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Abstract— Despite their impressive performance in various
surgical scene understanding tasks, deep learning-based meth-
ods are frequently hindered from deploying to real-world surgi-
cal applications for various causes. Particularly, data collection,
annotation, and domain shift in-between sites and patients
are the most common obstacles. In this work, we mitigate
data-related issues by efficiently leveraging minimal source
images to generate synthetic surgical instrument segmentation
datasets and achieve outstanding generalization performance
on unseen real domains. Specifically, in our framework, only
one background tissue image and at most three images of
each foreground instrument are taken as the seed images.
These source images are extensively transformed and em-
ployed to build up the foreground and background image
pools, from which randomly sampled tissue and instrument
images are composed with multiple blending techniques to
generate new surgical scene images. Besides, we introduce
hybrid training-time augmentations to diversify the training
data further. Extensive evaluation on three real-world datasets,
i.e., Endo2017, Endo2018, and RoboTool, demonstrates that our
one-to-many synthetic surgical instruments datasets generation
and segmentation framework can achieve encouraging perfor-
mance compared with training with real data. Notably, on the
RoboTool dataset, where a more significant domain gap exists,
our framework shows its superiority of generalization by a
considerable margin. We expect that our inspiring results will
attract research attention to improving model generalization
with data synthesizing.

I. INTRODUCTION

Deep learning models trained with sufficient real-world
data have achieved tremendous success in various computer-
assisted applications of surgical scene understanding, includ-
ing instrument segmentation [10], [11], [9], image caption-
ing [21], report generation [20], [19], and visual question
answering [16]. However, demanding challenges, such as
the lack of well-annotated data and data shifts, have greatly
hindered their practical deployment. One of the major rea-
sons is that most of these works heavily depend on the
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availability of adequate and well-labeled training data to
perform Supervised Learning. In contrast, surgical data col-
lection and annotation are usually time-consuming and labor-
intensive. This has decreased the training feasibility and ef-
ficiency. Besides, model performance is frequently observed
to degrade during deployment to real-world scenarios due
to various domain shifts, such as intensity shift, acquisition
shift, and population shift. Thus, model generalization ability
has gained increasing significance during model evaluation.

Over the years, researchers have investigated several so-
lutions, i.e., self-supervised transfer learning [13], class-
incremental domain adaptation [19], and domain generaliza-
tion [14], to narrow the performance discrepancy between
developing and deploying deep learning-based surgical ap-
plications. For example, to handle novel instruments when
generating the surgical report in the new domain, Xu et
al. [19] propose the class-incremental domain adaptation by
incorporating curriculum by smoothing in the transformer-
based caption model and adopting the label smoothing to
better calibrate the model. However, one of the drawbacks of
these works is that they still depend on a sufficient amount
of densely annotated real data for model training, limiting
their application in the case of data shortage.

To alleviate data-related issues like data shortage and
shifts, recently, the emerging trend of data-centric AI [23]
has gained increasing attention and inspired another research
line, i.e., learning with synthetic data [3], [4]. For example,
SSIS-Seg [4] proposes the simulation-supervised loss and
the attention similarity loss in the image-to-image (I2I)
translation process to generate high-quality synthetic surgical
images. However, like most simulation-to-real settings, this
work also needs the real-world dataset as the target domain
for style transfer, decreasing its feasibility for unseen do-
mains.

In this paper, to eliminate the dependence on abundant real
data and boost generalization performance across multiple
domains, we investigate extreme source constraints and set
up a highly data-efficient one-to-many surgical instrument
synthesis and segmentation framework, as shown in Fig. 1.
Our holistic framework considers improving data quality
from two aspects, i.e., the realism of each image during
synthesizing and the diversity of the entire dataset during
training. With only one background tissue image and a
few foreground instrument images, our data-centric pipeline
consists of three main steps, i.e., Source Image Pools Con-
struction, Blending-based Image Composition, and Hybrid
Training-time Augmentation. We can summarize the main
contributions of this work below:
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Fig. 1. Overview of the proposed one-to-many surgical instruments synthesis and segmentation framework. The framework mainly consists of
three consecutive steps, i.e., Source Image Pools Construction, Blending-based Image Composition, and Hybrid Training-time Augmentation. First, we
extensively augment the foreground and background seed images and construct the image pools. Then Alpha, Gaussian, or Laplacian Blending is adopted
to compose the randomly sampled images from the two image pools. Finally, the composited images are further transformed with hybrid in-training
augmentation to boost their diversity, including Element-wise Patch-based Mixing, Coarsely Dropout, and Chained Augmentation Mixing.

