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A B S T R A C T 

We introduce a new method to calculate dark matter halo density profiles from simulations. Each particle is ‘smeared’ o v er its 
orbit to obtain a dynamical profile that is averaged over a dynamical time, in contrast to the traditional approach of binning 

particles based on their instantaneous positions. The dynamical and binned profiles are in good agreement, with the dynamical 
approach showing a significant reduction in Poisson noise in the innermost regions. We find that the inner cusps of the new 

dynamical profiles continue inward all the way to the softening radius, reproducing the central density profile of higher resolution 

simulations within the 95 per cent confidence intervals, for haloes in virial equilibrium. Folding in dynamical information thus 
provides a new approach to impro v e the precision of dark matter density profiles at small radii, for minimal computational 
cost. Our technique makes two key assumptions that the halo is in equilibrium (phase mixed) and the potential is spherically 

symmetric. We discuss why the method is successful despite strong violations of spherical symmetry in the centres of haloes, 
and explore how substructures disturb equilibrium at large radii. 

Key words: galaxies: haloes – galaxies: kinematics and dynamics – dark matter. 
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 I N T RO D U C T I O N  

he observationally inferred density distribution of dark matter in
aloes around galaxies offers a crucial hint as to the nature of
he elusi ve substance. Ho we ver, the observ ations must be carefully
ompared with theoretical predictions based largely on numerical
imulations (for re vie ws, see e.g. Frenk & White 2012 ; Vogelsberger
t al. 2020 ; Angulo & Hahn 2022 ). Dark-matter-only (DMO) simu-
ations have shown that the spherically averaged density profiles of
aloes in the cold dark matter (CDM) paradigm follow approximately
he Navarro–Frenk–White (NFW) profile (Dubinski & Carlberg
991 ; Navarro, Frenk & White 1996b , 1997 ; Dutton & Macci ̀o 2014 )
escribed by a divergent cusp ( ρ ∼ r −1 ) at small radii, and by a
teeper power law ( ρ ∼ r −3 ) in the outer regions. The NFW profile
as two free parameters that may be fitted to the density structure of
imulated haloes for most of the radial extent, but the fit becomes
oor in the innermost parts and in the outskirts of the haloes (e.g.
avarro et al. 2004 ; Diemer & Kravtsov 2014 ; Fielder et al. 2020 ;
ang et al. 2020 ; Lucie-Smith et al. 2022 ). 
Over time, a variety of fitting functions have been proposed to

etter represent the profile’s inner slope, such as Einasto models
Einasto 1965 ; Chemin, de Blok & Mamon 2011 ) or other forms
f double power law (e.g. Hernquist 1990 ; Burkert 1995 ; Zhao
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996 ; Salucci et al. 2007 ; Hague & Wilkinson 2013 ; Oldham &
uger 2016 ; Hayashi, Chiba & Ishiyama 2020 ). Ho we ver, the central

egions of the profiles remain notoriously difficult to probe due to
he finite number of particles and consequent need to ‘soften’ the
otential (e.g. Power et al. 2003 ; Diemand, Moore & Stadel 2004 ;
ehnen & Read 2011 ), causing the cusp to be numerically flattened

e.g. Navarro, Frenk & White 1996b ; Ghigna et al. 2000 ; Fukushige &
akino 2001 ; Wang et al. 2020 ). Constraining the central asymptotic

ehaviour of the profile therefore remains largely dependent on the
umber of particles concentrated at small radii. 
While the focus in this work will be on DMO simulations, we

ote that when baryons are added into simulations, effects such as
upernova feedback and enhanced dynamical friction can cause the
entral cusp to turn into a flattened density ‘core’ (e.g. Navarro,
ke & Frenk 1996a ; El-Zant, Shlosman & Hoffman 2001 ; Read &
ilmore 2005 ; Pontzen & Go v ernato 2012 ; Nipoti & Binney 2014 ;
opolo & Pace 2016 ; Read, Agertz & Collins 2016 ; Orkney et al.
022 ). Ultimately, understanding the predicted distribution of dark
atter does require such baryonic simulations, especially since there

re strong indications of flattened central cores in observations (see
.g. Flores & Primack 1994 ; de Blok, McGaugh & Rubin 2001 ;
archesini et al. 2002 ; Battaglia et al. 2008 ; Walker & Pe ̃ narrubia

011 ; Oh et al. 2015 ; Read et al. 2017 ; Read, Walker & Steger 2019 ;
outendijk et al. 2021 ; De Leo et al. 2023 ; or for countering views,
ee Pineda et al. 2016 ; Genina et al. 2017 ; Oman et al. 2018 ). The
ocus in this work is none the less on understanding how DMO
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redictions can be impro v ed and better understood; we will consider
aryonic effects in a future paper. 
In the outskirts of haloes, density profiles scatter significantly 

ue to the presence of surrounding substructures and the out-of- 
quilibrium dynamics of accreting material. For instance, the caustics 
enerated by the infalling particles on their first apocentre passage 
et the scale for the splashback radius, which creates an observable 
ignature in the outer regions of halo profiles (Adhikari, Dalal & 

hamberlain 2014 ; Diemer & Kravtsov 2014 ; More, Diemer & 

ravtsov 2015 ; Shin et al. 2019 ). Recently, Lucie-Smith et al. ( 2022 )
howed that a good fit to the diversity of halo profiles out to two
irial radii can be obtained using only three free parameters (i.e. one
dditional parameter is sufficient to capture the diversity of these 
uter re gions). This relativ ely simple behaviour may be linked to
he typical orbits on which material accretes into a halo, further

oti v ating a study of how the instantaneous profile relates to a
ynamically generated equilibrium profile (e.g. Diemer 2022a , b ; 
hin & Diemer 2023 ). 
In this work, we present and study a method to calculate dark
atter density profiles from simulated haloes using dynamical 

nformation. This possibility has been discussed before – notably 
n appendices to Read & Gilmore ( 2005 ) and Pontzen & Go v ernato
 2013 ), and in Callingham et al. ( 2020 ) – but its possible application
o reducing the noise in numerical density estimates has not been 
xplored in detail. Specifically, the technique ‘smears’ particles in a 
napshot along their orbits, spreading the mass of each across multi-
le density bins. Such a dynamical approach shares some similarities 
ith certain classical mass modelling techniques (Schwarzschild 
979 ; Syer & Tremaine 1996 ) but, unlike these, it does not attempt to
atch observational constraints to underlying orbits and potentials; 

ather, it constructs these from a simulation snapshot. The result is a
rofile that is averaged over a dynamical time, and that consequently 
as reduced Poisson noise compared to traditional binned estimates 
t the same resolution. This, in turn, makes it possible to probe further
nto the behaviour of the inner regions, at radii where there are very
ew particles present. 

