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Abstract—This paper introduces the ”RF-Pointer,” an innova-
tive radio-frequency-based interaction framework designed for
real-time tracking and projection of hand movements in virtual
spaces. The system can provide a hands-free and distinctive
interaction experience suitable for emerging domains like virtual
reality and augmented reality. In this study, we delve into
the architectural and operational dynamics of the RF-Pointer,
utilizing a prototype equipped with a 77 GHz radar sensor. Initial
tests reveal an average error of 2.5 cm in estimating the pointer’s
location. To further illustrate the efficacy of the proposed
architecture, we conduct a qualitative comparison with ground
truth pointer location data, presenting the results in the form of
tracked trajectories corresponding to both ground truth and the
RF-Pointer estimated trajectories. The tracking results demon-
strate that RF-Pointer trajectories closely align with ground
truth trajectories. Consequently, these findings underscore the
potential for improved accuracy through expanded data training,
positioning the RF-Pointer as a significant advancement with the
capability to transform interactive technology.

Index Terms—Radar, Continuous Gesture Recognition,
Human-Computer Interaction, Millimeter-Wave Radar, Privacy-
Preserving HCI, Virtual Reality.

I. INTRODUCTION

Radio-Frequency (RF) sensing is transforming gesture
recognition in Human-Computer Interaction (HCI), providing
users with a natural and intuitive means of engaging with
technology through nuanced movements [1]. Unlike traditional
methods requiring direct interaction or visual cues, RF sensors
excel in capturing and interpreting fine-grained human ges-
tures from a distance, eliminating the need for direct contact
or a clear line of sight. This not only enhances user privacy and
convenience but also expands accessibility, making technology
interaction feasible in diverse settings where other sensory
systems like infrared, ultrasonic, or camera may prove im-
practical. The integration of cost-effective millimeter-wave RF
sensors, offering high-resolution and accurate detection at an
affordable price, is further driving this technological advance-
ment. Combined with sophisticated artificial intelligence (AI)
algorithms, average gesture recognition accuracies exceeding
90% have been achieved. However, a notable limitation in
existing works is the focus on recognizing predefined gestures,
constraining users to a fixed set of motions [2]. This rigidity
may hinder user-friendly interactions, especially in emerging
domains like virtual reality (VR) and augmented reality (AR)
[3].

In the VR/AR landscape, achieving a fully immersive ex-
perience relies on precisely tracking hand movements. Human

Fig. 1: RF Pointer Overview

hands exhibit a diverse range of expressive motions, from
subtle gestures to spontaneous movements, which predefined
gestures may not fully capture. While significant strides have
been made in enhancing hand-tracking technologies using
various sensors, there exists a noticeable research gap when it
comes to leveraging radio-frequency sensors for this purpose.

To address this gap, we present a novel RF-based pointer
system, RF-Pointer, designed to enhance navigation in the
VR domain. Drawing inspiration from radar-based gesture
recognition systems like Project Soli [4] and ThuMouse [5],
RF-Pointer allows users to explore virtual environments nat-
urally and intuitively, contributing to a more immersive VR
experience. The system operates by emitting and detecting
radio waves that interact with a human pointing hand, translat-
ing these movements into on-screen actions as clearly shown
in Fig.1. Time-of-flight measurements determine distances,
while Doppler shift analysis reveals hand velocity. The system
employs sophisticated signal processing to generate a three-
dimensional point cloud representing hand position in space,
which can be mapped onto the digital or virtual screen.

In developing the RF-Pointer, we employ a millimeter-wave
(mmWave) radar sensor known for its compact design and
low power consumption. This sensor’s characteristics make
it exceptionally well-suited for seamless integration into VR
headsets. RF-Pointer generates a three-dimensional point cloud
representing hand position in space. However, inherent inac-
curacies in the gathered point cloud data due to environmental
conditions and reflections necessitate refinement. To address
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Fig. 2: RF-Pointer System Framework

this, we employ a Long Short Term Memory (LSTM) network,
trained on a paired dataset of ground truth point cloud data
and radar point cloud data, to correct temporal dynamics and
spatial coordinates. This iterative refinement maximizes the
reliability and precision of RF-Pointer. We gather ground truth
point cloud data from a camera sensor running a pre-trained
hand tracking model from Google’s MediaPipe [6].

