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Abstract
Objective.Respiratorymotion of lung tumours and adjacent structures is challenging for radiotherapy.
OnlineMR-imaging cannot currently provide real-time volumetric information of themoving patient
anatomy, therefore limiting precise dose delivery, delivered dose reconstruction, and downstream
adaptationmethods.Approach.We tailor a respiratorymotionmodelling framework towards anMR-
Linacworkflow to estimate the time-resolved 4Dmotion from real-time data.We develop amulti-
slice acquisition schemewhich acquires thick, overlapping 2Dmotion-slices in different locations and
orientations, interleavedwith 2D surrogate-slices from afixed location. The framework fits amotion
model directly to the input datawithout the need for sorting or binning to account for inter- and
intra-cycle variation of the breathingmotion. The framework alternates betweenmodelfitting and
motion-compensated super-resolution image reconstruction to recover a high-qualitymotion-free
image and amotionmodel. Thefittedmodel can then estimate the 4Dmotion from2D surrogate-
slices. The framework is applied to four simulated anthropomorphic datasets and evaluated against
known ground truth anatomy andmotion. Clinical applicability is demonstrated by applying our
framework to eight datasets acquired on anMR-Linac from four lung cancer patients.Main results.
The framework accurately reconstructs high-qualitymotion-compensated 3D imageswith 2mm3

isotropic voxels. For the simulated casewith the largest targetmotion, themotionmodel achieved a
mean deformation field error of 1.13mm. For the patient cases residual error registrations estimate
themodel error to be 1.07mm (1.64mm), 0.91mm (1.32mm), and 0.88mm (1.33mm) in superior-
inferior, anterior-posterior, and left-right directions respectively for the building (application) data.
Significance.Themotionmodelling framework estimates the patientmotionwith high accuracy and
accurately reconstructs the anatomy. The image acquisition scheme can beflexibly integrated into an
MR-Linacworkflowwhilstmaintaining the capability of onlinemotion-management strategies based
on cine imaging such as target tracking and/or gating.

1. Introduction

Respiration complicates the delivery of radiotherapy for lung cancer patients due to continuous target and organ
at risk (OAR)motion. Thismotion is quasi-periodicmeaning it shows inter- and intra-cycle variations aswell as
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inter-fraction variation (McClelland et al 2013). Lung tumours and the surrounding anatomy canmove by
several centimetres (Seppenwoolde et al 2002). For optimal treatment, the general goal of radiotherapy is to
deliver a highly conformal dose to the tumourwhilst sparing healthy tissue andOARswith tightmargins. To
achieve the required dose distributions undermotion conditions, activemotionmitigation is neededwhich in
turn relies on continuousmotionmonitoring (Bertholet et al 2019).MR-Linacs, with their ability of beam-on
motionmonitoring, promise to be an ideal tool to achieve these treatment goals given such demanding
circumstances (Lagendijk et al 2008).

However, to leverage the full advantage ofMR-guided radiotherapy (MRgRT), information of the
volumetric, temporally varying patient anatomy needs to be generatedwhich could then be used threefold. First,
volumetric, time-resolvedmotion information could be used to increase delivery precision by guiding tracking
and gating or a combination thereof. Second, it will enable accurate reconstruction of the delivered dose during
beam-on. Third, the delivered dose reconstruction can then be used to informdown-stream treatment
adaptation. Bertholet et al (2019) review real-time onlinemotionmonitoring and how it can be used for a range
ofmotionmitigation aswell as treatment plan adaptation strategies.

Anymotion causes the anatomy to change over time.Hence, to obtain a volumetric representation of
motion—e.g. in the formof an image or image series—four dimensions are required: three spatial dimensions
and an additional one that represents the anatomical change (Stemkens et al 2018). For an accurate
representation of arbitrary (i.e. non-periodic)motion, the last dimension should be time t. This is sometimes
referred to as 3D+ t but herewewill use the term time-resolved 4D. Perfectly periodicmotion—e.g. over-
simplified and thus idealised breathingmotion—on the other handmay be represented by selecting the fourth
dimension as the phase of a breath cycle or its amplitude. Thesemethods are referred to as respiratory correlated
4D images. Respiratory correlated imaging of breathingmotion has the disadvantage, when compared to time
resolved imaging, that it lacks the ability to capture inter- and intra-cycle variation in the observedmotion.

It is currently not possible to acquire high-resolution time resolved 4D images with anMRI scanner,
includingMR-Linacs, that are sufficient for the aforementioned applications inMRgRT. As a result alternative
approaches have been investigated in the literature.Most prominently, reducing the volumetric images to 2D
slices centred on the target facilitates targetmotionmonitoring in the imaging plane. 2D imaging is sufficiently
fast for tracking and gating according to the recommendations of amaximum system latency of
500 ms (Paganelli et al 2018, Keall et al 2021). It can furthermore be interleavedwith additional orthogonal or
parallel image slices to estimate 3D targetmotion (Bjerre et al 2013, Sawant et al 2014, Paganelli et al 2015,
Seregni et al 2016). Interleaved orthogonal slices were also used to performmotion-including dose
reconstruction (Menten et al 2020). Therein the authors assumed clinical target volume (CTV) shifts and a rigid
patient anatomy for prostate cancer radiotherapy treatments and thusmaking use of the information available
during beam-on.However, 3Dnon-rigid out-of-planemotion away from the target remains inaccessible using
thesemethods and accurate 3Ddelivered dose reconstruction based on the deforming anatomy is
infeasible (Kontaxis et al 2017). Alternatively, respiratory correlated 4D imagesmay be used, but allmethods that
rely on pre-sorting of data inherently disregard any inter-cycle variation in the observedmotion pattern or
require very long acquisition times (von Siebenthal et al 2007).

Respiratory, deformablemotionmodels can address this issue by estimating the volumetricmotion of the
3D anatomy on the basis of some dynamic (real-time) information. For this a static image of the anatomy is
deformed using a pre-builtmodel in conjunctionwith dynamic data (McClelland et al 2013). Beyond estimating
the volumetricmotion, thesemodels are an efficient way to overcome the temporal constraints byfitting amodel
before application. Computationally expensive calculations are performed in a pre-processing taskmaking the
subsequent application substantially faster. Directmotionmodels describe themotion of interest as a function
of one ormore surrogate signals to compute a deformation. A surrogate signal is a one-dimensional, time-
dependant signal thatmust be strongly related to themotion of interest and is often also referred to as a
breathing trace. Examples of common surrogate signals are chest and diaphragmmotion. Since surrogate signals
‘drive’ directmotionmodels during application, selecting appropriate signalsmust consider what type of data
can be generated and accessed during the application phase (Tran et al 2020). Further consideration is required
to determine the number of signals, since this determines theflexibility of themodel. For breathingmotion, at
least two signals—or a signal and its temporal derivative—are required to describe intra-cycle variation, also
known as hysteresis. Indirectmotionmodels on the other hand optimise internalmodel parameters tofit
the data.