Calculating a density profile through this averaging process in- 
erently assumes an equilibrium, phase-mixed distribution function. 
his assumption is expected to be significantly broken in the outer 
arts of a halo approaching the virial radius or beyond. Furthermore, 
or a practical calculation, we will also assume spherical symme- 
ry (although this assumption could in principle be relaxed). The 
ravitational potentials of real and simulated haloes are far from 

eing perfectly spherical. Their shapes tend to be closer to triaxial, 
specially towards the centre (e.g. Frenk et al. 1988 ; Jing & Suto
002 ; Allgood et al. 2006 ; Orkney et al. 2023 ); ho we ver, it has
reviously been argued using Hamiltonian perturbation theory that 
pproximating the true triaxial potential by a spherically averaged 
ersion should make little difference to dynamical density estimates 
f the system is in equilibrium (Pontzen et al. 2015 ). We will return to
his point in our discussion. Our results focus on the innermost and
he outermost regions of haloes to investigate the limits of dynamical 
alo profiles subject to these coupled assumptions of equilibrium and 
pherical symmetry. 

The rest of the paper is structured as follows. In Section 2 , we
xplain the procedure used to generate the dynamical density profiles. 
n Section 3 , we describe the simulation suites and the selection of
napshots analysed in this work. In Section 4 , we present the main
esults for the dynamical profiles, focusing on the inner and outer 
egions, and comparing our dynamical technique to traditional binned 
ethods. In Section 5 , we discuss the implication of our results and

utline possible further work. 
 M E T H O D S  

e now describe the methods used to construct dynamical profiles. 
ection 2.1 considers the construction of a spherically averaged 
ravitational potential starting from a simulation snapshot, the 
alculation of particle orbits within that potential, and finally the 
omputation of the dynamical density profile. In Section 2.2 , we
ntroduce a refinement to the method that impro v es the accuracy
f the orbit integration around apocentre and pericentre. Then, in 
ection 2.3 , we describe an iterative process via which a self-
onsistent density–potential pair may be generated. 

.1 Creating the dynamical density profiles 

e start by assuming that we have a snapshot containing only dark
atter particles, centred on the target halo. The spherically averaged 

ravitational potential given by all the particles in the snapshot is then
alculated in bins of width � r according to the discretized integral 

 ( r k ) = G 

k ∑ 

j= 1 

M( < r j ) 

r 2 j 

�r, (1) 

here j is an index over the bins, k is the bin number for which the
otential is being calculated, and r j is the radius in the centre of the
 th bin, taking the value r j = ( j − 1/2) � r . In addition, M ( < r j ) is the

ass enclosed within radius r j , and G is the gravitational constant.
lthough the potential for each bin k is e v aluated from quantities

t the centre of the bin, the values are assigned to the right edge
f the corresponding bins, since � ( r k ) represents the average of the
otential o v er the entire bin k . The zero point of the potential is set
t r = 0 (the left edge of the first bin). Equation ( 1 ) is the simplest of
everal possible choices to perform numerical integration. We tested 
hat adopting a more sophisticated method does not significantly 
ffect the final results. Therefore, we adopted the simple approach 
or transparency. 

The total number of bins o v er which � is calculated is determined
y the radius of a ‘bounding sphere’ centred around the halo. In
ddition to choosing the radius at which to truncate the potential,
e must also decide how to treat particles whose orbits cross this
oundary. In keeping with the core assumption of equilibrium, we 
ake the boundary reflecting , i.e. particles bounce elastically off it.
ne may equi v alently imagine the potential as having an infinite
otential step at the truncation radius. While this is unphysical for
ny individual particle considered in isolation, across the population 
t is equi v alent to the much more reasonable assumption that the
utwards flux through the sphere is balanced by a matching inwards
ux. This assumption can be tested by changing the truncation radius; 

he halo virial radius is a natural first choice, and we will explore the
ffects of other choices on the final density profile in Section 4.2.2 . 

Assuming equilibrium, the probability density p i ( r ) of finding
article i at radius r is proportional to the time spent by the particle
n the infinitesimal interval around that radius: 

 i ( r) = 

1 

T i 

∫ T i 

0 
δ( r − r i ( t)) d t = 

2 

T i 

1 

ṙ ( r, E i , j i , � ) 
, (2) 

here r i ( t ) describes the radius as a function of time for the particle
on its spherical idealized orbit), T i is the period of the orbit, E i is
ts specific energy, and j i is its specific angular momentum. Rather
han calculate T i directly we first calculate an unnormalized version 
f the probability, q i , k ≡ ( T i /2) p i ( r k ). Here, i inde x es the particles,
nd k inde x es the spatial bins. By writing the specific energy of a
article as the sum of the potential energy, the kinetic energy due
o the angular momentum, and the kinetic energy due to the radial
MNRAS 527, 9250–9262 (2024) 
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Figure 1. The binned probability density implied by equation ( 3 ) e v aluated 
for a typical particle (light shaded bins), with a bin size � r = ε/2, compared 
with the analytical integrand (solid line). The integrand is well behaved for 
most of the radial range of the orbit, and therefore well approximated by 
the binned density. Ho we v er, it has two inte grable div ergences at pericentre 
and apocentre (here located at ∼2.2 and ∼8.7 kpc, respectiv ely). Ev en if the 
particle never reaches the centre of one of these extremal bins, it may still 
spend significant time within the bin. Capturing this effect correctly in the 
binned probability requires the special treatment explained in the text. The 
dark shaded bins represent the analytical corrections added at the pericentre 
and apocentre for this orbit. 
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otion, we can solve for ṙ and obtain 

 i,k ≡ 1 

ṙ ( r k , E i , j i , � ) 
= 

(
E i − j 2 i 

2 r 2 k 

− � ( r k ) 

)− 1 
2 

. (3) 

ote that this expression is only valid between pericentre and
pocentre; outside this radial range, it becomes imaginary. Ho we ver
he true probability of finding the particle outside the extrema of its
rbit is zero by definition, and therefore one may make equation ( 3 )
rue for all radial bins by taking its real part. We produce a normalized
robability for each bin k and particle i according to 

 i,k ≡
( 

Re q i,k 

Re 
∑ 

j q i,j 

) 

, (4) 

here Re denotes the real part. If a particle i is on an almost perfectly
ircular trajectory, it may remain within a single radial bin k for its
ntire orbit; in this case, the equation abo v e fails and instead a unit
robability is assigned to the bin enclosing the original position of
he particle in the snapshot, p i , k = 1. 

The density at the centre of bin k can then be estimated from the
et of p i , k as 

( r k ) = 

3 

4 π

N ∑ 

i= 1 

m i p i,k 

( r k + �r/ 2) 3 − ( r k − �r/ 2) 3 
, (5) 

here m i is the mass of each particle i , and there are N particles in
otal. 

The statistical errors in the dynamical density profile are estimated
sing bootstrapping. For each of 100 bootstrap samples, we create
 mock set of particles by sampling (with replacement) from the
ctual set of particles in the halo; we then perform the full dynamical
ensity estimate on the mock set of particles. We determined that
00 bootstrap samples was sufficient to achieve convergence on the
5 per cent confidence interval; in Section 4 , our results are shown
ith these uncertainties as a shaded band. 

