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ABSTRACT Innate immunity against pathogens is known to be mediated by bar-
riers to pathogen invasion, activation of complement, recruitment of immune cells,
immune cell phagocytosis of pathogens, death of infected cells, and activation of
the adaptive immunity via antigen presentation. Here, we propose and review evi-
dence for a novel mode of innate immunity whereby live, infected host cells induce
phagocytes to phagocytose the infected cell, thereby potentially reducing infection.
We discuss evidence that host cells, infected by virus, bacteria, or other intracellular
pathogens (i) release nucleotides and chemokines as find-me signals, (ii) expose on
their surface phosphatidylserine and calreticulin as eat-me signals, (iii) release and
bind opsonins to induce phagocytosis, and (iv) downregulate don’t-eat-me signals
CD47, major histocompatibility complex class I (MHC1), and sialic acid. As long as
the pathogens of the host cell are destroyed within the phagocyte, then infection
can be curtailed; if antigens from the pathogens are cross-presented by the phago-
cyte, then an adaptive response would also be induced. Phagocytosis of live infected
cells may thereby mediate innate immunity.

KEYWORDS phagocytosis, phagoptosis, infection, immunity, virus, intracellular
bacteria

Mammalian cells can be infected by a variety of pathogenic agents, including bac-
teria, viruses, fungi, protozoa, and prions. Intracellular niches within host cells are

attractive for many such pathogens, providing the metabolic building blocks and pro-
tection from host immune surveillance that are often essential for their propagation,
not to mention the obligate reliance of viral infections on the host cell’s genetic and/or
translational machinery. Such infections can overrun host cells, exploiting their resour-
ces to spread from one cell to another and between organisms, harming or killing their
hosts. To limit this, the mammalian innate immune system can detect such infections
and attempt to eliminate or clear the pathogen as quickly as possible, independently
of any adaptive immune response that may eventually develop. If this fails, the infected
cell may trigger its own cell death. However, while this stops infection of the dying cell, it
may aid spread to other cells. Here, we hypothesize and review the evidence that infected
cells may, in some circumstances, directly induce phagocytosis of themselves without
undergoing cell death, thereby being eaten alive and mediating pathogen clearance. This
hypothesis is outlined in Fig. 1.

PATHOGEN DETECTION

Infections can be detected when pathogen-associated molecular patterns (PAMPs)
activate any of a variety of host cell pathogen recognition receptors (PRRs) (1). PAMPs
represent structural motifs common to many pathogens, which are therefore useful for
the immune system to detect, including bacterial lipopolysaccharide (LPS), flagellin,
and viral genetic material. This drives an innate immune response, including upregula-
tion of complement factors, release of microbiocidal agents, cytokine signaling, and
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the activity of natural killer cells and phagocytes. Some of these innate responses are
essential prior to development of adaptive responses (2). Cell surface PRRs, including
toll-like receptors (TLRs) and Dectins, detect extracellular PAMPs and usually instigate
general proinflammatory signaling within and between cells (3–5). In contrast, intracel-
lular PRRs sense intracellular PAMPs, indicative of more serious intracellular invasion.
Thus, these RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and AIM2-like recep-
tors (ALRs) drive more dramatic cellular events, including cell death. Pathogens gener-
ally stimulate multiple PRRs and indeed other pathways too, giving multiple potential
outcomes for the cell (3–5).

