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A bayesian approach for estimating the post-earthquake recovery trajectories of 
electric power systems in Japan
Yuki Handaa, Eyitayo Opabolab and Carmine Galassoa

aDept. of Civil, Environmental and Geomatic Engineering, University College London, London, UK; bDept. of Civil and Environmental 
Engineering, University of California, Berkeley, USA

ABSTRACT
Post-disaster recovery modelling of engineering systems has become an important facet of 
catastrophe risk modelling and management for natural hazards. The post-disaster recovery 
trajectory of a civil infrastructure system can be quantified using (a) the initial post-disaster 
functionality level, Qo; (b) rapidity, h (i.e., the rate of functionality restoration); and (c) recovery 
time, Rt. This study uses a Bayesian estimation approach to derive a set of probabilistic models to 
estimate Qo, Rt, and h of electric power networks (EPNs) using post-earthquake recovery data from 
16 large earthquakes in Japan between 2003 and 2022. The considered predictor (explanatory) 
variables include earthquake magnitude, year of occurrence, seismic intensity, and exposed 
population (PEX). Apart from being a simple and efficient stand-alone tool, the proposed data- 
driven models can be a useful benchmarking tool for simulation-based approaches for EPN 
recovery modelling.
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1. Introduction

Field evidence has shown that disaster-induced 
damage and disruptions to critical infrastructure sys
tems (e.g., electric power networks; EPNs) can cause 
significant direct and indirect socioeconomic losses, 
including casualties. Apart from economic losses 
associated with business interruptions, power outages 
can result in human losses, increased waste from 
perishable food items, failure of security systems, 
increased disease spread, significant direct repair 
and restoration costs, and several other forms of 
nuisance to the general public (e.g., Chang, 
McDaniels, Mikawoz, et al., 2007; Dugan, Byles, & 
Mohagheghi, 2023).

Accurately estimating power outages and recovery 
can help EPN management authorities and other pri
vate/public organizations reliant on electric power 
define effective short-term and long-term recovery stra
tegies to improve community-level resilience. For exam
ple, business owners and homeowners can set up 
appropriate measures (e.g., backup power sources and 
power disruption insurance) if potential post-disaster 
recovery trajectories of EPNs at different hazard inten
sities are known.

The post-disaster recovery trajectory of civil infra
structure systems can be quantified using (a) their initial 

post-disaster functionality level (i.e., the ratio of the num
ber of serviced customers/end users post-disaster to that 
pre-disaster); (b) rapidity (i.e., the rate of functionality 
restoration); and (c) recovery time (i.e., time to restore 
full functionality to the total number of serviced custo
mers/end users). Currently, two main approaches for 
infrastructure recovery modelling are widely adopted – 
empirical and simulation-based modelling. A more 
detailed discussion of the relevant state-of-the-art studies 
is provided subsequently in this paper. Empirical models 
(e.g., Guikema & Quiring, 2012; Liu, Davidson, 
Rosowsky, et al., 2005; Nojima & Sugito, 2003) for EPN 
assessments are based on correlations from data analysis 
of historical spatial outages and recovery times. Given the 
data resolution used in developing these models, most 
empirical models do not explicitly account for the net
work topology and fragility (probability of a given 
damage level vs hazard intensity) of individual compo
nents and subcomponents in the EPNs. However, empiri
cal models are considered helpful in forecasting region- 
level disaster-induced outages. It is noted that most exist
ing empirical models have been developed for hurricane 
and storm hazards. Furthermore, available empirical 
models on post-earthquake recovery of EPNs do not 
adequately link earthquake features (e.g., magnitude, 
local intensities, etc.), exposed population, post- 
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earthquake functionality level, and recovery time. Hence, 
developing more efficient yet simple empirical models for 
post-earthquake recovery of EPNs is crucial.

Simulation-based methods (e.g., Çağnan, Davidson, 
& Guikema, 2006; Guidotti, Chmielewski, 
Unnikrishnan, et al., 2016; Ouyang & Dueñas-Osorio,  
2014) use network analysis to simulate the post-disaster 
functionality level and recovery trajectory of EPNs, 
while explicitly accounting for component and system 
fragilities. One of the fundamental challenges of simula
tion-based models is that, due to security reasons, EPN 
topologies are not publicly available data. Also, reliable 
information on component and system fragilities and 
repair/replacement times and sequences are needed to 
develop reliable estimates of post-disaster recovery tra
jectories. The adequacy of simulation-based methods 
can be improved through appropriate validation exer
cises using real-life events. Empirical models may be 
helpful benchmarking tools whenever such validation 
exercises are not feasible.