.2 Improving accuracy at apocentre and pericentre 

he function in equation ( 3 ) has two integrable divergences located
t the pericentre and apocentre of each orbit (Fig. 1 ). Unless the bins
re infinitesimally small, the probability of finding the particle in
he bin p i , k containing such a divergence might be misestimated. To
orrect for this, in these two bins we use an approximation scheme
ased on a local Taylor expansion of the potential. We define the
f fecti ve potential as � eff = � + j 2 /(2 r 2 ), and expand � eff ( r 0 + δr )
round r 0 , where r 0 is the divergence point (pericentre or apocentre)
or every orbit, i.e. a root of equation ( 3 ). We now consider the case
f a pericentre where the divergence r 0 is inside the k th bin [i.e. ( k −
) � r < r 0 < k � r ], as an example. The mean value of Re ̇r −1 across
he entire bin may be calculated as 

¯ ≡ 1 

�r 

∫ r k 

r 0 

( E i − � eff ( r )) 
−1 / 2 d r , 

≈ 1 

�r 

∫ r k 

r 0 

( 

−d � eff 

d r 

∣∣∣∣
r 0 

( r − r 0 ) 

) −1 / 2 

d r. (6) 

ere, we have also used the fact that � eff ( r 0 ) = E i , by definition.
e can furthermore approximate d � eff / d r | r 0 ≈ d � eff / d r | r k to a v oid

aving to calculate the exact location of the divergences; this will
ive us a correction that is accurate to first order. The integration is
hen analytically tractable, giving 

¯ ≈ 1 

�r 

2( E i − � eff ( r k )) 1 / 2 

d � eff ( r k ) / d r| r . (7) 
NRAS 527, 9250–9262 (2024) 

k 
his analytical estimate of the mean value is then used to represent
he value of the probability density function within the pericentre bin
 k . The apocentre bin is treated in the same way, and both corrections
re included before producing the normalized probability according
o equation ( 4 ). 

There are two cases in which these corrections cannot be e v aluated.
ne of them is when an orbit is unresolved (i.e. its probability

unction only spans one bin), since in that case pericentre and
pocentre are coincident. As previously stated, when this occurs,
he particle is given unit probability to be found within the single
in, and corrections are not required. The apocentre corrections are
lso ignored when the particle’s apocentre falls outside of the radius
f the ‘reflecting wall’ that serves as the boundary for the halo. Since
he particles can be thought of as being reflected back once they hit
he boundary, their radial paths are truncated at the location of the
all, and no apocentre corrections are required. 

.3 Iterating the potential 

he dynamical density profile given by equation ( 5 ) implies also
 mass profile M ( < r ) and therefore a potential � ( r ) through
quation ( 1 ). Ho we ver, the potential used in producing the density
stimate was initialized directly using the particle radii from the
riginal snapshot. The o v erall procedure therefore results in an
nconsistent potential–density pair. The difference between the mass
istribution is especially evident in the inner regions because our
otential is calculated without softening, and the pericentres of
rbits can therefore reach radii closer to the centre of the haloes. To
esolv e this discrepanc y, we iterate until a self-consistent density-
otential configuration pair is reached. Over the course of the
terations, the gravitational potential from the simulation is gradually
ransformed into the potential inferred from the dynamical density
rofile. This technique also remo v es an y discontinuities in the
eri v ati ves of the potential at small radii due to the finite particle
umber. 
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Table 1. Properties (softening length, particle mass, number of particles, virial radius, virial mass, and brief comments on the density structure) of the seven 
haloes investigated in this work. The haloes can be grouped into three main categories based on their virial mass, from dwarf to Milky Way mass. The number 
of particles refers to the particles enclosed by each halo’s virial radius at z = 0. 

Halo Figure Resolution ε (kpc) Particle mass (M �) Number of particles r vir (kpc) Virial mass (M �) Structure 

Low 0.095 7.1 × 10 4 3 × 10 4 41.7 Substructures at large r ; 
1445 2 , top 2 × 10 9 

High 0.012 1.1 × 10 3 2 × 10 6 41.5 dynamical equilibrium 

Low 0.095 7.1 × 10 4 3 × 10 4 41.4 Substructures at large r ; 
1459 2 , bottom High 0.012 1.1 × 10 3 2 × 10 6 41.1 2 × 10 9 dynamical equilibrium 

Ultra-high 0.006 1.4 × 10 2 1 × 10 7 41.1 

Low 0.095 7.1 × 10 4 8 × 10 4 56.8 Low res: recent merger, 
600 3 , top High 0.012 1.1 × 10 3 5 × 10 6 56.2 5 × 10 9 disequilibrium (cusp). 

Ultra-high 0.006 1.4 × 10 2 4 × 10 7 56.2 Higher res: equilibrium 

Low 0.095 7.1 × 10 4 7 × 10 4 55.0 Minimal substructure; 
605 3 , middle 5 × 10 9 

High 0.012 1.1 × 10 3 4 × 10 6 54.7 dynamical equilibrium 

Low 0.095 7.1 × 10 4 7 × 10 4 56.3 Pre-merger; 
624 3 , bottom 5 × 10 9 

High 0.012 1.1 × 10 3 5 × 10 6 56.2 significant disequilibrium 

Low 0.142 2.3 × 10 5 5 × 10 6 349.0 Minimal substructure; 
685 4 , top 1 × 10 12 

High 0.035 2.9 × 10 4 4 × 10 7 346.9 dynamical equilibrium 

Low 0.142 2.3 × 10 5 6 × 10 6 358.4 Minimal substructure; 
715 4 , bottom 1 × 10 12 

High 0.035 2.9 × 10 4 5 × 10 7 357.3 dynamical equilibrium 
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The iteration process involves a series of steps: 

(i) A dynamical density profile is first obtained as described in 
ections 2.1 and 2.2 . 
(ii) The mass distribution implied by the dynamical profile is 

alculated according to 

 ( < r j + �r / 2) = 

N ∑ 

i= 1 

j ∑ 

k= 1 

m i p i,k . (8) 

he mass at the centre of the bin ( r j ) is then obtained by averaging
he mass at adjacent edges. 

(iii) The new mass distribution is inserted into equation ( 1 ) to
 v aluate a new gravitational potential. 

(iv) The angular momenta of the particles is assumed to be 
nchanged, and the energies are updated by keeping the radial action 
onstant at first order (see below). 

(v) The cycle is repeated, starting from point (ii) and using the 
pdated dynamical profile, until convergence in the dynamical profile 
s reached. 

Evolving the gravitational potential into the new configuration will 
ffect the phase space distribution of the particles. Hence, we require 
he energies of the particles to change accordingly. In step (iv), the
pdated energies are calculated by keeping the radial action of each 
article constant to first order, 

 r ( E new ,i , j i , � new ) = J r ( E old ,i , j i , � old ) + O( �� 

2 ) , (9) 

or each particle i , where E new, i , � new and E old, i , � old are the specific
nergy and the potential after and before the iteration respectively, 
nd �� = � new − � old . We keep J r constant since we can interpret
ach iteration as a small change to the potential of the halo, akin to
n adiabatic relaxation. This process does not correspond to a literal 
hysical evolution of the halo in time, but an adiabatic transformation 
s none the less the most conserv ati ve way to map orbits from the
otential at each iteration to the next. In other words, we assume that
he action distribution of the particles in the simulation is sampled 
rom an underlying ‘true’ distribution (as would be attained by a 
imulation of infinite resolution). We then reco v er the potential 
mplied by the dynamical profile given this action distribution. If 
e assume that the change to the potential between iterations is

ufficiently small, we only need update the actions at first order in
he potential change, i.e. equation ( 9 ). 