Regardless of theflavour ofmotionmodels employed, a key requirement is the availability of initial data tofit
themodel. Commonly, data is pre-sorted (or binned) to overcome the temporal image acquisition constraints.
Binning assembles information fromdifferent breath cycles into respiratory phase volumes to obtain amore or
less coherent representation of the patient anatomy at each phase. Approaches proposed by Bjorn Stemkens et al
(2016) orHuttinga et al (2022) andHuttinga et al (2023) sort k-space data, however, such sorting approximates
the quasi-periodic nature of the breathingmotion as perfectly repeatablemotion. As a result, the base data used
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to build themotionmodels contains no information on how themotion can vary frombreath-to-breath and are
also prone to sorting artefacts.

In this studywe build on the unified image registration andmotionmodelling framework byMcClelland
et al (2017)which does not rely on pre-sorting the input data and thus does not assume repeatable respiratory
motion. The resultingmodels generate displacement vector fields (DVFs) from a surrogate signal to describe a
motion state relative to a reference image and hence are fast in their application. Thismeans that once themodel
is fullyfitted it is able to provide time-resolved 4D information of themoving anatomy according to input
surrogate signals in real time. The framework in general can handle a range of input data, e.g. image slices, thick
slabs, projection data (Huang et al 2024), etc, but herewe tailor it specifically to the usewithin anMR-Linac
workflow.We present a flexibleMR-acquisition schemewith two types of 10 mm thick 2D image slices as the
building blocks, namelymotion slices and surrogate slices.Motion slices have different locations and orientations
to sample the full patient anatomy of interest and are used tomodel the 3Dmotion. Surrogate slices have afixed
location and orientation and are centred on the tumour. Surrogate andmotion slices are interleaved. The
surrogate signals are generated from the surrogate slices, and themodel isfitted using themotion slices and
surrogate signals as inputs.We furthermore alternate betweenmodel fitting and a super-resolution image
reconstruction step and thus reconstruct a coherent,motion-compensated volume of the patient anatomy.One
major benefit of the developed acquisition scheme is the similarity of the surrogate slices to the cine acquisitions
currently used for targetmotionmonitoring in clinicalMR-Linac treatments. Hence, activemotionmitigation
such as gating and tracking can be performed parallel to themotionmodel data acquisition.However, the exact
integration into a clinical workflow is beyond the scope of this paper.

As for allmotionmodels, the geometric accuracy is difficult to quantify due to the lack of accurate knowledge
on the ground truthmotion and anatomy.Hence, first we use the anthropomorphic 4D extened cardiac-torso
(XCAT) phantom andderive consistent and invertible DVFs (Segars et al 2010, Eiben et al 2020) to validate the
models. Then, we demonstrate the feasibility of the tailored framework on eight clinical datasets acquired on an
ElektaUnityMR-Linac (Elekta AB, Stockholm, Sweden) from four lung cancer patient volunteers.

2.Materials andmethods

2.1.Motionmodelling
This section introduces themotionmodelling framework, its implementation, as well as the image data
acquisition, and surrogate signal generation. Theflow chart infigure 1 illustrates data that needs to be available
beforemodelfitting can commence, the components required to build themodel during the building phase, and
the data required to apply afittedmodel in the application phase.

2.1.1. Unified framework overview and open source implementation
Themotionmodelling framework used in this studywasfirst presented byMcClelland et al (2017) and unifies
image registration andmotionmodel fitting into a single optimisation procedure. This process can furthermore
be alternatedwith an image reconstructionmethod to also reconstruct amotion-compensated reference image.
Here, the overallmotionmodelling procedure is summarisedfirst, followed by sections focussing on the specific
implementations forMR-guided radiotherapy (see 2.1.3, 2.1.4).

In order tofit amodel, themotionmodelling framework takes dynamic image data aswell as one ormore
respiratory surrogate signals as an input to reconstruct a single 3D reference image and amotionmodel. The
dynamic image data has to be acquired fast enough to capture themotion and be free frommotion artefacts such
as blurring.However, the dynamic image data at each time point does not need to be a 3D image covering the full
field of view (FOV), but can be ‘partial’ data such as one or a few slices with a limited FOV. The surrogate signals
must have a strong relationwith the internalmotion beingmodelled (McClelland et al 2013). All data to build
themodelmust be available before themodel fitting and image reconstruction can commence. Thefitted
motionmodel generates an estimate of the subject’s internalmotion as a function of the surrogate signals.
During application, surrogate signals of a single time point are sufficient to create amotion estimate.

Assuming for now that themotion-free reference state image Ir is known, a functionT deforms it for given
motion parametersMt to

TI I M, . 1t r t( ) ( )=

The subscript t indicates time dependence. This function encapsulates a spatial transformation and a suitable
interpolationwhere the former is defined via aDVF ut r

Mt
 , with the superscript indicating theDVFs’ dependence

on themotion parameters, and the subscript indicating the direction of the vector elements pointing froma
point x at time point t to the reference time point r. The transformation used here is the cubic B-spline based
free-formdeformation (FFD)where transformation parameters are defined on a regular control-point
grid (Rueckert et al 1999). Hence,Mt are control-point displacements provided by themodel for a time point t.
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ThemotionmodelR allows for calculation of the transformation parameters as a function F of the surrogate
signals Stwith components st,i. In this study themodel is chosen to be a linear combination of its componentsRi

F sM R S R, , 2t t
i

t i i,( ) ( )å= =

where i denotes the surrogate signal component. To account for the image acquisition process, an operatorAt is
defined.At simulates the acquisition of themeasured (partial) image data,Pt, from the full 3D image at time t, It.
For instancePt could be x-ray projection data, inwhich caseAtwould be the forward projection operator, orPt
could be a single thick slice, inwhich caseAtwould be the slice selection profile. Since our acquisition scheme
uses thick slices as dynamic image data (see section 2.1.3), we use aGaussian slice selection profile with the full-
width-half-maximum set to the acquired slice thickness. The adjoint of the image acquisition operatorAt, At*,
for thick slices ‘spreads out’ the 2D slice image data over the corresponding voxels in the reference image space,
according to theGaussian slice profile.At, and At* are time dependent to account for changes in the acquisition
process such as slice orientation and position. The objective functionCtotal that isminimised during themodel
fitting tofind the bestmodel parameters is then constructed in line with other image registration procedures
comprising a similarity (Sim(·)) and a constraint (or penalty) term (Con( · )). However, with the notable
difference that the similarity term compares the acquired dynamic dataPtwith the simulated dynamic data as
estimated by themodel (2) using the reference state image, the surrogate signal, the transformation, and the
image acquisition operator, for all time points:

C A TP I M MSim , , Con . 3
t

t t r t ttotal ( ( ( ))) ( ) ( )å l= +

Themodel parametersRi are optimised by a conjugate gradientmethod and the transformation is amulti-
resolution FFD (Rueckert et al 1999,Modat et al 2010)with optional bending energy (second-order) penalty as a
regulariser and sum-of-squared differences as the similaritymetric.