To assess the performance of the RF-Pointer, we conduct
a comprehensive evaluation, involving both qualitative and
quantitative comparisons between our radar-based pointer lo-
cation estimation and ground truth data. The resulting trajec-
tories of hand tracking from the radar closely align with those
obtained from the ground truth data, providing strong evidence
of the effectiveness of our approach.

Our paper is structured as follows: In Section II, we present
an in-depth discussion of the proposed RF-Pointer framework.
This section encompasses details on the chosen interaction
paradigm, the experimental setup, and the data pre-processing
procedure involving two synchronized systems – a measure-
ment RF system and a camera system. Following this, Section
III outlines the data collection pipeline, presenting associated
results and analyses. We conduct a thorough comparison of
the RF-Pointer’s performance with the ground truth data, both
qualitatively and quantitatively. Finally, in Section IV, we
conclude our paper with insights and considerations for future
improvements to the system.

II. RF-POINTER FRAMEWORK

Fig. 2 provides an overview of the proposed RF-Pointer
system architecture. The system consists of a digital screen
displaying the pointer location, similar to a laser pointer,
and two synchronized sensors: an RF sensor and a camera
sensor. For the RF sensor, we employ Texas Instrument’s (TI)
AWR1642BOOST[7], and for the camera sensor, we use the
laptop’s built-in web camera. This section outlines the process
of collecting point cloud data from the radar and corresponding
ground truth data from a camera system running MediaPipe
for extracting hand landmarks. Additionally, we detail how
we train a Long Short-Term Memory (LSTM) network with
these training pairs, specifically for estimating the location of

the pointing human hand and removing any outliers from the
radar data. Each component is further discussed in detail in
the following sections.

A. Interaction Paradigm

We start by making foundational assumptions: the virtual
space, where interaction outcomes are presented, is a two-
dimensional surface, such as a computer screen or a projec-
tion wall, while the actions or gestures occur in the three-
dimensional real-world space in front of this surface. In this
study, our emphasis is on two-dimensional virtual surfaces,
like monitor screens. To maintain simplicity, we adopt a nat-
ural pointing hand pose characterized by extending the index
finger while keeping the other fingers in a nearly clenched fist
position—an intuitive and widely applicable choice for pointer
applications.

Fig. 3 illustrates the three primary interaction methods
conducive to pointing systems for interacting with virtual
applications on a 2D surface. The first is relative motion
tracking, commonly found in computer peripherals, which
simplifies design but lacks spatial precision for natural human
motion. This method translates controller movements into
virtual pointer shifts, making it unsuitable for precise hand-
pointing in AR/VR systems. The second is surface projection,
which produces a 2D representation of the controller at the
tracked pointer’s position, enabling 3D movement but neglects
screen distance. The third is 3D Extrapolation, as depicted in
Fig. 3(c). 3D Extrapolation integrates position and orientation
data for precise pointing in three dimensions by projecting
the controller’s angles onto the virtual surface, facilitating
manipulation across vast distances with minimal effort.

In this study, we utilize TI’s AWR1642 radar, capable of
gathering only 2D point cloud data instead of 3D point clouds.
Consequently, we choose the 2D Projection approach from the
available pointer design methods, as it offers the most intuitive
interface.

B. RF System and Associated Data Pre-processing

We use TI’s AWR1642BOOST radar which is a high
bandwidth (4GHz) FMCW (Frequency Modulated Continuous

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
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Fig. 3: Interaction Paradigm-(a) Relative motion with hand movement and virtual pointer movement, (b) 2D Projection of hand
to the screen and (c) 3D extrapolation of pointing direction to the screen

Wave) radar with operational frequency range between 76-
81GHz. The radar has four receiving and two transmitting
antennas, enabling tracking multiple objects. Notably, unlike
other TI radars, this radar features receivers arranged in a
1D antenna array, allowing detection along either the azimuth
angle or the elevation angle [8]. We present radar’s operating
parameters in Table I.

