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In Brief
Many proteins can be described
by more than one structure, each
of which has a functional
significance. Crosslinks and
monolinks from crosslinking
mass spectrometry (XL-MS) can
help probe a protein's
conformation under specific
physiological conditions. We
present a pipeline to predict a
protein's specific conformation.
We employ a combination of
ensemble generation using
AlphaFold2 and ensemble
scoring using condition-specific
XL-MS data. Both crosslinks and
monolinks were found to be
useful in finding the correct
protein conformation.
Highlights
• Multiple conformations of proteins can be predicted with AlphaFold2.

• Crosslinks and monolinks can be used to select the relevant protein conformation.

• Tools for data analysis are available at https://gitlab.com/topf-lab/xlms-tools.
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RESEARCH
Modeling Flexible Protein Structure With
AlphaFold2 and Crosslinking Mass
Spectrometry
Karen Manalastas-Cantos1,2 , Kish R. Adoni3,4 , Matthias Pfeifer2,5 , Birgit Märtens2,5,
Kay Grünewald2,6 , Konstantinos Thalassinos3,4, and Maya Topf2,5,*
We propose a pipeline that combines AlphaFold2 (AF2) and
crosslinking mass spectrometry (XL-MS) to model the
structure of proteins with multiple conformations. The
pipeline consists of two main steps: ensemble generation
using AF2 and conformer selection using XL-MS data. For
conformer selection, we developed two scores—the mon-
olink probability score (MP) and the crosslink probability
score (XLP)—both of which are based on residue depth
from the protein surface. We benchmarked MP and XLP on
a large dataset of decoy protein structures and showed that
our scores outperform previously developed scores. We
then tested our methodology on three proteins having an
open and closed conformation in the Protein Data Bank:
Complement component 3 (C3), luciferase, and glutamine-
binding periplasmic protein, first generating ensembles
using AF2, which were then screened for the open and
closed conformations using experimental XL-MS data. In
five out of six cases, the most accurate model within the
AF2 ensembles—or a conformation within 1 Å of this
model—was identified using crosslinks, as assessed
through the XLP score. In the remaining case, only the
monolinks (assessed through the MP score) successfully
identified the open conformation of glutamine-binding
periplasmic protein, and these results were further
improved by including the “occupancy” of the monolinks.
This serves as a compelling proof-of-concept for the
effectiveness of monolinks. In contrast, the AF2 assess-
ment score was only able to identify the most accurate
conformation in two out of six cases. Our results highlight
the complementarity of AF2with experimentalmethods like
XL-MS, with the MP and XLP scores providing reliable
metrics to assess the quality of the predicted models. The
MP and XLP scoring functions mentioned above are avail-
able at https://gitlab.com/topf-lab/xlms-tools.

AlphaFold2 (AF2) has revolutionized structural biology with
unprecedented accuracy in protein structure prediction, even
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on sequences for which related structures are unavailable (1).
AF2 has been used to exhaustively predict the structures of
more than 200 million UniProt sequences (2), which is both an
invaluable resource to the structural biology community, as
well as a test of AF2’s current structure prediction capacity. In
particular, it has been shown that AF2 predicts ordered protein
domain structures well but performs less well on proteins with
predicted flexibility or disorder (3, 4). A possible cause is that
AF2 and other protein structure prediction approaches have
been trained with the assumption that one protein sequence
corresponds to one structure, something we know to be un-
true for a wide variety of proteins, such as molecular switches
which transition between two different conformations as part
of their function (4, 5), as well as proteins that are either fully or
partially disordered. The issue is compounded by the fact that
the Protein Data Bank (PDB) (6)—the protein structure data-
base used to train structure prediction models—is biased to-
ward proteins that are relatively ordered, since disordered
regions are usually recalcitrant to X-ray crystallography, and
are thus poorly represented (7). In addition, proteins that have
multiple possible states resulting from domain rearrangements
(e.g., upon binding to other proteins) may not have all of their
conformations documented in the PDB.
To its credit, AF2 outputs error estimates for its structure

predictions and usually assigns low confidence to intrinsically
disordered regions of a protein. In the case of molecular
switches that have relatively rigid domains that undergo
interdomain movements, AF2’s predicted aligned error is
sometimes predictive of boundaries between domains, but
not always (Fig. 1A).
Thus, experimental methods that can capture protein

dynamics remain critical in a post-AF2 world. For example, in
crosslinking mass spectrometry (XL-MS), proteins are incu-
bated at near-physiological conditions with chemical
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FIG. 1. AlphaFold2 and XL-MS can be combined to model conformations of flexible proteins. A, the glutamine-binding periplasmic
protein (QBP) is known to have an open and closed conformation in the PDB, but AlphaFold2 (AF2) only predicts the closed conformation by
default, with high confidence. Blocks of high predicted aligned error (PAE) typically indicate boundaries between domains, but QBP was pre-
dicted as a single, low PAE block, with the higher PAE region (white on plot) caused by the unfolded N terminus. B, crosslinks occur when both
ends of a chemical crosslinker (red) bond covalently with the protein, while monolinks involve only one attachment site. The Euclidean distance
(ED) is the shortest path between the crosslinked C⍺ atoms, while the solvent-accessible surface distance (SASD) is the shortest path between
the crosslinked C⍺ atoms along the surface of the protein. C, our approach for flexible protein modeling involves acquiring XL-MS data in the
form of monolinks (a) and crosslinks (bc) from the open and closed conformations, while predicting an ensemble of models using AlphaFold2
with shallow multiple sequence alignments (≤64 sequences). The AF2 models are scored by how well they match XL-MS data from each
conformation, using the monolink (MP) and crosslink probability (XLP) scores described in Experimental Procedures. XL-MS, crosslinking mass
spectrometry.

