

dynamics for a given set of parameters is determined by ini-

tial history functions for all variables. This makes the phase

space for the system infinite dimensional. Therefore, in order

to visualize the basins of attraction, we use various two-

dimensional surfaces which cut through the phase space by

choosing trivial initial history functions which are constant

in time and thereafter fixing these functions for two of the

variables. In this paper, we determine the two-dimensional

surface (slice) by fixing the initial history functions for y1

and y2 at y1ðtÞ ¼ y2ðtÞ ¼ 0:01 for �max s1; s2f g � t � 0

while varying only x1 and x2. Hence, each point on the slice

represents the whole history function for x1 and x2 which is

constant for �max s1; s2f g � t � 0. The structure of the

basins of attraction in other slices of the phase space will be

discussed in Sec. IV.

A. Regime 1

For M2 ¼ 0, the total coupling strength M ¼ M1 þM2

¼ 0:01 is still less than the minimum coupling required for

the stabilization of the non-trivial fixed points (see Fig. 1).

The global attractor of the system A1 is the limit cycle

on the synchronization manifold corresponding to mixed

mode oscillations (see Fig. 2: blue curve), and therefore, all

initial conditions converge to it. This leads to the trivial

basin structure B1 shown in Fig. 3(a). The structure of B1

remains unchanged until M2 � 0:0003 (or correspondingly

M � 0:0103).

B. Regime 2

If M2 is increased beyond 0.0003, the reverse Hopf

bifurcation stabilizes a pair of fixed points—A2 and A3—

placed symmetrically on either side of the synchronization

manifold and makes the system tri-stable. The two new

attractors form tongue shaped basins—B2 and B3—in the

slice of phase space [see Fig. 3(b) for an example]. The tra-

jectories starting within these tongue-shaped regions do not

FIG. 2. Phase space representation of the various classes of attractors

obtained on the synchronization manifold upon varying the coupling strength

M2. Small coupling ðM2 ¼ 0Þ: limit cycle corresponding to mixed mode

oscillations shown in blue; intermediate coupling ðM2 ¼ 0:00247Þ: chaotic

attractor corresponding to extreme events shown in red; and large coupling

ðM2 ¼ 0:0026Þ: limit cycle corresponding to small amplitude oscillations

shown in green. The inset shows the close-up view of the dynamics in the

neighborhood of the origin. Other coupling parameters are as follows: M1

¼ 0:01; s1 ¼ 80; s2 ¼ 65.

FIG. 3. Two dimensional slices of the phase space showing the basins of

attraction at various values of coupling strength M2. For each panel, the slice

is taken at y ¼ y1 ¼ y2 ¼ 0:01. Other coupling parameters are as follows:

M1 ¼ 0:01; s1 ¼ 80; s2 ¼ 65. The color code indicates the different basins

of attraction B1;…;B7 corresponding to the different attractors A1;…;A7

(see the text).
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approach the synchronization manifold during the transient

and converge to either of the fixed points directly. Note that

the diagonal line in the slice of phase space containing the

basin of attraction shown represents the synchronization

manifold of the system. Therefore, pairs of initial conditions

which are symmetrically placed with respect to the diagonal

either converge to the attractor on the synchronization mani-

fold A1 (and belong to the basin B1) or converge to the pair

of fixed points A2 and A3 (and belong to basins B2 and B3

respectively) which themselves are symmetric with respect

to the synchronization manifold. This makes the basins of

attraction symmetric which is expected from the system in

consideration. While the majority of the points belonging to

B2 and B3 are contained in the tongue like structures, there

are initial conditions which appear scattered in the area out-

side the tongues and yet converge to the fixed points A2 and

A3. As M2 is increased further, the number of points belong-

ing to B2 and B3 scattered outside the tongue-like structures

increases [see Fig. 3(c)].

C. Regime 3

So far, the trajectories on the synchronization manifold

execute mixed mode oscillations comprising several small

amplitude oscillations followed by a single large amplitude

oscillation or an event. While the number of small-amplitude

oscillations between two consecutive events increases as M2

is increased through Regimes 1 and 2, the overall dynamics

on the synchronization manifold remains periodic in these

regimes. Therefore, the inter-event-intervals throughout the

long term trajectory remain a constant in time.