Up to this point the reference state image Irwas assumed to be knownwhich however is not the case in
general. Hence, we incorporate amotion-compensated image reconstruction into our algorithmby alternating
between a reconstruction step and amodel fitting step. The reconstruction algorithm calculates a volumetric
reference state image Ir from all the (motion corrected) dynamic image dataPt. To achieve this, the adjoint of the
image acquisition operatorA* is used tofirst transform the dynamic image data into the space of the reference
image volume. The dynamic image data (in the space of the reference volume) is then deformedwith the adjoint

Figure 1. Flow chart illustrating how themotionmodelling framework is used during the building and application phases. For the
building phase surrogate andmotion image slices are acquired in an interleavedway. A surrogate signal St is calculated from the
surrogate slices and is used together with themotion dataPt (i.e. themotion slices) as an input to themotionmodelling framework.
The framework iterates betweenmodel fitting andmotion-compensated super-resolution image reconstruction to output a fitted
modelR and anMCSRI Ir. To apply thefittedmotionmodel, a surrogate image is acquired at time point ta fromwhich a signal Sta is
computed. This signal can then be used to calculate the transformation parameters Mta from themodelR. This transformation is then
used to deform the reconstructed image according to themotion estimated by themodel for that time-point to Ita. Details are
provided in the referenced sections, equations, and figures.
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of the frunctionT,T*, to compensate for themotion estimated by themodel for each acquisition time point t. To
reconstruct a single, coherent image Ir from the deformed dynamic image datawe use an iterative back-
projection super resolutionmethod (Irani and Peleg 1991). This algebraic super-resolutionmethod requires
thick, overlapping image slices to achieve afinal isotropic resolution below the acquired slice thickness (see
section 2.1.3). Since themodel fitting step requires a reference state image tofit themodel, and the
reconstruction step requires amodelR tomotion-compensate the dynamic data, we start the alternation
betweenfitting and reconstructionwithmodel parameters that result in zeromotion.Hence, the initial
reconstruction generates an imagewith noticeablemotion-induced artefacts, but still provides an initial
approximation of the reference state image. This is followed by an update of themodel parameters as described
above resulting in an improvedmotion estimate, which in turn feeds into an updated reconstructionwith
reducedmotion-induced artefacts. This procedure is repeated until convergence or a specified number of
iterations is reached.

The result of themodel building phase is amotion-compensated, reconstructed reference state image Ir and
thefittedmodel parametersR (2). In a subsequent application (or evaluation) phaseR can be used to estimate the
motion of the patients’ anatomy relative to Ir at any time point for which surrogate signals S can be provided. In a
real-time application scenario, the fittedmodel could be used to prospectively estimate the patients’motion.

2.1.2. Open-source implementation
Themotionmodelling frameworkwas implemented in an open source package called SuPReMo, for Surrogate
Parametrised RespiratoryMotionModelling and is available online (SuPReMo2021). The class structure
reflects the components outlined in section 2.1.1, such as optimiser, transformation, correspondencemodel, image
acquisition etc andwas designedwith the goal of extensibility for research purposes. Continuous integration
testing enables validation against a reference research implementation and a detailed documentation is provided
alongside the repository. Allmotionmodels werefitted andmotion-compensated super resolution images
(MCSRIs) reconstructed with the parameters detailed in the appendix A.1.

2.1.3. Interleaved acquisition geometry
In this studywe use a sequence of 10 mm thickMR slices in different orientations and locations. Tofit the
motionmodel, the values of the surrogate signals need to be available for each dynamic image. Therefore, we
interleave the acquisition of surrogate slices, which are used to calculate the surrogate signal values (see
section 2.1.4), andmotion slices, which are used as the dynamic images. The surrogate signals for themotion
slices can then be interpolated from the surrogate slices. Figure 2 illustrates the orientation and temporal slice
order.

Surrogate slices have a sagittal orientation and are positioned centrally on the tumour, i.e in afixed location
(shown in blue in figure 2). This enables generation of a consistent, low-dimensional surrogate signal.While
surrogate slices are used to generate the surrogate signal St,motion slices provide information about the anatomy
and itsmotion. These slices are input to the framework as dynamic image dataPt (see section 2.1.1) and are
acquired as follows. First, sagittal slices (green) sample the FOV form left to right, followed by axial slices (red)
form inferior to superior. Once the complete FOVhas been sampled bymotion slices of both orientations, the
origin of these slices is shifted by 2 mmorthogonal to the imaged plane and the acquisition is continued (see
figure 2(b)). Afterfive shifts (0, 2, 4, 6, and 8 mm) the original imaging geometry is reached again, completing a

Figure 2.Orientation (a) and temporal order and position (b) of slices used in the acquisition scheme. Surrogate slices (blue) are
interleavedwithmotion slices whichfirst cover the anatomy from left to right (green), then from inferior to superior (red). Thereafter,
themotion slice origin is offset by 2, 4, 6, and 8 mm (to enable iterative back-projection super-resolution image reconstruction) and
the acquisition is continued after each shift. A set offive shifts completes a repetition.
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repetition. The partially overlapping thick slice acquisition enables the use of an iterative back-projection super
resolutionmethod for themotion-compensated image reconstruction resulting in anMCSRI (Irani and
Peleg 1991,McClelland et al 2017).Multiple repetitions can be acquired and used in the building phase to
improve the quality of theMCSRI and the accuracy of themotionmodel.

2.1.4. Surrogate-signal generation
Tran et al (2020) performed an extensive evaluation of various image-based respiratory surrogate signals derived
from2D surrogate slices as used in this work. The surrogate signals that resulted in themost accurate of the
comparedmodels were generated by first performing 2Ddeformable image registration on the surrogate slices,
and then applying principal component analysis (PCA) on the registration results and using the first two
principal components as surrogate signals. Therefore, thismethodwas used to derive the surrogate signals in this
work. A summary of the different steps involved is outlined below.

To generate consistent surrogate signals for the complete duration of the experiment includingmodel
building and subsequent application (or evaluation), all surrogate slices frombuilding and evaluationmust be
registered to a common reference image. This image is selected from the surrogate slices of the first shift of the
first repetition and a slice close to themid-position of the breathing cycle is automatically selected based on the
image intensities. The registrationswere performed using the open-source softwareNifty-Reg (Modat et al
2010, 2020)with the parameters given by Tran et al (2020). PCAwas performed on the registration results, i.e. on
the displacements of the control points that define the FFDs used inNiftyReg, and the first two principal
components were used as the surrogate signals. The surrogate signals were normalised to the vectormedian
value (Astola et al 1990) of the building phase and the time-point where themedianwas reachedwas defined as
tr, i.e. after normalisationwe get S 0tr

= . Thismeans the reference state imagewill correspond to the time-
average (median) position of the anatomy over the acquisition. Since the vectormedian is an element of the
original set we guarantee that the reference positionwas reached during the building phase.