1) With extremely limited source images and without
costly manual annotation, we propose a one-to-many
surgical instruments synthesis and segmentation frame-
work that can achieve promising generalization perfor-
mance on unseen domains.

2) We explore three blending techniques to improve
the quality of the composited images and find that
Laplacian Blending yields the best results in most
cases, compared with Alpha Blending and Gaussian
Blending.

3) We incorporate Chained Augmentation Mixing,
Coarsely Dropout, and Element-wise Patch Mixing
into a hybrid pipeline to alleviate overfitting and boost
training data diversity. The implementation is released
and can be easily integrated into other surgical scene
understanding tasks.

4) Extensive experiments across multiple domains with
incremental classes and data shifts suggest that our
framework can achieve close and even superior ac-
curacy compared with training with the real dataset.
Moreover, in the semi-supervised synthetic-real joint
training scheme, we find that a small portion of real
data can efficiently boost the model performance by a
large margin.

II. RELATED WORKS

Several image composition-based synthetic dataset gen-
eration frameworks have been proposed in recent years
to overcome data restrictions for training deep learning
models and demonstrate their simplicity and efficiency. The
pioneering work [6] presents a “Cut, Paste and Learn”
framework to generate large amounts of annotated data for
instance detection, and achieves promising results at a low
cost. The successive work [17] proposes to jointly train the
image synthesizer network and the target task network in an

adversarial style. And a discriminator network is added to
improve the realism of the synthesized images. In computer-
aided surgery, Garcia-Peraza-Herrera et al. [7] propose to
compose broadly collected tissue images with manually
recorded instrument images to create synthetic surgical scene
images with “mix-blend” to relieve the blending artifacts.
The above works mitigate the deficiency of annotated data
by image composition-based synthesizing. However, one
limitation is that they still rely on sufficient source images of
foreground and background instances. On the contrary, Wang
et al. [18] deal with a more challenging condition where
only one background tissue image and a few foreground
instrument images are available. However, its naive blending
could introduce artifacts and cause over-fitting.

Training-time data augmentation is essential in boosting
model performance regarding in-domain accuracy, out-of-
domain generalization, and robustness. Considering which
images to operate on, there are generally two strategies
for augmenting data during training, i.e., intra-augmentation,
which happens within one specific training sample, and
inter-augmentation, which applies to two different training
samples. With the former strategy, Cutout [5] random drops
square patches in the training image as augmentation. Aug-
mix [8] proposes to feed the training sample into a couple
of augmentation chains, and the outputs of the chains are
mixed with the original input to form the final augmented
image. With the latter strategy, Cutmix [22] cuts cross-image
patches and then exchanges them to create new training
samples. Based on these works and considering the typical
cases in real surgical scenes like instruments occlusion and
overlapping, we design a hybrid integration of them to
improve the surgical instrument segmentation performance.



III. METHODS

A. One-to-Many Dataset Synthesizing

Our synthetic surgical dataset generation is particularly
data-efficient in that only one tissue image and a few
instrument images are adopted as the sources. Besides, we
don’t need to annotate the generated images manually. All
the segmentation masks are automatically derived along with
the generation of the corresponding synthetic images.

1) Source Image Pools Construction: Like most image
composition-based approaches, the first step of our frame-
work is to prepare the source images for blending. One dis-
tinct advantage of our pipeline is that we start from a limited
number of foreground and background images as the seeds,
as shown in Fig. 1. The background seed image is a pure
tissue image without the presence of any instruments. Since
it is the only background tissue source image, we purposely
choose it to contain diverse tissue appearances and structures.
The foreground instrument seed images are pure instrument
images with transparent background and their corresponding
masks are also readily acquired simultaneously. To make
them as representable for more instrument states as possible,
especially, we consider practical surgical scene properties
when choosing these seed images. For instance, the clasper
part of some instruments includes two states, i.e., open and
closed states. In addition, macro and micro views of the
instruments are also considered to cover detailed appearances
and different viewpoints.