This study’s main objective is to enhance the disaster 
risk modelling and management of EPNs, filling the 
discussed gaps above. Specifically, this study seeks to 
develop probabilistic models that adequately link earth
quake features (e.g., magnitude, local intensity, year of 
occurrence), exposed population, initial post-earth
quake functionality level, rapidity, and recovery time. 
To this end, this study (a) collects and aggregates data 
on the performance and restoration of EPNs from past 
earthquake events in Japan; and (b) develops simple 
probabilistic models for post-disaster recovery trajec
tory estimation using relatively easy-to-obtain informa
tion such as seismic intensity, event magnitude, 
exposure data (in terms of number of households 
exposed to each local seismic intensity level), number 

of serviced households, and EPN restoration trajectory 
data.

The paper is organized as follows. Firstly, a brief 
overview of existing research studies is presented, and 
the research gaps (and corresponding research objec
tives) are defined. Subsequently, the data collection and 
aggregation process is described. Finally, Bayesian 
regression analyses are carried out to develop probabil
istic models to estimate the initial post-earthquake func
tionality level, rapidity, and recovery time of EPNs as 
a function of the considered predictors.

2. Existing research studies

The concept of post-disaster recovery of critical infra
structure systems and its analytical modelling has 
gained widespread attention in the last two decades. 
As highlighted by the global disaster risk reduction 
sector (e.g., UNISDR, 2015), the need for safer and 
more resilient communities has catalyzed significant 
research efforts into post-disaster recovery modelling. 
As briefly discussed in the Introduction above, post- 
disaster recovery modelling frameworks in the literature 
are either empirical or simulation-based. Given the 
scope of the current study, this section explicitly focuses 
on EPNs.

Before discussing state-of-the-art studies on post- 
disaster recovery modelling of EPNs, it is essential to 
highlight the critical output metrics of any recovery 
modelling framework. Figure 1 presents a post-disaster 
recovery trajectory for a component/system (or even 
a community) with a pre-disaster functionality level 
Qpre, reduced to Qo (referred to as the initial post-dis
aster functionality level) after the disaster at time to. 
Repairing or replacing damaged system components 
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Figure 1. Post-disaster recovery trajectory of a system.
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will result in the gradual restoration of functionality. 
The time required to restore the system’s functionality 
to a desired level QR (which can be similar, close to, or 
better than the pre-disaster functionality level) is 
referred to as the recovery time (Rt). The recovery 
trajectory of the damaged system (i.e., from {to,Qo} to 
{tR, QR}) can be quantified by a recovery function, Q(t). 
The recovery rapidity h quantifies the recovery rate. An 
ideal recovery modelling approach should be able to 
estimate Qo, Rt, h, and Q(t). Furthermore, any sources 
of uncertainties in these metrics need to be accounted 
for adequately.

Empirical post-disaster recovery models for EPNs 
adopt field data from past events to develop statistical 
models to estimate the power outage level and restora
tion time. Proposed tools range from simple linear 
regression models to sophisticated machine learning 
tools. Empirical models are either set up for post-disas
ter recovery modelling at a (regular) grid or community 
level. For instance, Liu, Davidson, Rosowsky, et al. 
(2005) adopted data from three hurricanes in North 
and South Carolina, U.S.A., to develop negative bino
mial regression models that relate the expected number 
of outages over one square kilometre grid cells to the 
number of transformers, maximum gust windspeed, 
and affected power company. Liu, Davidson, and 
Apanasovich (2008) used data from six hurricanes and 
eight ice storms to develop a spatial generalized linear 
mixed modelling for estimating power outages over 
nine square kilometre (3 km × 3 km) grid cells. The 
authors concluded that maximum gust wind and ice 
thickness are directly related to higher outage counts 
in hurricanes and ice storms, respectively. The number 
of protective devices was also found to influence hurri
cane and ice storm-induced outage levels. Other studies 
that have developed empirical power outage models 
include (but are not limited to) Guikema and Quiring 
(2012) – for hurricanes; Cerrai, Koukoula, Watson, et al. 
(2020) – for snow and ice storms; and He, Wanik, 
Hartman, et al. (2017) – for storms. It is noted that the 
majority of existing empirical models were developed 
for hurricane and storm hazards.

It is noted that most empirical studies focus on esti
mating power outages. Only a few studies have developed 
empirical models for recovery time estimation. These 
studies use limited data (e.g., a single event), a small 
number of explanatory variables and consider other 
hazards (instead of earthquakes). Nojima and Sugito 
(2003) developed a probabilistic model for evaluating 
the outage level and recovery time of EPNs using data 
from the 1995 Hyogoken-Nanbu (Kobe), Japan, earth
quake. Variables considered in the model include 

exposed population and seismic intensity. This model 
was subsequently modified using the 2011 Tohoku, 
Japan, earthquake (Nojima & Kato, 2014). Liu, 
Davidson, and Apanasovich (2007) adopted accelerated 
failure models, developed using data from six hurricanes 
and eight ice storms, to predict the post-disaster outage 
duration. Variables considered in the Liu, Davidson, and 
Apanasovich (2007) study include maximum gust wind 
speed, duration of strong winds, 7-day rainfall, ice thick
ness, and population density. Kammouh, Cimellaro, and 
Mahin (2018) developed probabilistic recovery curves for 
estimating downtime for power, water, gas, and telecom
munications systems using data from significant earth
quakes worldwide from 1960 to 2015. Using such data, 
the authors proposed recovery curves as a function of 
earthquake magnitude and development level of the 
affected country.