The definition of the radial action is 

 r ( E, j, � ) = 

2 

π

∫ r apo 

r peri 

√ 

E − j 2 

2 r 2 
− � ( r) d r . (10) 

ith this in hand, we solve equation ( 9 ) to first order in the quantities
� and � E i = E new, i − E old, i . By Taylor expanding, we find 

E i ≈
∫ r apo 

r peri 
�� ( r ) 

(
E old ,i − j 2 

i 

2 r 2 
−� old ( r ) 

)−1 / 2 
d r 

∫ r apo 

r peri 

(
E old ,i − j 2 

i 

2 r 2 
− � old ( r) 

)−1 / 2 
d r 

= 〈 �� 〉 , (11) 

.e. the change in energy is equal to the average of the change in
otential, weighted by the probability of finding the particle at a
iven radius. (At first order, the changes to the values of apocentre
nd pericentre of the orbit do not contribute to � E , and can therefore
e neglected.) 
The first iteration produces a significant change in the inner 

ensity distrib ution b ut after approximately three iterations, con- 
ergence in the dynamical profile is reached (i.e. the changes 
n the density profiles become significantly smaller than the 
ootstrap-determined uncertainties). We will discuss this further in 
ection 4.1.2 . 

 T H E  SI MULATI ON  SNAPSHOT S  

e analyse a selection of seven snapshots drawn from cosmological 
oom simulations of dark matter haloes spanning a wide range of
asses, from ∼10 9 to ∼10 12 M � (see Table 1 ). 
The five smallest haloes are part of the Engineering Dwarfs at

alaxy Formation’s Edge (EDGE) project (Agertz et al. 2019 ; Rey
t al. 2019 , 2020 ; Orkney et al. 2021 ); the two largest haloes were
aken from the VINTERGATAN-GM project, which in turn uses the 
nitial conditions described by Rey & Starkenburg ( 2021 ). Both
uites of simulations assume a 	 CDM cosmology: EDGE adopts 
MNRAS 527, 9250–9262 (2024) 
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osmological parameters based on data from Planck Collaboration
VI ( 2014 ) ( 
m 

= 0.309, 
	 

= 0.691, H 0 = 67.77 km s −1 

pc −1 ) with a box size of 50 Mpc, while VINTERGATAN-GM uses
osmological parameters from Planck Collaboration XIII ( 2016 )
 
m 

= 0.314, 
	 

= 0.686, H 0 = 67.27 km s −1 Mpc −1 ) with a
ox size of 73 Mpc. As previously stated, we consider the DMO
imulations from these suites, i.e. they do not contain any baryonic
omponents; hence, steep cusps are expected in the central regions
f the density profiles. 
The selected haloes were re-simulated at two different resolutions;

he particle mass ratio between the lower and in the higher resolution
uns is 64 (for EDGE) and 8 (for VINTERGATAN-GM ). Both suites
f simulations are generated using the adaptive mesh refinement
AMR) code RAMSES (Teyssier 2002 ). The mesh is refined whenever
 grid cell contains more than eight particles; consequently, the
oftening lengths are adaptive and we provide a softening scale
stimate ε equal to the size of the smallest grid cell used for gravity
alculations. We call low resolution the simulations with softening
cale of 0.095 kpc (0.142 kpc for the VINTERGATAN-GM haloes), and
igh resolution the ones with softening of 0.012 kpc (0.035 kpc for the
INTERGATAN-GM haloes). Ultra-high-resolution runs with softening
cale ∼0.006 kpc are also available for some EDGE simulations. All
he snapshots analysed in the current work are taken at the present
ay ( z = 0). 

Simulation snapshots are loaded using pynbody (Pontzen et al.
013 ). Before processing, each halo is centred using the shrinking-
phere method of Power et al. ( 2003 ); the central 1 kpc is used to
alculate a centre of mass velocity, which is then subtracted from
ll particles. We also calculate a virial radius, r vir , defined to be the
adius at which the enclosed mean density is equal to 178 times the
osmic mean. 

All particles interior to the reflecting wall at the time of the
napshot are included in the calculations. Some of the selected haloes
ontain large substructures, especially in their outskirts; these are
eliberately retained in our analysis in order to test the limits of
he assumption of equilibrium. The reflecting boundary described
n Section 2.1 was placed at 120 kpc for the haloes with mass
 5 × 10 9 M �. This is between two and three times the size of

heir virial radii, a choice that allows us to explore how the dynamical
nformation affects the density distribution in their outer regions. The
oundary for the two largest haloes was placed at 350 kpc, which is
pproximately the location of their virial radii, and was not extended
o larger radii in this work because the ‘zoomed’ region of these
aloes is only twice the virial radius, beyond which low-resolution
articles are present. For efficiency, the dynamical profiles of the two
argest haloes are generated using only a randomly selected fraction
a third) of the particles. 

While it is not possible to recreate precisely the in-simulation
oftening ε with a spherical approximation, it is clear that the bin
idth � r must be comparable to ε in order that the potential is
eaningful. We found that our results were insensitive to the precise

in width chosen, provided that it is of this order, and therefore
hose to fix � r = ε/2. This choice of bin width is sufficiently
mall to allow investigation of the dynamically inferred density
rofile close to the halo centre. We note that for r � 3 ε ≡ r conv the
ffect of spurious relaxation in simulation becomes important and a
rofile constructed through direct particle binning is poorly resolved.
etailed studies of convergence (e.g. Power et al. 2003 ; Gao et al.
012 ; Ludlow, Schaye & Bower 2019 ) show that the value of r conv 

ust be determined empirically for each simulation set-up, and any
elation to the softening length ε is approximate; the scale is mainly
ictated by the number of particles present in the innermost regions.
NRAS 527, 9250–9262 (2024) 
ur comparisons of binned profiles between high- and low-resolution
imulations below confirm that r conv ∼ 3 ε gives a sufficiently good
pproximation to the innermost reliable radius of the low-resolution
inned profiles. 1 

 RESULTS  

n this section, we present and discuss the dynamical density profiles
f our dark matter haloes. In each case, we calculate dynamical
rofiles from the low-resolution snapshots and compare them with
inned profiles from both low- and high-resolution snapshots. The
rofiles are shown in Figs 2–4 (for lowest mass dwarf, intermediate-
ass dwarf, and Milky Way-mass haloes, respectively), alongside

mages of the haloes’ dark matter density projected down the z-axis.
e compare our dynamical profiles (blue lines) to the traditional

inned estimates from both the high and the low-resolution snapshots
black and pink points, respectively), which are plotted down to their
stimated softening length (see Table 1 ). Inset panels show the inner
ensity profile in greater detail. 
Overall, the dynamical profiles (blue lines), obtained from the low-

esolution simulations, agree well with the low-resolution binned
rofiles (pink points) for the majority of the radial extent of the haloes.
he 95 per cent bootstrap-determined uncertainties on the dynamical
rofiles are shown as shaded blue bands, and are significantly smaller
han the 95 per cent Poisson noise on direct binned estimates at the
ame resolution (pink error bars). This follows from the fact that
he particles in the original snapshot are now spread across multiple
ensity bins, hence providing better statistics. 
By dividing the total volume occupied by each halo into thin shells,

e can also calculate the average radial velocities of the particles
ontained within the shells. These are shown for the low-resolution
imulations in the panels below the density profiles in Figs 2–4 .
hese values will help us discuss below how well the assumption of
quilibrium holds for each halo. 

