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Abstract—Due to its strong flexibility, easy deployment, high
maneuverability and extensive connectivity, unmanned aerial
vehicle (UAV) swarm has been widely used in the construction of
emergency communication network in recent years. Among them,
packet routing in a resilient and adaptive manner is one of the
fundamental problems for cooperation between multiple UAVs
to complete search and rescue tasks. Recently, reinforcement
learning (RL) technique has provided a new opportunity for
network-related applications, including routing. However, most
existing RL-based routing protocols suffer from issues such as
local optimum, blind exploration and slow convergence speed.
Additionally, the routing protocols based on deep reinforcement
learning (DRL) has high computational complexity, making them
unsuitable for energy-limited emergency relief scenarios. In this
paper, we proposed a Q-learning aided resilient routing protocol
with hindsight pre-calculation (QR2HPC) in UAV swarm for
the construction of the emergency networks. Firstly, a dynamic
exploration and exploitation coefficient is proposed based on
the number and speed of neighbors. Secondly, a warm-start
mechanism is proposed in the exploration phase that modifies
the traditional random next hop selection to a routing approach
guided by various indicators. Finally, we introduce a hindsight
pre-calculation (HPC) mechanism to improve the robustness
of Q-table to traffic flow changes. The experimental results
manifest that our protocols can make effective routing decisions
in dynamic wireless multi-hop networks, thereby enhancing the
system performances in terms of packet delivery ratio, end-to-end
delay, throughput and network lifetime.

Index Terms—UAV swarm, emergency wireless communication
networks, routing protocol, Q-Learning

I. INTRODUCTION

The establishment of the emergency network is crucial in
the event of the natural or man-made disasters as it enables
time communication connectivity [1]- [4]. However, traditional
solutions that rely on ground emergency vehicles lack flexi-
bility and are limited by environmental and spatial constraints
[5]. Recently, due to the strong flexibility, easy deployment,
high maneuverability and extensive connectivity, UAV swarm
is emerging as a promising emergency situation option for
deploying an intelligent mobile and flexible network, which
is called flying ad-hoc network (FANET) [6]. Within a UAV
swarm, packet routing plays a vital role in facilitating cooper-
ation among multiple UAVs to accomplish complex missions.
However, in an emergency situation, the uncertainty of the
environment, the rapid changes in the network topology, and

the frequent communication needs of the rescue team and the
disaster area have brought great challenges to the design of
routing protocols.

Over the past few decades, researchers have proposed
many classical routing protocols such as OLSR [7], AODV
[8] and GPSR [9]. Proactive routing protocols like OLSR
require nodes to periodically store and maintain routing tables,
resulting in high routing overhead. On the other hand, reactive
routing protocol like AODV establish routing paths only when
the packets need to be sent, which will lead to high end-to-
end (E2E) delay. Position-based routing protocol, which is
represented by GPSR, selects the next hop solely based on
the location information. Nevertheless, the frequent occurrence
of routing holes due to the high mobility of UAV swarms
significantly increases latency. Moreover, due to the lack of
intelligent awareness about the environments and the limited
adaptability and flexibility, the aforementioned traditional rout-
ing protocols face challenges when they are applied in the
construction of the emergency communication networks.

In recent years, reinforcement learning (RL) has demon-
strated its strength in decision-making and is widely adopted
in routing problems in ad-hoc networks. In [10], a Q-learning
based geographic routing protocol is proposed for UAV swarm,
where link stability, link capacity and interference informa-
tion were considered to select the next hop. Liu et al. [11]
proposes a multi-objective optimization routing protocol using
Q-learning to optimize the E2E delay and energy consumption
of the network. In [12], an enhanced Q-Learning routing
algorithm based on OLSR is proposed, where Kalman filter is
used to predict the trajectory of the node in advance for calcu-
lating the Q-value. However, Kalman filter is computationally
intensive and is not suitable for UAVs with limited computing
power and resources. In [13], by exploiting the information
of the two-hop neighbors, a Q-learning based topology-aware
routing protocol is studied for FANET. The selection of the
next hop is based on delay constraints, speed constraints, and
energy constraints. Serhani et al [14] proposed a Q-learning
based adaptive routing (QLAR) for MANETs, where a new
model was developed to detect the mobility level of each
node. However, in the actual disaster relief scenario, there are
often numerous two-way communication needs between the
disaster-affected area and the rescue troops, which requires the