To construct our source image pools, we employ vari-
ous image intensity and geometry augmentations from the
imgaug 1 library. Specifically, we randomly apply various
strong augmentations for the single background tissue im-
age, including HorizontalFlipping, VerticalFlipping, Crop-
ping, AddToHueAndSaturation, LinearContrast, Perspective-
Transform, Affine, GaussianBlur, AverageBlur, MedianBlur,
Sharpen, Emboss, and AdditiveGaussianNoise, to name a
few. With this, the background seed image xb is trans-
formed into a background image pool with m augmented
images, i.e., Xm

b = {x1
b , x

2
b , x

3
b , ..., x

m
b }. Similarly, for

each foreground instrument seed images xf , we also ran-
domly apply augmentations like Flipping, Cropping, Blur-
ring, AffineTransformation, etc. Note that the same geo-
metric transformations are applied to both the instrument
images and their segmentation masks. In this way, without
additional effort, accurate annotations are easily acquired.
Finally, we set up the foreground image pool containing n
augmented variants of the instruments with corresponding
masks, i.e., Xn

f = {x1
f , x

2
f , x

3
f , ..., x

n
f } and the masks Y n

f =
{y1f , y2f , y3f , ..., ynf }.

2) Blending-based Image Composition: With the con-
structed background and foreground image pools, i.e., Xn

f

and Xm
b , we then randomly sample tissue and instrument im-

ages from these pools and compose them to create k synthetic
surgical scene images Xk

syn and corresponding masks Y k
syn.

Image composition by blending is widely known and used

1https://github.com/aleju/imgaug

in computer graphics and image processing. However, when
fed into the deep neural networks for training, the blended
surgical scene images show insufficiency due to the lack of
realism, especially at the instrument contours where blending
artifacts exist. As shown in Fig. 1, we investigate three
blending modes, i.e., Alpha Blending, Gaussian Blending,
and Laplacian Blending to find the optimal choice for our
surgical image composition.

Specifically, Alpha Blending happens in the alpha channel
of the foreground image xi

f ∈ Xn
f and background image

xj
b ∈ Xm

b . The instrument area in the foreground mask
yif ∈ Y n

f will be directly taken into the final composited
image xt

syn ∈ Xk
syn, and the remaining area is inherited from

the background tissue. In Gaussian Blending, the foreground
instrument mask yif is eroded and blurred to generate a
new mask yif , with a kernel size of 3 and 5, respectively.
Then the foreground image xi

f and background image xj
b are

combined following Alpha Blending with the transformed
mask yif . Regarding Laplacian Blending, we first build the
Laplacian pyramid for both the foreground image xi

f and the
background image xj

b. Then we construct a Gaussian pyramid
for the area covered by the foreground mask yif and form a
combined pyramid with the nodes of the Gaussian pyramid
as weights. Lastly, we collapse the combined pyramid to get
the final blended image xt

syn.

B. Hybrid Training-time Synthetic Data Augmentation

With the generated surgical scene images Xk
syn and their

instrument segmentation masks Y k
syn, we feed them into the

neural network to train the segmentation model. To improve
the generalization ability from the synthetic domain to mul-
tiple real domains, we investigate three advanced training-
time augmentations and introduce their hybrid integration
for training surgical instrument segmentation models.

Intra-augmentation is the most frequently used technique
for augmenting training samples. We explore two advanced
training-time intra-augmentations. Inspired by Cutout [5],
we first introduce the patch-level Coarsely Dropout (CDO)
of training samples as a regularization method to alleviate
overfitting. This transformation can simulate the practical
scenarios of instrument occlusion. In our implementation,
the number, shape, and size of the patches to be dropped are
all randomly set and applied simultaneously to images and
masks during training. Besides, we also apply the Chained
Augmentation Mixing (CAM), which was initially proposed
in Augmix [8] for image classification. Their label-mixing
strategy is not applicable to our segmentation task. Hence,
we intentionally tailor their augmentation list to preserve
mask accuracy. Specifically, the transformations in our three
augmentation chains include Autocontrast, Equalize, Poster-
ize, and Solarize for a soft version and additional Color,
Contrast, Brightness, and Sharpness for a hard version. The
outputs of these augmentation chains are mixed together with
the original image to form the final training samples.