We will first discuss the behaviour of the dynamical profiles in the
nner regions (around or even interior to the traditional convergence
adius; Section 4.1 ), then in the outer regions (around and beyond
he virial radius; Section 4.2 ). 

.1 Inner regions 

he direct comparison of dynamical profiles (blue lines) with
inned profiles from higher resolution simulations (black points)
s of considerable interest: it addresses the question of whether
ur technique can partially correct for finite particle number in the
nnermost regions of the halo. 

At radii below the approximate convergence radius of the low-
esolution binned profiles ( r conv = 3 ε, indicated by the pink arrows in
igs 2–4 ), our dynamical density cusps are steeper than the traditional
inned profiles at the same resolution. This is particularly clear in the
ase of the Milky Way-mass haloes (Fig. 4 ). Comparing our results
o the binned distribution of the high-resolution simulations (black
oints), we see that the dynamical method is, in nearly all cases, able
o predict the ‘cuspier’ behaviour of higher resolution simulations
elow r conv . This is especially evident in the larger haloes due to the
maller Poisson noise in the central regions. Halo600 is an exception
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Figure 2. Density profiles multiplied by r 2 (left) and images of the dark matter density projected down the z-axis (right) for our two lowest mass dwarf haloes 
( M ∼ 2 × 10 9 M �). The dynamical density profiles obtained from the low-resolution snapshots agree very well with both the low- and high-resolution binned 
profiles for most of the radial extent of all the haloes. The largest variations between the dynamical and binned estimates are observed in the outer regions, 
beyond the virial radius, where large substructures in the outskirts cause spikes in the mass distribution. Any such substructures with mass greater than 3 per cent 
of the mass of the main halo are shown by dashed circles in the halo images, and by corresponding arrows in the dynamical profile plots. The panels below the 
density profiles show the variations in the average radial velocity of the particles contained within concentric shells as a fraction of the virial velocity, which can 
be used to quantify how close the low-resolution halo is to equilibrium. The arrows marked by r conv indicate the radius corresponding to three times the value 
of the softening scale of the low-resolution simulations (i.e. r conv for the low-resolution binned profiles). 

i
t
c
c
t
e
p  

l
l
a  

2

3
t
s

c
i  

m
e

f
V  

o
c  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/9250/7472100 by U
niversity C

ollege London user on 30 January 2024
n which the dynamically predicted density is substantially lower than 
hat in the high-resolution simulation; Section 4.1.1 considers that 
ase in some detail, and more broadly discusses caveats about making 
omparisons between low- and high-resolution simulations. None 
he less, in the other cases studied, the dynamically predicted cusp 
xtends below r conv of the low-resolution simulations, where very few 

articles are present at the time of the snapshot. 2 As well as being
ess biased than the binned profiles, our dynamical profiles also have 
ower numerical noise. On average across all haloes, the uncertainties 
t small radii (between ε and r conv ) are reduced by a factor of 12
 For the EDGE haloes, there are only 150–250 particles below r conv and 
50–450 for the VINTERGATAN-GM haloes; this is 0.38 and 0.007 per cent of 
he number of particles enclosed by the virial radius of the two simulation 
uites, respectively. 

S
s  

m  

t
a
r  
ompared to traditional binned estimates. Thus, our technique uses 
nformation about the entire phase space of the particles to produce

ore precise central density profiles that partially correct for the 
ffects of softening and which are less subject to Poisson noise. 

Poisson noise could also be mitigated by stacking binned profiles 
rom adjacent snapshots (similarly to the procedure outlined in 
asiliev 2014 ). Fig. 5 shows an example of the binned profile
btained by stacking 6 adjacent snapshots of Halo1459. This is 
ompared to our dynamical density profile (blue line) and to the
inned profile obtained from a single snapshot at z = 0 (pink points).
tacking the profiles results in considerable reduction in shot noise, 
imilar to the effect observed in the dynamical profile. Ho we ver, the
ethod fails to reproduce the stee per central gradient observed in

he dynamical profile below the convergence radius, which implies 
 significant disagreement with the binned profile from the high- 
esolution runs. This is due to the fact that the stacked profile retains
MNRAS 527, 9250–9262 (2024) 
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M

Figure 3. Same as Fig. 2 but for the three intermediate-mass dwarf haloes ( M ∼ 5 × 10 9 M �). Similarly to the other cases, the dynamical density profiles from 

the low-resolution snapshots agree well with both binned profiles. Halo600 is an outlier since it recently had a merger close to the halo’s centre that disrupted 
the equilibrium in the inner regions; as a result the plot of ̄v r / v vir shows significant deviations from zero at small radii. Halo624 has a large substructure within 
its virial radius that will reach the centre of the main halo and merge with it in the next ∼500 Myr. (The structure is found slightly closer to the centre in the 
high-resolution simulation.) The significant disruption caused by this substructure to the halo’s equilibrium is also evident in the average radial velocity panel, 
but our dynamical method none the less reco v ers a sensible ‘smoothed’ density profile. 
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Figure 4. Same as Figs 2 and 3 but for the two most massive ( M ∼ 10 12 M �) out of all seven haloes. Similarly to the other haloes, the dynamical density 
profiles from the low-resolution snapshots agree well with both the low- and high-resolution binned profiles. For efficiency, the dynamical profiles for these 
haloes were generated using only a randomly selected fraction (a third) of all the particles within the halo and therefore even smaller errors on the dynamical 
density profile are achie v able in principle. In these examples, all substructures are small (less than 1 per cent of the halo mass) and do not have a visible effect 
on the density profiles. 
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he effects of gravitational softening and of relaxation caused by 
ncounters between the particles in the low-resolution simulation 
s it evolves over time. By contrast, in the dynamical profile no
oftening is used and the orbits are integrated independently of each 
ther, allowing the iteration process (Section 2.3 ) to correctly reco v er
 steep central cusp. While in principle the stacked profile could 
lso be iterated by combining it with our dynamical method, this
ould entail significant complexity due to the starting potentials in 

ach snapshot differing from each other, as well as from the final
ombined potential. We therefore leave any investigation of such a 
ombined stacked-dynamical profile to future work. 