HOST CELL DEATH INDUCED BY INFECTION

Infection may induce cell death of the host cell as a protective response to deprive
pathogens of intracellular niches and curtail their replicative cycles (6). We briefly out-
line host cell death induced by infection here for the purpose of comparison to our hy-
pothesis. Apoptosis is mediated by caspases and Bcl-2 homologous proteins and
causes nuclear condensation, membrane blebbing, and cell shrinkage. Cellular func-
tions are shut down, and phosphatidylserine (PS) exposure is used to signal for phago-
cytic engulfment in a process known as efferocytosis (7). Apoptosis and other forms of
cell death have been hypothesized to be intrinsically antimicrobial by killing the
infected host cell and thereby limiting replication of the pathogen and, in some cases,
killing the pathogen (6). However, the subsequent engulfment of infected cells by
phagocytes is now considered the main cause of microbial death instead, via acidifica-
tion, reactive oxygen species (ROS), and enzymatic degradation within phagolyso-
somes (8–10). In contrast to most host cells, phagocytes are professional killers, armed
with dedicated pathogen-killing mechanisms, including NADPH oxidase, inducible nitric
oxide synthase, and peroxidases (10). Thus, apoptosis itself, as opposed to the subsequent
phagocytosis, may have limited antimicrobial activity. In both mice and Drosophila, inhibi-
tion of phagocytosis exacerbates viral infections, indicating that phagocytosis (rather than
apoptosis) of infected cells is central to viral immunity (9, 11).

In addition, apoptosis is normally strongly anti-inflammatory and inhibits antigen pre-
sentation by phagocytes, suppressing both innate and adaptive responses to pathogens
(12); though, it should be noted that such apoptosis can be proinflammatory under certain
circumstances (13, 14). Furthermore, apoptotic cells often detach from the extracellular
matrix and from other cells and breakup into soluble apoptotic bodies that may spread

FIG 1 Outline of the hypothesis that phagocytosis of live infected cells contributes to immunity.
Pathogen infection of host cells triggers an innate response that may include release of find-me and
eat-me signals, binding opsonins, and downregulating don’t-eat-me signals, resulting in host
phagocytes phagocytosing the live infected cell, thereby killing the pathogen and limiting infection.
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infection (15–17). Thus, apoptosis may be the opposite of what is required to fight an
infection.

In contrast to apoptosis, necrotic forms of cell death, such as necroptosis and
pyroptosis, are inherently lytic and induce rupture of the plasma membrane prior to
phagocytosis of the cell. They therefore promote inflammation through release of cyto-
solic proinflammatory mediators and damage-associated molecular patterns (DAMPs).
Necrotic death of the cell protects against infection by depriving the pathogen of its
host cell, and pyroptosis in particular may trap microbes within the cell corpse or
release peptides that directly kill bacteria (18, 19). However, lytic cell death may also
promote spread of infection by releasing the live pathogen (20, 21). For example,
mycobacterial infections can result in both programmed and secondary (subsequent
to apoptosis) necrosis of infected cells, thus allowing lytic release and spread of the
mycobacteria (22, 23). For this reason, many pathogens actively induce host cell necro-
sis themselves through production of proteases, phospholipases, and cytolysins in
order to leave the host cell (24).

Thus, some pathogens encourage and exploit host cell death, while other patho-
gens instead block it, indicating that host cell death may limit their infections (25–28).
However, clearing pathogen-infected cells prior to host cell death is potentially better
than afterwards, as it may act sooner, avoid dispersal of the pathogen, be more likely
to kill the pathogen, invoke less aggressive inflammation than necrotic cell death, and
enable the cross-presentation of microbial antigens at earlier stages of infection.

PHAGOCYTOSIS OF LIVE CELLS

It was thought that host cells were only phagocytosed when dead or dying.
However, it is now clear that host cells can be phagocytosed alive in a wide variety of
contexts, including macrophage phagocytosis of viable neutrophils, neurons, and tu-
mor cells (29–33). This generally results in death of the engulfed cell, resulting in a
type of cell death we have termed “phagoptosis,” cell death due to phagocytosis (34).

This raises the possibility that infected cells are eaten alive, as alluded to in a recent
excellent review on macrophage phagocytosis (35). Below, we will review the evidence
that this occurs and that infected cells release find-me signals, eat-me signals, and
opsonins, which induce this phagocytosis. These signals regulate the phagocytosis of
live and dead host cells as well as pathogens (36–38).

