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Abstract
We present an approach for using machine learning to automatically discover the governing
equations and unknown properties (in this case, masses) of real physical systems from
observations. We train a ‘graph neural network’ to simulate the dynamics of our Solar System’s
Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to
correctly infer an analytical expression for the force law implicitly learned by the neural network,
which our results showed is equivalent to Newton’s law of gravitation. The key assumptions our
method makes are translational and rotational equivariance, and Newton’s second and third laws
of motion. It did not, however, require any assumptions about the masses of planets and moons or
physical constants, but nonetheless, they, too, were accurately inferred with our method. Naturally,
the classical law of gravitation has been known since Isaac Newton, but our results demonstrate
that our method can discover unknown laws and hidden properties from observed data.

1. Introduction

Machine learning (ML) has led to dramatic advances in many scientific disciplines, typically by helping to
process large, complex sets of observations, and learn to predict key desired properties. From particle
physics [1] to structural biology [2] to cosmology [3], ML methods help find patterns in large data sets [4, 5],
classify different objects [6], and perform parameter inference [7–9], as well as groundbreaking applications
such as predicting protein structure [10] and function [11], and producing language that is often
indistinguishable from humans’ [12]. However, there have been comparatively few applications of ML to one
of the most fundamental parts of science: theory discovery. Here we demonstrate a new approach for using
real data and established scientific frameworks to aid in the discovery of both physical laws and unobserved
properties of a complex physical domain—our Solar System. We use real observations of the orbital
trajectories of the Sun, planets, and moons to (re-)discover Newton’s law of gravitation, as well as the masses
of these bodies. Our approach is analogous to the process followed by scientists when they develop scientific
theories—describing patterns in data, proposing symbolic formulae to explain them, evaluating these
expressions against observation—while automating key aspects of this endeavour.

Our approach involves two stages: training a learned simulator on observed data, and then performing
symbolic regression on components of the simulator which correspond to physical laws. In [13, 14] we
described an initial version of our approach, applied to simulated data. Here we have extended and innovated
on our general approach, incorporated new techniques for simultaneously inferring unobserved properties of
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Figure 1. Schematic rendering of the Sun, Mercury, Venus, Earth, and Mars, with the corresponding graph structure our learned
simulator uses. The graph’s nodes represent the bodies, and the brightness of the edges is proportional to the strength of the
gravitational interaction between them.

the system (e.g. the masses of the bodies), and, perhaps most importantly, applied it to real data and proved it
can correctly recover one of the most widely known and important classical physical laws: gravitational force.

In the first stage of our approach, we train a learned simulator, based on graph networks (GNs) [15],
which are deep neural networks that can be trained to approximate complex functions on graphs. Here the
(relative) positions and velocities of the Solar System’s Sun, planets, and moons are represented as nodes of
the input graph, and possible physical interactions (e.g. forces) between the bodies are represented by the
graph’s edges. GN-based simulators have been trained to accurately model N-body and more complex
particle- and mesh-based systems in recent years [16–18], though they have almost never been trained on
real observations. Applying our approach to real data presented new challenges: the data are noisy, and their
dynamic range spans several orders of magnitude; the dataset is partial (we only provide 31 objects; leaving
out other massive bodies); and, crucially, the masses of the bodies are not observed, and therefore needed to
be (re-)discovered at the same time. We fit the GN-based simulator to 30 years of observed Solar System
trajectories, where the training procedure optimized the parameters of the GN’s neural network ‘edge
function’, which plays the role of computing forces [13, 14]. See, figure 1 for an illustration.

In the second stage, we isolate the GN’s edge function and use symbolic regression to fit an analytical
formula to it. This allows us to decipher the otherwise uninterpretable neural network approximation to the
force function, by expressing it symbolically. The best fitting force expression was the correct formula for
Newton’s universal law of gravitation. We then re-fit the unobserved (relative) masses of the bodies using our
discovered equation and found a nearly perfect fit to the true masses. We could then simulate the Solar
System dynamics using the discovered equation and re-learned masses, and found it corresponded very
closely to the true observed trajectories.

