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Abstract The focus here is on a thin solid body passing through a channel flow and interacting with the flow.
Unsteady two-dimensional interactive properties from modelling, analysis and computation are presented
along with comparisons. These include the effects of a finite dilation or constriction, as the body travels
through, and the effects of a continuing expansion of the vessel. Finite-time clashing of the body with the
channel walls is investigated as well as the means to avoid clashing. Sustained oscillations are found to be
possible. Wake properties behind the body are obtained, and broad agreement in trends between full-system
and reduced-system responses is found for increased body mass.

Keywords Fluid-body interaction · Channel flows · Wakes · Numerical simulation · Analysis

1 Introduction

This paper addresses the interactive effects associated with a thin body that is free to move in the flow of
the surrounding fluid within a channel. The background for the present work mainly concerns industrial and
biomedical applications such as in problems on firing of bullet-like bodies in a defence context and the entry of
objects into engine intakes in an aerodynamic safety context [1–3], the travel of solids within vessels of major
networks in the human body, the transport of blood clots, and embolisation procedures in stroke treatment
in a biomedical context [4–6]. Another possible practical use of the current research is in development of
a body-transport approach to trace any weaknesses in an arterial wall or other containing wall. The internal
transient movement of the body through an artery makes a weak part of an artery wall change shape (due to the
weak part being more elastic) and hence show up in a clinical scan. Practical interests also exist in industry,
biomedical, environmental and engineering problems with constrictions and branchings especially in respect
to the medical aspect in terms of flow blockage and disease initiation. An example is in predicting where a
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thrombus becomes stuck in an artery, or where a loose shard entering an aircraft engine intake eventually hits
the engine walls and can cause damage there.

A number of studies have addressed fluid-body interaction by means of direct simulations and, in a few
cases, experiments [7–15]. Our concern is more on the analytical side. The present study of the body and fluid
flow inside a channel is based on [16,17]. The body considered here is relatively thin and free to move along
a channel in which fluid is travelling. The channel has an indentation (constriction or dilation) which is either
of prescribed shape or is due to wall flexibility. In [16] interactions between a finite number of infinitesimally
thin moving bodies or grains and the surrounding fluid within a straight-walled channel are analysed in detail
together with the instability about the uniform state. The grains there are straight and free to move in a nearly
parallel configuration in quasi-inviscid fluid, the combined motion being assumed to be planar. Smith et al.
[17] considers a single body having thickness or camber (or both) interacting with the flow in a straight-walled
channel. Another aspect of theoretical investigation on collisions, bouncing and skimming, e.g. shallow-water
skipping in fluid-body or fluid-fluid impacts, is given in [18–20]. Moreover, most of the research in this area
has been for two spatial dimensions (x, y, say) and time (t) but a recent work [21] has included three spatial
dimensions (thus x, y, z as well as time t). The current contribution has almost the same interaction structure
as in [17] with the new piece here being on the unsteady interactions between a body and the fluid flow past
it, inside an indented (constricted or dilated) channel. The indentation is either a given shape or an unknown
shape due to flexibility involving the combined effect of the fluid pressure in the respective gap and the external
pressure. The present investigation involves numerical and analytical studies as well as comparisons between
the two.

Clashes are significant events. The typical clash occurs either near the leading edge of the body as in [16]
or near the mid-body region as in [17]. The majority of the cases are found to yield a solid–solid clash within
a finite scaled time as in [17]: see also the reviews in [22,23]. The effects of an indentation in the containing
channel and of flexibility in the wall of the channel on this phenomenon are to be investigated. Clashes within
a viscous fluid are also examined in recent work [24–27]. We focus however on a basic nonlinear problem
assuming in effect oncoming plug flow in the undisturbed part of the channel; strictly this corresponds to the
local fluid being already in motion prior to the body travelling through it. See Fig. 1. Our aim is to understand
and provide predictions for configurations such as that in the figure, as well as tackling major analytical issues
and the possibility of some continued oscillations arising between the freely moving body and the surrounding
fluid flow. Again, recent analytical work [28–30] implies that significant body oscillations may occur within a
fluid-body interaction under certain conditions such as for a front-heavy body;we intend to study this possibility
here.

The layout of the paper is as follows: Section2 describes the motion of a thin heavy body with or without
camber passing through, and interacting with, the fluid in a straight channel. This is followed by Sect. 3 which
describes an analysis-based reduced system obtained for increased mass and moment of inertia and gives
comparisons with the full solutions of the previous section. Oscillations are also discussed. Detailed wake
effects are examined in Sect. 4. The influences of distortions in the channel walls are addressed in Sect. 5,
while Sect. 6 presents final discussion points and conclusions.

2 The straight configuration: numerical solutions

The concern in this section is with a single body which is thin but with, in general, nonzero thickness or camber
(or both) and moving through fluid in a straight-walled channel as drawn in Fig. 2. With a subscriptD denoting
a dimensional quantity, the nondimensionalisation applied is based on the channel width LD, oncoming fluid
flow velocityUD, pressure pD and fluid density ρDF , while the body length is LD/E say with E being small.
The interactions between body and fluid assume that the fluid is in effect inviscid and incompressible and the
entire motion with unknown velocity components UD(u, Ev) takes place in a two-dimensional LD(x/E, y)
plane. The body is taken to have its angles of inclination during motion being of the same small order, E , as
those of the containing channel. The angle θ shown in figure 2 is scaled such that the real angle is Eθ , yielding
typical slopes tan(Eθ) ∼ sin(Eθ) ∼ Eθ , a property which is used in the formulation below.