Besides intra-augmentation, we also adopt one inter-
augmentation, i.e., the Element-wise Patch Mixing (EPM),
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Fig. 2. Seed images of the tissue and eight types of surgical instruments. Only one single background tissue image and at most three foreground
instrument images are utilized as the seed images in our synthetic dataset generation pipeline.

originated from Cutmix [22], as another training-time aug-
mentation to simulate instrument overlapping which exists
in most practical surgical scenes. Batch-wise image patch
mixing has been used in many classification tasks, show-
ing consistent performance gain. We introduce it into our
surgical instrument segmentation task with two significant
adaptations. Firstly, different from the classification task, for
our segmentation task, we need to manipulate the masks
with the same transformations as the corresponding images.
Moreover, rather than batch-wise operation, we use a more
flexible element-wise operation where patch cutting and
mixing are randomly applied to each image in the batch.

As shown in Fig. 1, we integrate all these three training-
time augmentations in our framework to boost the training
data diversity and expand the inherent representation space.
With their hybrid usage, we observe steady and increasing
performance gains on multiple real-world datasets.

IV. EXPERIMENTS

A. Datasets

1) Synthetic Datasets: The foreground and background
seed images are effortlessly extracted from the Endo18 [2]
training dataset and contain all eight types of instruments,
i.e., Fenestrated Bipolar Forceps, Maryland Bipolar Forceps,
Prograsp Forceps, Large Needle Driver, Monopolar Curved
Scissors, Ultrasound Probe, Suction Instrument, and Clip Ap-
plier, as shown in Fig. 2. In natural surgical scenes, usually
more than one instrument coexists in the view. Considering
this, in our synthetic surgical images, one or two different
foreground instruments are blended with each background
image. Overall, we construct five synthetic datasets under
different numbers of seed and foreground image settings,
as summarized in Table I. In the case of two seed images
per instrument, Syn-S2-F1 and Syn-S2-F2 are synthesized by
blending one or two unique foreground instruments on the
background tissue image. Similarly, when three seed images
are adopted per instrument, each synthetic image in Syn-S3-
F1 and Syn-S3-F2 contains one or two different foreground
instruments. Lastly, Syn-S3-F1F2 is a mixed dataset where
20% synthetic images have one instrument, and the rest 80%
include two varied instruments in each image. The ratio
is empirically set based on the observation that in most
surgical scenes, there exists more than one instrument. While
our framework can easily generate abundant data, for a fair
comparison with real data, we keep the training sample size

TABLE I
DETAILED SETTINGS OF OUR FIVE SYNTHETIC DATASETS. ONLY ONE

TISSUE IMAGE IS SELECTED AS THE BACKGROUND SEED.

Synthetic dataset # seed images
per instrument

# foreground tools
per synthetic image

Syn-S2-F1 2 1
Syn-S2-F2 2 2

Syn-S3-F1 3 1
Syn-S3-F2 3 2

Syn-S3-F1F2 3 1 (20%) and 2 (80%)

of the synthetic datasets consistent with the training split of
Endo18 [2], which is 2235.

2) Real-world Datasets: Three real-world surgical instru-
ment segmentation datasets, i.e., Endo17 [1], Endo18 [2],
and RoboTool [7], are utilized in our experiments. We train
on the training split of the Endo18 [2] dataset with 2235
images to obtain an upper bound of the binary segmen-
tation task. The test split of Endo18 [2] dataset with 997
images is used to evaluate the in-distribution performance,
while the Endo17 [1] dataset with 1800 images and the
RoboTool [7] dataset with 514 images are used for cross-
domain out-of-distribution evaluation. Besides the visually
distinctive background tissues difference, novel types of
instruments like the Vessel Sealer and Grasping Retractor in
Endo17 [1] dataset and new instruments-tissue interactions
in RoboTool [7] dataset pose increasing challenges to the
model to generalize and maintain acceptable performance.
The RoboTool [7] dataset has a much larger domain gap than
Endo17 [1] dataset compared with the Endo18 [2] dataset,
causing over 30% degradation of upper bound performance,
as shown in Table II.

