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Inference for New Environmental Contours
Using Extreme Value Analysis
Emma S. Simpson and Jonathan A. Tawn

Environmental contours are often used in engineering applications to describe risky
combinations of variables according to some definition of an exceedance probability.
These contours can be used to both understand multivariate extreme events in envi-
ronmental processes and mitigate against their effects, e.g. in the design of structures.
Such ideas are also useful in other disciplines, with the types of extreme events of inter-
est depending on the context. Despite clear connections with extreme value modelling,
much of this methodology has so far not been exploited in the estimation of environmen-
tal contours; in this work, we provide away to unify these areas.We focus on the bivariate
case, introducing two new definitions of environmental contours. We develop techniques
for their inference which exploit a non-standard radial and angular decomposition of the
variables, building on previous work for estimating limit sets. Specifically, we model the
upper tails of the radial distribution using a generalised Pareto distribution, with adapt-
able smoothing of the parameters of this distribution. Our methods work equally well for
asymptotically independent and asymptotically dependent variables, so do not require
us to distinguish between different joint tail forms. Simulations demonstrate reasonable
success of the estimation procedure, and we apply our approach to an air pollution data
set, which is of interest in the context of environmental impacts on health.

Supplementary materials accompanying this paper appear online.

Key Words: Bivariate extremes; Environmental contours; Generalised additive model;
Generalised Pareto distribution; Structure function.

1. INTRODUCTION

In environmental, engineering, financial and health contexts, it is the exposure to extreme
values of prevailing conditions that cause the most risk. When these prevailing conditions
relate to a univariate random variable, the extreme values correspond to observations from
either its lower or upper tail, depending on the context, e.g. human health responds dif-
ferently to cold weather or heatwaves, with such events being linked to respective tails of
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the temperature variable. When the prevailing conditions are described by a multivariate
random variable X ∈ R

d , for d ∈ N\{1}, there is still a need for the identification of sets of
variable combinations that are the ‘riskiest’, as judged for the given class of problems.

For such a set of risky combinations of X to be useful, a probability needs to be associated
with the set, where this probability is small given the rarity of the events of interest. Hence,
empirical methods to identify such sets are infeasible, as typically the probability will be
smaller than n−1, where n is the sample size. In the reverse set-up, any set in R

d is not
uniquely defined by the probability of its occurrence alone, so additional criteria need to
be imposed. These criteria could lead to sets being defined such that they have a small
probability of being exceeded, or by a contour of points representing the boundaries of
different regions, each with some specified shape and equal occurrence probabilities.

This paper aims to formalise these statements, in the case where X has a joint density
function fX , to provide an inference framework for extreme sets related to combinations
of X , which are typically called environmental contours; see discussion in the engineering
(Mackay andHaselsteiner 2021) and statistical (Hafver et al. 2022) literature. In engineering,
these contours are critical to the practical design of complex, multifaceted, structures that
need to withstand environmental multivariate extreme events (Huseby et al. 2015). Similar
ideas can be applied in environmental settings, e.g. to specify safety standards relating to
combinations of pollutants, for mitigation against a range of health issues, as used as the
motivating example in Heffernan and Tawn (2004), or in finance when studying risk across
portfolios with different combinations of investments (Poon et al. 2004; Castro-Camilo et al.
2018).

The key complication with identifying such risky combinations is the lack of a natural
ordering in multivariate problems. Barnett (1976) addressed this problem by identifying
four possible ordering strategies: componentwise maxima, concomitants, convex hulls and
structure variables. Subsequent extreme value theory and/or methodology has been devel-
oped for these four strategies in Tawn (1990); Ledford and Tawn (1998); Eddy and Gale
(1981), Brozius and de Haan (1987) and Davis et al. (1987); and Coles and Tawn (1994),
respectively. In the context of the convex hull, the asymptotic shape and number of points
contributing to the convex hull are studied, and links are drawn with multivariate extreme
value theory, but for environmental contours, interest lies additionally in events beyond the
observed data. In contrast, the recent study of a new basis for ordering, linked to the limiting
shape of a scaled sample cloud (Balkema et al. 2010; Nolde 2014; Nolde and Wadsworth
2022), seems to address these concerns.