The main objective is to examine a model for nonlinear interactions with a single body (occupying 0 ≤
x ≤ 1) of uniform density ρDB contained within side walls. Two-way nonlinear interaction takes place
simply because the fluid dynamical forces lead to body movement which in turn affects the fluid motion. The
background governing equations for the fluid are the continuity and Navier–Stokes equations and for the body
are those of rigid body motion. The flow equations, given the above assumptions on thinness and the absence
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(a) Fixed channel

(b) Fixed body

Fig. 1 a Sketch in non-dimensional form of a body moving with axial velocity B through a fixed channel (with an indentation
shown); the overtaking fluid has uniform velocity 1+ B. Here, undisturbed channel width H0 = 1. bAs in (a) but in the reference
frame wherein the body is fixed: so the indentation moves upstream in relative terms if B > 0 but downstream if B < 0. (The
case B = −1 corresponds to the body travelling into fluid at rest.)

Fig. 2 The body having both thickness and camber at a general position and orientation in the flow, with fluid-filled gaps 1, 2.
Here, h is y-position of the body centre of mass (CoM) measured from the lower wall; also f1 = 0, f2 = 1. The chord line,
being the straight line through the leading and trailing edges, makes a small angle θ with the x-axis. The incident velocity u0 = 1

of incident vorticity, become the thin-layer system

Hnt + (Hnun)x = 0 and unt + ununx = −pnx , (2.1)

for n = 1, 2. Here, Hn are the unknown thicknesses of the two fluid-filled gaps between the body surface and
the walls, whereas un and pn represent the corresponding unknown velocities and pressures in each region.
The incident velocity is u0 = 1 and the scaled pressure is zero upstream of the leading edge, without loss of
generality. The system here applies for 0 ≤ x ≤ 1 as, due to the drag force being relatively small, the axial
velocity of the thin body is constant; this constant is zero in the current frame of reference. The body occupies
the region

f −(x, t) < y < f +(x, t), x ∈ [0, 1], (2.2)

where y = f ±(x, t) are the curves of the upper (+) and lower (−) surfaces of the body as it moves. At the
leading and trailing edges, for closure,

f −(0, t) = f +(0, t) and f −(1, t) = f +(1, t). (2.3)
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The overall mass-conservation balance requires

2∑

i=1

ui (1-, t)Hi (1-, t) = 1, (2.4)

by virtue of the incident conditions ahead of the body. Here, in more explicit form, the values

H1 = h(t) + F1(x) + (x − a)θ(t), (2.5a)

H2 = 1 − h(t) − F2(x) − (x − a)θ(t) (2.5b)

are the thicknesses of the regions of fluid flow between the lower wall of the channel and the lower surface
of the body, and between the upper wall of the channel and upper surface of the body, respectively. Thus,
f + = F2(x)+ h(t)+ (x − a)θ(t) and f − = F1(x)+ h(t)+ (x − a)θ(t). We allow the body to have arbitrary
shape, with underbody and overbody shapes (when not moving) given by y = F1(x) = C(x) − T (x)/2 and
y = F2(x) = C(x) + T (x)/2 with C(x) and T (x) being camber and thickness of the body, in turn. Note
that C(x) can be negative or positive. The condition at the body’s trailing edge is in effect the Kutta condition
requiring the flow to be smooth and this imposes on the fluid flow the constraint

p1(1-, t) = p2(1-, t) = πe(t) (2.6)

as another boundary condition, with the pressure value πe(t) being an unknown function of t . In order for
the Kutta condition on pn(1-, t) to be enforced at the trailing edge (TE), the interactive system requires the
existence of a short Euler region of quasi-steady flow surrounding the leading edge (LE), in consequence of
which we have

pn(0+, t) + 1

2
u2n(0+, t) = 1

2
(2.7)

from the Bernoulli theorem. The Kutta condition applies as each region of fluid flows enter into the common
wake, requiring the pressures across the two gap regions to be equal there, whereas the velocities are unequal
generally, thus allowing vortex sheets into the commonwake. The fluid dynamical part of the interactivemotion
has thus been described.

To determine the body motion equations, we neglect gravity and we should also note that the main force
driving the body motion is the pressure force due to the fluid flow. Thus,

Mhtt =
∫ 1

0
(p1 − p2) dx, Iθt t =

∫ 1

0
(x − a)(p1 − p2) dx = τ. (2.8)

Here, τ is the torque applied on the bodyby thefluidflow,while θt t and htt represent the angular acceleration and
linear acceleration in the positive y-direction, respectively. Also M and I represent the scaled non-dimensional
mass and moment of inertia of the body, respectively, with I being at most M/4 for physical sense, while
a(= 1/2 in this section) is the x-position of the centre of mass. Here, M, I, u0 and F1(X), F2(x) are treated
as given, and we intend to solve for the behaviour of the body, i.e. h and θ as functions of time.