2.2. Simulated and patient data evaluation
To thoroughly evaluate the geometric accuracy of ourmotionmodels we used both simulated data and real data
fromvolunteer patients. For both the simulated and real data, a total offive repetitions (see section 2.1.3)were
used, corresponding to∼20 min acquisition (∼4 min per repetition, range 220–240 s). Thefirst three repetitions
were used for building themodels, and the next two for evaluation.

2.2.1. Simulated ground-truth data
Simulated data provides a valuable tool for evaluating themotionmodels, since the ground truthmotion is
known,which is not possible for real patient data. The simulated ground truthmotion can be compared to the
motion estimated by themodel and used to quantitatively assess the geometric accuracy of themodels. However,
generating this data is not trivial since it should resemble the application scenario as close as possible whilst
providing a convincing degree of realism. To achieve this, we used theXCATphantom (Segars et al 2010) in
combinationwith the publicly available post-processing framework cid-X (Eiben et al 2020, cid-X 2021) to
generate consistent and invertibleDVFs as ground truthmotion.Notably, theseDVFs include slidingmotion
comparable to real organmotion. In the processing framework only a single anatomical image IGT is generated
for thefirst time point of the simulation. For all subsequent time points, consistent and invertible forward and
backwardDVFs from the first to the current time point u t0

GT
 and their inverse ut 0

GT
 are generated, and the

anatomy is deformed accordingly. Hence, by themeans of composition, themotion between any simulated time
points ta, and tb can be calculated using

u x u u x . 4t t t t
GT

0
GT

0
GT

a b b a
( ) ( ( )) ( )=  

Themotion traces driving the simulationswere extracted froma 30 min cine-MR acquisition of a healthy
volunteer withinwhich the chest and diaphragmmotionwas tracked (figure 3(a)). These twomeasurements that
include realistic inter- and intra-cycle variationswere input into the XCATphantom to generate theDVFs,
whichwere then post-processed as outlined above. Four anatomical images withMR-like contrast and varying
tumour locationswere generated resulting in four time series with known volumetric deformations
(figure 3(b)).

The volumetric time series were used to simulate the interleaved thick-slice data acquisition as described in
section 2.1.3. AGaussian slice-selection profile was applied to the volumetric data to extract the required slices
andfinally Rician noise was added to achieve a simulation visually comparable to the data acquiredwith theMR-
linac. Surrogate slice locationswere selected according to the four different simulated tumour positions and
surrogate signals were calculated as described in section 2.1.4.
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2.2.2.Motion compensation evaluation
Reconstructing a high-qualityMCSRI requires a good estimate of themotion, which is equivalent to awell-fitted
motionmodel. To evaluate the effectiveness of themotion compensation provided by themodel, we introduce
the zeromodelwhere themotion is set to zero for all time points and locations, i.e. u x 0Mt( ) ≔ —which is
equivalent to an unfittedmodel that always estimates nomotion. Then, the image reconstruction is performed
with the zeromodelfirst using intensity averaging to reconstruct an average image (AVGI) and second using
super-resolution image reconstruction via iterative back-projection to reconstruct a super-resolution image
(SRI). For comparison, the fullmodel fitting andMCSRI reconstruction as described in section 2.1.1 is
performed, and all reconstructed images are compared against the known ground truth for the simulated data
visually and in terms of themean absolute error (MAE) of the image intensities.

2.2.3. Geometric accuracy with known ground truth
The deformation field error (DFE) is calculated for a position x and a time point t as the l2-normof the difference
between the known ground truth deformationuGT and themodel estimated one uMt using

x u u xDFE . 5t t t t t
M GT

2R
t

R
( ) ( )( ) ( )= -  

The spatialmean over all voxels within the patientDFEswere calculated for all time points from the evaluation
repetitions, and summarised using the temporalmean, standard deviation, and 95th percentile over all time
points. In addition, summary statistics were calculated for other regions of interests (ROIs), i.e. the tumour,
lungs, heart, and liver, to evaluate the performance of themodel in specific ROIs. 3Dmaps of themeanDFE over
all evaluation time points were generated to visualise the spatial distribution of theDFE. For comparison, the
DFEwas also calculatedwith the zeromodel.

2.2.4. Patient data
The proposedmotionmodels have also been evaluated on data fromvolunteer patients to demonstrate that they
can be successfully applied to real data. Patients were consented under the PRIMER study, approved under
IRAS: 208 449 andREC: 17/LO/0907. Four patients whowere treated on standard linacs at our institutionwere
scanned on a 1.5 T ElektaUnityMR-Linac (Elekta AB, Stockholm, Sweden). Thefirst two patients were scanned
on three different treatment days, hence, a total of eight patient datasets were available. Patient details are given
in table 1. For patient comfort the scanswere acquiredwith arms down.

The 10 mm thickmotion and surrogate slices were acquired using the pattern described in section 2.1.3
using a gradient echo T1-weighted sequence. An echo and repetition time of TE= 2.08ms andTR= 4.29 ms
respectively and aflip angle of 10°were selected. The in-plane resolution of the reconstructed slices was
2× 2 mm2 and the imagematrix was 160× 160 voxels. Each repetition comprised 330 surrogate andmotion
slices respectively and consecutive imageswere acquiredwith a frame rate between 2.7 and 3 Hz. The acquisition
of a single repetition for patient p1 took 240 s; it was 220 s for all other patients.

Figure 3.Motion trace acquired from a volunteer cine-MRI scan used to animate the XCATphantommotion (a). Blue and orange
traces indicate the parts used for building (repetitions 1–3) and evaluating (repetitions 4–5) themotionmodelling framework,
respectively. The simulated lung tumour locations (A, B, C, andD)within theXCAT anatomy highlighted in red (b).
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2.2.5. Geometric accuracy without known ground truth
For patient data, the ground-truthmotion is unknownmaking direct evaluation of theDFE impossible. Hence,
we estimate the geometric accuracy of themodel by performing a residual error registration between the acquired
motion slices and themodel estimated equivalents—i.e. theMCSRI is deformed by themodel and the
corresponding 10 mm thick slice is simulated using aGaussian slice-selection profile. The registrationsmeasure
the 2Ddisplacements in the imaging plane required to align themodel estimated slices with acquiredmotion
slices, whichwe call the residual error. They cannot account for displacements in the through slice direction, and
as such do not directly estimate the 3D geometric accuracy of themodel as theDFE does. But in the absence of
ground truthmotion the residual error provides a useful way to estimate the geometric accuracy. To investigate
howwell the residual error approximates theDFE, the residual error registrationswere also performed for the
simulated data.

We usedNiftyReg ((Modat et al 2020) to register the images and generate corresponding displacement vector
fields (registration parameters are given in detail in the appendix A.2). The results were summarised as described
in section 2.2.1 for the DFE. The summary statistics were calculated separately for themodel building and
evaluation repetitions.