Modeling flexible proteins with AlphaFold2 & crosslinking MS
crosslinkers such as the most commonly used reagents dis-
uccinimidyl suberate (DSS) and bissulfosuccinimidyl suberate
(BS3), which both bind with highest affinity to lysine residues
on the protein surface (8). The linker may attach at only one
end, giving rise to a monolink, or both ends of the same linker
may attach to different parts of the protein, giving rise to a
crosslink (Fig. 1B). Analysis of the linker attachment sites by
mass spectrometry (MS) gives information about what parts of
the protein are on the surface. Additionally, crosslinks can
constrain the maximum distance between the two sites on the
protein where they are attached, since the linker has a defined
length (11.4 Å for DSS and BS3) (9). The maximum C⍺–C⍺
distance spanned by a particular crosslinker has thus been
described as the sum of the crosslinker length and the side
chain lengths of the two linked residues (10), along with a
2 Mol Cell Proteomics (2024) 23(3) 100724
tolerance of 3 Å to account for side chain flexibility and atomic
model resolution, resulting in a maximum distance of around
30 Å (11). Crosslinks have been used to evaluate protein
structure models by either flagging maximum distance viola-
tions, where the maximum C⍺–C⍺ Euclidean distance (ED)
that can be spanned by the linker is exceeded (12–15), or by
more sophisticated scoring functions that are based on the
solvent-accessible surface distance (SASD) (Fig. 1B). The
SASD, while more time-consuming to compute, is a better
approximation of physical conditions and was shown to
perform better than ED in distinguishing near-native protein
structures from a group of decoys (16–20).
The primary tradeoff of methods like XL-MS that can be

performed in solution is that they typically do not give atomic
resolution information. For this reason, a common
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Modeling flexible proteins with AlphaFold2 & crosslinking MS
experimental pipeline when studying flexible proteins is to
combine both high-resolution structural information from X-
ray crystallography, for example, with measurements in so-
lution such as small-angle scattering to quantify flexibility
and XL-MS or FRET to give distance constraints that might
not be present in the crystal conformation. In the absence of
experimentally determined structures, homology-based
models of proteins have also been used in combination
with distance constraints measured in solution in order to
model the structure of flexible proteins. However, with the
advent of deep learning-based protein structure prediction
methods such as AF2, this pipeline could be performed on
proteins that have no sequence homology to structures in the
PDB or proteins for which only some of the conformations
are known.
In this paper, we present how XL-MS data can be used to

supplement structure predictions from AF2, particularly on
flexible proteins (Fig. 1C). It has previously been shown that
AF2 generates a wider variety of conformations when using a
shallow multiple-sequence alignment (MSA) than when not
limiting alignment depth (21). We leverage this observation to
generate an ensemble of conformations for a set of flexible
proteins that have an “open” and a “closed” conformation
deposited in the PDB. We screened these AF2 predictions
using experimental XL-MS data, with two functions we have
developed to score crosslink and monolink information, that
make use of the probabilities of spanning distance between
crosslinked residues and the depth of the monolinked/cross-
linked residue from the surface of the protein. We show that
our scores are able to select for models that are near the open
and closed conformations from among the AF2 ensembles,
provided that AF2 was able to predict these conformations.
Furthermore, we present a case in which monolinks are more
informative than crosslinks in selecting the experimentally
relevant conformer from an ensemble. Thus, we propose a
general pipeline to model flexible proteins by first generating
an ensemble with AF2, then identifying the conformer present
in a given experimental condition using crosslinks and mon-
olinks from XL-MS.
E (r ) = 1
1 + e0.33r−7

FIG. 2. Empirical distributions of depths and C⍺⍺–C⍺⍺ Euclidean
distances of DSS- and BS3-crosslinked lysine residues. Across 43
PDB structures, 831 unique lysine residues were found with an
attached linker out of a total of 4162 lysines. A, depth distributions
of tagged and untagged lysines were fit with a negative power
function, while (B) the C⍺–C⍺ distance distribution was fit with a
sigmoidal function as shown. BS3, bissulfosuccinimidyl suberate;
DSS, disuccinimidyl suberate; PDB, Protein Data Bank.
EXPERIMENTAL PROCEDURES

Defining Scoring Functions Using XL-MS Data

We defined two new scoring functions to distinguish near-native
structures from a set of decoy protein structures, based on distribu-
tions of crosslinks and monolinks obtained from XL-MS experiments.
Experimentally determined BS3 and DSS crosslinks and monolinks
that were mapped to PDB structures were first obtained from the
XlinkAnalyzer database (https://www.embl-hamburg.de/XlinkAnalyzer/
database.html) (22). A total of 831 unique lysine residues across 43
PDB structures were found to be tagged with either BS3 or DSS. The
depths of both tagged and untagged lysines were computed in the
respective PDB structures using the program EDTSurf (https://
zhanggroup.org/EDTSurf/), which is a fast algorithm for generating
protein surfaces, as well as calculating depths to this surface, using
Euclidean distance transform (23, 24). The following parameters were
used to run EDTSurf: probe radius = 2.5, scale = 0.5.

The residue depths computed by EDTSurf were compared to those
obtained from DEPTH (http://cospi.iiserpune.ac.in/depth/), which is a
more accurate but slower method that places the protein structure in a
random orientation in a box of explicit solvent for several iterations,
while computing the distance of each residue from the nearest bulk
solvent (25). Using the XlinkAnalyzer dataset, we show that the faster
EDTSurf was able to approximate DEPTH to a Pearson cross-
correlation (CC) coefficient of 0.97 (supplemental Fig. S1). Thus, un-
less otherwise stated, residue depths mentioned in this work were
computed with the Euclidean distance transform algorithm.

The depth distribution of tagged lysines is shown in Figure 2A,
along with the depth distribution of all lysines across the 43 PDB
structures assessed. In addition, the EDs between C⍺ atoms of
crosslinked lysines were computed, with the distribution of distances
shown in Figure 2B. The depth distributions were fitted with a negative
power function, while the C⍺–C⍺ distance distribution was fitted with a
sigmoidal function using SciPy v1.5.2 (https://scipy.org/) (26) (Fig. 2).
Mol Cell Proteomics (2024) 23(3) 100724 3
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The monolink probability (MP) score for a monolink i in a given
structure is thus defined as follows:

MPi =T(di)
A(di)δdi−

di

max(d) (1−δdi ),where δdi = {1, if di ≤ 15,
0, if di > 15.

(1)

with the first term corresponding to the ratio between tag proba-
bility T and lysine occurrence A at a given depth di in the structure
(Fig. 2A), and the second termbeing apenalty formonolinks that are
a depth of more than 15 Å in the structure, with the 15 Å cut-off set
empirically from the observed residue depths. The MP score of a
given model is the weighted average MP score of all monolinks
found in the structure:

MP=∑wiMPi

∑wi
(2)

The weight wi of each monolink can be 1, if we are considering only
the presence or absence of monolinks, but can also reflect relative
abundance. In particular, we use occupancy oi defined as follows:

wi =oi = Imono,i

Imono,i + Iunmod,i
(3)

where Imono,i is the monolinked peptide precursor ion intensity,
and Iunmod,i is the corresponding unmodified peptide ion intensity.