routing protocol to quickly adapt to the changes of traffic flow
direction. In addition, the fixed ratio of agent exploration and
exploitation in the above routing protocols and the random
selection of the next hop during exploration are not well-
suited for the rapidly changing network topology of FANETs.
Poor selection of the next hop may result in unnecessary
flight delays, increased energy consumption, or ineffective path
selection, thereby reducing routing efficiency.

In this paper, we propose a Q-learning aided resilient routing
protocol with hindsight pre-calculation (QR2HPC) in UAV
swarm for the construction of the emergency networks. Firstly,
a dynamic exploration and exploitation coefficient is proposed
based on the number and speed of neighbors. Secondly, a
warm-start mechanism is proposed in the exploration phase
that modifies the traditional random next hop selection to a
routing approach guided by various indicators. Finally, we
introduce a hindsight pre-calculation (HPC) mechanism to
improve the robustness of Q-table against traffic flow changes.

The remainder of this paper is organized as follows. Section
II describes the system model. The routing algorithm proposed
in this paper is described in Section III. Then, Section IV
shows the simulation results and discussions to demonstrate
the significant performance of the proposed scheme. Finally,
Section V concludes this paper.

II. SYSTEM MODEL

In this paper, we consider a UAV swarm with a set of UAV
nodes M, which can be denoted as M = [U1, U2, · · · , UM ].
Each UAV is equipped with an omni-directional antenna
whose maximum communication range is Dmax. If the Eu-
clidean distance between UAV Ui and Uj (Ui, Uj ∈ M) is
dUiUj < Dmax, it means that a potential transmission link
can be established between two UAVs. The mutual perception
between two UAVs requires regular exchange of hello packets.
Hence the network is modeled as a directed graph G = (M, ξ),
ξ is defined as a finite set of the transmission links between
UAVs. e(Ui, Uj) ∈ ξ indicates the establishment of UAV Ui’s
perception of Uj . The Gauss-Markov Mobility Model [15] is
adopted to formulate the mobility of UAV nodes. Each UAV
Um ∈M can obtain its location, speed and direction by equip-
ping with Global Navigation Satellite Systems (GNSS). In
addition, we assume that the network operates in a time-slotted
fashion with normalized time slot. Therefore, operations such
as packet sending and receiving occur at specific time slots.

Four ground stations are regarded as the destination nodes
to receive data packets from the UAV nodes. We assume a
sequential data provision scheme in the UAV swarm. Specifi-
cally, the UAV swarm serves one destination node for a certain
period of time and then moves on to serve another destination
node in the subsequent period. Therefore, in each time slot,
one UAV node is considered as the source node to send data
packet while the remaining UAV nodes act as relay nodes to
forward the packets.

III. PROPOSED ALGORITHM
A. Routing Decision

At each time slot t, nodes with data packet forwarding tasks
need to determine the next-hop according to some routing
strategies. One of the commonly used strategies in RL-based
routing protocols is ϵ-greedy [16]. However, this strategy also
presents the following issues.

On one hand, the balance between exploration and ex-
ploitation plays a crucial role to achieve a more efficient
transmission of the date packets in ϵ-greedy strategy. The
exploration coefficient ϵ is used to control the exploration
and exploitation of the agent. However, in most existing Q-
Learning based routing protocols in FANET, the exploration
coefficient remains fixed. When the topology of the FANET
undergoes frequent changes, indicating a highly dynamic en-
vironment, the use of a traditional fixed exploration coefficient
may hinder the ability of the algorithm to adapt to the new
environment changes in a timely manner. On the one hand,
during exploration, choosing an inappropriate next-hop can
lead to unnecessary transmission delays, increased energy con-
sumption, or ineffective path selection, ultimately diminishing
the overall routing efficiency. Besides, random exploration
choices may introduce noise and uncertainty, making the agent
more susceptible to inefficient paths. In this paper, we propose
an adaptive exploration and exploitation strategy. Furthermore,
during exploration, we introduce a warm-start mechanism that
modifies the traditional random next hop selection to a routing
approach guided by various indicators.