The reason we adopt this two-step approach, instead of applying symbolic regression directly to the data,
is that symbolic regression is not practical or efficient in many regimes like ours. Because the learned
simulator is a neural network, and can be trained by gradient descent, fitting it to real data is very efficient
and effective, mirroring the wide range of contemporary advances where neural networks are used to process
real data. By contrast, the symbolic regression procedure involves a prohibitively expensive search using
evolutionary algorithms, which would take orders of magnitude longer. So by fitting a neural network
simulator first, and then applying symbolic regression to only that component of the learned simulator we
were interested in, we reduced the cost of the equation discovery a great deal, and made the problem
tractable for our symbolic regression code.

There are several reasons to prefer a symbolic expression, instead of settling for a learned simulator.
Naturally, describing physical phenomena with compact symbolic formulations supports scientific
interpretation, and can interface with existing symbolically defined physical theories. By contrast, the
knowledge stored within trained neural networks cannot easily interface with existing theories. For example,
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how would one interpret the thousands, millions, or even billions of weights within a neural network, or
communicate that knowledge effectively to others? Beyond interpretability, the symbolic expression we
extracted was more accurate than the predictions of the neural network, due to the strong bias toward
simplicity, which was carried implicit within our symbolic regression method. Of course, because we
recovered the true classical force law, we know it will generalize to any scale, while the neural network is only
accurate when the statistics of the input match what it was trained on. In other words, we not only found a
model of Solar System dynamics, but of galactic dynamics as well!

Symbolic regression, also known as automated equation discovery, has been explored for decades in the
context of scientific discovery, for example, BACON [19, 20], COPER [21], FAHRENHEIT/EF [22, 23] and
LAGRANGE [24]. More recent work [25, 26] introduced the symbolic regression package eureqa, which has
been applied to finding symbolic formulae for Lagrangians, Hamiltonians, repeated sub-equations, etc
without relying on known constants or strong priors on the physical nature of the system. Another notable
recent development in symbolic regression is the SINDy technique [27] which searches for dynamical models
which are sparse linear combinations of hand-designed expressions. Though, in addition to SINDy, there
have been many additional advances in search techniques [28–43], as well as work in discovering symmetries
using ML [44, 45].

Here we used the neural network-symbolic regression technique we first introduced in [14], which
extends symbolic regression to high-dimensional input, such as graphs, by using a neural network as an
intermediate stepping-stone model. However, our model has some key improvements on the model
introduced in [14], perhaps most importantly its ability to learn hidden properties of the system, in our cases
the masses of the bodies. By applying the right inductive biases, we will show how we can recover the masses
of the planets and moons in the Solar System, up to an overall calibration. Previously [46] have used the
same Solar System database used in this work to study the underlying mechanism of the Solar System
dynamics, but there are key differences between our approaches: our model aims to recover a mathematical
equation, while [46] use interaction kernels (learnable functions of the pair-wise distance between bodies) to
model the dynamics. One issue with interaction kernels is the requirement to learn a kernel for each pair of
bodies, therefore the complexity over the problem scales as O(N2), where N is the number of bodies.
Meanwhile, our approach learns a single law that applies simultaneously to all edges, and therefore does not
suffer from this scalability issue. In addition, interaction kernels lack the explainability of our formalism.
Finally, our method infers the masses of the bodies as part of the learning, while the method introduced
in [46] can only do so by relying on certain approximations. As our base symbolic regression technique, we
use our open-source software PySR9 [14, 47]. PySR is a genetic algorithm, taking as input only a basic set of
operators, and a dataset, rather than predefined expressions as with SINDy, which means that we can avoid
supplying additional prior knowledge over the space of possible expressions.