At radii just larger than r conv , we notice a small but statistically
ignificant density excess in both the binned and dynamical low- 
esolution profiles when compared with the high-resolution binned 
rofiles. This excess only covers a few density bins and is more
vident for some haloes (e.g. Halo605 and 624) than others; see the
nset panels zoomed in on this radius in Fig. 3 . Since this feature
s also present when using binned methods, it must be unrelated 
o the inclusion of dynamical information into the calculations. We 
herefore leave investigation to a future study. 
.1.1 The challenge of direct comparisons between differing 
esolutions 

v erall, the impro v ement offered by dynamical profiles o v er binned
rofiles is significant: the uncertainties at small radii are significantly 
itigated compared to binned estimates, making it a substantially 
ore precise technique. Qualitatively, it is clear that the dynamical 

rofiles reproduce steeper profiles which appear to be in agreement 
ith higher resolution simulations within the 95 per cent error 
ounds. Ho we ver, quantifying ho w accurate the dynamical estimates
re compared to the true density distributions (i.e. the density profiles
hat would be obtained from simulations of infinite resolution) is 
ifficult for two reasons. The first is the problem of formulating a
uitable comparison summary statistic; the second is the impact of 
mall differences in halo formation and merger history on the final
rofile. We will describe each of these in turn. 
The most natural way to measure the accuracy of a low-resolution

ensity profile would be to construct a chi-squared test to decide
hether the binned or dynamical profiles more accurately predict the 
igh-resolution result. Ho we ver, the size of the statistical errors on the
MNRAS 527, 9250–9262 (2024) 
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M

Figure 5. Binned density profile multiplied by r 2 obtained by stacking six 
consecutive snapshots from the low-resolution simulation of Halo1459. The 
dynamical density profile and the binned profile obtained from a single 
snapshot at z = 0 are also shown for comparison. Although Poisson noise 
is mitigated in the stacked profile, the method cannot correct the systematic 
softening and relaxation errors, and therefore underestimates central densities, 
unlike the dynamical profile. 

d  

p  

i  

p  

t  

d  

t  

p  

s  

i  

m  

p
 

m  

a  

d  

b  

H  

b  

i  

u  

d  

t  

(  

m  

o  

t  

t  

b  

v  

D  

s
 

m  

o  

r  

t  

w  

Figure 6. Dynamical density profile multiplied by r 2 before and after the 
dynamical iteration process compared to the high-resolution binned profile, 
shown here for the example of Halo1459. The arrow marks the convergence 
radius of the low-resolution simulation binned profile (which, for clarity, is 
not itself shown). The effect of the iterations is especially evident at small 
radii, where they act to make the central regions moderately denser, in better 
agreement with the high-resolution profile. 
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ynamical profile are substantially smaller than those on the binned
rofile, putting the dynamical profiles at an automatic disadvantage
n such a test. Even if one were to artificially inflate the dynamical
rofile error estimates, the results would remain very sensitive to
he precise radial range o v er which the statistic is calculated. The
ynamical profiles clearly predict more accurate densities interior
o r conv , but outside this radius the situation is more nuanced. In
articular, at large radii, the dynamical profiles’ tendency to wash out
ubstructure would lead to a heavy χ2 penalty (as will be discussed
n Section 4.2 ). There is therefore no straightforward quantitative
easurement of the impro v ement offered by dynamical density

rofiles, despite the clear qualitative advantages in the cusp region. 
The second challenge relates to recent events in the formation and
erger history, and is most clearly seen in the case of Halo600 (shown

t the top of Fig. 3 ). As with the other examples, the gradient of the
ynamical profile interior to r conv is steeper than the low-resolution
inned profile; ho we ver, unlike the other cases, the steepening in
alo600 is insufficient to reach agreement with the high-resolution
inned profile. The reason can be traced to the halo’s recent history
n the respective simulations. The low-resolution version of Halo600
nderwent a minor merger at z = 0.03 ( ∼70 Myr before present
ay). This merger only occurred in the low-resolution version of
he simulation. Although the mass of the merger is relatively small
 ∼10 8 M �, around 2 per cent of the total host mass), its centre of
ass before disruption is located within 1 kpc of the centre of mass

f the main halo. By tracking the particles that formed the subhalo
o z = 0, we find that they have traversed the halo from one side
o the other, and remain in disequilibrium. The out-of-equilibrium
ehaviour is also visible as large fluctuations in the binned radial
elocities as seen in the lower panel of the Halo600 plot in Fig. 3 .
espite this, note that the dynamical density profile still performs

omewhat better than the binned profile. 
From the abo v e analysis, we deduce that ev en a relativ ely small
erger might affect the equilibrium of a halo. A statistical study

n a larger sample of haloes is necessary to constrain the exact
elationship between merger-to-main halo mass ratio and the effect
hat the merger ev ents hav e on the dynamical profile. Other features
ill also play a role, such as the object infall velocity or the angle
NRAS 527, 9250–9262 (2024) 
f collision. The investigation of these effects is beyond the scope of
his work. 

.1.2 Effect of potential iterations 

aving established that dynamical profiles offer an accuracy im-
ro v ement o v er binned profiles near the centres of haloes, albeit one
hat is hard to quantify, we now consider the effect of the iterative
art of our algorithm (Section 2.3 ) in achieving this. 
Fig. 6 shows the effect that the iteration process outlined has

n the dynamical profile. After the iterations, the profile’s central
radient becomes moderately steeper. This can be understood by
onsidering that the particles previously located at larger radii are
o w allo wed to extend further inwards compared to their original
ositions in the snapshot, hence increasing the density in the inner
egions. Note that the increase in central density may appear to
iolate mass conservation, since the total mass of the halo should be
naltered. Ho we v er, we v erified that the mass enclosed converges to
he same value at the virial radius; the volume of the sphere inside
 conv is just 3 × 10 −5 per cent of the total volume inside the virial
adius, and therefore a very small reduction in density across a large
ange of radii is able to provide the mass for an increased density
usp. 

Overall, we therefore conclude that the iterative component of
he algorithm is important not just for self-consistency (as argued
n Section 2.3 ) but also to achieve the increased densities interior to
he binned profile’s convergence radius. Given that we kept actions
xed (to first order) during the iterations, one can envisage them as
diabatically transforming away some numerical effects of softening.

.1.3 Comparison at ultra-high resolution 

o far, we have applied our dynamical method to the low -resolution
napshots and compared our results against the binned profiles
btained from the high-resolution versions of the simulations. In
rder to understand whether this impro v ement is independent of res-
lution, we now test the dynamical approach on the high -resolution
imulations and compare the results to ultra-high -resolution
napshots. 
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Figure 7. Dynamical density profile multiplied by r 2 obtained from the high - 
resolution simulation of Halo1459, compared to the binned density profiles of 
the high and ultra-high resolution snapshots. The binned profile obtained from 

the low-resolution snapshot is shown for reference. The arrow indicates the 
approximate convergence radius of the high-resolution binned profile (3 ε). 
The dynamical density profile from the high-resolution simulation predicts 
the ultra-high-resolution simulation well, underscoring how the method can 
be applied at any resolution to extract additional information. 

h
d
(
a
o

d  

r
t
f
e  

c
i
s

 

r
p  

w  

a
w
s
w
e
p  

d
t

4

H
i
c
(  

p  

c
p
t

Figure 8. Same as Fig. 7 but for Halo600. The dynamical profile from the 
high-resolution simulation of this halo shows a steep cusp consistent with the 
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halo’s centre. This provides further evidence that the disagreement between 
the dynamical and binned profiles seen at small radii in the low-resolution 
case is due to disequilibrium caused by the merger event. 
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Fig. 7 shows the dynamical density profile calculated from the 
igh-resolution simulation of Halo1459 compared to the binned 
istribution from an ultra-high-resolution simulation with ε � 6 pc 
half the softening length of the high-resolution snapshots previously 
nalysed). We take Halo1459 as an example, but similar results are 
bserved for the other haloes. 
All the conclusions drawn in the case of the low-resolution 

ynamical profile are still valid when the code is applied to the high-
esolution snapshot: the dynamical density shows smaller uncertain- 
ies, a steeper cusp that extends further inwards and approximately 
ollows the higher resolution binned profile, and a small density 
xcess at r ∼ r conv in the lower resolution profile. Overall, this
onfirms that the impro v ements obtained by adding dynamical 
nformation to the profiles continue even for increasingly precise 
imulations, making them resolution-independent. 