The crosslink probability (XLP) score for a crosslink spanning resi-
dues i and j in a given structure is then defined as:

XLPij = E(rij)MP(di)MP(dj)ωrij δdiδdj −

rij(1 − ωrij )
2*max(r)

−

di(1 − δdi ) − dj(1 − δdj )
4*max(d)

where ωrij = {1, if rij < 33,
0, if rij ≥ 33. (4)

with the first term corresponding to the likelihood E of the C⍺–C⍺
distance rij being spanned by a BS3/DSS crosslink (Fig. 2B), weighted
by the monolink probability MP at both residues i and j. The second
term is a penalty for C⍺–C⍺ distances equal to or exceeding 33 Å,
while the third term is a penalty for either residue exceeding a
maximum depth of 15 Å, as in the MP score. A threshold of 33 Å was
set, as this is the maximum spanning distance for DSS and BS3
previously observed (13, 19). The weights for the penalty terms were
set to 0.5 for C⍺–C⍺ maximum distance violations and 0.25 for
maximum residue depth violations. Similar to the MP score, XLP is
averaged across all crosslinks found in the structure.

XLP=∑wijXLPij

∑wij
(5)

The weight wij of each crosslink can be 1, if we are considering only
the presence or absence of crosslinks, but can also reflect relative
abundance (e.g., the product of the occupancies of each crosslinked
position, wij = oioj ).

Unlike the monolink (27) and crosslink (19) scores we previously
developed, both MP and XLP were formulated to scale smoothly
from −1 to 1, with a score of 1 indicating that the given structure
provides the highest probability that the given monolink or crosslink
can be formed. Having such a defined scale means that the magnitude
of the scores of a single model is independent of the distribution of
other predicted models, and thus does not depend on the assumption
that the models are normally distributed nor that the ensemble
4 Mol Cell Proteomics (2024) 23(3) 100724
contains the correct model, unlike in other methods of score
normalization, such as the computation of a z-score.

Benchmarking the MP and XLP Scores

The MP and XLP scores were evaluated on the structure decoy
dataset 3DRobot, a set of 200 nonhomologous proteins randomly
selected from the PDB, each with 300 structural decoys with RMSD
from the native structure ranging from 0 to 12 Å (28). Sets of “simu-
lated” crosslinks and monolinks were generated at different recovery
rates using the native structures in the 3DRobot dataset. Similar to our
previous work (27), we defined simulated monolinks as lysine residues
in the native structure with a depth of 6.25 Å or less, as computed by
DEPTH (25). Simulated crosslinks were defined as pairs of lysine
residues in the native structure with a depth of at most 6.25 Å, and
with a C⍺–C⍺ SASD of at most 33 Å, computed from the structure with
Jwalk (19). We simulated a range of recovery rates (i.e., the fraction of
detected crosslinks from all possible crosslinking events) from 10 to
100%, in increments of 10%. At each recovery rate, all possible
crosslinking events were randomly sampled 1000 times, to simulate
variation that may occur in XL-MS experiments. Similarly, we gener-
ated simulated monolinks in this bootstrapped manner, by randomly
sampling all possible monolinks 1000 times at a range of recovery
rates of 10 to 100%. To determine the XLP score’s robustness to false
crosslinks, over length crosslinks (SASD ≥ 33 Å) were also added in
increasing fractions, from 10 to 100%, at each crosslink recovery rate.

At each recovery rate, the MP and XLP scores were calculated for
each 3DRobot structure, using Equations 2 and 5 (with all wi = 1 and
wij = 1), bootstrapped across the 1000 random samplings. These
bootstrapped MP and XLP scores were compared with a similarly
bootstrapped MNXL (matched and nonaccessible crosslinks) score for
each model in the 3DRobot dataset.

MNXL is defined as follows:

MNXL(i, j) = {N(18.62,35.94)(rij), if rij ≤ 33, and i and j are solvent
- accessible,

−1, else.
(6)

where i and j are the crosslinked residues, rij is the SASD between
them, and N(18.62,35.94) is the normal distribution calculated from all
SASDs ≤ 33 Å from the crosslink database XLdb (19).

A well-performing scoring function assigns higher ranks to struc-
tures that closely resemble the native structure and can effectively
distinguish near-native structures from less accurate decoys. To
assess ranking performance, we calculated the Spearman CC be-
tween the scores and the RMSD from the native structure. In addition,
we measured each score’s ability to identify near-native structures by
computing the area under the receiver operating characteristic curve
(AUC). The receiver operating characteristic curve plots the relation-
ship between the number of true and false positives at different
scoring thresholds. In our case, true positives were defined as near-
native models (template modeling-score ≥ 0.9) scoring above the
threshold, while false positives were non-native models (template
modeling-score <0.9) also scoring above the threshold (29).

To determine if there were significant performance differences be-
tween XLP and MNXL, we compared the Spearman CC and AUC at
each recovery rate using the Wilcoxon signed-rank test implemented
in SciPy v1.5.2 (26).

Collating an Experimental XL-MS Dataset of Flexible Proteins

We compiled a test dataset of three proteins with experimental BS3
and/or DSS XL-MS data from the literature (supplemental Table S1).
Each protein in the dataset had at least one “open” and one “closed”
conformation in the PDB, which were defined based on their radius of



TABLE 1
Flexible proteins with PDB structures and experimental XL-MS data

Protein name (UniProt ID)
RMSD between
conformations (Å)

PDBID,
open

Rg, open (Å)
PDBID,
closed

Rg,
closed (Å)

Experimental
XL-MS data

Complement component
3, C3 (P01024)

26.9 2i07 (54) 46.2 2a73 (55) 42.9 crosslinks
(open and closed)

(30)
Luciferase (P08659) 5.4 1lci (56) 24.6 4g36 (57) 23.3 crosslinks

(open and closed)
(32)

Glutamine-binding
periplasmic protein (P0AEQ3)

5.3 1ggg (58) 19.0 1wdn (59) 17.5 crosslinks (closed)
(31) monolinks
(open, this study)

PDB, Protein Data Bank; Rg, radius of gyration; XL-MS, crosslinking mass spectrometry.