It is important to emphasize that there is no way to ‘discover’ new theories without imposing some
constraints, inductive biases, or other assumptions on the process (this is a fundamental tenet of statistical
learning theory, and generally consistent with the ‘no free lunch’ theorem). For example, mathematical
axioms are required to define quantitative theories; the concepts of space and time are required to specify
equations of motion; and a physical mechanics formalism, such as classical mechanics, is required to define
specific dynamical laws, such as Hooke’s law or the Hamiltonian of a many-body system. Here our approach
leverages the fact that an N-body system can be represented as a graph; and that these systems are
translationally equivariant [48]. Our learned simulator incorporates Newton’s laws of motion in that the
learned scalar for each node is multiplicative in scaling the model’s output to acceleration; and finally, our
equation search prioritizes simple expressions, which is analogous to Occam’s razor. All of these are inductive
biases that would be available to a scientist when formulating a new theory. Ultimately we believe our
approach should be viewed as a tool which can help scientists make parts of their discovery process more
efficient and systematic, rather than as a replacement for the rich domain knowledge, scientific methodology,
and intuition which are essential to scientific discovery.

2. Model

Our two-step approach first fits a GN-based learned simulator to model the observed trajectories, and then
uses symbolic regression to fit analytical formulae to internal components of the learned simulator, which we
designed to have direct correspondences to classical mechanics’ force law. Within our learned simulator, we
used one trainable scalar value per body, which scaled the predicted acceleration for the body. This
implements the assumption of Newton’s second law, i.e. F=ma, where the predicted acceleration, a, is
computed by a neural network prediction that plays the role of force, F, divided by a scalar that plays the role
of mass,m.

9 https://github.com/MilesCranmer/PySR.
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2.1. GN-based learned simulator
The input to our GN-based learned simulator, gθ, is a graph, (V, E), which represents the physical system,
where the set ofNv bodies are represented as nodes, V= {vi}i=1:Nv , and relationships between pairs of bodies
are represented as directed edges, E= {(sk, rk,ek)}k=1:Ne . Each vi node attribute contains a trainable scalar
variable that is fixed across all input graphs and is analogous to mass, as described below. The sk and rk edge
attributes are integers that index the sender and receiver nodes, respectively. The ek edge attribute is the
spatial displacement vector between the two corresponding bodies. Because we assume we do not know
which bodies interact, we instantiate edges from each body to every other body, which allows us to model all
possible pairwise interactions.

To simulate the bodies’ dynamics, the model predicts the per-body accelerations, ai, by explicitly
imposing Newton’s second and third laws of motion. The GN contains an ‘edge function’, e ′k = fGN
(vrk ,vsk ,ek;θ), with trainable parameters θ, which computes an interaction vector, e ′k, along each edge, which
is analogous to a force. For the two directed edges between a pair of bodies, (i, j,ek) and ( j, i,el), rather than
computing distinct e ′k and e

′
l we instead compute just one and set the other equal to its negative, e ′l =−e ′k, in

accordance with Newton’s third law’s ‘equal and opposite’ principle. Next, for each body, i, all of its incoming
interaction vectors are summed, ē ′i =

∑
{k|rk=i} e

′
k, analogous to superposition of forces to compute net

force. Finally, the per-node output accelerations, âi = ē ′i /vi are computed by dividing each node’s pooled
interactions by the scalar node attribute, vi, which, following Newton’s second law’s F=ma, gives vi the
semantics of ‘mass’ and ē ′i the semantics of ‘net force’10. The Sun’s scalar attribute is fixed to 1 to fix the
degeneracy of scale between the learnable GN and learnable scale. The details of the neural networks are
described in the Experimental Methods below.

Our learned simulator gθ is trained by supervised learning, where the discrepancies between the model’s
predicted accelerations and the true observed accelerations are minimized with respect to the trainable
model parameters using gradient descent,

θ∗,V ∗ = argminθ,VE(E,A)∼Dtrain
ℓGN (g(V,E;θ) ,A) , (1)

where A are the true observed accelerations associated with some input (V, E), ℓGN is an error metric, and
Dtrain is the empirical distribution which represents the observed system states (represented by the relative
displacements between bodies, E) and accelerations used for training. While the edge attributes, E, vary as the
positions of the bodies in the system change, the scalar per-node attributes, V, are trainable variables which
are constant across inputs. By minimizing the error with respect to V, we are fitting the masses for each body
in the system, which we will compare to the known masses of the Solar System bodies in the results.