For well-defined practical problems, it is the structure variable approach that is the most
relevant for identifying sets of risky values of X . Coles and Tawn (1994) present a sta-
tistical framework to study extremes of structure variables. For a d-dimensional vector
x = (x1, . . . , xd), they consider the structure function �(x) : Rd → R, which is entirely
determined by the context of the problem. For example,� could be the stress on an offshore
structure with x being wave height and wind speed at that structure. The function� captures
information about the impact under different values of x; as the value of � increases, the
severity of the impact also increases. Similarly, in a health context � could be the effect of
air pollutants on human lungs, with x representing levels of the different air pollutants. In
these contexts, interest lies in the probability of occurrence of large structure variables, i.e.
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Pr{�(X) > v} = Pr(X ∈ Av) =
∫
x∈Av

fX (x)dx, (1)

where Av = {x ∈ R
d : �(x) > v} is termed the failure region. If v is sufficiently large to

be above any observations of the univariate variable �(X), Bruun and Tawn (1998) show
that there are substantial advantages that can be achieved in estimating Pr{�(X) > v}
using a multivariate approach building out of the right hand side of expression (1), over
analysing univariate realisations of �(X); this is essentially because knowledge of the
structure function beyond the observations can be exploited. However, these findings are
subject to having a good inference method for multivariate joint tails, which is not always
straightforward. The method from Coles and Tawn (1994) only considered asymptotically
dependent models for fX , whereas Heffernan and Tawn (2004) and Wadsworth and Tawn
(2013) extended these models to also cover asymptotic independence, i.e. allowing for the
possibility that only some subsets of the components of X can be simultaneously extreme.

The structure variable approach provides an extreme set of risky combinations of X via
the set Av , with an associated joint probability p of occurrence given by (1). For a single
structure function�, then the boundary of the failure region gives the required environmental
contour, Cp := {x ∈ R

d : �(x) = vp}, where vp is the (1 − p)th quantile of the structure
function �. For structure functions of interest, Cp will be a connected subset of Rd and a
continuous function of p. As an illustration, consider the sub-class of this framework when
�(x) = mini=1,...,d(φi xi ) for known constants φi > 0 (i = 1, . . . , d), so interest lies in the
joint survivor function on a given ray determined by the φi constants. Here, the risky set is
Avp = {x ∈ R

d : xi > vp/φi , i = 1, . . . , d}, and Cp = {x ∈ R
d : mini=1,...,d(φi xi ) = vp}

is its lower boundary, so that Cp is continuous over Rd and changes smoothly with p.
However, the structure variable formulation is overly simplistic in practice as it assumes

that � is entirely known. To illustrate this, consider again the structure function �(x) =
�(x;φ) = mini=1,...,d(φi xi ), where φ = (φ1, . . . , φd) but now with the φi > 0 all
unknown. In this case, both Avp and Cp vary with φ as well as p. This means that either
additional criteria are needed to optimise φ, or a broader definition of an environmental
contour is required than one based on the approach of Coles and Tawn (1994) with known
�. For this particular class of structure function, when d = 2 and for a fixed probabil-
ity p, Murphy-Barltrop et al. (2023) estimate environmental contours corresponding to all
combinations of (x1(p), x2(p)) with Pr{X1 > x1(p), X2 > x2(p)} = p, i.e. the contour
of equal joint survivor functions. The fact that Murphy-Barltrop et al. (2023) need only
to find a two-dimensional solution, whereas our set up above suggested it should be three-
dimensional over (φ1, φ2, vp), illustrates that to get identifiability in our solutionwhen using
the �-approach, we need to impose that φ2 = 1 − φ1 and φ1, φ2 ∈ [0, 1], say.