However, upon increasing M2 beyond 0.00245, we

enter Regime 3, and the limit-cycle corresponding to the

mixed mode oscillations undergoes a period-adding cascade to

become a chaotic attractor A4 (see Fig. 2: red curve) possessing

a positive largest Lyapunov exponent k. For example, the larg-

est Lyapunov exponent for M2 ¼ 0:00247 is k ¼ 0:00157.

In particular, the small amplitude oscillations between two suc-

cessive events become highly chaotic, which results in an

extremely high irregularity in the inter-event-intervals. These

rare, recurrent, and highly irregular events in such systems are

known as extreme events and have been analyzed in detail in

our recent work.22

The transition to Regime 3 is also accompanied by

the emergence of an extremely rich structure of the basins

of attraction. One of the distinct qualitative changes which

occur during the transition from Regime 2 to Regime 3 is the

significant increase in the number of points which are in B2

and B3 but not in the tongue. As can be clearly seen in Fig.

3(d), the phase space seems now to be composed of two dis-

tinct types of regions: the “pure” regions where neighboring

points belong to only one particular basin of attraction and

the “mixed” regions where neighboring points may belong to

any of the three basins of attraction. Notably, the pure

regions seem to contain points only belonging to B2 or B3

and not to B4. In other words, the entire basin B4 seems to be

contained in the mixed regions of the phase space, which is

illustrated by plotting only the points of B4 in Fig. 4. The

quantitative aspects of the characteristics of these regions

will be discussed in more detail in Sec. IV.

The emergence of those two distinct regions in the phase

space—denoted as “pure” and “mixed”—also impacts the

transients of the trajectories which do not start on the syn-

chronization manifold. A trajectory which starts in one of

the pure regions converges to the corresponding fixed point

without repeatedly approaching the neighborhood of the

synchronization manifold, hence yielding a relatively short

transient. The trajectories starting in the mixed regions, how-

ever, may approach the neighborhood of the synchronization

manifold many times and trace out the close proximity of the

chaotic attractor on the synchronization manifold before

being ejected and converge finally to one of the stable fixed

points. This leads to possibly very long transients where the

dynamics of the trajectory—which will eventually converge

to a fixed point—resembles closely the extreme event

dynamics of the trajectory which has converged to the cha-

otic attractor on the synchronization manifold (see Fig. 5).

D. Regime 4

On increasing the coupling strength beyond

M2 � 0:00255, the attractor on the synchronization manifold

changes from being the chaotic set A4 to a small-amplitude

limit cycle A5 (see Fig. 2: green curve). This changes the

long-term motion for trajectories starting on the synchroniza-

tion manifold from being composed of small chaotic oscilla-

tions interspersed by irregularly appearing large events to a

periodic oscillation with small amplitude. Initial conditions

not starting on the synchronization manifold may still con-

verge either to the non-trivial fixed points A2 and A3 or the

attractor on the synchronization manifold A5. The structure

of the basins of attraction for such a regime is shown in Fig.

3(e). Note that the phase space still has the mixed regions

which now mostly consist of points from the basins B2 or B3.

FIG. 4. Basin of attraction corresponding to extreme events (navy blue) in

Regime 3 as seen in a two-dimensional slice of the phase space. This is a

plot of that basin of attraction only, compared to the plot of all basins of all

coexisting attractors shown in Fig. 3(d).
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Nevertheless, points belonging to B5 can still be found in

parts of the mixed regions on either side of the diagonal.

Note that as the coupling strength M2 is increased,

the periodicity of the limit-cycle decreases due to a reverse

period-doubling cascade.

E. Regime 5

If the coupling strength is increased beyond

M2 � 0:00285, an additional pair of chaotic attractors, A6

and A7, appear on either sides of the synchronization mani-

fold. The system therefore now contains a total of 5 co-

existing attractors (see Fig. 6): a small amplitude limit-cycle

A5, a pair of non-trivial fixed points A2 and A3, and a pair of

non-synchronized chaotic attractors A6 and A7.

A trajectory that converges to A6 or A7 executes nearly

synchronous small-amplitude oscillations interspersed by sin-

gle highly asynchronous large amplitude oscillations. In phase

space, the trajectory remains extremely close to the synchro-

nization manifold during the small-amplitude oscillations and

diverges away from it during the large-amplitude oscillation.

Note that although the trajectory exhibits a dynamics similar

to the attractor containing extreme events, i.e., it comprises

many small amplitude oscillations followed by a large ampli-

tude oscillation, the dynamics in this case cannot be classified

as extreme events as the events are not irregular and not rare

enough.