Numerical solutions of the dynamic fluid-body interaction were derived using the method detailed in
[16,17,31] among others. Figure3 shows numerical evolutions of the system (2.1)–(2.8) for the body’s leading
and trailing edge positions and θ, θ̇ for increasing M and I values in a straight channel. The body has a
sinusoidal nonzero thickness. The initial conditions are (h, ht , θ, θt ) = (0.5, 0, 0.1, 0). The early motion
is dominated by a linear increase in θ . The figure suggests that the resulting lift-induced migration to the
wall and angular acceleration affect the flow more slowly for heavier bodies. The impact time was found as
2.3832, 3.0278, 3.4330 for M = 2, 6, 10, respectively. We now present an analysis for the effect of the
enhanced mass and moment of inertia and of the centre of mass position on the fluid and body motions.
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Fig. 3 aBody leading edge (LE) and trailing edge (TE) positions forM = 2, 6, 10, I = M/5 and thickness T (x) = 0.4 sin(πx),
camber C(x) = 0, b angle θ , angular velocity θ̇

3 Analysis for the straight case

The computational results of the previous section point to some relevant new analysis in the present section
concerning successively the effects of enhancedmass, reduced ratio ofmoment of inertia tomass and positional
variation of the centre of mass.

First however, given that uniform flow with zero pressure variation constitutes an exact solution of the
interaction system for the case of an aligned flat plate in the middle of the channel, small perturbations from
the uniform state are of interest. These take the form

(H, u, p) =
(
1

2
, 1, 0

)
+ O(δ), (3.1a)

with δ � 1. Substitution [16,23] into the full system leaves at leading order linearised equations and conditions
for the O(δ) perturbations in (3.1a). When the body thickness is negligible, the time-dependence becomes
exponential, proportional to exp(Qt) say. Thus, (2.1) then yields, at order δ, the ordinary differential equation

Q H+
n + d

dx
H+
n + d

dx
u+
n = 0,

while (2.8) gives the integral constraints

Q2M h+ =
∫ 1

0
(p+

1 − p+
2 ) dx,

Q2 I θ+ =
∫ 1

0
(x − a) (p+

1 − p+
2 ) dx,

where (H+
n , u+

n ) exp(Qt) are the O(δ) perturbations in (3.1a). Similar working applies for the other quantities
with superscripts ‘+′ and for the linearised versions of (2.4)–(2.7). We are led to an eigenvalue equation for
the constant Q, namely

Q2
{
(3M + 1)

(
I + 1

180

)
Q3 +

(
3MI + M

10

+ 4I + 1

20

)
Q2 −

(
M

2
− 6I − 1

5

)
Q +

(
1

3
− M

)}
= 0. (3.1b)

The main concern here is in the cubic form inside the curly brackets, rather than the presence of two zero-Q
roots (from the Q2 factor outside) which are associated with uniform translation. Plots in [23] of the cubic
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form in the left-hand side of (3.1b) establish that for any M > 1/3, there is a single eigenvalue with a positive
real part, due to the signs of the terms in (3.1b). The fact that this eigenvalue is O(1) indicates the modelled
interaction exhibits instability but only over the time scale of the complete interaction, not over shorter or
longer time scales. See [16,23]. In addition, there is much current interest in the response for large M, I
values with M, I remaining comparable. Here, (3.1b) shows that the relevant Q root then tends to zero, with

Q ∼ (3I )−1/2 for M ∼ I � 1. (3.1c)

The finding (3.1c) suggests three features, specifically that the evolution slows down as M, I are increased,
which makes sense physically, that the typical time scale increases like M1/2 and that the variation of θ may
come to dominate. These analytical features combine with the computations above to guide the following
analysis.

3.1 Behaviour for large mass

If the mass M is large and the moment of inertia I is comparable with M , then the typical time scale t increases,
as implied by Q becoming small in the linear result (3.1c). In the nonlinear regime, the time scale can be seen to
grow like M1/2 in view of the mass-acceleration-force balance in (2.8), given that when h is of order unity the
velocity and pressure responses are likely to be also of order unity, which requires M/t2 to be O(1). Similar
reasoning applies to the rotation motion balance. Hence, t = M1/2t∗ say, with t∗ of order unity, and taking
the initial conditions to involve no substantial velocities dh/dt, dθ/dt (e.g. for a body starting from rest) we
have the expansion

(h, θ, u, p) = (h∗, θ∗, u∗, p∗) + . . . (3.2)

with the scale of x and the body surface shapes remaining typically of O(1). The velocities dh/dt, dθ/dt
just mentioned are of order M−1/2 and hence small. It follows that the fluid flow part of the whole interaction
becomes quasi-steady; at leading order the governing equations of the flow remain as in (2.1) but with the time
derivatives omitted and with asterisks inserted as per (3.2). Therefore, the flows in the two gaps for n = 1, 2
are described by

u∗
nH

∗
n = d∗

n (t∗) = Hn
∗
T E

H0
, (3.3a)

p∗
n = 1

2

{
1

H2
0

− d∗
n
2

Hn
∗2

}
, (3.3b)

from the quasi-steady mass conservation and Bernoulli property. Here, the functions d∗
n (t∗) depend only on the

scaled time t∗ as in (3.3a), the subscript T E denotes evaluation at the trailing edge x = 1 and, to clarify, the gap
widths are H∗

1 (x, t∗) = f −− f1, H∗
2 (x, t∗) = f2− f + while in the present context H0 = 1, f1 = 0, f2 = 1.