Firstly, the exploration coefficient of any node Ui is defined
as follows:

ϵUi
= ϵmin + (ϵmax − ϵmin)× e−λ×(v̄Ui

+n̄Ui
), (1)

where ϵmin and ϵmax represent the minimum and maximum
exploration coefficient, respectively. λ is a control parameter.
v̄Ui

is the normalized average speed of the neighbors of
node Ui. The method of window mean with exponentially
weighted moving average (WMEWMA) is adopted to update
the neighbor average speed v̄Ui

. Node Ui maintains a sliding
window with length l which records the neighbor velocity of
the last l hello packets sent by the neighbors of Ui. The k-th
updated neighbor average speed is given by:

v̄Ui(k) = (1− β)×
∑k−1

q=k−l

vUm,Um∈NUi
(q)

Vmax

l
+ β × vnewUj

.

(2)

where β(0 < β < 1) in eq.(2) is the tunable weighting
coefficient. vUm,Um∈NUi

indicates the node velocity recorded
in the neighbor table and vnewUj

is the speed of node Uj

recorded in the packet received from Uj .
n̄Ui

in eq.(1) is the normalized average number of neighbors
of node Ui, which can be calculated as:

n̄Ui =
n−Nmin

Nmax −Nmin
, (3)

where Nmax is the maximum number of nodes in the network.
Nmin is the minimum number of neighbors of a node in the



network. n is the number of valid entries in the neighbor table
of node Ui at the current moment. The node Ui updates n̄Ui

once that it receives a hello packet.
In the above formula, when the velocity of the node is low

or there are numerous neighboring nodes, the agent increases
the exploration probability. On the contrary, when the UAV has
a higher speed or fewer neighbor nodes, the exploration rate
decreases, and the node is more likely to choose the known
optimal action for utilization. The underlying reasons are as
follows:

Firstly, when the node speed is low, the network topology is
relatively stable, allowing the drone to frequently try different
routing options in order to discover potential better solutions.
When the node speed is high, selecting the known optimal
action enables faster achievement of the target position or
completion of the task, thereby reducing time overhead. This
is particularly crucial in emergency applications.

Secondly, when the number of neighboring nodes is high,
it indicates a greater number of alternative paths and neigh-
boring nodes for the drone. By increasing the exploration rate,
drones can actively explore a wider range of routing options,
aiming to uncover potentially superior solutions. Additionally,
a large number of neighboring nodes signifies a more intricate
network topology, which may introduce more changes and
uncertainties. By increasing the exploration rate, drones can
enhance their adaptability to fluctuations in neighboring nodes
and strengthen their resilience when faced with changes in the
network topology. Conversely, in scenarios where the number
of neighboring nodes is low, excessive exploration can lead to
increased communication overhead and computational costs,
while the potential benefits from exploration may be relatively
limited.

We have redirected our focus towards on routing decisions.
When a node is required to choose the next hop for forward-
ing, it employs a probability of 1-ϵ to select the maximum
weighted Q for forwarding, as described in [11]. During the
exploration phase, We have modified the original method of
randomly selecting neighboring nodes as the next hop instead
of selecting the next hop based on several specific methods.
The specific methods are described as follows:

• Greedy: Under the greedy strategy, a node forwards
the data packet to the neighbor node that minimize the
distance to the destination node, which can be expressed
as:

Nexthop(Ui) = argmax
Uj∈NUi

dUjd, (4)

where Nexthop(Ui) indicates the next hop from node
Ui to the destination d. If the void area is encounted, the
node will hold this data packet.