In Fig. 8 , we show the dynamical profile obtained from the high-
esolution simulation of Halo600. When the dynamical code was 
reviously applied to the low-resolution simulation (top of Fig. 3 ),
e saw that the steepening in the cusp was insufficient to reach

greement with the high-resolution binned profile. This is not the case 
hen the dynamical profile is calculated from the high-resolution 

napshot: the cusp of the dynamical profile is entirely consistent 
ith the ultra-high-resolution binned profile. This provides further 

vidence that the disagreement between the dynamical and binned 
rofiles at small radii in the low-resolution case is a result of the
isequilibrium caused by the merger event, which did not occur in 
he high-resolution version. 

.2 Outer regions 

aving shown that the dynamical profile technique performs well 
n suppressing numerical noise at small radii (comparable to the 
onvergence radius), we next consider its predictions at large radii 
comparable to the virial radius r vir ). At such large radii, finite
article number is unlikely to be a limiting factor in drawing physical
onclusions and therefore the moti v ation for studying the dynamical 
rofile is different. Specifically, we are interested in understanding 
he degree to which haloes may be considered equilibrium structures; 
eparture from such equilibrium invalidates our assumptions and 
herefore should lead to an inaccurate profile. The virial radius 
oughly defines the point past which most particles are no longer
ravitationally bound to the halo, such that infalling particles from 

he halo’s environment begin to dominate. 
We are able to study the dynamical profiles beyond r vir for dwarf-

cale haloes, since the zoom region extends several times further out.
eyond the virial radius we find, as expected, that the dynamical
rofiles are typically inaccurate; see Halo1445 and 1459 in Fig. 2 for
articularly clear cases. 
This provides one clear signature of out-of-equilibrium dynamics. 

o we ver, another way to measure departures from equilibrium is
ia the binned average radial velocities of the particles ( ̄v r ), which
hould be consistent with zero in equilibrium. Measured values of 

¯ r are shown in the panels below the density profiles in Figs 2–4 .
s expected, these values deviate strongly from zero outside the 
irial radius, confirming our interpretation abo v e. Ho we ver, more
urprisingly, the mean velocity values deviate from zero even interior 
o the virial radius, in regions where the binned and dynamical
rofiles fully agree (e.g. in Halo600, 605, 1459 o v er the radial range
 kpc < r < 40 kpc). The root-mean-square deviation of the radial
elocities of all haloes (excluding Halo624) in the region r < r vir 

s of order ∼ 5 per cent of the virial velocity. These deviations are
tatistically important, and yet do not appear to have a significant
ffect on the o v erall density structure that is in good agreement with
he binned estimates. This suggests that the dynamical profiles are 
obust to even significant violations of their equilibrium assumption. 

.2.1 The role of substructures 

lthough dynamical profiles remain robust despite the existence of 
mooth inflows detectable well interior to the virial radius, a more
ifficult challenge is posed by substructures. Most haloes have spikes 
n the binned density distribution at certain radii: for Halo600, 1445,
nd 1459 (Fig. 2 , and top of Fig. 3 ) these can be seen beyond the
irial radius at r ∼ 90–100 kpc, while for Halo624 (bottom of Fig.
 ) we see them much closer to the centre at r ∼ 10–20 kpc. We
efer to the locations of these features as r spike . We verified that these
ocal density spikes are indeed caused by substructures (see brown 
MNRAS 527, 9250–9262 (2024) 
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(middle of Fig. 3 ) when the reflecting boundary is placed at 100 kpc and 
then mo v ed to 200 kpc compared to the low-resolution binned profile. The 
dynamical profile agrees well with the binned one when the boundary is 
placed anywhere up to 100 kpc, around twice the virial radius, but differs once 
contributions from particles out to 200 kpc are included in the calculations. 
These discrepancies propagate inwards to smaller radii, even below the 
virial radius (55 kpc, indicated by the vertical dashed line). This behaviour 
reflects our algorithm’s extrapolation of how particles and substructures in 
the outskirts, while currently unbound, will ultimately fall into the halo at 
later times in the simulation, altering the density distribution. 
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ircles in the haloes density images in Figs 2–4 ), which each contain
etween 3 and 9 per cent of the mass of the main halo. All the other
ubstructures present within the reflecting boundary have masses
elow 0.5 per cent of the main halo’s mass. 
The dynamical density profile does not reproduce spikes associ-

ted with substructure; by design, it smears them out along their orbit
ithout taking into account the self-binding of the substructure. This

eads to systematic differences between the binned and dynamical
rofiles, since the spike is smoothed out while conserving the total
ass. This effect is especially evident outside the virial radius in
alo1445 and 1459 (Fig. 2 ). In these cases, substructures (indicated
y bro wn arro ws at the appropriate radii on the density plots) coincide
ith significant disagreements between binned and dynamical halo
rofiles. 
Halo624 contains a large substructure of mass ∼1.4 × 10 9 M �

ithin its virial radius (at r ∼20–25 kpc). This is clearly visible
n the density image at the bottom of Fig. 3 . The substructure will
each the centre of the main halo and merge in the next ∼500 Myr
based on its estimated infall velocity at z = 0), and the disruption to
he halo’s equilibrium caused by the presence of substructure is also
vident in the large deviations from zero in the average radial velocity
anel. Despite this, the dynamical profile still faithfully represents
he density distribution at radii between the centre of the halo and
he location of the substructure. This shows that the effects of the
ark matter spike are localized to the area around the substructure,
nd our method can represent the correct density distribution in other
egions of the halo. 

Halo605 provides an example with no large substructures present
ithin the entire volume analysed. Despite fluctuations of the
inned mean velocity, the dynamical profile agrees with the binned
rofile up to radii of 100 kpc which is around 2 r vir . Taken with
he discussion abo v e, this countere xample strongly suggests that
ubstructures, rather than smooth radial flows, are the dominant
actor in determining whether binned and dynamical profiles differ
ignificantly, and that the effect of substructures on the profile is
l w ays localized. 

.2.2 Effect of the reflecting boundary 

s described in Section 2.1 , the dynamical density profile requires
n outer boundary condition. We have assumed a perfectly reflecting
all, which is equi v alent to assuming that the particles flowing in-
ards across the boundary are exactly balanced by the flux outwards,

n keeping with our broader assumption of dynamical equilibrium.
o we ver, there remains the freedom to mo v e the reflecting wall to

n arbitrary location. We carried out a number of experiments to
etermine the effect of this choice. If, for example, a boundary is
laced inside the virial radius we found that the dynamical density
rofile is insensitive to the particular choice of location. Ho we ver, in
rder to probe the outer parts of the halo the results abo v e were all
resented with the boundary outside the virial radius. In this case,
here is more sensitivity to the particular choice of location. 