Analogous to our hypothesis that innate immunity against infection is partly medi-
ated by phagocytosis of live infected cells is the relatively recent discovery that innate
immunity against cancer is partly mediated by phagocytosis of live cancer cells by host
phagocytes (29–31). This has led to increasing interest in the field of phagocytosis of
live cells and the development of multiple experimental treatments promoting host
phagocytosis of live cancer cells (39). In addition, it has been found that certain cancer
treatments promote antigen presentation by the phagocytes engulfing the cancer cell
(40). Thus, there is a clear precedent for our hypothesis that innate immunity against
infection is partly mediated by phagocytosis of live infected cells and that this might
promote an adaptive response via antigen presentation.

FIND-ME SIGNALS

Find-me signals are chemoattractants released by cells to guide phagocytes to their
location, facilitating their engulfment, and include nucleotides and chemokines (37).

ATP is released as a “danger” signal by injured, stressed, or infected cells, either pas-
sively due to cellular damage or actively through mechanisms such as pannexin hemi-
channels or vesicular exocytosis (41, 42). For example, HeLa, COS-7, and T84 cells
infected with Escherichia coli release ATP (43) via Toll-like receptor-mediated exocyto-
sis, and this ATP stimulates macrophage phagocytosis and reduces bacterial loads in
vivo (44). Macrophages infected by Leishmania donovani also released ATP, but via pan-
nexin-1 channels (45). Finally, one notable study found that in the brain, live herpesvi-
rus-infected neurons release ATP, which recruits microglia that then phagocytose the
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live infected cells and limit the infection (46). This study directly demonstrated our
hypothesis.

The nucleotide UDP is another find-me signal that is also released from E. coli-
infected mice and lipopolysaccharide-treated macrophages via gap junctions, which
reduces bacterial loads in vivo (47, 48). Vesicular stomatitis virus infection of macro-
phages causes similar release alongside upregulation of the UDP receptor P2Y6, lead-
ing to reduced viral infection in mouse models; infection was decreased by addition of
UDP and increased by P2Y6 knockout in vitro and in vivo (49). Chemotaxis to UDP-
releasing macrophages may in some cases be mediated by the chemokine MCP-1 (48).
Notably, data from other studies show that UDP released from stressed cells may also
stimulate phagocytosis of such cells (50, 51).

Alongside nucleotides, chemokines are another extremely common class of find-me
signal. The CC chemokines macrophage inflammatory protein-1a (MIP1a) and macro-
phage chemoattractant protein-1 (MCP-1) are upregulated before cell death in macro-
phages infected by influenza, hepatitis C virus, and the bacterium Orienta tsutsugamu-
shi (52–54). Additionally, other infections such as by influenza and human rhinovirus
have been shown to elicit CXCL10 release from live host epithelial and alveolar type II
cells, which may guide macrophage chemotaxis (55–57). Other chemokines known to
recruit macrophages include CXCL8/12, CCL3/4/13/19/21/24/25, and XCL2 (57).

Thus, find-me signals can be released by live infected cells, thereby attracting phag-
ocytes. However, it should be appreciated that different host cell types differ in their
intrinsic capacity to detect pathogens and release find-me signals such as chemokines
in response. For example, though many cell types will be capable of chemokine release
(and as discussed here, they may be likely to activate this when infected), other popu-
lations simply will not be. In contrast, other signals that regulate phagocytosis, such as
certain eat-me signals and don’t-eat-me signals as we will now discuss, are likely to be
observed more ubiquitously given their broader physiological importance to most, if
not all, cell types.