Modeling flexible proteins with AlphaFold2 & crosslinking MS
gyration, Rg (30–32). Two of the proteins—luciferase and glutamine-
binding periplasmic protein (QBP)—consist of a single chain, while
C3 is a protein complex consisting of two chains, one of which un-
dergoes a large conformational change (>20 Å). Details of the dataset
are summarized in Table 1. For QBP, no crosslinks or monolinks were
reported for the open conformation. Simulating crosslinks and mon-
olinks using our criteria from the previous section, we found that QBP
has one lysine that is exposed only in the open conformation. To test
whether this lysine is sufficient to distinguish QBP open conformation,
QBP was produced and purified for subsequent XL-MS experiments,
as described below.

Cloning, Expression and Purification of QBP

To obtain a C-terminal 6xHis-tagged QBP variant for purification,
the ORF of QBP was amplified from Escherichia coli K12 DNA and
cloned into bacterial expression vector pET28a-LIC (Addgene
#26094). Transformed E. coli BL21 (DE3), cells were cultured in Terrific
Broth (ROTH) at 37 ◦C to an A600 = 0.8, followed by IPTG (500 μM)
induction of QBP expression for 5 h at 30 ◦C. Subsequently, cells were
harvested, resuspended in lysis buffer (50 mM NaH2PO4; 300 mM
NaCl; 10 mM imidazole; pH 8: supplemented with protease inhibitor
cocktail [cOmplete, Roche], DNaseI [ITW REAGENTS], lysozyme
[Sigma-Aldrich]), and sonicated. QBP was purified from whole-cell
lysate in a three-step process using an ÄktaGo chromatography
system (Cytiva). First, cleared lysate was loaded onto a HisTrapHP
column (Cytiva) and washed with buffer A (50 mM NaH2PO4; 300 mM
NaCl; 20 mM imidazole; pH 8). QBP was eluted in a buffer B (50 mM
NaH2PO4; 300 mM NaCl; 500 mM imidazole; pH 8). Second, for
release of bound glutamine guanidine hydrochloride was added to a
final concentration of 6 M. Lastly, QBP was gradually dialysed in size-
exclusion buffer (20 mM Hepes pH 7.5; 150 mM NaCl) and purified
through size-exclusion chromatography (Superdex200, Cytiva).
Samples of E. coli cultures were harvested and resuspended in E. coli
lysis reagent (NEB). Lysates and purified proteins were separated by 4
to 12% Bis-Tris SDS-PAGE (Thermo Fisher Scientific) and visualized
by Quick Coomassie stain (SERVA, supplemental Fig. S2).

Sample Crosslinking and Preparation for MS

QBP was buffer-exchanged into 20 mM Hepes, pH 7.5, at 4 ◦C
(repeated for ten cycles) to remove salt using an Amicon Ultra-0.5
Centrifugal 10 kDa filter unit (Merck), before dilution to 5.00 μM in
20 mM Hepes. For glutamine-bound QBP, 5 mM glutamine was added
prior to crosslinking. Next, 50 mM BS3-d0 crosslinker was added to
glutamine-bound QBP, while 50 mM BS3-d4 crosslinker was added to
glutamine-free QBP. Samples were then incubated at room temper-
ature for 120 min before quenching with 20 mM ammonium
bicarbonate. The glutamine-bound QBP with BS3-d0 and glutamine-
free QBP with BS3-d4 were pooled before MS analysis. Samples
were reduced with 8 mM DTT and incubated at 37◦C for 45 min before
alkylation using 20 mM iodoacetamide with incubation in darkness for
45 min, followed by a 1:5 dilution with 50 mM ammonium bicarbonate.
Trypsin (Promega) was then added at a Trypsin:QBP mass ratio of
1:50 and incubated overnight at 37 ◦C. The digestion was then
quenched by addition of trifluoroacetic acid to a final concentration of
0.50%. Samples were ZipTip desalted (Merck) before reconstitution in
1% formic acid at a concentration of 1.0 μg/μl.

LC-MS Setup and Data Collection

An UltiMateTM 3000 RSLCnano liquid chromatography system
(Thermo Fisher Scientific), with a 50 cm μPAC Neo HPLC analytical
column (COL-NANO050NEOB) and a 0.075 mm × 20 mm trap car-
tridge (Acclaim PepMap C18 100 Å, 3 μm), was connected to a Sili-
caTip emitter. Column temperature was set at 45 ◦C and column flow
rate was set to 300 nl/min. Mobile phase A (0.1% formic acid, 3.2%
acetonitrile) and mobile phase B (96.8% acetonitrile/0.1% formic acid)
were applied with an elution gradient from 5.0 to 35.0% mobile phase
B over 20 min. Total run time per sample was 30 min.

A Thermo Fisher Scientific Orbitrap Eclipse Tribrid mass spec-
trometer was used for this work. The mass spectrometer was exter-
nally calibrated using PierceTM FlexMixTM calibration solution.
nanoESI was performed by the application of a voltage to a SilicaTip
emitter, via a HPLC liquid junction cross. Spray stability and intensity
was optimized by varying the SilicaTip electrospray voltage (1 kV–
10 kV) and varying SilicaTip positioning (in the x, y, and z dimensions).
Transfer capillary temperature was set to 275 ◦C, RF lens was set to
40%, precursor ion mass spectrum was acquired at a resolution of
120,000 with a mass range of 380 to 1400 m/z and a precursor ion
charge state range of 3+-8+. MS1 spectra were recorded with a data-
dependent analysis Top20 method, automatic gain control was set to
a target of 400,000 (100%), maximum injection time mode was set to
Auto, precursor ions were isolated with a 1.6 m/z window using the
quadrupole mass filter and monoisotopic precursor selection was
enabled. For Orbitrap mass analysis based MS2 acquisition, stepped
higher energy collision induced dissociation was applied with a
normalized energy of 25, 35%. Orbitrap resolution was set to 30,000,
mass range was set to normal, automatic gain control was set to
200%, and maximum injection time was set to 54 ms.