The emergence of A6 and A7 leads to an additional rich-

ness in the structure of the basins of attraction [see Fig. 3(f)].

Similar to the previous two regimes, the phase space appears

to be partitioned into mixed and pure regions. However,

each of the pure regions in this regime can also belong to

either of the chaotic attractors A6 or A7 in addition to the

previously present stable fixed points. The mixed regions on

the other hand contain points belonging to the basins of all

attractors in the system including the small-amplitude limit

cycle A5 on the synchronization manifold.

F. Regime 6

Beyond M2 � 0:00360, the chaotic invariant sets outside

the synchronization manifold are no longer stable and the

only attractors which remain in the system are the fixed points

A2 and A3 and the small-amplitude limit cycle A5. This is

qualitatively similar to Regime 2 with the attractor on the syn-

chronization manifold being the limit-cycle corresponding to

small-amplitude instead of mixed mode oscillation.

This similarity in the nature of attractors is also reflected

in the basin structure [see Fig. 3(g)]. The basins of the fixed

points comprise mostly of the tongue like structures emanat-

ing from the synchronization manifold and additional isolated

points scattered elsewhere in phase space. The rest of the

phase space forms the basin of attraction of the limit cycle

A5. Note that there are no “mixed” regions in phase space

anymore. Moreover, the number of points which belong to

the basins B2 and B3 and yet do not belong to the tongue-like

structures decreases as the coupling strength is increased up

to M2 � 0:0042 [see Fig. 3(h)].

FIG. 5. Various representations of the dynamics observed between M2

� 0:00245 and M2 � 0:00255. The attractors of the system are shown in a

three dimensional projection of the phase space in (a). They include the red

chaotic attractor A4 on the invariant synchronization manifold shown in

gray and the pair of stable fixed points A2 and A3. The time evolution of typ-

ical trajectories converging to attractors A4 and A3 is shown in (b) and (c),

respectively. Another phase space representation of the trajectories in (b)

and (c) is shown in (d) and (e), respectively, where the transformed coordi-

nates ðX1;X2Þ are plotted. While the red trajectory converges quickly to the

synchronization manifold, the green comes close to the manifold and

diverges away from it multiple times before converging to the fixed point.

FIG. 6. Various representations of the dynamics of the system observed in

Regime 5. The attractors of the system are shown in a three dimensional pro-

jection of the phase space in (a). They include the green limit cycle A5 on

the invariant synchronization manifold shown in gray, the pair of stable

fixed points A2 and A3, and the blue and red non-synchronized chaotic

attractors A6 and A7. Phase space representations of trajectories on attractors

A5, A6, and A7 in the transformed co-ordinates ðX1;X2Þ are plotted in (b),

(c), and (d), respectively.
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On increasing M2 even further, the system exhibits

more interesting dynamics including small-amplitude chaotic

oscillations and stabilization of the origin. However, the

detailed analysis of the system in these regimes is beyond

the scope of this paper.

The changes in dynamics on the synchronization manifold

presented in this section can be summarized by the bifurcation

diagram in Fig. 7. As the coupling strength increases, the stable

limit-cycle corresponding to the mixed mode oscillations, A1,

on the synchronization manifold undergoes a period-adding

cascade to eventually become a chaotic attractor corresponding

to an attractor A4 containing extreme events. This chaotic

attractor loses stability, and a high periodicity small-amplitude

limit cycle A5 emerges which thereafter undergoes a reverse

period-doubling cascade to finally become a period-one

limit-cycle.

The bifurcation diagram for varying time-delays s2 with

fixed coupling strength M2 is also plotted in Fig. 7. The latter is

qualitatively similar to the first one except for the direction of

changes in the dynamics. In other words, the qualitative changes

observed in the system as coupling strength is increased follow

the same order as the qualitative changes observed as the time-

delay is decreased. This implies that the dynamical regimes and

the corresponding basin structures described in this section can

be obtained by varying either of the coupling parameters or

even a combination of both.

IV. CHARACTERISTICS OF BASINS OF ATTRACTION

In Sec. III, we noted that the basin structure in Regimes

3, 4, and 5 partitions in the phase space into pure and mixed

regions. Here, we demonstrate that in these regimes, the

basins of attraction of certain attractors possess a riddled

structure and hence are fundamentally different from

Regimes 1, 2, and 6 where mixed regions do not exist in the

phase space. We also highlight that such a property can have

crucial consequences for the dynamics particularly when the

occurrence of extreme events is involved.