B. Implementation Details

We utilize the classical UNet [15] architecture to imple-
ment our binary segmentation model for all the experiments.
Binary cross-entropy loss and the Adam [12] optimizer
are adopted to train the model with a batch size of 64
and a learning rate of 0.001 on the NVIDIA RTX3090
GPU platform for 100 epochs. The images are resized to
224 × 224 in height and width. We use the Dice Similar-
ity Coefficient (DSC) as the evaluation metric to compare
the segmentation performance. Alpha Blending, Gaussian
Blending, and Laplacian Blending are implemented referring
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Fig. 3. Comparison between three blending modes under different synthetic dataset settings. The DSC results on each test dataset and the average
results of Endo17 [1] and RoboTool [7] are reported. In most cases, Laplacian Blending yields optimal performance.

to the semi-synthetic 2 repository. Besides, Chained Aug-
mentation Mixing (CAM), Coarsely Dropout (CDO), and
Element-wise Patch Mixing (EPM) are adapted from the
official Augmix [8] repository, the albumentation 3 library,
and the timm 4 library with their default parameters unless
otherwise specified. The foreground and background seed
images and detailed codes of implementation and adaptation
are available at https://github.com/lofrienger/
OneToMany_ToolSynSeg.

V. RESULTS AND ANALYSIS

We evaluate our framework with multiple real-world
datasets, i.e., the Endo18 [2] test dataset, the Endo17 [1]
dataset, and the RoboTool [7] dataset. The performance of
the real dataset Endo18 [2] is taken as the in-distribution
baseline and upper bound for comparison. Laplacian Blend-
ing is utilized as the blending operation and the proposed
hybrid augmentation is applied during training. The overall
results are shown in Table II. Our synthetic datasets can
achieve decent results on all test datasets. Especially on the
RoboTool [7] dataset, our best result outperforms the baseline
with 8.35% DSC. On average of two out-of-distribution
datasets, i.e., Endo17 [1] and RoboTool [7], our approach
yields 0.76% DSC gain, showing outstanding generalization
performance. Compared with Endo17 [1], the RoboTool [7]
dataset contains more complex surgical scenes including var-
ious instrument actions and tissue-tool interactions, making
it more challenging for the model to generalize well. As
indicated in Table II, the baseline model suffers over 30%
DSC drop compared with its performance on the test split
of Endo18 [2]. Whereas, the performance degradation of
our method is much smaller and acceptable. Hence, our
approach, based on synthetic data, demonstrates superiority
in addressing domain shifts and complex scene segmentation
challenges.

As shown in Fig. 4, compared with the model derived
from the real Endo18 [2] dataset, the model trained with
our Syn-S3-F1F2 dataset yields competitive segmentation
performance on the test images from three real datasets.

2https://github.com/luiscarlosgph/semi-synthetic
3https://github.com/albumentations-team/albumentations
4https://github.com/rwightman/pytorch-image-models

TABLE II
OVERALL QUANTITATIVE RESULTS OF OUR SYNTHETIC DATASETS.

THE BEST AND RUNNER-UP RESULTS FROM OUR DATASETS ARE

INDICATED IN BOLD AND UNDERLINED.

Training
Test DSC (%)

Endo18 [2] Endo17 [1] RoboTool [7] Mean±STD

Endo18 [2] 85.04 86.78 52.44 69.61 ± 17.17

Syn-S2-F1 71.65 76.61 55.01 65.81 ± 10.80
Syn-S2-F2 71.75 78.47 56.75 67.61 ± 10.86
Syn-S3-F1 71.84 78.18 59.45 68.82 ± 9.37
Syn-S3-F2 72.07 76.08 60.68 68.38 ± 7.70

Syn-S3-F1F2 71.55 79.95 60.79 70.37 ± 9.58

Endo18

Endo17

RoboTool

Endo18

Input Ground Truth Syn-S3-F1F2

Fig. 4. Qualitative comparison between models trained with the real
and synthetic datasets. Our method can produce comparable and even
better segmentation results.

Notably, as highlighted in the rectangle regions, the clasper
parts of the instruments are well recognized, especially for
the image from RoboTool [7].