Parameter Value
Azimuth Resolution 15◦

Range Resolution 0.039 m
Maximum unambiguous Range 11.99 m

Maximum Radial Velocity 1.41 m/s
Radial velocity resolution 0.18 m/s

Range Detection Threshold 15 dB
Doppler Detection Threshold 15 dB

TABLE I: Radar Configuration

Data Pre-processing: We transmit a sequence of linearly
frequency-modulated sinusoid waveforms, commonly known
as chirps, from the radar. As these chirps encounter a mov-
ing hand, they undergo backscattering, resulting in complex
signals that represent time-varying reflections—a combination
of attenuation, time delay, and Doppler shift in comparison
to the transmitted signal. The delay in the reflected signal
corresponds to the range of the pointing hand, while the
phase difference between consecutive chirps indicates the
relative velocity between the radar and the hand. The complex
reflectivity is proportional to the radar cross-section. The
raw time domain signal undergoes preprocessing through a
2-dimensional Fourier Transform to extract range (r) and
velocity information (v). Furthermore, we perform Fast Fourier
Transform (FFT) along the receivers to acquire azimuth angle
information (ϕ). Simultaneously, we capture velocity profiles
and reflected signal strength (s) in the form of Signal-to-
Noise Ratio (SNR) for each scatter. The challenge arises
from the varying number of scatterers detected in each frame,
prompting the selection of the scatterer with the highest
normalized SNR value in each frame. This ensures that each
frame includes the position, relative SNR, and velocity of
the most prominent scatterer with the highest reflected signal
strength.

Fig. 5 illustrates our experimental setup, positioned on
the table directly below a human hand pointing towards a
digital screen. The detection plane is parallel to the screen.
On the detection plane, the movement of the hand along the
vertical axis is extracted from the range information (r), and

the movement along the horizontal axis is gathered from the
azimuth information (ϕ). This process is clearly depicted in
Fig. 4.

Fig. 4: Interaction plane in the RF field

We convert the detected hand’s position from radial coordi-
nates (r, ϕ) to Cartesian coordinates (x, y) using the equations
x = r × cos(ϕ) and y = r × sin(ϕ). This transformation
yields 2D point cloud data (x, y), including the velocity (v)
and SNR (s) of each detected point in a 2D Cartesian plane
per frame. To reduce unnecessary noise from a broad radar

Fig. 5: Experimental Setup comprising of TI
AWR1642BOOST radar sensor, web-camera and a human
subject pointing towards the monitor.
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Fig. 6: Deep Learning Architecture, (a) Training phase with simulatneous inut feature vectors from radar (x,y,v,s) and MediaPpe
output (x̃, ỹ), (b) Test phase estimating pointer position only using radar data

sensing field, we narrow the effective interaction field to align
with the screen’s size. Empirically chosen dimensions are
employed to ensure that the system captures only intentional
interactions occurring right in front of the screen, filtering out
most unintentional hand motions.

C. Ground Truth Camera System and MediaPipe

We employ Google’s Mediapipe Hand Landmark Detection
pipeline, utilizing a webcam to estimate the human hand pose
and assess the accuracy of the resulting pointer location .
This pipeline utilizes a pre-trained machine learning model
within Google’s Mediapipe library, specifically designed for
hand landmark estimation. This model employs a deep neural
network architecture to analyze input data in the form of a
camera image or monochrome video, predicting the spatial
locations of key landmarks on the hand (x̃, ỹ), including
fingertips, knuckles, and the palm.

The Mediapipe computer vision library offers estimates for
21 hand landmarks, covering various points from the wrist to
individual finger joints. To optimize for pointing applications,
we concentrate solely on the normalized position (0, 1) of
the index finger within the camera image frame, excluding
additional pose data.

D. Deep Learning

We collect output from the radar in the form of 2D point
cloud data (x, y), along with the velocity (v) and SNR (s) for
each frame, and simultaneously obtain the tracked location
(x̃, ỹ) using a camera system through MediaPipe. Ideally, the
2D point cloud location detected by the radar should always
match the one detected by the ground truth camera system,
implying x̃ = x and ỹ = y. However, this is not always
the case due to various factors affecting radar-based tracking
of hands. These factors include the interaction of dynamic
radar scatter centers from different parts of the moving hand,
multipath interactions, occlusion, environmental noise, and
instances where the SNR is too low.

Therefore, we design an LSTM network that effectively
learns to map the temporal dynamics of radar data to the spatial
coordinates of hands tracked by MediaPipe while correcting
for any outlier scattering centers [9]. Fig.6(a) illustrates the

training phase of our proposed deep learning architecture,
comprising five layers. The first layer consists of 128 LSTM
nodes, the fourth layer has 64 LSTM nodes, and the final
output layer has two densely connected nodes mapped to
normalized x̃ and ỹ positions of the ground truth.