2.2. Symbolic regression of force function
Once the learned simulator was trained, we performed symbolic regression to fit an explicit symbolic
formula to the GN-based force function. We created a dataset of force function inputs, (vrk ,vsk ,ek) ∈ DSR,
and used the symbolic regression procedure to search for an expression, fSR, which minimizes,

f ∗SR = argminfSR
Ex∼DSRℓSR ( fSR (x) , fGN (x;θ

∗)) , (2)

where x= (vrk ,vsk ,ek) sampled from the empirical symbolic regression training distribution,Dtrain, and ℓSR is
an error metric.

The symbolic regression procedure explores a space of analytic expressions and selects one or more
which predict the target, fGN(vrk ,vsk ,ek;θ

∗), accurately, while also minimizing the complexity of the
discovered expression. The space of symbolic expressions is large due to the combinatorial number of ways
the operators, variables, and constants can be composed (e.g. if there areM possible discrete symbols, then
there areML possible symbol strings of length L, but actually the constants are effectively real-valued rather
than discrete). Because it is fundamentally a discrete problem, we cannot compute gradients or perform
gradient descent, as with the GN-based simulator’s training.

3. Experimental methods

3.1. Data
We use Solar System data from NASA’s HORIZONS On-Line Ephemerys System11 [49, 50]. We extract orbits
for 31 bodies: the Sun, all planets, and those moons which have a mass above 1018 kg. Whilst more bodies

10 Note, in practice we use log(vi), in order to reduce the dynamic range of vi.
11 http://ssd.jpl.nasa.gov/?horizons.
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could have been considered, we expect their gravitational influence to be small, therefore we do not expect
that their omission will affect our results. We use data from January 1980 to January 2013 with a time step of
30min, and use the first 30 years of data (approximately one full orbit of Saturn) for training, and the last
three for validation. From the HORIZONS interface, we extract positions and velocities in Cartesian
coordinates, with the Solar System barycenter as the reference frame. The same data was used by [46], but
using only data from the Sun and the eight planets, without any of the moons. Of course, using data in
Cartesian coordinates is an easier problem than using observations from Earth’s point of view. Repeating this
task using terrestrial observations would require learning the correct coordinates, as well as the equations,
and is left for future work.

From this data, we extract the pair-wise displacement vectors between bodies and each body’s
acceleration vector (calculated from changes in the velocities) at every step. Relative displacements serve as
the input to our model, meaning that our model is equivariant to a translated reference frame. The
accelerations serve as the truth for our model training.

Therefore, Our input graph has Nv = 31 nodes; each node with one trainable scalar, and a single edge
connecting every pair of bodies Ne = Nv(Nv − 1)/2= 465; each containing three coordinates giving the
distances between bodies along each spatial axis.

3.2. GN implementation details
The GN uses a TensorFlow [51] model with three-layer multilayer perceptrons (MLPs) and 128 hidden nodes
per layer. The model also contains the trainable scalar properties of the nodes vi, which are backpropagated
simultaneously with the weights of the neural network. Furthermore, our model has the following properties:

• Activation function: We use a hyperbolic tangent (‘tanh’) as the activation function in our networks. While
this is slower than the very commonly used Rectified Linear Unit (ReLU) activation function [52], our
problem is very susceptible to the dying ReLU problem [53] due to the very different values of both inputs
and outputs.

• Loss function: For the loss function, we use the relative mean weighted error:

Loss=
∑ (A− g(V,E;θ))2

A2
. (3)

The reason we use the relative mean weighted error is again due to the large dynamic ranges experienced
in our dataset so that every body is emphasised equally during training, not only the ones with large
accelerations.