Over the last three decades, significant research has 
been conducted to develop and adopt simulation-based 
methodologies for post-earthquake resilience assess
ment of EPNs. Simulation-based methods use network 
analysis, whereby the power grid is modelled as 
a network with nodes and edges. The nodes represent 
the generators, substations, and load points. The edges 
represent the transmission and distribution lines in the 
network. Each component or subcomponent in the net
work is modelled with its own fragility models. Ang, 
Pires, and Villaverde (1996) developed a probabilistic 
model for estimating the seismic reliability of electric 
power transmission systems under earthquake ground 
shaking. Such a model adopts Monte Carlo simulation 
to assess the power outage probability by combining the 
fragility models of critical equipment and substations 
with ground shaking intensities at the local sites through 
power flow and network analyses. Cagnan and 
Davidson (2007) developed a simulation-based model 
of the post-earthquake restoration process of EPNs. The 
model captures geographic variability of risk and 
restoration resource constraints (e.g., material and 
workmanship) in estimating the restoration trajectory 
of EPNs. Ouyang and Dueñas-Osorio (2014) developed 
a restoration model that incorporates resource availabil
ity, resource mobilization and restoration sequence in 
estimating the recovery trajectory of EPNs. The restora
tion sequence algorithm in their study prioritizes EPN 
systems and components vital to public safety, health 
and welfare. Mensah and Dueñas-Osorio (2016) pro
posed a Bayesian Network-based framework to estimate 
power outages in electrical grids under hurricane 
hazards. Their proposed framework is combined with 
the Ouyang and Dueñas-Osorio (2014) restoration 
model to develop a resilience enhancement framework.
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Disaster-induced disruptions in one network may 
often result in disruptions to other networks, redu
cing functionality and/or affecting their recovery. 
To account for this, studies (e.g., Danziger & 
Barabási, 2022; Dueñas-Osorio & Kwasinski, 2012; 
Guidotti, Chmielewski, Unnikrishnan, et al., 2016; 
He & Cha, 2020; Johansen & Tien, 2018) have also 
proposed probabilistic recovery modelling of depen
dent/interdependent infrastructure networks.

Based on information available in existing simula
tion-based studies, it is noted that most existing studies 
do not provide a holistic tool for estimating all relevant 
parameters of the recovery (or restoration) curve. Also, 
most current models cannot effectively evaluate the 
recovery function and rapidity of damaged EPNs. 
Furthermore, most existing models were developed for 
post-hurricane and post-storm recovery modelling. 
Some models calibrated for earthquake-induced 
damages (e.g., Nojima and Kato, 2014) are based on 
just one or two events. Therefore, a more reliable esti
mation of post-earthquake recovery trajectories of EPNs 
may be achievable by considering more earthquake 
events.

While simulation-based methodologies may be desir
able in some instances, the fact that topology and typol
ogies of EPNs are not publicly available information 
means that most studies rely on synthetic test beds. 
Therefore, it is essential to develop practical empirical 
tools that can be used to benchmark simulation-based 
tools.

This study introduces simple yet effective empirical 
models to fill the observed gaps in the recovery mod
elling of EPNs following earthquakes. The novelty of 
these models lies in their ability to: 1) be specifically 
tailored to earthquake events occurring in Japan; 2) 
incorporate a wider range of past events and explana
tory variables than those considered in previous 
studies; and 3) estimate the initial post-earthquake 
functionality, rapidity, and recovery time of EPNs, 
including associated uncertainties, through 
a Bayesian estimation approach. These aspects mark 
a shift from earlier studies that primarily focused on 
estimating power outages from other natural hazards 
using limited data and explanatory variables. The 
proposed models may be helpful benchmarking tools 
for simulation-based approaches to estimate the post- 
earthquake recovery of EPNs.

3. Data collection and aggregation

The first step is establishing a database of EPN per
formances/damages and recovery from past earth
quakes in Japan. The data collection exercise for this 

study focused on major damaging earthquakes that 
caused significant damage to EPNs. Another criterion 
was the need to have sufficient information on the 
initial post-disaster functionality level, recovery tra
jectory and recovery time. Based on these criteria, 16 
events between 2003 and 2022 were considered. 
Information collected includes the earthquake magni
tude, time of occurrence, exposed population data, 
number of serviced households, and recovery time 
for the EPNs. The data obtained from the above are 
summarised in the table in Appendix A and are read
ily available for use by interested researchers. The 
subsequent subsections provide details on the data 
collection process.