In order to show that the basins in Regimes 3, 4, and 5

are riddled, we first compare the structure of basin bound-

aries in Regimes 3, 4, and 5 with those of Regimes 2 and 6.

We thereby emphasize that in Regimes 3, 4, and 5, there are

regions in phase space where an arbitrarily small perturba-

tion in the initial conditions can lead to a trajectory converg-

ing to a different attractor.

We start our analysis by assigning all points in phase

space to two categories with regard to their position in their

respective basins of attraction: interior points and boundary

points. A point is said to be an interior point if all the points

in its infinitesimal neighborhood belong to the same basin of

attraction as the point under consideration. All other points

are classified as boundary points. While the exact classifica-

tion of points is not possible in numerical computations since

we always deal with a certain resolution; we approximate

this classification by constructing a mesh of 512� 512 points

spanning the two dimensional slice of the phase space.

Thereafter, we assume that the next neighbors of each point

in the mesh belong to its infinitesimal neighborhood. The

results obtained are presented in Fig. 8. The accuracy of the

method can be increased by starting with a finer mesh.

However, it was verified using a 1024� 1024 grid that the

results obtained are qualitatively identical to the results pre-

sented here.

FIG. 7. Bifurcation diagrams showing the Poincar�e section (obtained by fixing x1¼ x2 and y1 ¼ y2 ¼ 0:01) of the trajectories on the synchronization manifold

for varying coupling parameters M2 and s2. Parameters are as follows: (a) s2 ¼ 65 and (b) M2 ¼ 0:00245. Common parameters are as follows:

M1 ¼ 0:01; s1 ¼ 80.

FIG. 8. Two dimensional slices of the phase space at y ¼ y1 ¼ y2 ¼ 0:01, showing interior (shown in white) and boundary points (shown in black) of the

basins of attraction in various dynamical regimes. For the particular Regimes 2, 3, 4, 5, and 6, the coupling strengths used are M2 ¼ 0:0024, 0.00247, 0.0026,

0.0029, and 0.0038, respectively (as in Fig. 3).
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Let us first analyze the phase space in Regimes 2 and 6

(see Fig. 3). Most of the phase space is composed of continu-

ous two dimensional regions belonging to a particular basin

of attraction. However, the phase space also contains numer-

ous isolated points, each of which belongs to a particular

basin of attraction, say of attractor Ai, but is surrounded

completely by points belonging to a different basin of attrac-

tion, say of attractor Aj. Note that all the points surrounding

the isolated point belong to the basin of attraction of the

same attractor Aj. However, that attractor Aj is different

from the attractor Ai corresponding to the isolated point.

From Fig. 8, it can be seen that for Regimes 2 and 6, bound-

ary points (colored black) form one dimensional curves sepa-

rating regions of interior points (colored white) belonging to

different basins of attraction. Boundary points also mark the

isolated points and their immediate neighbors.

The situation is evidently different in Regimes 3, 4, and

5 where boundary points seem to fill up two dimensional

regions in phase space which are colored in black. Notably,

the boundary points appear to cover the mixed regions of

the phase space entirely, whereas the interior points cover

the pure regions. This implies that every point in the mixed

region has at least one point in its immediate neighborhood

that belongs to a different basin of attraction than itself.

Therefore, for any trajectory starting from the mixed region

which converges to a particular attractor, there exists an infin-

itesimally small perturbation to that initial condition which

would push the trajectory across a basin boundary and cause

it to converge to a different attractor. Plotting the fraction of

boundary points in each basin of attraction in Regimes 2

through 6 [see Fig. 9(a)], it can be inferred that the basins of

attraction of attractor A4 in Regime 3 and attractor A5 in

Regimes 4 and 5 are completely contained in the mixed

regions of the phase space as they are entirely composed of

boundary points. This indicates that attractor A4 in Regime 3

and A5 in Regimes 4 and 5 have riddled basins of attraction

as each point belonging to the basins of attraction of these

attractors has in its immediate neighborhood, a point belong-

ing to the basin of attraction of another attractor.