EAT-ME SIGNALS: PHOSPHATIDYLSERINE AND CALRETICULIN

An eat-me signal is a signal on a cell inducing a phagocyte to phagocytose the cell.
The most well-studied such signal is the membrane phospholipid phosphatidylserine.
Though usually confined to the internal face of the plasma membrane by ATP-depend-
ent flippases, once externalized by scramblases, phosphatidylserine can be bound by
phagocytic receptors on phagocytes to induce phagocytosis. Phosphatidylserine expo-
sure was once thought to only occur during apoptosis, where caspase activity deacti-
vates the flippases that maintain phosphatidylserine asymmetry and activates the
scramblase XKR8 (7). However, phosphatidylserine exposure is now known to occur on
viable cells in a variety of circumstances, such as immune activation, oxidative stress,
or calcium elevation (42, 58–62). Phosphatidylserine exposure on viable cells is mediated
by calcium-activated scramblases, such as transmembrane protein 16F (TMEM16F), and is
reversible once the cytosolic calcium level returns to normal (63). Importantly, phosphati-
dylserine exposure on viable cells is sufficient to induce phagocytosis of such cells (60, 62,
64). In addition, cells can undergo reversible apoptosis, insufficient to induce cell death
alone but sufficient to induce phagocytosis of the live cell (65, 66).

Live infected cells can expose phosphatidylserine too and thereby be subject to this
phagocytic clearance. For example, live HIV-infected cells were shown to externalize phos-
phatidylserine, which induced macrophages to phagocytose these cells, mediated by the
phagocytic receptor MerTK and the phosphatidylserine-binding opsonins Gas6 and protein
S (67). In another demonstration of this process, infection of human cells by the bacterium
Chlamydia was also shown to cause rapid and reversible phosphatidylserine exposure on
host cells, dependent on calcium elevation and independent of apoptosis, which then
induced macrophages to phagocytose the live infected cells (68). In yet another example,
infection of mouse brain with adenovirus (modified as a vector) was shown to cause phos-
phatidylserine exposure on live brain cells, with subsequent phagocytosis by microglia of
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the infected cells observed in vivo using 2-photon imaging (69). Mechanistically, this was via
calcium activation of phospholipid scramblase 1 (PLSCR1), with the consequent phosphati-
dylserine exposure on infected cells inducing microglial phagocytosis via the phagocytic re-
ceptor MerTK, resulting in clearance of the infected cells. PLSCR1 is known to be induced by
viral infection and to mediate the antiviral response of cells to many different viruses by mul-
tiple mechanisms (70, 71); the study by Tufail and colleagues (69) may add induction of
phosphatidylserine exposure and subsequent live infected cell phagocytosis to that list. As a
final consideration, enveloped viruses normally have phosphatidylserine on their surface
and may thereby cause infected cells themselves to exhibit surface phosphatidylserine when
the virus enters or leaves the host cell (72, 73).

Another well-known eat-me signal is calreticulin, which can be exposed on the sur-
face of viable, stressed, or dying cells, and induces phagocytosis of such cells by the
low-density lipoprotein (LDL) receptor-related protein (LRP1 receptor) on phagocytes
(74–76). Calreticulin normally functions as a chaperone in the endoplasmic reticulum
but can be released onto the cell surface, or indeed secreted, as a result of endoplas-
mic reticulum stress, inflammation, or infection (77–79). For example, Mycobacterium
tuberculosis and cytomegalovirus infections cause calreticulin exposure on the surfaces
of infected cells (79, 80). Inflammatory activated macrophages release calreticulin, and
plasma calreticulin levels are increased in sepsis patients (30, 31, 81, 82). This extracel-
lular calreticulin can act as an opsonin, binding both the target cell and the phagocytic
receptor LRP1 on the phagocyte to stimulate engulfment (74, 83, 84). In contrast to
exposed phosphatidylserine, which generally inhibits inflammation and antigen pre-
sentation, phagocytosis of calreticulin-exposed cells stimulates antigen presentation
(85–87). Thus, phagocytosis of infected cells exposing calreticulin is more likely to
result in cross-presentation of antigens.