3.1. Earthquake magnitude

This study adopts the Japan Meteorological Agency 
(JMA) magnitude (MJMA) to quantify the magnitude of 
each event. More details on the JMA magnitude scale 
can be found in JMA (2014). The MJMA for each event 
was extracted from Japan Real-time Information for 
earthQuake (J-RISQ) reports (J-RISQ, 2015). The 
J-RISQ report database contains information for events 
from 1996 to date. The J-RISQ reports are typically 
published immediately after an earthquake.

3.2. Population data (number of households and 
population)

The number of households and populations in the 
affected regions are taken from publicly available cen
sus data (SBJ, 2020). For the number of households 
for the entire region, if the municipality where the 
affected households are located is known, the total 
number of households within that area is used; if 
not, the total number of households within the jur
isdiction of the electricity company’s sales office or 
prefecture is used. In some instances, information on 
the total number of households was unavailable. 
However, it was inferred from events with informa
tion on both the number of households and the popu
lation that the average ratio of population to the 
number of households equals 2.8 (i.e., 2.8 persons 
per household). Hence, if the number of households 
was unavailable, it was inferred by dividing the 
reported population by 2.8.

3.3. Number of serviced customers (households)

This is the number of households with continued access 
to power immediately after the event. The number of 
serviced customers and total customers were extracted 

4 E. OPABOLA ET AL.



from published literature. Priority was given to data 
published by municipal electricity companies. In cases 
where incomplete information is available from electri
city companies, data from newspapers and journal arti
cles were used. Qo is defined as the ratio of the number 
of households with continued access to power immedi
ately after the disaster to the total number of households 
in the affected region.

3.4. PEX (population exposed to the earthquake) 
data

Data on the exposed population at each JMA (local) 
seismic intensity scale level were extracted from 
J-RISQ reports (J-RISQ, 2015). JMA intensity scale 
intensities range from 0 to 7. More information on 
the JMA intensity scales can be found in JMA 
(2015).

JMA (2015) identifies seismic intensities of ‘5 Lower’ 
or more to influence electric power disruptions. Hence 
PEX data collection focused on the population exposed to 
seismic intensities ‘5 Lower’ (P5 L), ‘5 Upper’ (P5 U), ‘6 
Lower’ (P6 L), ‘6 Upper’ (P6 U), and 7 (P7). Figure 2 shows 
an example of the extracted J-RISQ reports. The PEX data 
for each event was normalized by the total population in 
the high-intensity zones (as defined in section 2.2) (i.e., 
p5 u = P5 U/(P5 L+P5 U+ P6 L + P6 U + P7)).

3.5. Recovery time

The recovery time was defined as the time taken to 
restore power to all affected households in the affected 
region. The recovery time was extracted from publicly 
available information. Priority was given to information 
published by electricity companies, local authorities and 
relevant ministries and agencies. In some instances, 
newspaper data (typically in the form of government 
announcements) were used.

3.6. Rapidity

As mentioned earlier, rapidity characterizes the recovery 
rate of the EPN. Opabola and Galasso (2023) proposed 
a recovery trajectory function Q(t) that is dependent on 
Qo, mobilization time t1 (i.e., the time after which restora
tion work starts), Rt, and rapidity coefficients g and h (See 
Equation (1)). 

Q tð Þ ¼ Qo þ
g t� t1

Rt � t1

1þ gh t� t1
Rt � t1

(1) 

The values of g and h express the level of preparedness, 
resource availability, technical know-how and societal 
conditions of a community. For known values of h and 
Q(Rt), g can be computed from Equation (1) as: 

Figure 2. Example of reported data for the 2016 MJMA 7.3 Kumamoto earthquake on seismic intensity and exposed population (source: 
J-RISQ, 2015).
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g ¼
Q Rtð Þ � Qo

Qoh � hþ 1
(2) 

It is noted that g must be greater than zero. 
A concave recovery curve corresponds to h << 0 
and represents the recovery trajectory of 
a community with a poor level of preparedness, 
a high level of resource unavailability, and unfavour
able societal conditions. In contrast, h >> 0 repre
sents a community with good preparedness and 
resource availability and favourable societal condi
tions. Figure 3 shows how the value of h influences 
the recovery trajectory of a recovering system.

The rapidity coefficient h from each event was esti
mated by fitting Equation (1) to the field data (see 

Figure 4 for an example) so that the sum of squared 
estimate of errors(SSE) between the observed and pre
dicted functionality trajectory during the recovery phase 
is minimized.