An example is shown in Fig. 9 for Halo605. As usual, the binned
rofile is shown by pink points with error bars while dynamical
rofiles are represented as lines. Here, ho we ver, we sho w two
lternative dynamical profiles: one with the reflecting boundary
o v ed inwards to 100 kpc ( � 2 times the virial radius, as previously

dopted, and illustrated here with a blue line) and one with the
eflecting boundary mo v ed outwards to 200 kpc ( � 4 times the virial
adius, illustrated with a grey line). This shift causes the dynamical
NRAS 527, 9250–9262 (2024) 
rofile to deviate from the binned density in the range r vir < r < 2 r vir ,
here there was previously agreement. 
The change is caused by particles that, at the time of the snapshot,

re exterior to 2 r vir but infalling, such that they spread to lower radii
hen the equilibrium assumption is imposed. The binned profile

hows a ‘kink’ at � 100 kpc , which means that, in this particular
ase, there is a relatively large mass in such infalling particles. When
he reflecting wall is located at 2 r vir , these particles are safely isolated
utside of the boundary, and therefore cannot affect the density
rofile. 
In a sense, moving the reflecting wall to increasingly large radii

rovides a prediction of the future profile, since it extrapolates to
 time when far-out particles have been able to fall into the inner
egions. Ho we ver, we did not study to what extent this can actually be
sed to make meaningful predictions and we caution that the actual
rocess via which infalling particles relax into virial equilibrium
s unlikely to be fully captured; in effect, our algorithm assumes
onservation of their adiabatic invariants which is unlikely to be
orrect in detail. 

For practical purposes, the most conserv ati ve choice of reflecting
all boundary is at the virial radius, but our results show that it is

ntirely possible to obtain accurate profiles out to twice the virial
adius. Beyond this, dynamical profiles with extended radial range
ay be of interest for understanding the accretion processes of

aloes and ‘splashback’ features (Adhikari, Dalal & Chamberlain
014 ; Diemer & Kravtsov 2014 ; More, Diemer & Kravtsov 2015 ;
ucie-Smith et al. 2022 ; Shin & Diemer 2023 ), something we will

nvestigate in the future. 

 C O N C L U S I O N S  A N D  DI SCUSSI ON  

e presented a new method to estimate spherically averaged den-
ities in cosmological dark matter haloes. Instead of binning the
article in a snapshot by radius, which is the most obvious and
re v alent approach, we use the velocity information in the snapshot
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o ‘smear’ each particle along a trajectory, substantially reducing 
oisson noise. Such a method has been proposed before (Read & 

ilmore 2005 ; Pontzen & Go v ernato 2013 ), but our work is the first
ystematic investigation of the approach. Additionally, we derive 
ew corrections to take into account the integrable singularities 
t apocentre and pericentre, and introduce an iterative process to 
btain a self-consistent potential–density pair. After iteration, we 
btain central density estimates that (except in one case, Halo600, 
here a recent merger has occurred) follow the trend set by higher

esolution simulations. The agreement persists interior to the binned 
rofile convergence radius, and all the way down to the simulation 
oftening length. This highlights how our technique can squeeze 
xtra information about the central regions of haloes from existing 
imulations. 

In the outer regions, the dynamical profiles continue to agree 
ith the binned profiles even out to several times the virial radius,
rovided that no substructures are present. If substructures are 
resent, the assumption of equilibrium is locally broken and the 
rofiles in the vicinity of the substructure are ‘smoothed’ relative 
o the binned profiles. None the less, the o v erall profiles remain
ccurate. Eventually, at approximately r ∼ 4 r vir , effects from the 
aloes’ environments start to dominate, bringing the haloes too far 
ut of equilibrium for the dynamical profiles to give meaningful 
ensity estimates. Including particles from these distant halo out- 
kirts can produce changes to the dynamical profiles, sometimes 
ven at radii below the virial radius. This is not a surprising result
ince the particles at large radii will eventually fall into the halo
t future times in the simulation, and the dynamical approach is
xtrapolating the orbits of these particles accordingly. Ho we ver, 
hether the resulting profile can be considered a ‘prediction’ of 

he growth of the dark matter distribution at later times remains to be
nvestigated. 

These effects in the outer parts of the halo relate to the departure
rom perfect equilibrium (or phase mixing), which is one of two 
ey assumptions underlying the method. The second assumption is 
hat the potential is spherically symmetric; this assumption is, in 
 act, brok en by all our simulated haloes, since the y hav e triaxial
quipotential surfaces. The fact that the dynamical profiles are 
ccurate despite this broken assumption warrants further discussion. 

Orkney et al. ( 2023 ) estimated the shapes of the five least
assive dark matter haloes studied in this work by calculating the 

ntermediate-to-major and minor-to-major axial ratios ( b / a and c / a )
p to approximately 20 kpc in radius. The exact shape of each halo is
ot constant with radius: the c / a ratio for all the haloes varies within
he interval 0.4–0.8 (ratios of exactly 1 indicate perfect sphericity). 
he DMO haloes are generally the least spherical near their centre, 
ecoming increasingly more spheroidal at radii beyond the cusp 
 � 1 kpc). Nevertheless, the dynamical density profiles are able to
orrectly represent the density distributions for the entire radial extent 
f the haloes. 
The nature of the particles’ orbits in an aspherical system is very

ifferent from the orbits that would be observed in a spherically 
v eraged v ersion of the same potential. In the spherical case, the
ngular momentum of individual particles is al w ays constant; this
s not the case in aspherical systems where only the total angular
omentum of the entire system is conserved. This allows specific 

ypes of orbits (which would not be allowed in a spherical potential)
o exist, such as box orbits that plunge through the centre of the halo.
herefore, the fact that we are able to infer reliable results about the
aloes’ properties using only an artificial version of the dynamics 
hat does not correspond to the real trajectories of the particles is not
 straightforward outcome. 
Ho we ver, such an outcome was previously predicted by relying
n having a distribution function of particles in equilibrium (Pontzen 
t al. 2015 ). F or ev ery particle that is on an orbit losing angular
omentum, there must be another particle on an orbit gaining angular
omentum. To put it another way, the net flux of particles through the

pherical action space must be everywhere zero, and so in a statistical
ense, averaged across all particles, the spherical orbits remain a good
pproximation. For a more technical discussion, see Pontzen et al. 
 2015 ). This work provides additional evidence that this mapping
rom a real triaxial system on to an ef fecti ve spherical system is able
o give accurate insights into dark matter halo structure. That said,
he dynamical density method could be readily extended beyond the 
ssumption of spherical symmetry, similarly to other mass modelling 
echniques (Schwarzschild 1979 ; Syer & Tremaine 1996 ). 

Overall, our dynamical method for the e v aluation of dark matter
ensity profiles is a powerful tool that can represent the correct mass
istribution even when its fundamental assumptions are partially 
roken, making it largely applicable to a wide range of systems. 
Ho we ver, dark matter haloes in the real Universe have potentially

een altered by baryonic effects, something that we have not 
nvestigated at all in this paper. In forthcoming work, we will
pply our dynamical density code to hydrodynamical simulations. 
dding baryons to the simulations will likely alter the shape of the
rofile’s inner regions, transforming the cusp into a flatter core. At
 technical level, the gravitational potential can no longer be made
ully self-consistent with the dark matter density distribution, and the 
otential will need to be e v aluated directly from the snapshot for the
aryonic component. The iterative procedure that we have outlined 
ill therefore need to be refined before we can use it in such cases. 
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