Experimental Design and Statistical Rationale

For each condition (with versus without glutamine), two experi-
mental replicates were performed, with each experimental replicate
injected into the LC-MS/MS in technical triplicate. All validated
Mol Cell Proteomics (2024) 23(3) 100724 5
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monolinked peptides were present in all three technical replicates of
both replicates. This high stringency validation criterion ensured good
reproducibility and statistical robustness within the experimental re-
sults. Data analysis was performed using Thermo Fisher Scientific
Proteome Discoverer 2.5 (https://www.thermofisher.com/uk/en/home/
industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-
lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-
software), with the Sequest HT search engine node used to search the
RAW files generated from LC-MS/MS. Default settings were selected
unless otherwise stated. RAW files were searched against a bespoke
FASTA file containing the QBP sequence (UniProt accession P0AEQ3)
and 200 randomly selected protein sequences from Homo sapiens
UniProt version July 2022. Fixed value peptide-spectrum match vali-
dator node was used with false discovery rate (FDR): 0.05 (target-
decoy method). Modifications included dynamic methionine oxidation
(+15.995 Da), static cysteine carbamidomethylation (+57.021 Da),
dynamic N-terminal acetylation (+42.0106 Da), dynamic lysine DSS-d0
amidated monolink (+155.095 Da), and dynamic lysine DSS-d4 ami-
dated monolink (+159.120 Da) (note that search for DSS modification
is identical to BS3). Precursor ion mass tolerance was set to 10 ppm,
and fragment ion mass tolerance was set to 0.02 Da. Threshold score
for accepting individual spectra was set to XCorr (Sequest search
engine): equal to or greater than 3.00. For each validated monolinked
lysine, its corresponding occupancy was determined using Equation
3. For all precursor ions used for this purpose, ion intensity was ac-
quired over the liquid chromatography retention time range within
which the precursor ion was eluted into the mass spectrometer.
Precursor ion intensity for each peptide was obtained directly from
XCalibur, and monolinked and corresponding nonmodified peptide
precursor ions were always selected from the same MS RAW file. The
resulting monolinks and occupancy values are listed in supplemental
Table S1, which includes the lysine K:137 that was predicted to be
exposed in the open conformation but occluded in the closed
conformation of QBP (annotated MS/MS fragmentation spectrum in
supplemental Fig. S3). All peptide and protein identifications infor-
mation has been deposited on ProteomeXchange, Proteomics Iden-
tifications Database (PRIDE) dataset identifier: PXD046392.
Predicting an Ensemble of Conformations with AF2 and Selecting
Near-native Models with XLP and MP

Conformational ensembles were predicted for luciferase and QBP
using a modified version of AlphaFold v2.1.1 (1), which limits the MSA
depth, resulting in a greater variation in predicted conformers than the
default conditions (21). Alignment depths of 8, 16, 32, and 64 were
used for template-free AF2 prediction for a total of 200 predicted
models (50 per alignment depth).

For C3, which consists of two chains, AlphaFold-Multimer (AF-MM)
v2.1.1 (33) was employed to model the complex. In this case, ten
conformers were predicted per model, resulting in 50 AF-MM models.
Alignment depth was not limited for C3, as the feature was not yet
implemented for AF-MM. To avoid bias toward PDB-deposited
structures, the max-template-date parameter was set to a date prior
to the first deposited related structure, according to PDB’s structural
similarity query function (34).

The generated AF2 models were filtered based on their predicted
template modeling (pTM) scores, an internal measure of modeling
confidence in AF2. The distributions of pTM scores for each protein in
the test dataset can be found in supplemental Fig. S4, along with the
minimum score threshold used to remove models from further
analysis.

Subsequently, XLP and MP scores were computed for each AF2
model and conformation. The AF2 models were ranked by decreasing
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XLP and MP scores, and the top-scoring models for each protein and
conformation were visualized using UCSF ChimeraX (35).

Interpolating conformational ensembles for C3 and luciferase

As a theoretical exercise, to address the potential impact of limited
sampling by AF2, we created structural ensembles for C3 and lucif-
erase by morphing the structures from the open to closed confor-
mation. This was accomplished using the morph function in ChimeraX,
which generates intermediate conformations by interpolating along
internal coordinates. The resulting ensembles, consisting of 50 models
each, were subjected to energy minimization using GROMACS
v2018.8 (https://www.gromacs.org/) with the AMBER94 force field (36,
37). Subsequently, the XLP score was applied to these morphed en-
sembles using experimentally determined crosslinks obtained from
both the open and closed conformations. The top-scoring models
were visualized using ChimeraX for further analysis.

RESULTS

Benchmarking monolink and crosslink scores with
simulated XL-MS data

We first evaluated the performance of our model assess-
ment scores, MP and XLP, using simulated monolink and
crosslink data, by measuring the ranking accuracy (Spearman
CC of the scores versus RMSD) and near-native selection
(AUC) of each score on the 3DRobot dataset.
Figure 3A illustrates the performance of MP and XLP

scores, compared to the matched and nonaccessible cross-
link score (MNXL). All scoring functions demonstrated
improved ranking accuracy (CC) and near-native structure
selection (AUC) with increasing recovery rates. This is ex-
pected, as more crosslinks or monolinks provide additional
constraints, narrowing down the range of possible confor-
mations. Notably, XLP outperformed MNXL in both ranking
accuracy and near-native selection in the low crosslink re-
covery regime. Removing depth information from XLP, which
leaves only the ED, resulted in decreased performance
compared to both XLP and MNXL, indicating the importance
of depth information.
The monolink score MP showed the lowest performance

among the assessed scores. However, it still demonstrated
near-native selection accuracy comparable to XLP without
depth information, particularly at higher recovery rates.
Adding increasing fractions of over length crosslinks to

simulate an increasing FDR reduces XLP score performance
proportionally. At low crosslink recovery rates (<0.4), XLP re-
mains moderately discerning (AUC >0.7) if a maximum of 10%
of the crosslinks are over length. At higher recovery rates, XLP
remains moderately discerning at up to 30% FDR (Fig. 3B).