3. Results

Motionmodels were built from the simulated and patient data. Thefitting and reconstruction parameters are
given in appendix A.1. Furthermore, animations of themodel results (first simulated dataset and one per patient
volunteer) are provided as supplementarymaterials and described in appendix A.3.

The duration tofit themodels and reconstruct theMCSRIs for the patient data was on average 40.3min
(range 38.2–43.4 min). To generate the surrogate signals, the computationallymost expensive operation is the
2D registration of the current surrogate image to the reference surrogate image.Wemeasured the time of each
2D registration for thefirst patient to take on average 379± 62ms. Themodel application time (see box named
Applymotionmodel infigure 1)wasmeasured for 100 time points. For each time point aDVF and a volumetric
deformed imagewas generated. This took on average 42.1± 1.3 ms per application time point. All time
measurements were preformed on an Intel Core i9-10850Kwith ten cores and 64 GBof RAM

3.1. Simulated data
Figure 4 shows sagittal slices of the ground truth images transformed to the reference time point (IGT* first
column, (a, e, i,m)), the reconstructed but notmotion-compensated images using the zeromodel and either
intensity averaging, AVGI (second column, (b, f, j, n)), or super resolution reconstruction, SRI (third-column,
(c, g, k, o)). TheMCSRIs generatedwith our proposed combinedmodel fitting andmotion-compensated super-
resolution reconstruction algorithm are shown in the fourth column, (d, h, l, p). Severe blurring can be observed
in the AVGIs due to the thick, overlapping slices and averaging over all acquisition time points whilst the
anatomicalmotion is ignored. The super-resolution reconstructionwithoutmotion compensation generates
substantially clearer image details in anatomical regions that do notmove noticeably in the simulation, visible in
superior, posterior regions. However, blurring and duplication of structures—such as the tumour, diaphragm,
and vessels inside the lung—can still be observed inmoving parts of the anatomy. This is particularly evident

Table 1.Clinical details of patients included in this study. Non-small cell lung cancer (NSCLC) and number of datasets acquired per
patient (N).

case age sex

TNM-

stage diagnosis and tumour location N

p1 47 male T4

N3

M0

locally advanced adenocarcinoma of the left upper lobewith bilateral hilar andmediastinal

nodes, NSCLC

3

p2 71 male T1b

N3

M0

locally advanced adenocarcinoma of the left upper lobewithmediastinal and contralateral

supraclavicular node,NSCLC

3

p3 79 male T4

N0

M0

locally advanced squamous cell carcinoma of the right lower lobe, tumour associatedwith dis-

tal collapse (atelectasis)
1

p4 85 female T1c

N0

M0

Early stage adenocarcinoma of the left upper lobe, (early stage), NSCLC 1
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further inferior due to the largermotion amplitude in these regions. Themotion compensation provided by the
fullyfittedmodel in combinationwith the super-resolution image reconstruction results in an excellent recovery
of image details andMCSRIs are in close agreement with the simulated ground truth images. Themean (range)
MAEs between the ground truth and the reconstructed images are 2.23 ([2.21; 2.23]), 1.86 ([1.85; 1.87]), 1.41
([1.40; 1.43]) for theAVGIs, the SRIs, and theMCSRIs respectively.

Figure 5 compares theMCSRI produced by our proposedmethod for simulationA to the corresponding
ground truth image. Thefirst row shows a sagittal, axial and coronal slice of the ground truth image (a, b, c), the
second row shows the same slices of theMCSRI Ir (d, e, f), and the third row shows the difference image between
the previous two rows (g, h, i). TheMCSRI closely resembles the ground truth anatomy and preserves the overall
contrast. Some slight blurring can be observed in places such as the diaphragm and vessels within the lungs. A
notable loss of detail of the lower posterior ribs can be seen in the lower right of figure 5(a), (d), (g) as indicated by
the arrows. This reconstruction artefact occurs where the simulated ground truth anatomy exhibits substantial
slidingmotion.

The bottom two rows offigure 5 show the spatial distribution of themeanDFE over all evaluation time
points. Figures 5(j), (k), (l) show the results for the zeromodel, i.e. u 0Mt = . Figures 5(m), (n), (o) show the
results when the fullyfittedmodel is used to estimate themotion. A substantial drop inmeanDFE can be
observed throughout the anatomywith a localised error remaining in the sliding regions, which agrees with the

Figure 4.Comparison of the ground-truth images with non-motion compensated image reconstructions AVGI, and SRI, and the
MCSRIs output by our proposed algorithm, using themotionmodel formotion-compensation. Each row represents the results of a
simulated tumour position (A–D).
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blurring seen in theMCSRI in the same regions. Table 2 summarises themeanDFE in terms ofmean, standard
deviation and 95th-percentile over all evaluation time points for all simulated cases within various ROIs, namely
the patient contour (body), the tumour, the lungs, the liver, and the heart. The results in the section ‘zeromodel’
directlymeasure the simulatedmotion and thus provide a statistical summary of the simulatedmotion.

It can be seen that theDFEs for themodel are all substantially reduced compared to the zeromodel. The
meanDFEs over thewhole body are below 2 mm (the voxel size) and the 95th percentile is below 5mmexcept
for tumour position B, where it is 5.09 mm.TheDFEs for the tumour, lungs, and heart, which are themost
important structures for lungRT, are all even lower, with 95th percentiles of 2.24 mmor less. The largerDFEs
for the liver are due to the slidingmotion between the liver and the surrounding ribs.Moreover, parts of the liver
are very homogeneouswith little structure to guide themodel fitting in these areas. Higher errors aremostly
observed at the edge of the FOV.

Table 3 shows theDFEsmeasuredwithin the 3Dpatient anatomy and split into different anatomical
directions (superior-to-inferior (SI), anterior-to-posterior (AP), and left-to-right (LR)) for better comparison
with the results produced by the residual error registration. Allmodels perform similarly with the highestmean
error in the direction of the largest initialmotion amplitude (SI).

Figure 5. Sagittal, axial, and coronal slices of the ground truth image volume transformed to the selected reference time point (the
asterisk indicates that the deformed ground-truth image I I u xtGT GT 0

GT
R

( ( ))= * is shown, (a), (b), (c)), volumetricMCSRI volume Ir
((d), (e), (f)), the difference between these images ((g), (h), (i)). The bottom two rows visualise themagnitude of themeanDFE over all
evaluation time pointsmeasured against the simulated ground truthmotionwhen the zeromodel is assumed ((j), (k) (l)) andwhen the
motion is estimated by the fullyfittedmodel ((m), (n) (o)).
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Table 2.Mean deformation field error (DFE)measured for various regions of interest (i.e. body, tumour, lungs, liver, and heart, inmm) against the ground truthmotion during the testing phase for the four simulated tumour positions (A,
B, C, andD)when themodel estimates nomotion (zeromodel, top rows) andwhen themodel is applied (model, bottom rows). Note: A different reference imagewas automatically selected for tumour position B compared to positions A,
C, andD (see section 2.1.4) leading to slightly different values for the common structures of the zeromodel.