• Compass: Compass is a routing policy that utilizes direc-
tion information to guide nodes towards their destination.
Its objective is to ensure that each step brings the node
closer to the desired direction by selecting the neighbor-
ing node with the smallest angle deviation as the next

Fig. 1. Average E2E delay under different UAV speeds.

hop. The strategy can be expressed as:

Nexthop(Ui) = argmax
Uj∈NUi

∠UjUid. (5)

• Most forward: In this case, node Ui will forward the data
packet to the neighbor Uj whose projection on the line
(Uid) is closer to d. The strategy can be expressed as:

Nexthop(Ui) = argmax
Uj∈NUi

−−−→
UjUi ·

−→
dUi√

(xd − xUi
)2 + (yd − yUi

)2
.

(6)
• Ellipsoid: In Ellipsoid mode, node Ui will forward the

packet to the neighbor Uj that minimizes the sum of
the distance from Ui to Uj and the distance from Uj

to destination d. The strategy can be expressed as:

Nexthop(Ui) = argmax
Uj∈NUi

(dUiUj
+ dUjd). (7)

Fig.1 illustrates the selection of the next hop for the four
modes. When the agent enters the exploration mode, it ran-
domly selects one of the above four strategies to select the
next hop. It is worth noting that in more complex network
environments, the strategies available during the exploration
phase can also take into account factors such as energy, buffer,
channel quality, etc.

B. Reward Function

As the sole source of feedback for the agent, rewards play
a crucial role in guiding the Q-Learning algorithm. The ob-
jective of the Q-Learning based routing algorithm is to enable
nodes to maximize cumulative rewards while transmitting data
packets. In this paper, we aim to achieve efficient transmission
by balancing energy consumption, controlling congestion, and
considering the distance factor, angle factor, energy factor, and
buffer remaining capacity of the node in the reward function.
Firstly, we define the joint metric as follows:

rUi→Uj (d) = ω1 × f1 + ω × f2 + ω × f3 + ω × f4, (8)



where ω1, ω2, ω3, ω4 are the weights which hold ω1 + ω2 +
ω3 + ω4 = 1, f1 is the distance factor, which is expressed as:

f1 = ±
√
(xUj − xd)2 + (yUj − yd)2√
(xUi

− xd)2 + (yUi
− yd)2

, (9)

f1 is positive when the next hop Uj is closer to the destination
than node Ui and vice versa.

f2 is the angle factor. In order to reduce the number of
hops of the route, the data packets should be transmitted along
a straight line to the destination node. Therefore, f2 can be
obtained as follows:

f2 =
(xUj

− xUi
)× (xd − xUi

) + (yUj
− yUi

)× (yd − yUi
)

d1 + d2
,

(10)
where d1 =

√
(xUj

− xUi
)2 + (yUj

− yUi
)2 and d2 =√

(xd − xUi
)2 + (yd − yUi

)2, which represent the distance
between Uj and Ui and the distance between destination and
Ui. Larger f2 indicates closer to straight line transmission.

f3 is the energy factor, which is defined as the ratio of the
residual energy of the node to the initial energy. The energy
factor of node Uj can be expressed as follows:

f3 =
Eres

Uj

Einit
Uj

, (11)

where Eres
Uj

is the residual energy of the node Uj , and Einit
Uj

is the initial energy of the node Uj . The larger the f3 is, the
lower energy consumption of the node Uj is.
f4 represents the buffer remaining capacity. Similar to the

definition of f3, f4 is defined as the ratio of the residual buffer
capacity to the buffer initial capacity. The buffer remaining
capacity of node Uj can be expressed as follows:

f4 =
Bres

Uj

Binit
Uj

, (12)

where Bres
Uj

is the buffer residual capacity of the node Uj , and
Binit

Uj
is the initial capacity of the buffer of node Uj . A larger

f4 indicates a lower likelihood that the link is experiencing
congestion.