The significance of a riddled basin in Regime 3 is

greatly increased as the attractor possessing the riddled basin

corresponds to the occurrence of extreme events. The basin

in consideration, B4, is riddled in basins B2 and B3 which

correspond to the fixed point attractors. Note also that an ini-

tial condition in B2 or B3 which belongs to the mixed region

of the phase space exhibits a long transient during which

it closely traces the chaotic attractor corresponding to the

occurrence of extreme events before converging to the fixed

points. This underlines an important property of the system

under consideration: (a) any initial condition in the mixed

region of the phase space can potentially exhibit extreme

events for a long time, if not perpetually; and (b) due to the

riddled nature of the basins of attraction, even a very small

perturbation in initial conditions in the mixed region can

change a system from exhibiting extreme events as a tran-

sient behavior to exhibiting extreme events forever.

Although a stable chaotic attractor corresponding to

extreme event generation does not exist for Regimes 4 and 5,

having a riddled basin structure in these regimes in still impor-

tant as the long transients which closely resemble extreme

events may be observed for trajectories starting from the mixed

regions of the phase space. Additionally, we note that Regime

5 contains two stable chaotic attractors A6 and A7. While the

events exhibited by the trajectories converging to these attrac-

tors are not irregular enough to be classified as extreme events,

they are still recurrent and have a significantly larger amplitude

than the typical oscillation of the system which may consider-

ably affect the system. In order to illustrate this point, we plot

in Fig. 9(b) stacked histograms showing the fraction of bound-

ary points which belong to the respective attractors. From Figs.

9(a) and 9(b), it can be inferred that not only a major fraction

of B6 and B7 belongs to the mixed regions of phase space but

also that the points belonging to B6 and B7 constitute a large

fraction of all points in the mixed region. This implies the fol-

lowing: (a) if behavior exhibiting a regular occurrence of

events is the desired state of the system, the choice of plausible

initial conditions is restricted to the small pure regions in B6

and B7 as other initial conditions in B6 or B7 are in the mixed

region and hence are vulnerable to small perturbations and (b)

an initial condition in the mixed region of the phase space is

most likely to result in regular behavior containing frequently

occurring events.

In order to ensure that the observations regarding the rid-

dled nature of basins of attraction are not a manifestation of

the specific choice of the slice in phase space used for obtain-

ing the basins of attraction, we present plots of basins of attrac-

tion in other slices in Fig. 10. These slices are obtained by

choosing various values of y ¼ y1 ¼ y2 for M2 ¼ 0:00247

(Regime 3). From the figure, we observe that although the size

and shape of the tongues change as y is varied, the qualitative

structure of the basin remains consistent. Again, we observe a

partitioning of the phase space into pure and mixed regions,

and the basin of attraction of the attractor A3 corresponding to

extreme events is completely contained in the mixed regions.

A similar analysis of the phase space in other regimes also

FIG. 9. Characteristics of boundary points of the basins of attraction in vari-

ous regimes. Fractions of points in the various basins of attraction fBA;BP

which are boundary points are shown in (a) as bar plots. (b) shows a stacked

histogram plot depicting the composition of the set of all boundary points in

terms of basins of attraction to which each of the boundary points belongs.

The slices of basins of attraction used for the analysis are taken from Fig. 3.
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reveals results which are in agreement with those presented

previously in this section.

A very well-known method to compute the dimensions

of a fractal basin boundary is the computation of the uncer-

tainty exponent a.47 In order to compute the exponent a in

our system, we choose a part of the mixed region in the two

dimensional slice of the phase space [for the zoomed in ver-

sion of the selected region with a resolution of 10�12, see

Fig. 11(b)]. We then choose a distance e and randomly select

1000 pairs of initial conditions from the region such that the

distance between each pair is e. For varying values of e, we

then plot the fraction of pairs of initial conditions, f ðeÞ, such

that each initial condition in the pair converges to a different

attractor. The expected relation between f ðeÞ and e for a frac-

tal basin boundary is

f ðeÞ � ea; (2)

where the uncertainty exponent a is the difference between

the dimension of the state space and the dimension of the

basin boundary. Although this method of final state sensitiv-

ity has been developed only for systems defined in a finite

dimensional phase space, we believe that it also provides sim-

ilar insights into the basin structure of systems in an infinite

dimensional phase space. Our analysis shows that for the sys-

tem in consideration, a ¼ 7:476� 10�7 for M2 ¼ 0:00247

(see Fig. 11). This value is very close to zero, implying that

the dimensions of the basin boundary are approximately

equal to the dimension of the state space. This is in accor-

dance with the results shown in Fig. 8 where the boundary

points seemed to span a two dimensional region in the two

dimensional slice of the phase space. Our results also agree

with previous studies of riddled basins of attraction where the

uncertainty exponent a has been reported to be approximately

zero.44 Although the coupling strength chosen for Fig. 11 is

in Regime 3, the results for Regimes 4 and 5 where riddled

basins are also observed are similar to the ones presented

here.