• Spherical coordinates: Our GN takes as inputs a three-vector for every pair of bodies representing the dis-
placements and outputs a second three-vector which corresponds to the force However, due to the large
dynamic range of input displacements, we transform the input displacement from Cartesian into spherical
coordinates, using log10 to transform the magnitude, as inputs. Similarly, the output force is assumed to
be in spherical coordinates, whose magnitude component is transformed through an exponential function
back into Cartesian. This allows the GN to learn forces of very different magnitudes, without requiring the
parameter distribution inside the GN to have a large dynamic range itself.

• Data augmentation: a random three-dimensional rotation is applied to the input graph at every training
iteration. This serves as data augmentation, useful for our limited-size training data. It also prevents biases
from being created inside the model, and encourages a learned rotational equivariance: for example, the
Solar System is largely confined to a plane (which could bias along the rotational axis), and some planets are
not observed to complete an entire orbit in the training set (which could bias in their particular direction).

• Training noise: During training, we corrupted the input states with Gaussian noise to improve the model’s
robustness to error over long rollouts at test time. This technique has been used widely in GN-based learned
simulators [17, 18]: it is believed to help the model close the gap between the distribution of training input
states, which are always from the true observations, and rollout input states, which are predicted by the
model and incur some error.

• Early stopping: We stop training once a threshold was reached where 20 epochs experienced no improve-
ment in the validation loss, to prevent overfitting.

• Multiple runs: To estimate the uncertainty in our estimation of the masses, we repeat the minimization
procedure for ten different random seeds, and calculate amean and standard deviation in themass estimates
from the different best fits.

• Localminima: Our loss function hasmultiple localminima, in which gradient descent is at risk of becoming
‘stuck’. Therefore, we restart the minimization when training stops with a validation loss larger than 0.5 (for
reference, the best fit loss is typically close to 0.05).
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Note that these changes were adopted to optimize the dynamics learned by the GNN before starting the
symbolic regression. Therefore, they should not bias our results, only improve the GNN’s ability to predict
particle positions.

3.3. Symbolic regression implementation details
We used the PySR [14, 47] library12 for symbolic regression which was developed by some of the authors.
PySR is an open-source analogue to eureqa [26], which has a Python API and also supports distributed
computation and custom operators and losses.

PySR uses a tree search algorithm to produce a set of candidate equations, that go from some input
features (in our cases displacements and learned masses) to some outputs (in our case forces). The objective
of PySR in this case, is to find a ‘simple’ and interpretable equation that resembles the interaction predicted
by the learned simulator. We do this because we are looking for physical laws that can explain nature with
simple equations, as opposed to the high complexity of a neural network. To accomplish this target
simplicity, PySR assigns to each proposed equation a score, calculated as the ratio between the increase in
accuracy (in our case, the decrease in our error metric ℓSR) and the increase in complexity with respect to the
previous proposed equation. The complexity is calculated from the number of terms and operators that are
used in the equation. More details about this can be found in a coming paper. It is clear that different options
could be used for both the complexity, accuracy, and score calculations. Therefore, we do not claim that PySR
uniquely obtains the perfect equation. Instead, its role is to produce a set of candidate equations from the
infinite set of possible ones, with a complexity that is orders of magnitude lower than the complexity of a
deep neural network.

For this application, we select a datasetDSR consisting of 500 data points that were not used during
training of the learned simulator. Each of these points contains as inputs the learned scalar variables and
displacements between a pair of randomly selected bodies at a random time step x= (vrk ,vsk ,ek), and as
outputs the corresponding interaction learned by the GN fGN(x). We add the norm of the displacement
vector |ek| as an extra input. The allowed operators between these input quantities are addition, subtraction,
multiplication and division. The maximum complexity allowed for the equations is 40. We use as our
constant optimizer the Broyden–Fletcher–Goldfarb–Shanno algorithm [54–57] with 10 iterations, and our
error metric ℓSR is a MSE loss function between the GN interaction fGN(x) and the proposed equation
fSR(x,θ∗).