Thus,

H∗
1 (x, t∗) = F1(x) + h∗(t∗) + (x − a)θ∗(t∗), H∗

2 (x, t∗) = 1 − F2(x) − h∗(t∗) − (x − a)θ∗(t∗). (3.3c)

The reduced system here then comprises (3.3a)–(3.3c) combined with the body motion part of the interaction
in the form

d2h∗

dt∗2
=

∫ 1

0
(p∗

1 − p∗
2) dx, (3.3d)

I ∗ d2θ∗

dt∗2
=

∫ 1

0
(x − a)(p∗

1 − p∗
2) dx . (3.3e)

Here, I ∗ denotes the I/M body ratio of the moment of inertia relative to the mass.
Solutions of the reduced system (3.3a)–(3.3e) are presented in Fig. 4. (Here and in certain other figures

below, the dots typically indicate every 50th data point, for clarity of presentation.) Comparisons with the full
numerical results prove to be useful and are also included in that figure. In Fig. 4, numerical results are shown
for the evolutions of h, θ obtained from the full and the reduced systems for a flat-plate body. The agreement
is evident in terms of the trends of the evolution curves as M, I increase.
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Fig. 4 Evolutions of h, θ from the full system (with unsteady fluid and body motion) for M of 16, 36, 256 and from the reduced
system (steady fluid flow), plotted against scaled time t∗ = M−1/2t . This is for a flat-plate body in a straight channel, with
I = M/5 throughout. Dots indicate every 50th data point

3.2 Small ratio of moment of inertia to mass

Here, we suppose additionally that the ratio I ∗ is small. Then, because of the balances of contributions in (3.3e),
the time scale t∗ decreases accordingly such that t∗ = I ∗1/2t∗∗ say with t∗∗ being of O(1). This assumes the
two gap pressures remain characteristically of order unity, from reasoning as in Sect. 3.1. So the controlling
Eqs. (3.3d) and (3.3e) become

d2h∗

dt∗∗2 = 0, (3.4a)

d2θ∗

dt∗∗2 =
∫ 1

0
(x − a)(p∗

1 − p∗
2)dx, (3.4b)

to leading order. The first equation gives simply

h∗(t∗∗) = h∗(0) + t∗∗ dh∗

dt∗∗ (0) (3.5)

explicitly and so, on use of (3.3b) for the pressures, we are left with the single equation

d2θ∗

dt∗∗2 = 1

2

∫ 1

0
(x − a)

{
H∗
2 (1, t∗∗)2

H∗
2 (x, t∗∗)2

− H∗
1 (1, t∗∗)2

H∗
1 (x, t∗∗)2

}
dx (3.6)

which acts as an integro-differential equation for the scaled angle θ∗(t∗∗). In (3.6), the terms H∗
n (x, t∗∗) are

given by (3.3c) with t∗ replaced by t∗∗ but with h∗ prescribed by the known form (3.5) as well as the body
shapes F1(x), F2(x) being known.

In the basic case of a flat-plate body F1(x), F2(x) are zero. If in addition the initial velocity dh∗/dt∗∗(0) is
zero then, with the constant h∗(0) written as β for convenience, the terms inside the integral on the right-hand
side of (3.6) simplify somewhat since

H∗
1 (x, t∗∗) = β + (x − a)θ∗(t∗∗), H∗

2 (x, t∗∗) = 1 − β − (x − a)θ∗(t∗∗). (3.7)

The integral, which can be worked out analytically [32], is somewhat unwieldy, and as an alternative a straight-
forward numerical treatment can be applied to the reduced form (3.3a)–(3.3e). The solutions of interest which
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Fig. 5 Solutions of the reduced form (3.3a)–(3.3e) for h, θ vs t∗ when the centre of mass location x = a is varied from 0.5 to
0.1. Here, I ∗(= I/M) = 0.2 Vertical lines indicate a wall-body clash

are shown in Fig. 5 highlight that impact with one of the walls can still occur in this regime but also the
beginnings of oscillations of θ∗ with respect to time t∗∗ are seen under certain conditions. The solutions for
h, θ in Fig. 5 hint at the possibility of oscillatory solutions, in the sense that when the centre of mass is moved
forward on the body an undulation appears in the results and this acts to delay the impact with the channel
wall.

3.3 Oscillations

The intriguing property of oscillations arising comes to the fore especially when the centre of mass ‘a’ is
varied. A linearised analysis (given below) first shows this and indicates a critical value of a = ac = 1/3 for
the switch to oscillatory behaviour, as follows. The linearised analysis corresponds to the scaled angle θ∗ in
(3.6) being assumed to be small, with the constants β, a remaining of O(1) in general. Hence in view of (3.7),
the following expansions are implied,

θ∗(t∗∗) = εθ̄(t∗∗) + . . . , (3.8a)

H∗
1 (x, t∗∗) = β + ε(x − a)θ̄(t∗∗) + . . . , (3.8b)

H∗
2 (x, t∗∗) = 1 − β − ε(x − a)θ̄(t∗∗) + . . . , (3.8c)

where ε � 1 is a measure of the size of θ∗, leaving θ̄ (t∗∗) of order unity. Substitution into (3.6) leads to the
linear equation

d2θ̄

dt∗∗2 = θ̄

(β(1 − β))