A. Choices of Blending Mode

To find the preferable blending mode which produces
softer blending artifacts, we compare three blending modes,
i.e., Alpha Blending, Gaussian Blending, and Laplacian
Blending. As shown in Fig. 3, under five synthetic dataset
settings, Laplacian Blending yields the optimal performance
for most test datasets. By constructing the Laplacian pyramid
for both the foreground and background images, the blending
process can take into account the details and structures at
different scales. As a result, the boundaries between the
foreground and background images are smoother and more

https://github.com/lofrienger/OneToMany_ToolSynSeg
https://github.com/lofrienger/OneToMany_ToolSynSeg


TABLE III
ABLATION STUDY ABOUT THE HYBRID TRAINING-TIME AUGMENTATION. CAM, CDO, AND EPM ARE SHORT FOR CHAINED AUGMENTATION

MIXING, COARSELY DROPOUT, AND ELEMENT-WISE PATCH MIXING, RESPECTIVELY. RESULTS SHOW THE EFFICACY OF THE PROPOSED HYBRID

TRAINING-TIME AUGMENTATION. THE BEST AND RUNNER-UP RESULTS ARE IN BOLD AND UNDERLINED.

Training
Augmentation Test DSC (%)

CAM CDO EPM Endo18 [2] Endo17 [1] RoboTool [7] Mean ± STD

Endo18 [2] ✓ ✓ ✓ 85.04 86.78 52.44 69.61±17.17

Syn-S2-F1

✗ ✗ ✗ 59.67 67.26 43.45 55.36 ± 11.91
✓ ✗ ✗ 70.31 73.70 49.20 61.45 ± 12.25
✓ ✓ ✗ 69.81 74.36 58.04 66.20 ± 8.16
✓ ✗ ✓ 71.35 77.15 50.22 63.69 ± 13.47
✓ ✓ ✓ 71.65 76.61 55.01 65.81 ± 10.80

Syn-S2-F2

✗ ✗ ✗ 55.39 68.52 52.45 60.49 ± 8.04
✓ ✗ ✗ 71.42 75.47 54.06 64.77 ± 10.71
✓ ✓ ✗ 70.70 76.82 54.63 65.73 ± 11.10
✓ ✗ ✓ 71.93 76.99 53.33 65.16 ± 11.83
✓ ✓ ✓ 71.75 78.47 56.75 67.61 ± 10.86

Syn-S3-F1

✗ ✗ ✗ 58.86 66.65 41.92 54.29 ± 12.37
✓ ✗ ✗ 70.05 74.54 49.97 62.26 ± 12.29
✓ ✓ ✗ 69.69 75.04 53.88 64.46 ± 10.58
✓ ✗ ✓ 72.28 78.21 52.33 65.27 ± 12.94
✓ ✓ ✓ 71.84 78.18 59.45 68.82 ± 9.37

Syn-S3-F2

✗ ✗ ✗ 55.05 69.52 52.43 60.98 ± 8.55
✓ ✗ ✗ 70.96 77.33 55.11 66.22 ± 11.11
✓ ✓ ✗ 72.02 77.39 58.34 67.87 ± 9.52
✓ ✗ ✓ 71.68 75.48 54.36 64.92 ± 10.56
✓ ✓ ✓ 72.07 76.08 60.68 68.38 ± 7.70

Syn-S3-F1F2

✗ ✗ ✗ 58.33 68.34 51.10 59.72 ± 8.62
✓ ✗ ✗ 71.46 75.97 53.52 64.75 ± 11.23
✓ ✓ ✗ 71.11 76.85 57.71 67.28 ± 9.57
✓ ✗ ✓ 71.97 78.30 54.18 66.24 ± 12.06
✓ ✓ ✓ 71.55 79.95 60.79 70.37 ± 9.58

seamless, resulting in a more realistic and visually pleasing
composite image.

B. Ablation Analysis of Hybrid Training-time Augmentation

We further conduct the ablation study about three ad-
vanced training-time augmentations in our pipeline, i.e.,
Chained Augmentation Mixing (CAM), Coarsely Dropout
(CDO), and Element-wise Patch Mixing (EPM). As shown in
Table III, these training-time augmentations steadily help im-
prove the segmentation performance on the real test datasets.
In most cases, their hybrid integration yields the best average
results on two out-of-distribution datasets, i.e., Endo17 [1]
and RoboTool [7] and provides 7.12% to 14.53% DSC gain
compared to not having it, reflecting its great benefit in
boosting model generalization capability.