DON’T-EAT-ME SIGNALS: CD47, SIALIC ACID, ANDMHC-I

Counterbalancing eat-me signals, don’t-eat-me signals are surface-expressed mole-
cules which discourage phagocytosis by a potential phagocyte. The best-understood
example is CD47, a plasma membrane-localized protein expressed ubiquitously on
host cells which, by activating the SIRPa receptor on phagocytes, inhibits engulfment;
blocking CD47 thereby increases phagocytosis of viable cells (74, 88). During malaria,
Plasmodium parasites preferentially infect young CD47hi red blood cells (89). These
cells lose CD47 over time, leading to their eventual phagocytic turnover, and so infec-
tion of CD47hi red blood cells allows the parasite to complete that stage of its life cycle
prior to this clearance. However, the host cells fight back; infected red blood cells
downregulate CD47 levels to expedite their phagocytic removal (90, 91). This is there-
fore an example of an infected host cell downregulating a don’t-eat-me signal to ena-
ble phagocytosis of the infected cell and thereby reduce infection.

Sialic acid residues on cell surface glycoproteins and glycolipids also act as a don’t-
eat-me signal, whereas removal of these residues (desialylation) promotes phagocyto-
sis of the cell (92). Infection can induce desialylation of host cells; for example, influ-
enza infection induces a rapid decrease in surface sialic acid residues on live infected
cells (93, 94); phagocytes can then phagocytose these cells (95, 96).

Major histocompatibility complex class I (MHC-I) is another don’t-eat-me signal
present on most healthy host cells to prevent them being phagocytosed (97). MHC-I is
downregulated by many virally infected cells to prevent MHC-I-mediated antigen pre-
sentation, but this MHC-I downregulation may then promote phagocytosis of the
infected host cell, providing effective immunity.

OPSONINS: MFG-E8, GAL-3, ANTIBODIES, AND COMPLEMENT

Opsonins are normally soluble extracellular proteins which, when bound to cells,
stimulate phagocytes to phagocytose such opsonin-tagged cells. Opsonins often bind
eat-me signals, such as phosphatidylserine, and act as transcellular bridges to phago-
cytic receptors on phagocytes. For example, galectin-3 can bridge target cells and
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phagocytes through its carbohydrate binding domains (98–100). Galectin-3 expression
and secretion are upregulated upon infection, including influenza and pneumococcal
infections of epithelia (94, 101). Additionally, as noted above, live HIV-infected cells ex-
pose phosphatidylserine and bind the phosphatidylserine-binding opsonins Gas6 and
protein S, which then stimulate the phagocytic receptor MerTK, resulting in phagocyto-
sis of the HIV-infected cells by macrophages (67). MFG-E8 is yet another phosphatidyl-
serine-binding opsonin, which can mediate microglial phagocytosis of phosphatidyl-
serine-exposing live neurons (102). This appears to help remove prion protein-infected
neurons in the brain, such that MFG-E8 knockout mice exhibit accelerated prion dis-
ease (17).

IgG antibodies are classical opsonins, which bind antigens on the pathogen and
activate Fcg receptors on the phagocyte, resulting in phagocytosis. Infected cells might
also bind such antibodies, either because (i) pathogen antigens are on the host cell
surface as part of the pathogen’s cell cycle, for example, during entry or exit from the
cell, or (ii) pathogen antigens are displayed by the host cell together with MHC-I.
Antibody-dependent cellular phagocytosis (ADCP) of live infected cells is wel estab-
lished and, in some cases, may mediate immunity (103–106). Whether pathogen anti-
gens displayed by host MHC-I can bind antibodies is unclear but would require some
specific mechanism to prevent it. If antibodies do bind to these displayed pathogen
antigens, then they should result in phagocytosis of live infected cells.