∫ 1

0
(x − a)(x − 1)dx, (3.9a)

from which the form

d2θ̄

dt∗∗2 = 1

2

(
a − 1

3

)
θ̄

(β(1 − β))
(3.9b)

is obtained. Here, (3.9b) confirms the critical value as ac = 1/3. If a > ac, then the small disturbance grows
exponentially in t∗∗, whereas if a < ac then small oscillations are predicted: the frequency of such oscillations
increases when the body is placed close to either wall where the value of β is near zero or unity. (This is a
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Fig. 6 a Evolutions h, θ plotted against scaled time t∗∗ as discussed in Sect. 3. b Body positions at times t∗∗ = 0, 2, 4

matter taken further in Sect. 6.) Nonlinear solutions then support the finding. See Figs. 6 and 7. Figure6 shows
the response over the t∗∗ time scale with h remaining at its initial value of 0.5 throughout and θ gradually
increasing, in Fig. 6a, such that the flat-plate body clasheswith the upper and lowerwalls almost simultaneously
at a t∗∗ value of about 4.5, in Fig. 6b; the leading edge impacts on the lower wall and the trailing edge on the
upper. The impact is indicated by the vertical line in Fig. 6a. In Fig. 7, the centre of mass is at x = 0.1 instead
of the usual value 0.5 and this is seen, in Fig. 7a, to lead to oscillations. The largest oscillation which is for an
initial θ equal to 0.55 displays the effects of nonlinearity through a movement of the peak and trough locations
in particular, with the body’s trailing edge almost but not quite hitting the walls as the oscillations continue.

The analysis appears to be in keeping with the numerical solutions of (3.3a)–(3.3e). The analytical oscil-
latory response is also consistent with the earlier numerical work on the full system, particularly when I is
large but significantly less than M .

4 Wake behaviour

The wake behind the body arises because the velocity components u1, u2 of the body-scale flow studied in
Sect. 2 are unequal in general at the trailing edge. This is shown by taking the integral of (2.1) with respect
to x from the leading edge to the trailing edge, together with the Euler and Kutta conditions on pressure in
(2.6), (2.7). Spatial and temporal evolution must therefore take place in the wake to restore uniform flow far
downstream. The argument here is similar to that in Sect. 2. In the wake, where x > 1, the absence of a solid
body implies that the pressures p1, p2 must be equal but the dividing streamline, which marks the interface
between fluid that has come from above the body in 0 < x < 1 and fluid from below the body, is unknown in
advance.

The relevant flow system to be solved in the wake x > 1 is thus

∂Hn

∂t
+ ∂(Hnun)

∂x
= 0, (4.1a)

∂un
∂t

+ un
∂un
∂x

= −∂pn
∂x

, (4.1b)

together with the pressure equality

p1 = p2 (4.1c)
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Fig. 7 Oscillatory interactions. a Angle θ vs t∗∗ for initial conditions θ(0) = 0.1, 0.4, 0.55 in the case a = 0.1. b Evolution of
body positions for the 0.55 initial condition

and

H1 + H2 = 1. (4.1d)

Here, (4.1d) represents the feature that the thicknesses H1 of the lower fluid flow and H2 of the upper fluid
flowmust add up to unity, which is the overall width of the straight channel. The initial conditions are typically
that

H1 = H2 = 1

2
, p1 = p2 = 0, u1 = u2 = 1 at time t = 0, (4.2a)

while the boundary conditions at the start of the wake, i.e. at x = 1+, are

(H1, H2, u1, u2, p1, p2)(1+, t) = (H1, H2, u1, u2, p1, p2)(1−, t), (4.2b)

for all t > 0. The form (4.2b) matches with the fluid /body interaction properties considered in Sects. 2, 3 at
the trailing edge of the body, with the Kutta condition assuring that p1, p2 are equal there and so the pressure
can be continuous. It is notable that in the limit of large M, I there is no wake effect to leading order because
the flow contribution is then quasi-steady and so the Kutta condition on pressure leads to u1, u2 being equal
in that case.

The system was solved numerically by means of an adjustment of the method described in [16,17,31]. In
addition a linearised analytical solution appropriate for small perturbations from the state (4.2a) is described
in [31]: see also the analysis in (3.1a)–(3.1c). Analysis along the lines to be discussed in the following section
also applies in the wake part of the present interaction. Tests on the accuracy of the numerical work are given
in [31].