MeanDFE [mm]

mean std. 95th—%ile

tumour body lungs liver heart tumour body lungs liver heart tumour body lungs liver heart

zeromodel

A 8.11 3.84 3.82 10.56 7.33 0.83 3.65 2.77 0.75 0.54 9.47 10.88 9.21 10.91 8.01

B 4.11 3.90 3.89 10.75 7.46 0.84 3.70 2.82 0.71 0.55 5.56 11.07 9.37 11.10 8.15

C 2.27 same as A 0.32 same as A 2.83 same as A

D 7.20 same as A 1.35 same as A 9.42 same as A

model

A 1.13 1.63 0.91 3.41 1.17 0.17 1.56 0.55 1.79 0.39 1.38 4.90 1.81 7.25 1.96

B 0.74 1.72 1.08 3.53 1.28 0.14 1.62 0.66 1.85 0.41 0.98 5.09 2.24 7.44 2.10

C 0.31 1.59 0.88 3.29 1.08 0.05 1.55 0.54 1.75 0.40 0.41 4.85 1.76 7.04 1.90

D 0.95 1.59 0.86 3.35 1.11 0.19 1.55 0.52 1.71 0.41 1.27 4.85 1.73 7.02 1.92
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Table 4 gives the results of the residual error registrations for the simulated data. The largest residual errors
are observed in the SI direction followed byAP and then LR directions. Calculating the l2-normof themean
residual error vectors for each simulated case results in 1.65 mm, 1.67 mm, 1.64 mmand 1.64 mm respectively.
This closely resembles themeanDFEmeasuredwithin the body contour in table 2which ranges between 1.59
and 1.72 mm.A comparisonwith table 3 shows that the residual error registration slightly underestimates the
meanDFE in the SI direction aswell as its variability and 95th percentile.

3.2. Patient data
Figure 6 shows a surrogate slice and orthogonal slices of theMCSRI for the four patient volunteers. TheMCSRIs
clearly showmany structures with a high spatial resolution in all 3 dimensions and little signs ofmotion blur,
except in the region of the heart. This indicates that themotionmodels have successfully compensated for the
motion and enabled the super resolution reconstruction. Furthermore, the blurring that could be observed at
the lower posterior lung-to-rib-cage interface in the simulated data does not appear to be as prominent for the
patient datasets.

Table 5 shows the results for the residual error registration. As for the simulated cases, the errors are largest in
the SI direction, with amean value below the voxel resolution of 2 mmexcept from case p1 (evaluation, day 7)
for which the value reaches 2.02 mm.

The 95th percentiles are generally larger than for the simulations, but are still 3.40 mmor less. The residual
errors are lower for the data used tofit themodels than for the unseen data used for evaluation. Themean errors
among all patient cases are 1.07 mm, 0.91 mm, and 0.88 mm in SI, AP, and LR direction respectively for the data
used tofit themodels. Thesemeasures increase to 1.64 mm, 1.32 mmand 1.33 mm for the data used to evaluate
themodels, an increase between 45%and 53%. In summary, the results are better on the building data than on
the evaluation data and are slightly worse for the patient data than for the simulated data.Moreover, we can infer
from the results on the simulated data and the residual error results on the real data that themodels on the real
data likely have ameanDFE in each direction of less than 2 mmand a 95th-percentile error of less than 4 mmon
the evaluation datasets.

4.Discussion

Wepresented a surrogate-drivenmotionmodel, its open-source implementation, and application forMR-
guided radiotherapy. To tailor thewidely applicablemotionmodelling framework towards lung cancer
treatments on anMR-Linac, we developed an acquisition scheme that utilises a series of 2D images to generate

Table 3.Mean deformation field errormeasured for all testing time points within themodelled
anatomy.Model estimates aremeasured against known ground-truth deformations and results are
given for different anatomical directions inmm.

MeanDFE,model versus ground-truth [mm]

mean std. 95th—%ile

SI AP LR SI AP LR SI AP LR

A 1.33 0.61 0.31 1.05 0.43 0.15 2.31 1.09 0.54

B 1.39 0.67 0.30 0.78 0.44 0.16 2.20 1.17 0.51

C 1.29 0.60 0.30 0.80 0.41 0.16 2.27 1.07 0.50

D 1.31 0.59 0.30 0.81 0.42 0.17 2.28 1.06 0.49

Table 4.Result of the residual error registration for the four simulated tumour position (evaluation
phase), values given inmm.

Mean residual error,model versus simulated acquisition [mm]

mean std. 95th—%ile

SI AP LR SI AP LR SI AP LR

A 1.25 0.84 0.68 0.33 0.29 0.20 1.93 1.32 1.06

B 1.27 0.84 0.68 0.35 0.29 0.20 1.99 1.32 1.06

C 1.24 0.83 0.67 0.33 0.29 0.19 1.94 1.31 1.04

D 1.25 0.83 0.67 0.33 0.31 0.20 1.96 1.30 1.07
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Figure 6. Surrogate images (a), (c), (e), (g) and orthogonal slices of theMCSRIs (b), (d), (f), (h) for patient volunteers one to four.
MCSRIs have an isotropic resolution of 2 mmand the 10 mm thick surrogate slice position is shown in red.

Table 5.Result of the residual error registration for the patient volunteer cases. Results are reported for the building and the
evaluation repetitions separately. All results are given inmm.

Residual error registration, patient [mm]

mean std. 95th percentile

case phase day SI AP LR SI AP LR SI AP LR

p1 building 1 0.96 0.79 0.84 0.25 0.23 0.21 1.48 1.29 1.26

p1 evaluation 1 1.83 1.28 1.38 0.45 0.42 0.30 2.67 2.02 1.93

p1 building 6 1.10 0.91 0.97 0.29 0.29 0.31 1.65 1.47 1.43

p1 evaluation 6 1.96 1.47 1.77 0.79 0.51 0.55 3.40 2.42 2.86

p1 building 7 1.14 0.93 0.93 0.34 0.30 0.29 1.80 1.60 1.51

p1 evaluation 7 2.02 1.58 1.54 0.64 0.54 0.49 3.31 2.59 2.60

p2 building 1 1.12 0.96 0.93 0.30 0.31 0.19 1.75 1.73 1.29

p2 evaluation 1 1.52 1.22 1.20 0.32 0.37 0.24 2.10 1.98 1.65

p2 building 5 1.12 0.97 0.89 0.32 0.35 0.19 1.76 1.71 1.17

p2 evaluation 5 1.56 1.41 1.32 0.44 0.53 0.27 2.43 2.51 1.80

p2 building 6 1.16 0.98 0.90 0.38 0.43 0.18 1.99 1.94 1.25

p2 evaluation 6 1.68 1.31 1.36 0.41 0.49 0.29 2.41 2.39 1.85

p3 building 1.12 0.98 0.85 0.38 0.41 0.19 1.92 1.89 1.21

p3 evaluation 1.49 1.33 1.09 0.43 0.62 0.28 2.31 2.64 1.69

p4 building 0.86 0.77 0.73 0.20 0.21 0.15 1.26 1.17 1.02

p4 evaluation 1.09 0.96 0.95 0.21 0.26 0.18 1.48 1.45 1.33
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the surrogate signals as well as themotion data.We furthermore evaluated themodels’ performance by the
means of geometric accuracy on simulated and patient datasets.