4. Data analysis and proposed models

4.1. Correlation analysis

A correlation analysis for the aggregated database is 
conducted first. The correlation matrix is presented in 
Figure 5. As shown in the figure, Q0 is negatively corre
lated with the PEX (more significant correlation with p7 
and p6 u). The trend indicates that as the proportion of a 
population exposed to higher seismic intensity 
increases, the initial post-disaster functionality level 
decreases.

Rt is shown to be highly correlated with Qo (with 
correlation coefficient r = −0.84), year of occurrence 
and earthquake magnitude. Low Qo corresponds to 
increased damage to EPN components, resulting in 
a longer time to recover. The significant correlation of 
PEX with Rt may be attributed to the fact that PEX and 
Qo are also highly correlated.

Furthermore, the rapidity coefficient h is shown to be 
correlated with Qo and Rt with r equals 0.49 and −0.42, 
respectively. As earlier described, a higher level of 
h depicts a system with good preparedness, good 
resource availability, and favourable societal conditions. 
Hence, the positive correlation between h and Qo can be 
attributed to the fact that a higher Qo is also associated 
with good preparedness and favourable societal 
conditions.

4.2. Bayesian linear regression approach

Unlike frequentist approaches, a Bayesian parameter 
estimation yields a probability distribution of model 
parameters instead of a single value. There are some 
advantages of Bayesian regression models over standard 
frequentist regression, for instance: 1) they tend to per
form better than standard frequentist regression models 
when working with a relatively small sample size (as in 
this study). In fact, they provide inferences that are 
conditional on the data and are exact, without reliance 
on asymptotic approximation; 2) credible intervals (or 
regions), which are the Bayesian version of confidence 
intervals, have a much more straightforward interpreta
tion than the confidence intervals from standard linear 
regression models (e.g., ‘the true parameter has 
a probability of 0.95 of falling in a 95% credible inter
val’); 3) they are generally more flexible than frequentist 
regression models. For instance, they provide a natural 
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Figure 4. Example of post-recovery trajectory following the 2016 
MJMA 7.3 Kumamoto earthquake showing calibrated rapidity 
coefficient h.
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and principled way of combining prior information 
with data, within a solid decision theoretical framework; 
they also provide a convenient setting for a wide range 
of models, such as hierarchical models and missing data 
problems. Various literature (e.g., Gelman, Carlin, 
Stern, et al., 1995; Reich & Ghosh, 2019) provides 
a detailed introduction to Bayesian methods, which is 
outside the scope of this study. This paper just provides 
a brief summary of Bayesian parameter estimation.

Consider a standard linear regression model given as: 

yn ¼ βTxn þ εn (3) 

where yn is a scalar response, β is a vector of model 
parameters (or coefficients) for the vector of regressors 
xn, and error εn is a zero mean Gaussian noise term with 
a non-zero variance σ2.

The probabilistic interpretation of Equation (3) can 
be written as: 

ynjβ; σ2,N ynjβTxn; σ2� �
(4) 

In Equation (4), yn is a normally-distributed random 
variable with mean of βTxn and a corresponding non- 
zero variance of σ2.

The Bayesian treatment of a linear regression model 
introduces a prior probability distribution over the 
model parameters β and σ. In this study, we consider 
the semiconjugate prior for which the prior and poster
ior share the same parametric family. The natural semi
conjugate prior of parameters β and σ2 is a normal- 
inverse-gamma distribution, with the form: 

p β; σ2� �
¼ p βjσ2� �

p σ2� �
(5) 

where βjσ2ð Þ,N μ;Vð Þ and σ2,IG A;Bð Þ. N is the nor
mal distribution, and IG is the inverse-gamma distribu
tion. V is the conditional covariance matrix of the 
Gaussian prior of β ; and μ is the mean hyperparameter 

Figure 5. Correlation matrix for extracted data.
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of Gaussian prior on β. A and B are the shape and scale 
hyperparameters of the inverse gamma prior on σ2, 
respectively.

The prior probability distribution of a parameter can 
then be combined with the likelihood of the observed 
data to obtain the posterior distribution of the para
meter (see Equation (6)). 

p β; σ2jy
� �

/ p y X; β; σ2�
�

� �
p β; σ2� �

(6) 

This study adopts the Markov Chain Monte Carlo 
(MCMC) sampling algorithm, precisely Gibbs sampling 
(e.g., Gelfand, 2000) for the posterior estimation. The 
Bayesian regression analyses presented in this study 
drew 10,000 samples from the posterior distribution gen
erated using a burn-in period of 10,000 and a thinning 
level of 10. It is also noted that a stepwise removal process 
was carried out via the Bayesian estimation method to 
identify the governing predictors for Qo, h, and Rt.