The results are presented in Figs. 8, 9, 10 and 11. Figures8, 9 and 10 are for a thick body in 0 < x < 1 with
initial conditions (0.5, 0, 0, 0.1) for (h, dh/dt. θ, dθ/dt). Here, Fig. 8 shows the lower and upper widths
H1, H2, while Fig. 9 presents the velocities u1, u2 and Fig. 10 the pressure solution p1 = p2. The incident
conditions (4.2b) at x = 1 in Fig. 8a, b indicate that H1 there decreases with time whereas H2 increases, in
line with (4.1d). This temporal decay and growth in H1, H2 is arrested at larger x values however and replaced
by growth and decay, respectively, ahead of a travelling front, while downstream of that front the quantities
given by the initial conditions in (4.2a) remain undisturbed. Similar phenomena appear in Figs. 9a, b and 10.
In all cases, the existence of a travelling front is clear in the wake, the front speed being approximately unity
as would be expected. Figure11 exhibits the combined body-flow and wake-flow properties in terms of u1, u2
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Fig. 8 Lower and upper layer widths H1 and H2 until time t = 2. Here, M = 10, I = 2. a The lower layer width H1 for
x ∈ [1, 3.4]. b The lower upper width H2

Fig. 9 Velocities u1 and u2 in the wake region until time t = 2. Here, M = 10, I = 2. a Velocity in the lower wake layer u1 for
x ∈ [1, 3.4]. b Velocity in the upper wake layer u2. The initial conditions are as in Fig. 8

plotted against x between the body leading edge x = 0 and the wake position x = 3.4, for a range of times t
as shown. In this interaction an impact of the body with the lower wall of the channel occurs at a time of about
3.4. Again the travelling front is apparent in the wake.

5 Body motion through dilated or constricted channels

We consider here the effects of a continued dilation (expansion) of the channel width, in Sect. 5.1, followed
by a study of finite dilation or constriction in Sect. 5.2.

5.1 Channel expansions

In the configuration studied in this section, the lower wall is moving upstream, i.e. leftward, from right to
left, with constant speed, relative to the body. Certain analytical features are worth describing first since they
influence the coupling between the flow ahead of the body and that around the body in the fluid-body interplay.

Upstream of the body the wall eventually becomes distorted from its original straight form after a finite
time, t = t0 say. Since no body is present, there the relevant governing equations are

Ht + (uH)x = 0, (5.1a)
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Fig. 10 Pressure p solutions in the wake region until time t = 2

ut + uux = −px , (5.1b)

for x < 0 (ahead of the body) but x > x0(t) (the position where wall distortion begins). Here, (5.1a, 5.1b)
applies across the whole channel. Let us assume that the incident velocity and channel thickness u0, H0 are
maintained as constant in the straight channel far upstream. We suppose also that the lower wall is prescribed
as y = fL(x, t), which holds for x > x0(t), when x0(t) < 0. Upstream of x = x0(t) the channel remains
straight. The upper wall is at y = 1 say. (In the body frame, we repeat, the body’s leading edge remains at
x = 0 and the trailing edge remains at x = 1.) Ahead of the leading edge, for x0(t) < x < 0, we have (5.1a)
with the gap width being H = 1 − fL(x, t). Hence, (uH)x = ∂ fL/∂t and integration in x then gives

uH(x, t) = u0H0 +
∫ x

x0(t)

(
∂ fL
∂t

)
dx, (5.2a)

and in particular at the onset of the leading edge

uH(0, t) = u0H0 +
∫ 0

x0(t)

(
∂ fL
∂t

)
dx . (5.2b)

On the other hand, where the body is present, i.e. for 0 < x < 1, we have the two kinematic balances
H1t + (u1H1)x = 0 and H2t + (u2H2)x = 0 from Sect. 2. Integrating these two equations from x = 0 to
x = 1 and adding the results gives us

(
d

dt

) ∫ 1

0
(H1 + H2) dx + (u1H1 + u2H2)(1, t) = (u1H1 + u2H2)(0, t). (5.2c)

Then using the fact that H1 = 1− f+(x) − h(t) − (x − a) θ(t) and H2 is given by a similar formula, we find
from (5.2c) that

(u1H1 + u2H2)(0, t) = −
∫ 1

0

(
∂ fL
∂t

)
dx + (u1H1 + u2H2)(1, t). (5.2d)

However, the Euler region surrounding the leading edge contains quasi-steady flow and hence mass conser-
vation in that region simply tells us that the left-hand side of (5.2b) is equal to the left-hand side of (5.2d).
Therefore, from the right-hand sides, we have

(u1H1 + u2H2)(1, t) = u0H0 +
∫ 1

x0(t)

(
∂ fL
∂t

)
dx . (5.2e)

This is the main mass-conservation requirement. Using the result

u1 =
[
c1 − h′ (x − a) − 1

2
θ ′ (x − a)2 +

∫ x

x0(t)

(
∂ fL
∂t

)
dx

]
/[h + θ(x − a) − fL ] (5.2f)
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)b()a(
Fig. 11 Velocities for a body of profile T (x) = 0.4 sin(πx), C(x) = 0, with M = 10, I = 2, approaching impact with the
lower wall at the scaled time of t about 3.4. (Solutions are presented from time t = 0 to t = 3.3). a The velocity u1 in gap 1
for 0 < x < 3.4 (body and wake regions) and approaching the clash. b The upper layer velocity u2. (The evolution in u1 is
sufficiently small over the whole time interval in the body region where 0 < x < 1)