There is a need for techniques to estimate environmental contours inmore general settings
than Murphy-Barltrop et al. (2023) and which scale better with dimension, as the following
examples illustrate. First, consider the scenario where �(x) = �(x;φ), for unknown φ,
occurs in an engineering design phase, e.g. for an oil rig. It is possible that the general
form of � is known from previous constructions, but that there are features of the design,
determined by φ, which are specific to the location of the oil rig. In this case, it is not
possible to evaluate �(x;φ) for all possible φ, as numerical evaluation of �(x;φ) can be
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computationally demanding. Similarly, in health risk assessments for air pollutants in setting
legal maximum levels, there are a range of structure functions to assess, i.e. �i (·;φi ) for
i ∈ I, where the set I corresponds to a collection of different health risks as a consequence
of the pollutants x.

Ross et al. (2020) and Haselsteiner et al. (2021) provide recent reviews on environmental
contours from an engineering perspective. The earliest methods in that literature go back to
the IFORM (Hasofer and Lind 1974; Winterstein et al. 1993), which is based on the implicit
assumption of a Gaussian copula and a range of approximations. Since then, there have
been a series of extensions to the definitions; these reduce the number and impact of various
assumptions in different ways. Such extensions include the direct sampling approach of
Huseby et al. (2013), the high density contour approach of Haselsteiner et al. (2017) and
the ISORM (Chai and Leira 2018), all of which are discussed in Mackay and Haselsteiner
(2021). If an environmental contour cannot be defined according to a known structure
function, there are a number of ways these ideas may be used and implemented in practice.
Critically, these will depend on the specific application and require knowledge from domain
experts, so that statisticians have only a limited role to play at such a stage. To illustrate this,
we return again to our engineering and air pollution motivating examples. In engineering
contexts, if environmental contours are derived at an initial design stage, then different
points on the contour can be used to test a range of possible structures and narrow down
the specification to a known structure function �; from here, the previously described
structure function approach could be used to finalise a specific design. In contrast, in health
contexts, practitioners may be able to identify the combinations of pollutants on the contour
of interest that are the most likely to lead to adverse health effects, possibly relating to a
range of different symptoms. Contours in this setting provide vital information about the
most likely dangerous combinations of air pollutants and so help guide the setting of new
environmental air quality standards.

Environmental contours can be seen as an application of multivariate extremes, yet they
have not been studied systematically from a methodological perspective. In multivariate
settings, statistical extreme value methods have primarily focused on dependence charac-
terisations and inference, rather than following this through to implications for practitioners.
For example, for any bivariate pair (Xi , X j ) ⊆ X , with i �= j , much focus is given to deter-
mining the value of

χi j = lim
u→1

Pr{FX j (X j ) > u | FXi (Xi ) > u} ∈ [0, 1], (2)

where FXi and FX j are the marginal distribution functions of Xi and X j , respectively.
When χi j > 0 (χi j = 0), the variables (Xi , X j ) are said to be asymptotically dependent
(asymptotically independent), respectively (Coles et al. 1999). The key difference between
these two forms of extremal dependence is that under asymptotic dependence (asymptotic
independence) it is possible (impossible) for both variables to take their largest values
simultaneously. The asymptotically independent limit can occur forwidely used dependence
models, such as for all Gaussian copulas with non-perfect dependence, and distinguishing
between these extremal dependence classes can be a non-trivial task in practice.
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Some previous progress has been made in deriving contours linked to multivariate
extreme value methods. Specifically, Cai et al. (2011) estimate equal joint density con-
tours in the tail of the joint distribution. However, they make restrictive assumptions about
the marginal and dependence structures; they assume multivariate regular variation, which
imposes identically distributed marginal distributions that must be heavy tailed, and that the
variables are either asymptotically dependent or completely independent, meaning more
general forms of asymptotic independence are excluded. Einmahl et al. (2013) also focus
on equal joint density contours, but select the contour such that the probability of X being
outside the contour is of a small target level. Although they allow different (though still
heavy tailed) marginal distributions, they also assume asymptotic dependence and condi-
tions such that the spectral measure is nonzero across all interior directional rays, for which
no practical test currently exists.