Therefore, we can define the joint reward function as
follows:

rt(Ui, Uj , d) =


rmax when Uj is destination

rmin when Uj is local minimum

rUi→Uj (d) otherwise.
(13)

If the next hop is the destination, the agent can obtain the
maximum reward rmax. When the next hop selected by the
agent has no neighbors closer to the destination, which is
called local minimum, the agent will receive the minimum
reward rmin. The last item can be adopted to jointly optimize
transmission efficiency, energy consumption, and congestion
issues.

C. HPC-based Q-table Update Mechanism

Let us examine the iterative performance of the conventional
Q-learning based routing algorithm:

Qd(Ui, Uj)← (1− α)Qd(Ui, Uj) + α(rt(Ui, Uj , d)

+γUiUj
(1− fp

t )Qd(Uj , Um)),
(14)

where fp
t is the task completion indicator, whose definition is

shown in eq.(19). Um can be expressed as follows:

Um = argmax
n∈NUj

Qd(Uj , n). (15)

However, when the destination node changes, the Q-value
for the new destinations needs to be trained from scratch.
When the network consists of a large number of nodes, it
results in significant training time overhead and diminishes the
efficiency of data packet transmission. In this paper, in order to
alleviate this problem, we propose a hindsight pre-calculation
(HPC) mechanism to improve the robustness of Q-table to task
changes. The idea behind HPC is that the agent updates the Q-
table during each transition not only with the original goal for
that transmission but also with other goals. The pseudo-code
of the HPC algorithm is shown in Algorithm 1.

Algorithm 1 Hindsight pre-calculation (HPC) mechanism
1: Input : Discounted factor γ, learning rate α, routing

policy π, source node Ui, Q-table of node Ui Qd(s, a),
destination set D

2: Output : Updated Q-table Q′
d(s, a)

3: while Ui has a packet to transmit to d, d ∈ D do
4: Choose a next hop Uj in NUi

according to the given
routing policy π

5: Transmit the data packet to node Uj and observe the
reward rUi→Uj

and fp
t

6: Update Q-value: Q′
d(Ui, Uj) = (1 − α)Qd(Ui, Uj) +

α(rt(Ui, Uj , d) + γUiUj (1− fp
t ) max

x,x∈NUj

Qd(Uj , x))

7: for d′ ∈ D do
8: r′ := rt(Ui, Uj , d

′)
9: Update Q-value: Q′

d′(Ui, Uj) = (1−α)Qd′(Ui, Uj)+
α(r′ + γUiUj (1− fp

t ) max
x,x∈NUj

Qd′(Uj , x))

10: end for
11: end while

In summary, in our algorithm, each UAV node is an agent
that updates the status information of its neighbors (such
as location, speed, remaining energy, etc.) by periodically
exchanging hello packets. During the routing decision stage,
the adaptive exploration and utilization coefficient determines
whether to choose the neighbor with the largest Q-value as the
next hop or adopt the hot start mechanism. After receiving the
ACK packet sent by the next hop node, the node updates the
Q-table through HPC mechanism.



IV. SIMULATION AND PERFORMANCE
EVALUATION

A. Simulation Parameters

In this section, our proposed QR2HPC is compared with
GPSR [9] and QMR [11] in a FANET simulation platform
based on Python. The velocity of UAV nodes is 10m/s to
30m/s to reflect the mobility impact on routing performance.
For the considered scenario, nodes are randomly distributed
in an area of 1500m × 1500m. The coordinates of the four
destinations are located at (400, 750), (750, 400), (750, 1100)
and (1100, 750). The total simulation time is set to 250
seconds and divided into 5000 time slots, each of which is
0.05 seconds in length. At the beginning of each time slot, a
node is randomly selected as the source node to transmit data
packets to the destination node. The detailed parameters used
in our simulation are summarizes in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Simulation area 1500m × 1500m