(where c1(t) is an unknown function of integration, while we recall a is the position of the centre of mass) and
a similar result for u2, we then substitute these into (5.2e). We are led to the mass-conservation requirement

c1(t) + c2(t) = 1, (5.3)

which acts as a generalisation of the mass condition (2.4). It is notable that the integral in (5.2f) has x0(t) as
its lower limit; this leads to (5.3). In addition the momentum balance (5.1b) gives, on integration, the form

p + 1

2
u2 = 1

2
−

∫ x

x0(t)
ut dx (5.4)

for the pressure head. Hence, in particular, we obtain the result
(
p + 1

2
u2

)
(0−, t) = 1

2
+ M− 1

2

(
1 + M− 1

2

)
μx0 / (1 + μx0), (5.5)

holding at the leading edge for the specific case addressed in the results shown in Fig. 12. Here, x0(t) =
1 − M−1/2t = 1 − t∗, (5.5) holds for t > M1/2 and μ is a constant. Figure12 shows h, θ against t∗ for
the expanding channel, in Fig. 12a, where the wall which is moving upstream relative to the body has shape
fL = μ(x − 1 + t∗) for x > 1 − t∗, with μ = −1 in this example. Here, Fig. 12b gives the evolving body
positions as seen in the laboratory frame. We note that h, θ can be shown to grow in the form O(t∗)+O(ln t∗)
at large t∗ values within the expanding channel; the dependence on the centre of mass location a is implicit in
the O(t∗) term but explicit in the O(ln t∗) contribution.

Most significant for the fluid-body interaction are the channel width at the leading edge at any time t and
the initial conditions at zero time on the velocities u1, u2. Both the channel width and the initial conditions
are built in to the solution procedure, as is (5.3) to preserve total mass. By contrast, (5.5) does not affect the
body-scale solution significantly. This is due to the property that an arbitrary function of t can be added to
each of the pressures p1, p2 without altering the interactive flow equations and, additionally, the fluid-body
interaction itself involves only the pressure difference p1 − p2, as seen in (2.8), thereby cancelling out the
arbitrary function just described.

Computational solutions for the fluid-body interaction are presented in Fig. 12. These are for the case of
large M, I as described in Sect. 3 but now with channel expansion, such that in the laboratory frame the body
is moving into a spatially expanding channel. The lower channel wall is given in the body frame by

fL(x, t) = μ(x + t∗ − 1) for x > x0(t
∗), zero otherwise, (5.6)
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Fig. 12 For an expanding channel. Solutions of the reduced system (3.3a)–(3.3e) with I = M/5 (I ∗ = 0.2) for a flat-plate body
with centre of mass location a = 0.5. a h, θ vs time t∗. b Body positions in the channel at times 0, 1, 2

Fig. 13 In a constricted channel. Here again the ratio I/M = 0.2. a h, θ solutions plotted against time t = 4t∗(= M1/2t∗)
from full system at M = 16 (dotted curves) and from reduced system (labelled Limit). b The positions of the body at times
t∗ = 0, 0.2, 0.4 prior to impact, according to the reduced system. Comparisons for other M values are described in the text

where μ = −1 and x0 = 1 − t∗. The upstream effect in (5.5) is small since M is large, while the initial
conditions here correspond to a symmetric start at time zero [see also (3.1a)] and the channel width at the
leading edge increases as 1 − μ(t∗ − 1), that is, as t∗, for times t∗ > 1. The figure shows the evolution of
h, θ as well as the body and wall positions, with no impacts taking place in this example. It can be shown that
for large times t∗, the accelerations continue to reduce as the time scale increases and in effect the pressure
approaches a stagnation value as the channel continues to expand.
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5.2 Finite dilation or constriction

The channel here is straight-walled except for the occurrence of a finite indentation or bump over which the
moving body travels, such that in the present moving frame (the body frame) the indentation appears to enter
the region of interest in the rightward direction with constant speed less than unity: in terms of Fig. 1 the
constant B is negative in this case.

Considerations and analysis essentially identical with those in (5.1)–(5.5) again apply ahead of the body
here. This is relevant from the initial time because of the rightward motion of the lower wall in the present case.
On the other hand, the finite distortion, whether a dilation or a constriction, remains fixed in the laboratory
frame in which the channel is stationary andwe can expect the flow there to be steady at leading order, implying
that in our body coordinates the effect upstream of the body depends only on (x − λt). Here, λ is a given
positive constant. Mass flux uH is conserved then, from the kinematic condition (5.1a), while the momentum
balance (5.1b) now becomes

(u − λ) ux = −px , (5.7)

which can be integrated readily as in Sect. 3 to yield the variation of the pressure head (p+1/2 u2). Following
this, however, the same comments as in Sect. 5.1, on the pressure difference and on the significance of the
channel width at the body’s leading edge and the initial conditions, still hold in the current scenario.

The results shown in Fig. 13 are for the full problem [of (2.1)–(2.8)] with an M value of 16, for a finite
constriction, with μ = −6, together with a comparison with the result from the reduced problem [of (3.3a)–
(3.3e)] where M, I are taken as asymptotically large. In the latter regime, the wall-velocity factor λ is small
and the upstream effect corresponding to (5.5) is negligible at leading order over the current time scales. As
previously, the solution of the reduced problem is observed to capture the qualitative trend of the full solution;
see also the next paragraph. Inmore detail, the results in Fig. 13 are specifically for a lower wall which produces
a constriction, moving downstream relative to the body, with Fig. 13a showing h, θ and a comparison with the
full-system results which suggests qualitative agreement. In contrast, Fig. 13b is presented in the laboratory
frame and depicts the body evolution at three successive times. The position of the body at time t∗ = 0.2 is
altered only a little from that at time t∗ = 0, with the leading edge seen tomove upstream of its original position
with hardly any body rotation, but by the time t∗ = 0.4 the rotation has increased. The effective squeezing of
fluid locally accompanied by a lowered pressure means that the body thereby approaches the constriction and
then impacts upon it soon afterwards, at a t∗ value of about 0.5 according to the calculation.