Conformational Variability Predicted by AF2 Using Shallow
MSAs

We employed AF2 to predict ensembles of models for C3,
luciferase, and QBP using shallow MSAs as described in the
Experimental Procedures. Figure 4A displays the resulting AF2
ensembles, illustrating each model's RMSD from its

https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software
https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software
https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software
https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software
https://www.gromacs.org/
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FIG. 3. Crosslink and monolink-based scores can distinguish near-native structures in a simulated benchmark, with some tolerance
for error. A, performance of crosslink and monolink scoring functions in terms of ranking accuracy and near-native structure selection in the
3DRobot dataset across a range of 10 to 100% croslink or monolink recovery. Overall, XLP performs best among the scores, particularly at low
crosslink recovery rates (≤30%). Orange asterisks denote recovery rates at which XLP significantly outperforms MNXL, while black asterisks
denote the reverse (***p < 0.001, **p < 0.01, and *p < 0.05). Removing depth information from XLP degrades performance to below MNXL, but
above the MP score. B, adding increasing fractions of false crosslinks to simulate a false discovery rate (FDR) results in worse XLP performance
in both median ranking accuracy and median near-native selection across the 200 proteins in the 3DRobot dataset. The blue line delineates
combinations of FDR and crosslink recovery, for which the AUC is moderately discerning of near-native structure (AUC ≥ 0.7). At low crosslink
recovery rates, XLP remains moderately discerning at up to 10% FDR, and can tolerate up to 30% FDR at higher crosslink recovery rates. AUC,
area under the receiver operating characteristic curve; MNXL, matched and nonaccessible crosslink score; XLP, crosslink probability.

Modeling flexible proteins with AlphaFold2 & crosslinking MS
respective open and closed PDB conformations. Notably,
near-native models were observed for all cases except for the
closed conformation of C3 and the open conformation of
luciferase. Restricting MSA depth for luciferase and QBP
resulted in an increase in model variability, compared to
running AF2 under default conditions, where only the closed
conformation was predicted (supplemental Fig. S5).
An interesting observation was that the models for C3 and

QBP exhibited a linear distribution between the open and
closed conformations (Fig. 4A). This suggests that these en-
sembles encompass a range of conformations, including
near-open and near-closed states, as well as intermediate
configurations between these “endpoints.” However, for
luciferase, the majority of model variation occurred away from
the open-to-closed axis, albeit closer to the closed confor-
mation. This indicates the presence of potentially misfolded
structures. This observation is further supported by the 3D
plot in supplemental Fig. S6, which demonstrates relatively
low pTM scores off this axis for luciferase and QBP, indicating
that AF2 is less confident about these off-axis models.

Filtering conformational variability from AF2 ensembles
using experimental crosslinks and monolinks

We calculated XLP and MP scores for each AF2 model
using experimental XL-MS data from either the open or closed
conformation of C3, luciferase, and QBP. In all cases, the
model with the highest XLP or MP score corresponded to a
near-native structure, or, if a near-native model was not pre-
dicted by AF2, to a conformation within 1 Å of the most ac-
curate model in the ensemble (Figs. 5 and 6). The near-native
selection accuracy, as measured by the AUC, ranged from
0.69 for the closed conformation of QBP to ≥ 0.85 for the
Mol Cell Proteomics (2024) 23(3) 100724 7
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FIG. 4. The XLP andMP scores are indicative of near-nativeness in an AF2-generated structural ensemble. A, variation across predicted
AF2 models for C3, luciferase, and QBP, expressed as the RMSD from their respective open and closed PDB conformations. Each point
represents an AF2 model. Yellow arrows point to the Top 1-XLP/MP scoring models. In all cases, XLP or MP was either able to select a near-
native model or in the absence of near-native structures, to select one of the lower RMSD structures from the set of AF2 predictions. For C3 and
QBP, the AF2 structures lie along a straight line between the open and closed conformations, indicating that the AF2 ensemble might represent
physically relevant intermediate structures between the two conformations. B, the XLP and MP scores have a roughly proportional relationship
with model accuracy, and are thus inversely proportional to RMSD from the closed (left) and open (right) conformations. The corresponding
RMSD versus pTM plots are shown for comparison. The PDB conformations are indicated by yellow arrows. Near-native selection (AUC) and
ranking accuracy (CC) are indicated along each case (na, stands for no near-native structures found). The XLP and MP scores had better AUC
and CC than the pTM score from AF2 in all cases except QBP closed conformation. AF2, AlphaFold2; AUC, area under the receiver operating
characteristic curve; CC, cross-correlation; MP, monolink probability; PDB, Protein Data Bank; pTM, predicted template modeling; QBP,
glutamine-binding periplasmic protein; XLP, crosslink probability.

Modeling flexible proteins with AlphaFold2 & crosslinking MS
other cases where AF2 predicted a near-native model
(Fig. 4B). In contrast, when using the pTM score, the AUC
varied across different conformations, showing selective
behavior for the open conformation of C3 and the closed
conformation of QBP (AUC ~0.9), antipredictive behavior for
the open conformation of QBP (AUC = 0.31), and near-random
performance for the closed conformation of luciferase (AUC =
0.47). XLP and MP scores also exhibited more accurate
ranking of models compared to pTM, as measured by
Spearman CC, except for the closed conformation of QBP
(Fig. 4B). These findings demonstrate that the XLP and MP
scores enable the identification of the conformer represented
by a given set of XL-MS data from an ensemble of structural
models. In contrast, the use of pTM alone is, at best, only
selective for one conformation.
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For all cases in our test dataset, we considered the mono-
links and crosslinks as equally weighted events (all wi = wij =
1 when calculating the MP and XLP scores). In the case of
QBP open conformation, we also collected quantitative data
and computed the occupancy of each monolink (Equation 3).
Adding the occupancy values as weights improved the near-
native selection and ranking accuracy from AUC = 0.80 and
CC = 0.32 for the equally weighted version (Fig. S7), to AUC =
0.85 and CC = 0.40 for the occupancy-weighted MP score
(Fig. 4B). This suggests that including occupancy might have a
helpful effect on the scores but whether this effect generalizes
will have to be benchmarked using a larger experimental XL-
MS dataset.
It is self-evident, however, that our scoring functions cannot

select for the correct model if it was not sampled by AF2. To



FIG. 5. The XLP score selects for the closed conformation from among the AF2 ensembles of C3, luciferase, and QBP. The PDB
models are shown as reference, along with three representative structures from the AF2 ensembles: the top XLP or MP scorer, the most ac-
curate (lowest RMSD from PDB structure), and the model with the highest pTM score. The corresponding XLP scores and RMSD from the target
conformation are shown alongside each model, with the rank of the model in terms of accuracy shown below each structure in brackets. In each
case, the experimentally derived crosslinks are shown, colored by Cα-Cα distance (blue: <21 Å, yellow: 21–33 Å, red >33 Å). AF2, AlphaFold2;
MP, monolink probability; PDB, Protein Data Bank; pTM, predicted template modeling; QBP, glutamine-binding periplasmic protein; XLP,
crosslink probability.