The current methods have the potential to be improved using more advanced statistical
techniques that can be applied in both asymptotic dependence and asymptotic independence
settings, and crucially, which remove the need to determine in advance whether the vari-
ables are asymptotically dependent. Extensions of these approaches should also remove the
restriction that the estimated contours must correspond to joint density contours. We aim to
address all three of these gaps in current methodology in this paper.

We introduce two new environmental contour definitions and provide procedures for their
estimation.We build on themethods of Simpson and Tawn (2022) for estimating the limiting
boundary shape of bivariate sample clouds under some appropriate scaling. Following the
strategy from copula modelling, where dependence features are considered separately to the
marginal distributions, we define our contours on a standardised scale, with the variables first
transformed to have common Laplace marginal distributions, and the resulting estimated
contours then back-transformed to the original margins.

We end our introduction with an overview of the paper. In Sect. 2, we introduce two
new environmental contour definitions and explain how the approach of Simpson and Tawn
(2022) is adapted to estimate these contours in Sect. 3. The results of a simulation study
are presented in Sect. 4, demonstrating across a range of examples that our estimation pro-
cedure provides contours are close to the truth, as well as being reasonably successful in
obtaining regions with the desired proportion (probability) of observations lying outside
them for within sample (out of sample) contours, respectively. An application to modelling
air pollution, considering differences in behaviour due to season, is presented in Sect. 5. We
conclude with a discussion in Sect. 6.

2. AN OUTLINE OF NEW CONTOUR DEFINITIONS

2.1. OVERVIEW OF THE STRATEGY

We make two key decisions when defining our new environmental contours. Firstly, we
work on a marginal Laplace scale, and secondly, the contours are defined in terms of radial–
angular coordinates. Before providing the contour definitions in Sect. 2.2, we discuss the
motivation for these two choices.
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It is common in the literature on both environmental contours andmultivariate extremes to
workon standardisedmargins. For instance,with the IFORM,one transforms to independent,
standard Gaussianmargins, before estimating a circular contour and then back-transforming
to the original marginal scale. In the theoretical work of Nolde and Wadsworth (2022) and
the methodological implementation of Simpson and Tawn (2022), standard exponential
margins are used, but this choice comes with the drawback of only being able to capture
positive dependence or independence. In order to additionally handle negative dependence,
as well as lower tails on the marginal scale, we define our contours for variables (XL ,YL)

having standard Laplace margins (Keef et al. 2013), i.e. with marginal distribution functions

FXL (z) = FYL (z) =
{

1
2 exp(z), z ≤ 0,

1 − 1
2 exp(−z), z > 0,

z ∈ R. (3)

As the Laplace marginal distribution has both upper and lower exponential tails, the prob-
abilistic structural relationship between (XL ,YL) is the same as between the associated
variables on exponential variables, i.e. (XE ,YE ), in the joint upper region. However, only
with Laplace margins do these relationships hold, in a similar form, when considering joint
tail regions involving both upper and lower tail events. So, the benefit of using Laplace over
exponential margins is that they automatically cover all joint tails in a unified way, whilst
being able to exploit existing theory derived using exponential variables.

In practice, as with the IFORM, we can apply a transformation to ensure the correct
margins as a preliminary step and then back-transform to obtain a contour on the original
marginal scale if required; this is discussed further in Sect. 3.We also demonstrate in Sect. 4.3
that estimation on a standardised Laplace scale has benefits over an equivalent approach
applied on the scale of the observed data.

The radial and angular components of (XL ,YL) are defined as

RL =
√
X2
L + Y 2

L > 0, WL = tan−1(YL/XL) ∈ (−π, π ],

respectively. Here, large values of RL can be thought of as corresponding to ‘extreme events’
in both the Laplace and original space, with the value of RL defining the level of extremity;
we exploit this in our contour definitions and estimation procedures. In particular, both
contours are defined in terms of quantiles of RL | (WL = w) with w ∈ (−π, π ], and this
polar coordinate setting allows us to treat WL as a covariate when modelling RL . This will
be achieved by exploiting methods from univariate extreme value analysis, with smoothing
over WL realised using the framework of generalised additive models.