One of the notable features which are encountered as

we change the parameter from Regimes 1 through 6 is the

appearance of mixed regions in phase space in Regimes 3, 4,

and 5. This indicates the presence of a chaotic saddle in

FIG. 10. The top row shows two dimensional slices of phase space, color coded for the different basins of attraction in the system, for varying values of

y ¼ y1 ¼ y2 (y¼ 0, 0.006, 0.01, and 0.015 for (a), (b), (c), and (d), respectively) when the coupling strength is fixed at M2 ¼ 0:00247 (as in Fig. 3). The bottom

row shows the classification of all points as interior or boundary points. The color code for the various basins of attraction is the same as in Figs. 3 and 8.

FIG. 11. Basins of attraction in the two dimensional slice of the phase space

are shown in (a), and the close-up view of a portion of its mixed region is

shown in (b). The color code for (a) and (b) is the same as in Fig. 3. The

fraction of pairs of initial conditions which converge to different basins of

attraction f ðeÞ for the region in (b) is plotted versus the distance between

points e in (c) using the solid red dots. The dashed line gives the best fit for

the points in red. The slope of this line gives the uncertainty exponent

a ¼ 7:476� 10�7.
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Regimes 3, 4, and 5. Such a chaotic saddle seems not to be

present in the other regimes. In particular, the absence of

such a chaotic saddle seems to be the reason for the drastic

differences between the basin structures in Regimes 4 and 6

although the same set of attractors A2, A3, and A5 are present

in both regimes.

V. CONCLUSIONS

In this study, we have explored in detail the various

regimes of multistability and the structure of the correspond-

ing basins of attraction exhibited by a system of two identi-

cal FitzHugh-Nagumo units connected to each other using

two coupling delays. In our analysis, we have focused on a

parameter interval which includes the regime where this sys-

tem exhibits extreme events. Depending on the coupling

strength, we obtain up to 5 different co-existing attractors.

Due to the symmetry of the system, one of the attractors is

located on the synchronization manifold, while the other

attractors lie outside this manifold. We find that the basin

structure of the system becomes progressively rich and com-

plex as we approach the parameter regime where extreme

events are observed. While many basins of attraction are

fractal, we also find basins of attraction which are riddled. In

the literature, riddled basins of attraction have been classified

as either locally or globally riddled.42 The attractors which

have riddled basins in our system are such that in any neigh-

borhood of the attractor, we find a set of points of positive

measure converging to other attractors. Therefore, we may

classify those basins as globally riddled basins of attraction

and the corresponding attractor as a Milnor attractor.48,49

The significance of this result is increased as one of the

riddled basins corresponds to the extreme event dynamics.

To classify these basins as riddled, we compute the uncertainty

exponent, which is found to be very close to zero giving a

strong indication of a riddled basin. Although riddled basins

have been reported previously in many systems, our investiga-

tion is, to the best of our knowledge, the first evidence of a rid-

dled basin in an infinite dimensional system such as a delay-

coupled system. Additionally, we have shown that the method

of final state sensitivity which was originally developed for

finite dimensional systems can be successfully employed in

the case of infinite-dimensional systems where the computa-

tion of basins of attraction is particularly difficult.

Similar to the findings of previous studies, we show that in

the case of a riddled basin, the phase space can be divided into

pure and mixed regions. A crucial aspect of our analysis is that

one of the basins which show riddling belongs to an attractor

which contains extreme events. This basin of attraction is

completely confined to the mixed regions of the phase space.

This has an important consequence for the overall dynamics:

While any trajectory starting from the pure regions in phase

space leads to a safe dynamics far away from extreme events,

the trajectories starting in the mixed regions of phase space may

or may not converge to the state containing extreme events.

Those initial conditions in the mixed region are extremely sensi-

tive with respect to perturbations. Already very tiny perturba-

tions would be sufficient to push the trajectory to a dynamics

which contains extreme events. Therefore, we obtain a high risk

of ending up in a state of extreme events and which of the initial

conditions lead to them is not predictable.
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