Modeling flexible proteins with AlphaFold2 & crosslinking MS
address this issue in the case of C3 and luciferase, we dis-
entangled the effect of poor AF2 sampling by building an
interpolated ensemble consisting of the open and closed
conformation and intermediate structures between them
(supplemental Fig. S8A). Using these interpolated ensembles
resulted in very good performance of XLP in ranking (CC >
0.89), and near-native selection (AUC >0.95) for C3 open and
closed, and luciferase open conformations, and reasonable
ranking and near-native selection for luciferase closed
conformation (CC = 0.68, AUC = 0.73) (supplemental
Fig. S8B). For all cases, the top-XLP scoring models were
near-native and within the top-10 models in terms of RMSD to
the target (supplemental Fig. S8C).

DISCUSSION

AF2 represents a paradigm shift in structural biology in
many ways, but it does not preclude the use of experimental
methods, particularly in the case of flexible proteins. We show
here that AF2 can fit very well in an integrative modeling
pipeline for flexible proteins by providing an ensemble of
structures that can be evaluated using distance constraints
and solvent accessibility information from XL-MS.
In developing scoring functions based on XL-MS data, we

wanted one that was more nuanced than just a count of
maximum distance violations (12–15), to rank structures that
are all possible within the relatively large distance constraint
imposed by BS3 and DSS (13, 19). Within the umbrella of
existing crosslink-based scoring functions, those based on
SASD were found to perform better than ED (17–20). However,
SASD computation is more time-consuming, as it involves
tracing the possible paths of the crosslinker along the protein
surface, whereas ED only requires a single distance compu-
tation. This results in around a tenfold decrease in runtime
when using ED instead of SASD (supplemental Fig. S9).
According to our benchmark using simulated crosslinks, the

performance of the SASD-based score MNXL can be
approximated, and even exceeded, by our ED-based scoring
function XLP, thereby circumventing the need for more time-
consuming SASD computations and opening up the possi-
bility of using XLP to assess large conformational ensembles.
Mol Cell Proteomics (2024) 23(3) 100724 9



FIG. 6. The XLP and MP scores select for the open conformation from among the AF2 ensembles of C3, luciferase and QBP. The PDB
models are shown as reference, along with three representative structures from the AF2 ensembles: the top XLP or MP scorer, the most ac-
curate (lowest RMSD from PDB structure), and the model with the highest pTM score. The corresponding XLP or MP scores and RMSD from the
target conformation are shown alongside each model, with the rank of the model in terms of accuracy shown below each structure in brackets. In
each case, the experimentally derived crosslinks (for C3 and luciferase) or monolinks (for QBP) are shown. Crosslinks are colored by Cα–Cα
distance (blue: <21 Å, yellow: 21–33 Å, red >33 Å), while monolinks are colored by residue depth (blue: ≤ 6.25 Å, red: >6.25 Å). AF2, AlphaFold2;
QBP, glutamine-binding periplasmic protein; PDB, Protein Data Bank; pTM, predicted template modeling; XLP, crosslink probability.

Modeling flexible proteins with AlphaFold2 & crosslinking MS
These results are consistent with our previous findings that
show that including solvent accessibility can improve the
performance of an ED-based scoring function to almost the
level of the SASD-based scoring function MNXL (19, 38).
Instead of solvent accessibility, in our new scoring function we
used residue depth, resulting in improved performance of XLP
over MNXL, notably at low crosslink recovery rates of 30% or
less. Performance improvements in the low crosslink recovery
regime are particularly impactful, since experimental crosslink
recovery rates are typically reported to be in this range (17, 19,
38–40), particularly in the noisier conditions found in in situ
crosslinking (41, 42). We also showed that the XLP score re-
mains robust even when 10 to 30% of the crosslinks are over
length. This robustness to error is a useful attribute, especially
if there is conformational heterogeneity in the experimental
system, such that crosslinks from more than one conforma-
tion are detected. Based on the result, it is most likely safe to
speculate that as long as the crosslink heterogeneity does not
exceed approximately 30%, the XLP score can be used to
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select the dominant conformation without the need to partition
the crosslinks into mutually exclusive sets. The XLP score was
also shown to distinguish between different conformations of
the proteins in our test dataset using experimentally deter-
mined crosslinks, with the top scoring model in each case
either being the most accurate one or within 1 Å of the most
accurate model.
We also conceptualized and benchmarked a scoring

function based on monolinks, the MP score, which is a
measure of the likelihood that an amino acid at a certain
depth from the protein surface will be tagged with the
crosslink reagent. Previously, we have demonstrated that
although monolinks contain less information than crosslinks,
they can also be used to select for near-native structures
from a set of decoys, albeit at higher recovery rates of at
least 50% (27). Our current work has confirmed these pre-
vious results. Furthermore, the MP score was needed to
select for the open conformation of QBP as there were no
crosslinks found exclusive to this conformation. This is due
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to the small size of QBP, such that all possible crosslinking
events can be spanned by BS3/DSS whether in open or
closed conformation. What was informative in this case is the
reduced residue depth that occurs when previously inac-
cessible regions of the protein are exposed to solvent when it
is in the open conformation. Surprisingly, even one differ-
entially exposed lysine residue was sufficient to distinguish
the open conformation of QBP from the rest of the confor-
mational ensemble (Fig. 6 and supplemental Table S1),
indicating the potential of this approach in cases where more
numerous conformation-specific monolinks could be found.
Differential residue depth data can be obtained from experi-
ments such as hydrogen-deuterium exchange MS (43), but
one can also get this “for free” in XL-MS experiments in the
form of monolinks, which are currently not frequently used
for data analysis. We hope this demonstration of the
importance of monolinks will encourage experimentalists to
use monolink data more often and to deposit them in publicly
available databases such as the PRIDE (44).
We also tested the effect of adding quantitative data to our