During the training process, the LSTM receives a sequence
of 10 radar frames as input, with each frame represented
as a vector of 4 values: [x, y, v, s], where x and y are
the normalized positions of the object from radar, v is the
detected velocity of that object, and s is the normalized
SNR value. Simultaneously, it is provided with ground truth
data from MediaPipe for each time step, encompassing true
position information. To synchronize radar and camera data
with varying frame rates, we adjust the timestamped vision
frames to match the constant frame rate of the radar system.

The LSTM excels at learning temporal patterns inherent
in sequential data, capturing dependencies and relationships
between radar measurements and ground truth. As it pro-
cesses the input data, the LSTM generates predictions for the
tracked scatterer’s state, incorporating estimates of position
and velocity. Subsequently, the network refines its predictions
through a comparison with ground truth data, adjusting internal
parameters during training to minimize disparities. This iter-
ative training involves backpropagation through time (BPTT)
to optimize the LSTM’s predictive accuracy.

Once trained, during the test phase (shown in Fig. 6b),
the LSTM demonstrates proficiency in generalizing to unseen
data, effectively serving as a tracking filter for estimating a
scatterer’s state based solely on the radar data.

III. EXPERIMENTAL IMPLEMENTATION

A simple experiment is conducted to assess the system’s
viability using the outlined methodology and design.

A. Data Collection Pipeline

To capture the pointing hand motion, the radar and vision
pipelines ran simultaneously in four sessions, each lasting
three minutes and collecting data at a consistent frame rate
of 30 fps. Processing of the data was carried out on a Lenovo
Laptop equipped with an Intel Core i7-7700HQ CPU, 32 GB
RAM, and Nvidia GTX 1050 GPU. The unique position of
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Parameter Value
Error in x̂ 2.8063 cm
Error in ŷ 2.2165 cm

TABLE II: Model Training and Loss

the single response object inside the ROI was extracted after
pre-processing, and the data was organized into sequences,
each comprising 10 frames. In total, 21,271 sequences, each
containing 10 frames, were generated for training the neural
network model.

The radar receiver array was strategically positioned to
ensure optimal vertical buffer space from the camera, capturing
gestures within an interaction space rectangle. The resulting
2D point cloud data, representing detected objects with x-y
coordinates, velocity, and Signal-to-Noise ratio (SNR), under-
went processing in Python. To ensure synchronized radar and
vision streams, a correction for a 70-frame lag at the start
of the radar sensor was implemented during alignment in
each session. Following alignment, spatial filtering, and data
centering, a region of interest (ROI) of 40cm x 30cm was
defined for interactions, with objects outside this ROI being
disregarded.

B. Network Training Parameter Settings

We empirically found the following parameter settings to
be the most effective- optimization with adaptive moment
estimation (ADAM) with an initial learning rate of of 0.001,
gradient decay factor of 0.9 and squared gradient decay factor
of 0.99. The learning rate is updated for every 200 epochs
with a batch size fixed to 32. We utilise TensorFlow on Google
Colaboratory with a Tesla T4 GPU to train our LSTM network
and employed mean squared error loss function for effective
model training.

C. Experimental Results and Analysis

We use 80% of the synchronized radar measurements and
camera measurements for training the LSTM network, reserv-
ing the remaining 20% for testing the model’s performance in
estimating the pointer location on the screen. The accuracies
of the resulting pointer location estimations are presented in
Table II. The outcomes reveal an error of 2.8 cm along the
horizontal axis and 2.21 cm along the vertical direction in the
pointer’s location estimation.

In regards to processing time, our model has a size of 2.31
MB on disk, comprising 380,290 model parameters. Signal
processing tasks were delegated to the microcontroller unit on
the radar evaluation module, capturing data at a frame rate
of 30 fps. Table III illustrates the total computational time
involved in the pre-processing and data preparation pipeline,
which is less than 0.4838 ms.

1) RF-Pointer Visualisations in 2D Space: To rigorously
assess the performance of the RF-Pointer, we conducted
additional experiments, visualizing the estimated pointer lo-
cation against the expected output gathered using MediaPipe.
Following the protocol specified in the previous section, we
present the comparison for a number of pointer trajectories.