The comparison in Fig. 13 for M of 16 indicates that the approximate impact time predicted by the reduced
system is t = 1.98, whereas that from the full system is t = 2.89. The ratio is thus 0.685. With I kept
at the value M/5, the corresponding times for M of 64 are found to be 3.96 and 4.95, respectively, giving
a ratio of 0.80, while for M of 256 we find 7.92 and 9.10 in turn and hence a ratio of 0.87. The trend,
namely 0.685, 0.80, 0.87, is encouraging as far as the approach to the limiting value of unity for the ratio at
asymptotically large M, I is concerned.

6 Discussion and conclusions

The study has sought increased understanding of the free movement of a slender body in a surrounding fluid
flow within a channel. This is with two-way interaction being considerable between the fluid motion and
the body motion and with fully unsteady evolution being active for both motions in general. The work has
addressed numerical aspects for a thin or thick object inside a channel with straight walls and the corresponding
analytical features for comparatively large values of the scaled mass and moment of inertia. The latter lead
to a significantly reduced system. Oscillations coupling the body and the fluid motions have been found,
including some particularly interesting ones which occur for relatively small values of the moment of inertia.
Wake responses and the influences of non-straight walls associated with finite dilation and constriction or with
continued expansion of the channel have also been investigated.

The main findings from the present modelling, analysis and computations, along with comparisons, are
felt to be the following. First is the finite-time clashing of the body with the channel walls, which is a quite
common phenomenon here, but there are means to avoid such clashing. The impact or clashing of the body
when it does occur on a stationary or a moving wall is as in [16] if at the leading edge of the body or [17]
in terms of a mid-body clash. However, a continuing expansion of the vessel is found to readily lead to the
avoidance of such an impact. The second main finding concerns sustained oscillations. These are found to
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be possible as mentioned earlier and their occurrence can be supported clearly in analytical form. They arise
especially for a front-loaded body. Third, wake properties behind the body show a distinct travelling front
downstream. The fourth finding is concerned with the body flow through a dilated or constricted channel,
which generates substantial nonlinear effects upstream of the body, whether the body travels leftwards towards
the oncoming fluid flow or rightwards with the oncoming flow. Fifth is the broad agreement seen in the solution
trends between full-system and reduced-system responses as the body mass and moment of inertia increase.

An interesting issue arises if the body lies near one of the walls. Suppose that the whole body is close to the
lower wall (see Fig. 2), whether the wall is straight or otherwise; this is the case of a thin flat plate if the wall is
straight. To leading order, the flow in the thin gap, of small thickness of order δ say, dominates the fluid-body
interaction and gives a boundary-layer type of response as in [27] within region 1 of Fig. 2, the pressure p1
being of order unity and satisfying the Kutta condition. Here, region 1 refers to the gap where the fluid velocity
has subscript unity and region 2 to the other gap above the body. This boundary layer implies that the height h
and angle θ are known to leading order, with O(δ) relative corrections. (As a significant point here, the present
argument supports the boundary layer analyses of [23,27,29,34] in the sense that only the underbody pressure
affects the body motion to leading order in the boundary layer case and also the fluid flow is quasi-steady if
the scaled mass is relatively large.) At issue next is the question of how the solution in region 2 is determined.
This appears to be by means of a linearised system in that region, which involves an O(δ) perturbation from
the uniform incident stream and a corresponding pressure p2 of order δ. The boundary condition on the top
surface of the body now acts at zero y in effect. Combined with the no-penetration condition at the top wall,
it indicates a behaviour similar to that studied in a single channel (Sect. 5). The pressure p2 can be found
thereby and has a nonzero value generally at the trailing edge: this value provides a small corrective feedback
to the pressure in the region 1. A similar reasoning applies to the wake of the near-wall body, a wake which is
concentrated near the lower wall to leading order and is governed by the inviscid Burgers’ equation, that is,
by (4.1b) for u1(x, t) in x > 1 but with zero pressure p1 in order to match with the majority of the flow at
every wake station.

Potential future work has much of interest. It would be valuable to add in the influence of viscosity, for
example as in [24–26], to admit three-dimensional interactions [21], and to include more than one body [33].
Similarly, the modelling of a flexible elastic wall or flexible body in the channel could be of great concern, not
least because of the possible application to the tracing of vessel weaknesses described in the Introduction. We
would also like to highlight the effects of reducedmass andmoment of inertia, specifically in the eigenvalue Eq.
(3.1b). The reduction leads to one real negative root for Q along with two complex conjugates and corresponds
directly to demanding that the right-hand sides of the body motion balances (2.8) be zero. Thus, the pressures
have to adjust tomake the lift andmoment integrals remain zero throughout the evolution. In thismass reduction
case, the time derivatives of the fluid flow stay significant, in contrast with themass enhancement case of Sect. 3
where the time derivatives of the body movements dominate the interaction. Work in [34] considers the mass
reduction case in a boundary-layer context for an ice particle in water; it would be interesting to continue this
case for the present internal flow configuration.
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