4. Results

4.1. Learned simulator performance
Our model learns to predict interactions between bodies which generally agree with the observed
accelerations. The predicted next-step relative accelerations, (xtruth − xpred)2/x2truth, have error of around
0.2% on the validation data, averaged over all bodies and time steps. These accelerations can be
time-integrated to roll out predicted trajectories, as shown for the trajectories of the Sun, Venus, and Earth in
the top panel of figure 2 (2A and 2B). The predicted dynamics agree with the ground truth observations over
short time intervals, and begin to deviate after several months. This is not surprising because the model is
trained to predict only the next time step, 30min in the future, and the strong non-linearity of N-body
dynamics lead to small errors rapidly growing over the rollout. Figure 3 shows how the rollout error
accumulates over the three years of validation data for the same bodies used in figure 2. Similar figures for all
other bodies are available in the supplementary information.

This shows that the GN-based simulator can learn dynamics from real data, rather than simulated data as
in previous work. Because our focus here was on symbolic discovery, the learned simulator we used was
relatively simple compared to recent GN-based models [17, 18], but with more powerful methods we expect
the accuracy would be even greater.

4.2. Hidden property inference
The learned scalar properties vi, which scale the predicted accelerations and thus play the role of mass, are
shown in the top left part of figure 4 (4A) along with the masses per body. The multiple plotted values for
each body represent the fit masses from different training runs with different random initializations
(discarding runs that get stuck in local minima as described in the previous section), and help give a sense of
the uncertainty in the estimates. The results indicate that the scalar quantities learned by our model roughly
match the true masses for the bodies represented in our dataset with a mean percent error∼9.1% calculated
over all bodies and all different initializations.

12 https://github.com/MilesCranmer/pysr.
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Figure 2. Comparison between data (continuous line) and integrated prediction (dashed line) of same bodies evolved from the
same initial conditions, for the interactions predicted by the learned simulator (top, 2A and 2B), the symbolic regression
expression (center, 2C and 2D) and the same expression, after re-estimating the masses (bottom, 2E and 2F). The left panels show
the orbits for six months. The right panels show the same orbits but for 21 months, with a time displacement along the x-axis,
which allows us to visualize the trajectory for a longer time period.

Figure 3. The loss per step, calculated using equation (3), from integrating the trajectories for the bodies shown in figure 2 using
the learned simulator. A version of this figure for all other videos can be found in the supplementary information.

Note that the assumption of Newton’s second law is key for the purpose of learning the masses. If we do
not assume F⃗=Ma⃗, the algorithm can learn the correct force, but replace the massesM by f (M); where f is a
black box function, and then learn F⃗= f−1(M)⃗F. Therefore, while we can learn the correct dynamics without
assuming Newton’s second law, we loose the interpretability of our results.

The errors between our model’s inferred masses and the true ones demonstrate an interesting pattern:
bodies which have little effect on other bodies’ accelerations tend to have higher mass error. We computed
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Figure 4. Left: comparison of the learned scalars vk relative to the Sun v0 and the known logarithmic masses of the Solar System
bodies (in units of solar mass). The multiple red points represent the different mass values for each random seed, and are an
attempt to capture the model’s uncertainty. The dashed line separates planets and satellites). Right: negative correlation between
the gravitational influence exerted by each body, and the error in its mass estimate. The plot shows clearly how the masses of the
bodies that have a negligible gravitational influence on others cannot be estimated by our two-step algorithm. The top two panels
use the masses trained with the learned simulator, while the bottom two use the masses re-estimated using the symbolic
expression.

the gravitational influence of a body n as the sum of gravitational potentials experienced by all other bodies
that result from body n,

grav. influencen =
∑
i ̸=n

Vgrav (i,n) =
∑
i ̸=n

− GMn

|⃗xn − x⃗i |
, (4)

which sums over all bodies except for n, and where Vgrav is the gravitational potential and G is the
gravitational constant. We calculate this gravitational influence for each body, as the mean of the
gravitational influence summed over time, to account for the fact that bodies with eccentric orbits might
have a larger gravitational influence at certain points as they get closer to other bodies.