The complement system targets infected cells, causing either lysis through forma-
tion of a membrane attack complex or opsonization of the target through deposition
of opsonins C1q, C3b, iC3b, and C4b (107, 108). C1q can bind phosphatidylserine or
calreticulin on host cells, and C3b binds desialylated surfaces and stimulates phagocy-
tosis via complement receptors such as CR1, CR3, and CR4 (84, 109–111). Infected cells
cause complement activation at their surface, which enables their phagocytosis by
phagocytes, without host cell lysis (112–114). Exemplifying this, West Nile virus infec-
tion of neurons induces complement tagging of the neurons, resulting in comple-
ment-mediated phagocytosis of the live neurons’ synapses by microglia both in culture
and in vivo (115).

ANTIGEN PRESENTATION

Antigens from pathogen-infected cells can be cross-presented with MHC-I to T cells
by dendritic cells that have phagocytosed the infected cells (116–118). Cross-presenta-
tion by dendritic cells also occurs with nonlytic virus and intracellular bacterial infec-
tions, suggesting that the death of infected cells may not be required (119). Thus, while
signals from dying cells may promote cross-presentation when phagocytosed by anti-
gen-presenting cells, these signals may also be present on infected cells (120). This is
supported by the finding that incubation of live, virus-infected cells with dendritic cells
leads to dendritic cell presentation of viral antigens to T cells (121, 122). Similarly, upon
phagocytosis of viable neutrophils, dendritic cells can cross-present antigens from bac-
teria, yeast, or cancer cells that the neutrophil has previously phagocytosed (123, 124).
Thus, it is possible that phagocytosis of live, infected host cells by antigen-presenting
cells may result in presentation of pathogen antigens, resulting in adaptive immunity,
but this would need to be tested directly. Alternatively, phagocytosis of just part of an
infected cell, for example, by merocytophagy or trogocytosis, might also be used to
induce adaptive immunity in a similar manner (125, 126).

RESISTANCE BY PATHOGENS

If phagocytosis of live infected cells is an important mediator of immunity, then we
might expect resistance mechanisms to have developed in rapidly evolving pathogens
such as viruses. Indeed, there is evidence that diverse pathogens express their own
products or manipulate host gene expression to inhibit general phagocytosis (127). For
example, HIV-1 encodes Tat and Nef proteins, which inhibit phagocytosis of infected
cells by macrophages (128, 129), and the human cytomegalovirus (HCMV) expresses
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the protein UL-18, which mimics the don’t-eat-me signal MHC-I a-chain to inhibit phagocy-
tosis of the infected host cells (130). In addition, many viruses, including severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), cause upregulation of CD47 or express CD47
mimics, inhibiting phagocytosis of the infected cells (39, 131–134).

CONCLUSION

We have outlined above a wide range of evidence that live, infected host cells signal to
be phagocytosed and that this may contribute to limiting infection. In Table 1, we list a num-
ber of studies with direct evidence of macrophage phagocytosis of live infected cells using a
range of pathogens and model systems. We hope that the explicit articulation of the hy-
pothesis here (and illustrated in Fig. 1), with discussion of the accumulating supporting litera-
ture, will promote awareness of this potentially common innate immune mechanism and
encourage its rigorous testing. Such research would involve answering the following ques-
tions. First, are host cells infected with the pathogen of interest phagocytosed alive to an
extent sufficient to limit infection in vivo? Second, does blocking the phagocytosis of
infected cells by phagocytes in vivo increase the spread of infection by various pathogens?
Third, does phagocytosis of live infected cells lead to the presentation of pathogen antigens
and effective adaptive immunity?

If the hypothesis is true, then there may be translational applications. For example,
treatment with specific opsonins (or treatments that increase opsonin production) may
enhance phagocytosis of infected cells. Treatments boosting phagocyte numbers or
expression of specific phagocytic receptors may similarly increase such phagocytosis,
as would treatments that remove or block don’t-eat-me signals such as sialidase to
remove sialic acid or antibodies to block CD47. Vaccines based on pathogen antigens
expressed on the surfaces of host cells would be particularly efficacious and selective
in removing infected cells. Moreover, targeting the phagocytosis of live infected cells
may combat infections earlier than other treatments and potentially speed the adapt-
ive immune response.
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