Task Time duration (ms)
Digital Signal Processing (DSP) < 33.333

Data processing 0.4837
Model Prediction 0.0001457

Total (excluding DSP) 0.4838457

TABLE III: Latency per component

It’s important to note that in all figures, the blue solid
line represents the ground truth data, and the yellow cross
represents the pointer location predicted by the RF-Pointer
framework.

Figure 7 displays the experimental results for six different
sessions, each lasting 3 seconds. In the first two sessions, the
user performed two specific gestures: one involved drawing a
vertical line through the pointing finger, and the second gesture
required drawing a tick sign in front of the screen. The four
other gestures included random motions, which were simul-
taneously captured by the camera module for ground truth.
Across all sessions, we observe that the estimated RF pointer
location closely follows the dynamic path of the ground
truth trajectory for most of the time. However, there are also
some outliers, which could be eliminated using sophisticated
signal processing algorithms such as simple thresholding or
a focused Random Sample Consensus (RANSAC). As this is
a preliminary study, the implementation and comparison of
solutions for outliers are beyond the scope, and we leave this
aspect for subsequent works.

2) Performance Benchmarking: We performed a compar-
ative analysis of the proposed RF-Pointer and existing pose
detection methods such as RFPose3D and WiPose, presenting
the resulting estimation accuracies in Table IV. The results
indicate that RF-Pointer demonstrates superior hand tracking
accuracy. This improvement can be attributed to the fact that
RF-Pointer exclusively focuses on tracking hands, whereas
other methods concurrently track both hands and the entire
body pose. Given that our primary emphasis is on point-
ing applications, such as VR interactions and other Human-
Computer Interaction (HCI) interactions that specifically in-
volve hand movements, the emphasis on hand tracking is
justified. This focused approach not only yields good accuracy
but also provides room for further enhancements.

Model Average Error (mm) Hand Joints Error (mm)
WiPose 28.3 97.5

RFPose3D 36.7 150.5
RF-Pointer NA 25.1

TABLE IV: Performance benchmarking against WiPose and
RFPose3D for Joint Localisation Error

IV. CONCLUSIONS AND FUTURE WORK ON ADDRESSING
CHALLENGES

We demonstrate the efficacy of the RF-Pointer architecture
by achieving an average error rate of 2.5 cm in estimating the
pointer location on a digital screen. The RF-Pointer system not
only competes with leading technologies but also surpasses
pose estimation solutions. In contrast to methods reliant on
pre-defined gestures, our approach is trained on a dataset
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Qualitative results from a human performing different gestures with a pointing finger, (a) drawing a vertical line, (b)
drawing a tick sign, (c)-(f) some random trajectories. Note that pointer location is estimated based on only radar data. Ground
truth hand land-marker data is extracted using a camera module running MediaPipe Model.

comprising radar data with point cloud information, velocity,
and SNR features from various continuous gestures. Ground
truth data, essential for training, is obtained using an in-built
web camera running a pre-trained deep learning model from
Google’s MediaPipe Hand tracking library. The RF-Pointer
effectively mitigates environmental effects from the estimated
pointer location, enabling accurate tracking of human hands
across random gestures. Qualitative results further confirm
the accuracy, aligning radar-tracked trajectories with ground
truth data for diverse pointing gestures. The RF-Pointer shows
promise for seamless integration into VR and other Human-
Computer Interaction (HCI) systems, facilitating hands-free
interaction with screens. Nevertheless, we acknowledge the
limitations of our study and propose potential improvements
for future research.

1) Synchronization between the radar and camera sensors
was achieved through empirical observations and cor-
rections for data capture delays. However, addressing
synchronization challenges is crucial. In future work,
we will explore hardware triggering methods such as
master-slave configurations, external triggering sources,
or software synchronization based on timestamps and a
common clock source.

2) Our model was trained with a limited dataset captured
from a single human subject, indicating the need for
improved performance through training with more diverse
data to enhance the generalization capability of the entire
framework.

3) Ground truth data was captured using MediaPipe, which
may not always provide accurate data. To enhance ac-
curacy, future research will employ a more sophisticated
motion capture-based hand tracking system.
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