An outstanding feature of themotionmodelling framework is its ability tofit amodel directly to the input
data thus avoiding sorting artefacts such asmissing or repeated structures. Thismade it possible to use 2D cine
data to sequentially acquire full anatomical andmotion information. Furthermore, the reconstruction of the
high resolutionMCSRI can be performed at the same time and thus the output of our framework contains both,
anatomical andmotion information.

Themotion estimation provided by themodel which is also used for compensating formotion during image
reconstructionwas very effective and the ground-truth anatomy could be recoveredwith highfidelity.While the
geometric accuracy of themodels was generally high, they also showed a decrease in the geometric accuracy
between building and evaluation data. Themean errormeasured by residual error registration for the patient
data increased between 45%and 53% to 1.62 mm, 1.32 mmand 1.33 mmon average in SI, AP, and LR direction
respectively.While it can be expected that anymodel better fits the data onwhich it was built, it alsomeans that
further investigations will be necessary as to how long the proposedmodel will be valid for. Baseline driftsmay
occur during the delivery time of radiotherapy (Takao et al 2016). A substantial change in the temporal average
position of a patient’s internal organs could impact the accuracy of the proposedmodels. But none of the patient
volunteers in this study showed drifts during the≈8min evaluation phase to an extent thatfinal conclusions in
this regard can be drawn.However, the required duration of validity will be determined by the integration of the
model into a specificworkflow. Themean residual error however stayed, with one exception, within the voxel
resolution of theMCSRI, i.e. 2 mm.

Slidingmotion appeared to be a source of error in themotion estimation provided by themodel, with amore
obvious impact on the simulated data. This can be attributed to the B-spline basis of our transformationmodel.
Here, sliding can only be approximated by local shear due to continuity assumptions in the transformation
formulation. The extended spatial support of the B-spline basis functionmay be a disadvantagewith respect to
slidingmotion.However, its extended support appears to be advantageous during themodel fitting because it
effectively integrates information from the separate 2D slices when calculating the gradient duringmodel fitting.
Since non-parametric transformationmodels—such as elastic, fluid, or opticalflow—do not share this
property, the B-spline transformation has a conceptual advantage. In this regard, implementing a sliding
B-spline transformation as proposed by Eiben et al (2018) could potentially improve the performance at the
sliding interfaces in the future.While the XCATphantom is a valuable research tool to simulate reasonably
realistic respiratorymotion, including for instance sliding and hysteresis, it cannot be expected to accurately
mimic suddenmotion observed in real patients, such as coughing and sneezing. This limits its utility to evaluate
velocity-related effects.

Evaluation of the proposedmodelling framework on patient datasets was limited to eight datasets from four
patients who volunteered to take part in additional scanning sessions on the ElektaUnityMR-Linac.While this
enables evaluation of the feasibility or our framework, robustness for a specific clinical implementationwill need
to be demonstrated on a larger patient cohort in the future.

The acquisition schemewas developedwith a flexible implementation into a clinical workflow inmind. It
provides themodel with the required surrogate andmotion data and could be acquired pre-treatment as well as
during delivery. The surrogate signals were derived from a slice positioned centrally on the tumour, which
enables continuousmonitoring of the targetmotion in the sagittal plane.Hence, in one implementation
scenario the acquisition scheme could be used only prior to treatment to build amodel. Then during treatment
only surrogate slices are acquired to estimate the 4Dmotion. Since our surrogate slices are equivalent to online
cine images currently being used formotionmonitoring in clinicalMR-Linac treatments, an integrationwith
existingmotionmitigation strategies such as gating or tracking is straight forward.Hence the 2D images centred
on the tumour could be used twofold: first to guide online-treatment, and second surrogate signals can be
calculated from these to apply the fittedmodel. Variousmethods to estimatemotion of the radiation target in the
imaged plane have been implemented and compared previously (Bjerre et al 2013, Sawant et al 2014, Paganelli
et al 2015, Zachiu et al 2015, Seregni et al 2016, Fast et al 2017).Whilst additional slices—set to be orthogonal to
the previous and also centred on the tumour—may provide information about the centroid targetmotion,
deformations occurring outside the image planes remain undetectable. The volumetricmotion data could
however be provided by ourmotionmodel which could be utilised for retrospective or online 3Ddose
reconstruction. In another scenario, the full acquisition scheme could also be used during treatment delivery, i.e.
acquiringmotion slices aswell as surrogate slices. This would provide a potentiallymore accurate estimate of the
motion for offline dose reconstruction after treatment has ended to inform, for instance, inter-fraction
treatment adaptation.

Any online treatment scenario would furthermore require continuous evaluation of themodel’s accuracy.
This can be achieved by comparing online acquired datawith the correspondingmodel estimate. A suitable
comparisonmethodwill depend on the application but could, for instance, be a simple image similaritymetric
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or the results from the residual error registration.While these scenarios highlight some possible implementation
strategies, integration into a specific clinical workflowwill be part of futurework.

Average lung tumourmotion amplitudes in the SI directionweremeasured using implanted fiducials and
orthogonalfluoroscopic kilo-voltage imaging for instance by Seppenwoolde et al (2002), orDhont et al (2018) to
be 12± 2 mmand 16.4± 7.6 mmrespectively. To cover the associated uncertainty of the target position during
delivery the geometric concept of the planning target volume (PTV)was introduced. VanHerk et al (2000)
derived an analytical formulation to calculatemargin size around theCTV to achieve adequate target coverage.
In this formulation, unmitigatedmotion is considered a random error, resulting in dose blurring and a large
CTV-to-PTVmargin. Reducing the target position uncertainty could in principle give room for tightermargins.
However, if the 4Dmotion estimates provided by themotionmodel has an advantage overmethods applied to
the 2D cine images in order to guidemotionmitigation—eachmethod being associatedwith their own
uncertainties—will be a topic to be addressed in the future. Green et al (2018) for instance highlight the
importance to characterise the system’s accuracy as awhole, hence, any specific integration strategywill need to
be evaluated carefully.