4.3. Initial post-disaster functionality level (Qo)

The Bayesian approach outlined in section 4.2 defines 
the probabilistic formulation for Qo. Two data points 
were removed from the analysis. The 2011 Tohoku 
event was excluded because the functionality loss and 
recovery trajectory data are assumed to be significantly 
influenced by the earthquake and tsunami sequence 
(rather than earthquake only, as for the other consid
ered events). The 2018 Hokkaido event was excluded 
because the total blackout was a precautionary measure 
due to a fire event at one power plant.

The stepwise removal process shows that the main 
predictors for Qo are the normalized PEX data. Among 
the PEX data, p5 l is determined to be the least signifi
cant in predicting Qo; hence, it is not considered in the 
Bayesian analysis.

Table 1 presents the posterior summary statistics for the 
proposed model. The model assumes that the higher the 
proportion of a population exposed to a more significant 
seismic intensity, the lower the initial post-disaster func
tionality level, which is intuitive. Table 1 shows that the 
Gelman – Rubin convergence diagnostic (Gelman & 
Rubin, 1992) declares convergence (i.e., R̂< 1:1).

It is noted that the lower- and upper-bound values of 
Qo are zero and unity, respectively. Also, it is worthwhile 
to constrain the model parameters to negative values 
(i.e., to capture the reduction in Qo). In line with the 
mean values, another constraint may be to 
ensure β p7ð Þj > β p6uð Þj >j jβ p6lð Þj > jβ p5uð Þj j.

Figure 6 shows the relationship between the esti
mated mean and measured Qo. As shown in the figure, 
the model provides good estimates of Qo with an R2 of 
0.81 and normalized root mean square error (NRMSE) 
of 0.1.

4.4. Recovery time

The stepwise removal process shows that the three main 
predictors for Rt are MJMA, Qo, and the occurrence year (Y). 
As discussed earlier, Qo accounts for PEX. It is presumed 
that the sensitivity of recovery time to event magnitude is 
because the earthquake severity on other infrastructure 
systems and the entire community determines the 
resources dedicated to repairing damaged EPNs. For exam
ple, larger events could have severe impacts on other life
lines which are interdependent with EPNs.

Based on the estimated RMSE, the predictors relate 
better with Rt in the natural log space. Hence, the 
Bayesian analysis was carried out in natural log space 
(Equation (7)). 

Table 1. Posterior summary statistics for Qo model.

Parameter Mean Standard deviation 95% credible region R̂

Intercept 1.0 0.13 [0.79, 1.3] 1.00
p7 −25.1 7.0 [−37.7, −11.5] 1.00
p6u −0.52 0.63 [−1.79, 0.6] 1.00
p6l −0.22 0.3 [−0.84, 0.3] 1.00
p5u −0.22 0.3 [−0.78, 0.4] 1.00
σ2 0.02 0.01 [0.006, 0.05] 1.00
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1
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Figure 6. Relationship between observed and estimated mean 
initial post-disaster functionality level (Qo).
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ln ynð Þ ¼ βT � ln xnð Þ þ εn (7) 

Table 2 presents the posterior summary statistics for 
the proposed model. The proposed model provides 
adequate estimates of Rt with an R2 of 0.8 and 
NRSME of 0.2. The model captures the increase in 
recovery time with an increase in magnitude and 
proportion of customers without service (i.e., 1 – 
Qo). Similarly, the sensitivity of recovery time to 
occurrence year can be attributed to disaster manage
ment agencies learning from past events to reduce the 
post-earthquake recovery time. It is noted that a step
wise removal of occurrence year as a predictor of Rt 
drops the R2 from 0.8 to 0.65. This highlights the 
strong correlation between occurrence year and Rt in 
the data used for this study. Hence, it was decided to 
retain occurrence year as a predictor. However, the 
availability of more EPN recovery data will be helpful 
for future studies to validate this relationship and 
refine the recovery time model.

Table 2 shows that the Gelman – Rubin convergence 
diagnostic declares convergence (i.e., R̂< 1:1). Figure 7 
shows the good relationship between the estimated 
mean and observed Rt. 

4.5. Rapidity coefficient h

As shown in Figure 5, h is positively correlated with 
the initial post-earthquake functionality level and 
negatively correlated with Rt. There are also signifi
cant correlations between spatial seismic intensities 
and h. The stepwise removal process suggests that h  
= f(1- Qo). Rt was excluded during the removal pro
cess due to a high correlation with Qo (r = −0.84). 
Furthermore, as shown in Figure 8, there is 
a nonlinear relationship between shape constant 
h and 1- Qo. Hence, the Bayesian analysis was carried 
out in natural log space also in this case (see 
Equation (7)).

Table 3 presents the posterior summary statistics for 
the proposed model. The adequacy of the mean estimate 

Table 2. Posterior summary statistics for Rt model.