The top right panel of figure 4 (4B) plots the error in the estimate of the mass

1

Ninits

∑
inits

(
log10Mtrue − log10Mpred

)2
, (5)

where the sum is over all ten random initializations, as a function of gravitational influence in equation (4).
The figure shows a clear negative correlation (Pearson correlation coefficient of−0.64 in log space) between
the error in the mass estimate and the gravitational influence. In other words, bodies that have a strong
influence on the rest have very accurate masses, while those that are not very influential have poor mass
estimates. For example, Mercury and Venus do not have moons, and Mars’ moons were too small to be
included in our dataset, and thus they do not have nearby bodies to affect. Similarly, the moons Phoebe,
Hyperion, and Nereid have small masses and thus have little influence on their planet and nearby moons.
Thus the mass errors are to be expected: the ‘equivalence principle’13 holds that for bodies which impart
negligible gravitational influence on other bodies in the system, and thus do not influence other bodies’
accelerations, their masses are, in ML parlance, ‘unidentifiable’, meaning such masses are difficult to estimate
accurately.

13 Because F= mbodya, and the F function includes mbody in the numerator, mbody cancels and is not required to compute its own accel-
eration.
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Figure 5. Left: discovered equations from our learned simulator across different random initializations. The different equations
are sorted in order of increasing complexity along the x-axis. The output variable in all cases is Fx, but similarly results are
obtained for Fy and Fz. The y-axis shows the equation score, which balances loss and complexity, as described in [47]. Right: loss
per step on predicted orbits using each equation, summed over all planets. Note that we do not show the complexity 17 equation,
as the results perfectly overlap with those of the complexity 13 equation. For the two equations that have masses, we plot the error
using the masses from the learned simulator (continuous line) and from refitting the masses after obtaining the equation
(dashed). The grey, thicker line is the error obtained using Newtonian gravity with the correct masses.

4.3. Symbolic discovery
Our symbolic regression procedure correctly discovered Newton’s law of gravity. The left panel in figure 5
shows candidate equations obtained by PySR. The top six equations were those with the highest score, of the
over one hundred million tested, sorted in order of increasing complexity. The highest bar corresponds to
one with the same form as Newton’s gravity. The seventh, rightmost bar, was the best equation which had
higher complexity than the best equation, which we plotted in order to demonstrate that increasing
complexity does not necessarily provide a better score.

To show how each equation fared in predicting orbital trajectories, the right panel of figure 5 plots their
respective rollout errors over the three years of validation data, and compares with the true data. The lowest
error is the cyan line’s equation, which corresponds to Newton’s law of gravity,

F⃗=−GlearnedM1M2

r3
r⃗, (6)

whereMi are the masses learned by our learned simulator, shown in the top panel of figure 4.
Our symbolic regression method also learns a value of the gravitational constant which is very similar to

the true one. Note, similar to how we fit masses relative to the Sun’s mass, constants which include a mass
unit are also relative to some reference mass.

We plotted the rollout trajectories over the three years of validation data using the best-fit equation in the
second row of figure 2 (2C and 2D). The orbits predicted by the discovered symbolic expression are more
accurate over time than those from the learned simulator. This means that despite PySR’s fitted formula
being simpler than the learned simulator’s neural network-based one, it yields more accurate predictions.

4.4. Relearning the masses
Having determined the correct form of the interactions between bodies, we can then re-estimate the hidden
properties. We replaced the MLP edge function within the learned simulator’s GN with the best-fit symbolic
expression (equation (6)), and re-trained the mass and gravitational variables in the same manner as we
originally trained the learned simulator. The bottom-left panel of figure 4 (4C) shows how the mass
estimates are far more accurate than they were from the original learned simulator training, with a mean
percent error calculated over all bodies and iterations of∼1.6%, more than a factor of five lower than before
relearning the masses. Similarly, the bottom-right panel of figure 4 (4D) clearly shows how the negative
correlation between error in mass estimate and gravitational influence in other bodies is greatly strengthened
by re-learning the masses, with the Pearson correlation coefficient in log-space going from−0.64 (before
re-learning the masses) to−0.87 (after re-learning).
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We also predicted new trajectories with the symbolic equation and re-learned masses (bottom panel
of figure 2, 2E and 2F), which shows the trajectories are far more accurate than those obtained directly from
both the learned simulator, and the symbolic equation with original masses. This shows that our learned
simulator tends to overfit, compared to the simpler model given by the equation. The blue dashed curve in
the right part of figure 5 shows the difference between data and prediction for these re-estimated masses. The
figure clearly shows how this outperforms the learned simulator and symbolic regression, and performs just
as well as Newtonian gravity using the correct parameters (thick grey curve). Therefore, our algorithm
obtains the correct equation for Newtonian gravity (figure 5) and very accurate values for the masses of the
bodies (bottom part of figure 4), using only the orbit data, graph structure, and some inductive biases as
input information.