C. Semi-supervised Synthetic-real Joint Training

Although abundant well-annotated data are expensive and
scarce, a small ratio of them is typically affordable for pre-
liminary investigation. To explore the broader impact of our
framework, we conduct experiments following the scheme of
semi-supervised synthetic-real joint training, where a small
portion of real data is utilized for training jointly with the
generated synthetic dataset. The results of pure Syn-S3-F1F2
and pure Endo18 [2] are treated as two references. As shown
in Table IV, when keeping the same training sample size and
replacing 20% synthetic data with the real data, the average

TABLE IV
SEGMENTATION RESULTS OF SEMI-SUPERVISED SYNTHETIC-REAL

JOINT TRAINING. A SMALL RATIO OF REAL DATA CAN YIELD

SIGNIFICANT PERFORMANCE GAINS WHEN JOINTLY TRAINED WITH OUR

SYNTHETIC DATASET. THE BEST AND RUNNER-UP RESULTS ARE IN

BOLD AND UNDERLINED, RESPECTIVELY.

Training Test DSC (%)

Data Size Endo18 [2] Endo17 [1] RoboTool [7] Mean ± STD

Syn-S3-F1F2 2235 71.55 79.95 60.79 70.37 ± 9.58

90% Syn-S3-F1F2
+ 10% Endo18 [2] 2235 76.86 81.91 61.63 71.77 ± 10.14

80% Syn-S3-F1F2
+ 20% Endo18 [2] 2235 79.91 83.35 61.05 72.20 ± 11.15

Syn-S3-F1F2
+ 10% Endo18 [2]

2235
+ 223 79.32 84.32 65.57 74.95 ± 9.38

Syn-S3-F1F2
+ 20% Endo18 [2]

2235
+ 447 81.66 85.91 65.92 75.92 ± 10.00

Endo18 [2] 2235 85.04 86.78 52.44 69.61 ± 17.17

DSC of two out-of-distribution domains, i.e., Endo17 [1] and
RoboTool [7] gets improved with 2.59% compared with the
reference result of Endo18 [2]. Further, when adding 20%
real data on top of the entire pure Syn-S3-F1F2 dataset, on
average, the performance gain is increased by 6.31% DSC,
indicating superior generalization ability. The performance
on the in-distribution domain Endo18 [2] also gets boosted
with 10.11% DSC compared with the reference result of the
pure Syn-S3-F1F2 dataset.



VI. CONCLUSION AND FUTURE WORK

This work proposes a highly efficient one-to-many data-
centric framework for surgical instrument synthesis and
segmentation. Instead of model architecture design and opti-
mization, we focus on improving the quality of synthetic data
under extreme source constraints to alleviate the challenging
data-related issues in surgical instrument segmentation, i.e.,
data shortage and shift.

Specifically, for data synthesizing, we only leverage one
background tissue image and a few foreground instrument
images to construct the source image pools with varieties
of augmentations. Then one tissue image and one or two
instrument images are randomly sampled from the back-
ground and foreground image pools and blended together to
form the final synthetic surgical scene image. We extensively
explore and compare three blending techniques, i.e., Alpha
Blending, Gaussian Blending, and Laplacian Blending, and
find Laplacian Blending to be the optimal choice. With
the generated synthetic datasets, we incorporate the hybrid
usage of advanced training-time augmentations, i.e., Chained
Augmentation Mixing (CAM), Coarsely Dropout (CDO),
and Element-wise Patch Mixing (EPM) when training the
segmentation model. The generalization ability across multi-
ple real test datasets gets steadily improved with the proposed
hybrid augmentation. Moreover, we also demonstrate the
efficacy of our framework in the semi-supervised synthetic-
real joint training scheme to help boost the in-distribution
and out-of-distribution performance.

Future work can extend the proposed framework in
two major directions. On the one hand, more elements in
real surgical scenes, like blood and smoke, can also be
synthesized to increase the overall realism of the dataset.
On the other hand, domain adaptation methods can also be
introduced when training the segmentation model to mitigate
the discrepancy between the synthetic and real domains. We
expect that our approach can encourage more data-efficient
and data-driven approaches in surgical scene understanding
applications when dealing with data-related issues, such as
data shortage, domain shift, class imbalances, and incremen-
tal classes, to name a few.
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