Parameter Mean Standard deviation 95% credible region R̂

ln(Intercept) −8.4 4.45 [−17.2, 0.5] 1.00
ln(MJMA) 7.3 2.26 [2.8, 11.8] 1.00
ln(1-Qo) 0.33 0.16 [0.02, 0.65] 1.00
ln(Y-2000) −0.84 0.33 [−1.5, −0.17] 1.00
σ2 0.49 0.26 [0.2, 1.15] 1.00
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Figure 7. Relationship between the measured and estimated 
recovery time.

Figure 8. Relationship between proportion of unserved house
holds (1-Qo) and rapidity coefficient h.

Table 3. Posterior summary statistics for h model.

Parameter Mean Standard deviation 95% credible region R̂

ln(Intercept) 0.057 0.32 [−0.59, 0.7] 1.00
ln(1-Qo) −0.83 0.12 [−1.0, −0.59] 1.00
σ2 0.28 0.15 [0.1, 0.66] 1.00
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is represented in Figure 8. As shown in the figure, the 
proposed model provides a good estimate of h with an 
R2 of 0.84 and NRMSE of 0.17. Table 3 shows that the 
Gelman – Rubin convergence diagnostic declares con
vergence (i.e., R̂< 1:1).

5. Illustrative example

As an illustrative example, this section demonstrates 
how the proposed methodology can generate probabil
istic realizations of recovery trajectories for an EPN in 
a region following an earthquake. For simplicity’s sake, 
rather than carry out a hazard analysis to generate 
seismic intensity on a synthetic or real testbed, the 
seismic intensity map and PEX data from the 2016 
Kumamoto earthquake are considered for this illustra
tive example (see Figure 2 and Table A1). The order of 
applying the proposed methodology for predicting the 
recovery trajectory of EPNs, using posterior summary 
statistics presented in Tables 1, 2, and 3, is presented in 
Figure 9. In this illustrative example, we generate 1000 
realizations of the recovery trajectories of the EPN in the 
region affected by the 2016 Kumamoto earthquake.

Based on the PEX data for the 2016 Kumamoto event 
(from Table A1), using Table 1, the mean Qo is esti
mated as 0.6. Figure 10a compares the actual (i.e., field 
data) and probabilistic distribution of the 1000 simu
lated Qo. Figure 10a shows that the actual Qo falls within 

the simulated distribution of Qo. Each simulated Qo is 
combined with the occurrence year and earthquake 
magnitude, using Table 2, to simulate 1000 realizations 
of Rt. Figure 10b shows the actual Rt falls within the 
simulated distribution of Rt. Finally, each simulated Qo 
is used to simulate 1000 realizations of h. Figure 10b 
shows that the actual h falls within the simulated dis
tribution of h.

For each realization of Qo, Rt, h, 1000 realizations of 
the recovery trajectory Q(t) are simulated. To do this, 
Equation (2) is used to simulate 1000 realizations of 
g (where g > 0). Subsequently, for a time range [0 Rt], 
Q(t) is simulated using Equation (1). It is assumed that 
t1 (i.e., the time after restoration work starts) equals zero 
for the simulations. Figure 11 compares the actual and 
the 1000 simulated realizations of recovery trajectories 
of the EPN.

As shown in Figures 10 and 11, using a frequentist 
approach may not help risk analysts and decision- 
makers capture the randomness (i.e., both aleatory and 
epistemic uncertainties) present in post-disaster recov
ery modelling. Furthermore, Figures 10 and 11 show 
that the proposed approach is an efficient post-earth
quake recovery modelling technique that can serve as 
a stand-alone tool and/or be a useful benchmarking tool 
for simulation-based models.

Input data
1. Magnitude
2. Occurrence year
3. Population exposed to earthquake (PEX)

Set current simulation 
n = 0

Simulate initial functionality 
level Qo using Table 1 

Simulate recovery time Rt
using Table 2

Simulate rapidity h using
Table 3

Simulate g using Equation
(2)

n < N ?

No

Simulate R(t) for nth simulation 
using Equation (1)

Yes

Set 
n = n + 1

Set
Q0(n) = Qo; Rt(n) = Rt; h(n) = h

End

g > 0 ?

No

Yes

Discard 
simulation

Figure 9. Analysis flowchart using the proposed models (where N is the total number of required realizations).
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6. Discussions and conclusions

Prediction of power outages and recovery following 
earthquakes can help electric power network (EPN) 
management authorities and other private/public orga
nizations cultivate preparedness plans and devise short- 
term and long-term recovery strategies to improve com
munity-level resilience. Simulation-based recovery 
modelling approaches can capture the network topology 
and seismic fragility of the generation, transmission, 
and distribution systems. However, as a result of the 
unavailability of EPN topology for several earthquake- 
prone countries, simulation-based recovery modelling 
studies often adopt synthetic testbeds. The adequacy of 
simulation-based methods can be improved through 
appropriate validation exercises using realistic data. 
Empirical models may also be helpful benchmarking 
tools whenever such validation exercises are not feasible. 
Furthermore, such empirical models can serve as simple 

Figure 11. A comparison of the actual and simulated realizations 
of recovery trajectories for the EPN following the 2016 Kumamoto 
earthquake.