Total simulation time 250s
Time slot interval 0.05s

Node number 40
Node velocity 10-30 m/s

UAV transmission radius 250m
UAV transmit power 1.0 W
UAV received power 1.0 W

Antenna Omni-directional
Mobility model Gauss Markov mobility model

Initial energy of UAVs 900J
Energy threshold 20J

Hello interval 0.5s
Max TTL 15

Initial value of Q-table 0.5
Initial learning rate 0.3

ϵ 0.9
λ 0.5
β 0.5

B. Simulation Results and Evaluation

Fig.2 illustrates the PDR of different routing protocols under
different moving speed of UAV nodes. In the case of GPSR,
the selection of the next hop is solely based on geographic
location information. This approach results in a substantial
number of nodes entering the routing hole area as the move-
ment speed accelerates. Moreover, the frequent utilization of
the perimeter forwarding mode leads to an increase in packet
forwarding hops, potentially exceeding the maximum Time-
to-Live (TTL) value. Consequently, this leads to a significant
decline in the PDR. For QMR, the incorporation of Q-
Learning and dynamic hyper-parameters have contributed to
an improvement in the PDR performance. However, when
the destination node changes, QMR requires the retraining
of the Q-table, which leads to a slow learning speed and
makes it difficult to adapt to high-speed node motion. For
the algorithm proposed in this paper, the incorporation of
the hindsight experience replay (HER) concept during Q-table
updates allows for improved learning efficiency in Q-Learning

Fig. 2. PDR VS. Node velocity

Fig. 3. Average E2E delay VS. Node velocity

when the target node changes. Consequently, this enhancement
in Q-Learning efficiency leads to an overall improvement in
the PDR.

Fig.3 shows the average E2E delay experienced by UAV
nodes based on their velocities. For GPSR, as the node
velocity increases, the occurrence of void regions becomes
more frequent. The adoption of perimeter forwarding mode to
bypass these void regions results in a significant increase in
hop count, leading to increased E2E delay. For QMR, it takes
into account the constraints of packet deadlines and the actual
velocity, resulting in a partial reduction in the number of hops
required for packet forwarding. However, QMR solely selects
the next hop with the largest weighted Q-value, potentially
trap the algorithm in local optima. On the contrary, QR2HPC
introduces a warm start mechanism into ϵ-greedy strategy,
greatly enhancing the search efficiency of Q-Learning. This
improvement effectively reduces the number of hops needed
for packet transmission in QR2HPC.

The throughput performance of the proposed routing proto-



Fig. 4. Throughput VS. Node velocity

Fig. 5. Network lifetime VS. Node velocity

col with different velocity of UAV nodes are evaluated in Fig.4.
It can be seen that both throughput and PDR exhibit similar
trends. Our proposed algorithm outperforms other schemes,
as demonstrated by the results. Specifically, when the UAV
node moves at a speed of 20 m/s, the throughput under GPSR
is merely 1.7 packets/slot. In contrast, our proposed method
achieves a throughput of nearly 1.95 packets/slot, representing
a significant improvement of 14.7%.

Fig.5 shows the network lifetime under different velocity
of UAV nodes. In our simulation, we consider as an ap-
proximation that the main energy consumption is due to the
emission and reception of a packet. Therefore, as the speed
of the UAV node increases, there is a greater probability
of encountering scenarios where the node becomes isolated
without any neighboring nodes. In such cases, the UAV is
unable to forward the packet and can only carry it on its own.
Consequently, this leads to an increase in end-to-end delay
and an extended network lifetime.

CONCLUSION
In this paper, we proposed a Q-learning aided resilient

routing protocol with hindsight pre-calculation (QR2HPC) in
UAV swarm for the construction of the emergency networks.
Our protocol utilizes a dynamic exploration and exploitation
scheme to adapt to changes in network topology. To mitigate
the impact of blind exploration and poor experience on agent
training, we propose a warm-start mechanism during the
exploration phase. This mechanism replaces the traditional
random next hop selection with a routing approach guided
by various indicators. Finally, with purpose of increasing the
convergence speed of Q-learning, a hindsight pre-calculation
(HPC) mechanism is proposed. Extensive simulations illustrate
that our proposed routing algorithm can effectively reduce the
E2E delay and improve PDR, throughput and network lifetime
in UAV swarm network.
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