scoring function by adding a weight (occupancy, defined in
Equation 3) to each monolink found in QBP open conforma-
tion, resulting in a marked improvement in both ranking and
near-native selection accuracy, compared to if the monolinks
were considered equally weighted events. While it may be
more physically accurate to model monolinking and cross-
linking events in this differentially probable, quantitative
manner, it remains to be seen whether this improvement will
generalize to a larger, experimental XL-MS dataset. None-
theless, it is a promising avenue that warrants future
investigation.
We have also observed, during both the benchmarking and

testing of XLP, that crosslink recovery is directly proportional
to the ranking accuracy and near-native selection. It has also
been previously shown that the location of crosslinkable sites
in the protein also limits their potential information content
(42, 45). For example, if both ends of a crosslink span a rigid
region of an otherwise flexible protein, then it would not
distinguish between different conformations of the protein.
This position dependence can be ameliorated by increasing
crosslink recovery with the use of crosslinking reagents with
different reactive end groups to increase the likelihood of
getting informative crosslinks in an XL-MS experiment.
Another way to increase the discerning power of XL-MS
based scoring functions is to use shorter crosslinkers,
thereby providing narrower ranges of distance constraints
(18, 46). This is particularly important to resolve the differ-
ences in conformation in a small protein like QBP in our
dataset. In particular, zero-length crosslinkers have been
described to not add any atoms of the crosslinked species,
such that distance restraints cannot exceed salt-bridge dis-
tances. However, zero-length crosslinkers have also been
shown to exceed their theoretical distance constraints and so
care must be taken when applying stringent distance
constraint criteria (47). Additionally, the inherent clustering of
acidic residues may lead to ambiguous site localization of
residues spanned by zero-length crosslinkers, further adding
some uncertainty to the distance constraint. To reconcile
these issues, a tolerance could be added to the maximum
allowed C⍺–C⍺ distance (similar to nonzero length cross-
links), as well as more stringent data acquisition and peptide
validation to add confidence to the localizations of cross-
linked residues (e.g. setting a XCorr threshold of 3.00 or
greater). Nonetheless, taking the crosslink spacer atoms out
of consideration would still result in around a 10 Å reduction
in maximum allowed C⍺–C⍺ distance compared to BS3/DSS,
thereby providing stricter modeling constraints in principle. It
should be noted, however, that since our proposed scoring
function is based on empirical distributions of spanned C⍺–
C⍺ distances, this distribution would have to be computed
separately for different crosslinking reagents, zero-length or
otherwise, thus further highlighting the need to deposit
experimental XL-MS data in PRIDE.
Thus we have quantified the performance of the XLP and

MP scores on a large simulated dataset at varying crosslink
and monolink recovery rates, and the robustness of the XLP
score in the presence of increasing fractions of false cross-
links. We also showed that the scores are also able to select
near-native or near-best models when using experimental
crosslink and monolink information. In practice, however, our
current approach has two main limitations. Firstly, while the
XLP and MP scores are a good measure of relative model
quality within an ensemble, it is difficult to set a threshold
score value that has both good precision and recall. Case in
point, setting the XLP score threshold to 0.6 would result in
the PDB model of luciferase closed conformation to be
considered incorrect (Fig. 5), while lowering the threshold to
0.2 to include this model would result in too many false pos-
itives for other proteins like C3 closed conformation, wherein
all of the XLP scores are above 0.6. This suggests that other
factors, such as linker length relative to protein size, might
play a role in determining which models can be considered as
high-confidence models, given a certain XLP or MP score.
Determining what these factors are is a logical next step to this
work.
Secondly, we are limited by the ability of structure pre-

diction software to predict conformational ensembles well. In
this case, running AF2 with a shallow MSA allowed the
endpoint PDB structures of QBP to be predicted, as well as
plausible intermediate structures. This is less the case for C3,
for which only models near the open conformation were
predicted, as well as some putative intermediate structures
but no conformations at or near the PDB closed conforma-
tion. The lack of AF2 models near the closed conformation is
hinted at by the two maximum distance violations in the top-
scoring model (in red in Fig. 5), indicating that the model can
be further refined. These refinements can be done through
steered molecular dynamics or normal mode analysis (48, 49)
Mol Cell Proteomics (2024) 23(3) 100724 11
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but only up to the point that the maximum distance violations
are no longer present, as any more optimizations are prob-
ably not supported by the spatial resolution of the cross-
linker. For luciferase, the structural variation captured by AF2
occurs along a completely different axis than the endpoint
structures documented in the PDB, suggesting that these
predicted conformations might not be physically relevant.
This trade-off between modeling accuracy and conforma-
tional variability as a function of alignment-depth has been
discussed in greater depth in the publication detailing the
technique of using shallow MSAs for AF2 (21). In any case,
structure prediction that is natively trained to predict en-
sembles instead of single models would probably perform
better than modifications of AF2, which was not trained for
this purpose. Alternatively, AF2 is widely documented to
predict domain structures well, as seen in relatively low
predicted aligned error, within domains (supplemental
Fig. S5). These initial domain predictions can be used as
starting structures, with different domain–domain orientations
sampled through molecular dynamics or normal mode anal-
ysis, while keeping the domains rigid in a process analogous
to protein–protein docking.
Though not explicitly benchmarked on a large dataset, the

XLP and MP scores can be used to evaluate not only protein
monomers but also complexes, as shown with C3. This is
because the underlying distributions of residue depths and
Cα–Cα distances that were used to compute monolinking and
crosslinking probabilities (Fig. 2) came from empirical XL-MS
data from both protein monomers and complexes. Cross-
links have been widely used to screen large sets of protein–
protein docking models (45, 50, 51), but in the case of C3,
AF-MM correctly predicted the binding interface for all
models, only differing in the conformation of the flexible chain.
As of current writing, the problem of protein complex predic-
tion is not as well solved as the structure prediction of single
protein chains, but we might extrapolate that the former
problem will soon be solved with additional algorithmic re-
finements and/or protein complex structures in the PDB.
Indeed, with the emergence of AF-MM, the use case for
crosslinks is shifting away from the evaluation of large sets of
protein–protein docking poses, to instead serving as a prior
indication of which protein–protein interactions to model with
AF-MM or as experimental validation of AlphaFold models
(52). Nonetheless, whichever part of the modeling pipeline the
XL-MS data are to be applied—whether to guide modeling
(53), to evaluate a set of models, as in this current work, or as
experimental validation of a predicted model—the XLP and
MP scores are simple and modular enough to be used.
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