(a) Initial functionality level (b) Recovery time

(c) Rapidity

Figure 10. Comparison of the actual values and probability distribution of estimated (a) initial post-disaster functionality level Qo; (b) 
recovery time (Rt); and (c) recovery rapidity (h).
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stand-alone tools for integrating community-level and 
building-level recovery modelling frameworks.

Most existing empirical post-disaster recovery models 
were developed using hurricane and storm hazard events. 
Hence, it is important to develop models that can be used 
for post-earthquake recovery modelling. To this aim, this 
study developed a set of probabilistic models to predict 
the initial post-earthquake functionality level (i.e., the 
ratio of the number of serviced households/end users 
post-disaster to that pre-disaster), recovery time (i.e., 
the total time to restore full functionality to the total 
number of serviced households/end users), and recovery 
rapidity of earthquake-damaged EPNs (i.e., rate of func
tionality restoration), using Bayesian parameter estima
tion to capture uncertainties. The initial post-earthquake 
functionality level was found to be dependent on the 
seismic intensity and exposure characteristics – i.e., the 
higher the proportion of a population exposed to a more 
significant seismic intensity, the lower the initial post- 
disaster functionality level. The recovery time was found 
to be dependent on the initial post-earthquake function
ality level, event magnitude, and year of occurrence. The 
sensitivity of recovery time to occurrence year can be 
attributed to disaster management agencies learning 
from past events to reduce the post-earthquake recovery 
time. The recovery rapidity is dependent on the initial 
functionality level – i.e., communities with low EPN 
functionality loss recover more rapidly.

One of the key limitations of the current study is the 
data size. Additional data collection exercises are needed 
to update the probability distribution functions of the 
parameters with new observations. Future studies will 
also look at collecting data from other countries to 
improve the applicability range of the proposed formu
lations. Furthermore, future studies can extend the pre
sented simulation-based approach to other lifelines 
(e.g., water and gas networks).
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Table A1. Collated database of past earthquakes in Japan with information on population exposed to earthquake, affected house
holds, recovery time, and rapidity coefficient (see main paper for discussion on how rapidity coefficient was extracted from reported 
recovery trajectory plots).

s/no Earthquake event MJMA

Normalised population exposed to 
earthquake1

Total number of 
households2

Number of affected 
household

Recovery 
time 

[hours]
Rapidity 

coefficient hp7 p6u p6l p5u p5l

1 2008 Iwate – Miyagi Nairiku 
earthquake

7.2 0.000 0.141 0.064 0.302 0.493 1398901 290003 21.73 36.2

2 2004 Chūetsu earthquake 6.8 0.025 0.197 0.043 0.242 0.493 463076 3010004 964 2
3 2007 Chūetsu offshore 

earthquake
6.8 0.000 0.227 0.140 0.224 0.410 249058 251925 69.85 4.34

4 2011 Great East Japan 
earthquake

9 0.003 0.056 0.134 0.328 0.479 22583406 87100006 1927 2.17

5 2016 Kumamoto Earthquake 7.3 0.009 0.168 0.189 0.235 0.400 767976 4766008 728 1.55
6 2018 Osaka earthquake 6.1 0.000 0.000 0.181 0.364 0.455 1101013 1708109 2.759 6.52
7 2018 Hokkaido Eastern Iburi 

earthquake
6.7 0.005 0.003 0.137 0.441 0.414 2950000 295000010 NaN11 NaN

8 2021 Fukushima earthquake 7.3 0.000 0.015 0.234 0.363 0.388 907828 10152312 1012 3
9 2022 Fukushima earthquake 7.4 0.000 0.032 0.164 0.369 0.435 22583406 224755613,14 1113 NaN
10 2019 Yamagata earthquake 6.7 0.000 0.083 0.175 0.004 0.739 452642 923215 8.3715 50
11 2018 Western Shimane 

Earthquake
6.1 0.000 0.000 0.147 0.020 0.833 15800 7816 316 NaN

12 2014 Nagano earthquake 6.7 0.000 0.000 0.682 0.099 0.220 15721 160017 22.918 9.3
13 2011 Nagano earthquake 6.7 0.000 0.003 0.095 0.317 0.585 10356 32519 13.219 15
14 July 2003 Northern Miyagi 

Earthquake
6.4 0 0.08 0.39 0.11 0.42 920000 11500020 2120 7.75

15 2009 Shizuoka earthquake 6.5 0.000 0.000 0.229 0.347 0.424 267115 950021 7.921 25.4
16 July 2008 Iwate earthquake 6.8 0.000 0.000 0.217 0.472 0.311 347324 861122 6.222 10
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