5. Discussion and conclusions

Our results show that our two-step approach—training a neural network simulator with physical inductive
biases, then interpreting what it has learned using symbolic regression—is a powerful tool for discovering
physical laws from real observations. We (re-)discovered Newton’s formula for gravitational force from
observed trajectories of the Sun, planets, and moons of our Solar System. Furthermore, our method shows a
novel aspect of automated scientific discovery, the ability to learn complex properties of the system. We
recover the masses of the bodies in the Solar System with very high precision.

While our method allows us to re-discover Newton’s formula and the masses, it is important to note that
this was only possible through the use of inductive biases, particularly Newton’s second and third law, and
spherical symmetry. Furthermore, we made use of choices such as spherical coordinates and logarithmic
units, which facilitated the learning. This illustrates that while automated theory formation with ML is
possible, it does require some prior knowledge. Our understanding of the system can therefore greatly
facilitate the task at hand.

While automated theory formation is a very promising and exciting field of work, it is important to
consider the limitations of this procedure. First, while we can provide a rough estimate of the uncertainty in
the mass estimates by running with multiple random seeds, this does not produce a true estimate of the
errors, and instead shows multiple local minima where the algorithm terminates. To perform Bayesian
inference on the mass estimates, we would need to model the posterior distribution on each mass, which
cannot be done with our current GN algorithm, which uses gradient descent to produce point estimates.
Bayesian neural networks could provide a future avenue for this. Second, while our algorithm can provide a
scientist with candidate equations that produce a good fit to the data, as shown in figure 5, the specific
scoring function used to measure the quality of equations (e.g. complexity vs. accuracy) warrants further
exploration. The scientist’s preferences for what makes a ‘good’ equation should be expressed, and more
generally, the candidate equations should be viewed as a narrower palette of choices, which should be subject
to further experimentation.

This work offers a new way of marrying modern ML methods with automatic theory formation and
demonstrates its efficacy in the context of complex real-world data. Even though the law we (re-)discovered
is already known, of course, the purpose of this work is to confirm that known laws and hidden properties
are discoverable with our method. This demonstrates the potential for using ML techniques to aid in
scientific discovery and theory evaluation.
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Figure A1. The loss per step, calculated using equation (3), from integrating the trajectories for the bodies shown in figure 2 using
the learned simulator.

Appendix A. Rollout errors

Figure A1 shows the rollout errors for all the bodies used in this paper, defined as (xtruth − xpred)2/x2truth
where xpred is the trajectory obtained when integrating using the interaction learned by the GN, and xtruth is
the real data. This curves are calculated from data that was not used during training. This plot is similar to
figure 3 in the text, but showing all bodies in our system.

Appendix B. Inductive biases

Table B1 summarizes the inductive biases assumed in this work, and described throughout the body of the
paper.

11



Mach. Learn.: Sci. Technol. 4 (2023) 045002 P Lemos et al

Table B1. A list of inductive biases assumed in this work.

1. All bodies are observed, and there are no unobserved bodies.
2. Permutation equivariance for the bodies (the reason for using graph network)
3. Newton’s second law
4. Newton’s third law
5. A single scalar parameter for each body
6. Sum aggregation for the forces
7. Rotational equivariance
8. Three-vector for edge message output (with the semantics of ‘force’)
9. Use displacement as an input feature for message passing
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