Getting time-resolved 4DMR images with a spatial and temporal resolution sufficient for online treatment
guidance and adaptation on anMR-Linac is challenging and an active area of research (Stemkens et al 2018).
Motionmodels have been proposed to estimate the full volumetricmotion fromdata that can easily be acquired
during treatment delivery, such as 2D slices. Thus, a pre-treatment 3D image can be deformed using themodel
to estimate the full 3D anatomy at any point during treatment delivery. Onemethod to buildmotionmodels is
using binned respiratory correlated data fromCTorMR imaging. Themainmodes ofmotion are extracted from
the phase images by performing deformable image registration between the phases and then applying PCAon
the resultingDVFs (Harris et al 2016, Stemkens et al 2016, Borman et al 2019). Garau et al (2019) followed a
similar approach but refined it to allow for differentialmodels between two separate ROIs.While PCAbased
models can potentiallymodel variable breathingmotion, amajor limitation of these approaches is that they fit
themodels to respiratory correlated images. As the image sortingmethods assume reproduciblemotion, the
images provide no information on the inter-cycle variation, andwill often contain sorting artefacts if there is
considerable variation during the image acquisition.

Huttinga et al (2022) proposed amethod called real-timeModel-based Reconstruction ofMOTion from
Undersampled Signal (MR-MOTUS)which also splits the problemof obtaining temporally resolvedMRdata
into an offline preparatory phase and an online phase.Motionfields are decomposed into a spatial and a
temporal component where, during the online phase, only the temporal component is reconstructed to address
the overall latency requirements. Similar to all aforementionedmethods from the literature, the spatial
component is computed from respiratory correlated data. In a subsequent publication byHuttinga et al (2023)
they utilise Gaussian processes to facilitate high-speed inference of 3Ddisplacements but still utilisemotion
models based on respiratory correlated data in their processing. Thus, ourmethod has a conceptual advantage
over such previous approaches. Notably, however, thefirst work published under theMR-MOTUS
framework (Huttinga et al 2020)fitmotionmodels directly to k-space data and does not require respiratory
correlated volumes, but requires very long computation times.

Modelfitting times for our algorithm are still a limitation, too. Tofitmodels and reconstruct theMCSRIs
took on average about 40 min.However, our implementation is designed for research purposes andwas not
optimsied for performance. Previouswork byModat et al (2010) has shown speed-up factors of about ten times
bymoving computations to the graphics processing unit (GPU).Many of the processing steps of our algorithm
are closely related to the referredwork, andwe expect a comparable speed up to be achievable by usingGPUs in
our framework. Computational times further depend on the amount of data used for building themodel, but
determining the amount of data required in a specific workflow is beyond the scope of this paper. Furthermore,
in a fractionated radiotherapyworkflow, amodel built and an image reconstructed in a previous fractionmay be
used in different ways to reduce computational times. For instance, a previously builtmodel could be used to
initialise thefitting procedure. If inter-fractional anatomical changes are small, a previously reconstructed
MCSRI could be used and adapted to the current fraction by applying a constant deformation offset. This would
eliminate the requirement of reconstructing a new image from scratch. Along the same lines, implementation
into a specific clinical workflowmay benefit from adaptation of individual components presented here. For
instance, if only accuratemotion estimates would be required and a high-resolution image is not essential, a
simpler, non-iterative image reconstructionmay be sufficient tofit themodel. All these potential adaptations
can be expected to decrease the computational time required before themodel can be applied. Theflexibility of
the presented frameworkwill be evaluated in this regard in the future. Application of themotionmodel is very
fast and in the order of 400 ms including surrogate signal generation, DVF generation, and image
transformation. To gear themodel further towards an online real-time application, predict-aheadmethods
could be applied to the surrogate signals to account for overall system latency. For this we could build on over a
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decade of predictionmethods developed for respiratory signals (see e.g. Jöhl et al (2020) for an extensive
comparative study) and is thus beyond the scope of this paper.

5. Conclusions

The unified image registration andmotionmodelling frameworkwas implemented as an open-source software
package and successfully tailored towards anMR-Linac workflow for lung-cancer radiotherapy. An acquisition
schemewas developed based on thick 2D slices as building blocks, enabling aflexible, staged integration into a
future clinical workflow. Themodel accurately reconstructed the anatomy aswell as the respiratorymotion
from the input data. The geometric accuracy of themodels’motion predictionwasmeasured for simulated cases
with known ground truth and for patient cases and themean errorwas below the voxel resolution of 2 mm.
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Appendix

A.1.Motionmodelfitting and image reconstruction parameters
The parameters to perform themodel buildingwere selected as follows and details are given below:

-sx10-be0.9-dType1-mcrType3-maxMCRIt1-maxSwitchIt10-maxFitIt50

The B-spline FFD transformationwas set to a control point grid spacing of 10 mm (-sx10) on thefinest of
threemulti-resolution levels (default value). A bending energy penalty termwith aweight of 0.9 was selected
(-be0.9) and thick slices were set as the input data type (-dType1). From the input data theMCSRIwas
calculated using iterative back-projection (-mcrType3)where the reconstruction is continually updated from
each reconstruction step, with each reconstruction step performing just one iteration of the super-resolution
reconstruction algorithm (-maxMCRIt1). The algorithm switched betweenmodel fitting and image
reconstruction ten times (-maxSwitchIt10) and themodel fittingwas allowed to run for up to 50 iterations
(-maxFitIt50).
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A.2. Residual error registration paramters
The parameters to perform the residual error registrationswere selected as follows:

-vel-sx5--lncc5.0-be0.002-le0.02

In detail thismeans that a stationary velocity fieldwas used to achieve a diffeomorphic transformation (-vel)
based on a control-point gridwith an isotropic spacing of 5.0 mm (-sx5.0). Local normalised cross
correlationwas used as a similaritymeasurewith aGaussian filter kernel size of 5.0 mm (--lncc5.0). For
regularisation, bending energy (-be0.002) and afirst order penalty (-le0.02)were usedwith respective
relative weights of 0.002 and 0.02.

A.3. Animatedmotionmodel results
Figure A1 shows a frame from the animations generated for thefirst simulated dataset (tumour positionA,file
namemodel_result_simulationA.mp4) and all patient volunteer datasets (file names
model_result_p*.mp4). Thefirst row shows the acquiredmotion slice on the left and themodel estimate
(i.e. the deformedMCSRI using thefittedmodel and the corresponding surrogate signal) on the right for the
same geometric position as themotion slice. Themiddle image is a colour overlay of the left and right image.
Cyan andmagenta highlight areas where themodel estimate differs from themotion slice. A perfectmatch
would result in no colours being visible. The bottom row shows themodel estimate forfixed coronal and sagittal
slice locations. Overlaid on these images are the deformation vector fields as green arrows and the location of the
currentmotion slices indicated as a red line. The surrogate signals are shown in the bottom right twofigures.
Note, due tofile size limitations of the journal only the first 60 s are included in the uploaded animationfiles.
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Figure A1.Example frame from the animations available as supplementarymaterial (patient dataset p1, day 1).
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