Finally, the setting of Laplace margins and polar coordinates results in contours ‘centred’
on the marginal median values after back-transformation to the original scale. Even so,
parallels with the setting considered in Simpson and Tawn (2022) mean that much of their
methodology can be applied and extended here for estimation purposes, as discussed in
Sect. 3.
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2.2. CONTOUR DEFINITIONS

We obtain contours where the probability of lying outside these is p ∈ (0, 1), where in
our extreme setting p is taken to be small. The first contour type uses the same quantile
level for the radial variable across each angle, while the second allows the quantile level to
vary with the density of the angular component.
Contour definition 1 If the angular density fWL (w) exists, for w ∈ (−π, π ], define rp(w)

such that

Pr
{
RL > rp(w) | WL = w

} =
{
p, if fWL (w) > 0,

0, if fWL (w) = 0,
(4)

and the corresponding contour as C1p := {
rp(w) : w ∈ (−π, π ]}. It is straightforward to

show that the probability of lying outside the contour C1p is p, since

∫ π

−π

Pr
{
RL > rp(v)|WL = v

}
dFWL (v) = p

∫ π

−π

fWL (v)dv = p.

When only a subset of the joint tail region is of practical concern, the definition of C1p can
be adapted to reflect this. Specifically, in our Laplace marginal setting, interest may lie only
with extreme values of (XL ,YL) having angles WL ∈ � ⊂ (−π, π ]. For example, if only
the joint upper tail of both variables is of interest, we could consider � = [0, π/2]. In this
context, we suggest the contour C1p(�) := {

rp(w;�) : w ∈ �
}
, with rp(w;�) such that

Pr
{
RL > rp(w;�) | WL = w

} = p/Pr(WL ∈ �), for w ∈ �. As we are interested in �,
it follows that Pr(WL ∈ �) = ∫

�
fWL (v)dv > 0, and for WL ∈ �, the probability of lying

outside the contour C1p(�) is p.
Contour definition 2 Assume that fWL (w) > 0 for all w ∈ (−π, π ], define r∗

p(w) such
that

Pr
{
RL > r∗

p(w) | WL = w
}

= cp
max

{
fWL (w), p/(2π)

} , (5)

with the constant cp chosen so that the probability of lying outside the contour C2p :={
r∗
p(w) : w ∈ (−π, π ]

}
is p. This required value of cp is the solution to

∫ π

−π

Pr
{
RL > r∗

p(v)|WL = v
}
dFWL (v) = cp

∫ π

−π

fWL (v)

max
{
fWL (v), p/(2π)

}dv

= cp

∫ π

−π

min

{
1,

2π fWL (v)

p

}
dv = p.

That is,

cp = p

[∫ π

−π

min

{
1,

2π fWL (v)

p

}
dv

]−1

. (6)
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Figure 1. Examples of C1p (solid lines) and C2p (dashed) for the case of independence, two Gaussian
copulas and three bivariate extreme value copulas with logistic or asymmetric logistic models. For p ∈
{0.1, 0.05, 0.01, 0.005, 0.001}, the contours lie progressively further from (0, 0). The grey dashed lines show
XL = 0, YL = 0, YL = XL and YL = −XL .

The definition of C2p is chosen so that the probability of lying outside the contour is smaller
on angles where the density is larger. We cannot take fWL (w) as the denominator in the
right-hand side of (5), since cp would simplify to p/(2π), leading to the probability in (5)
being greater than 1 if fWL (w) < p/(2π), for any w ∈ (−π, π ]; see Section A of the
Supplementary Material. In the Supplementary Material, we also justify the choice to take
the scaling function as max

{
fWL (w), p/(2π)

}
. We note that as more extreme contours are

considered, i.e. as p → 0, scaling via the density only is recovered and cp ∼ p/(2π).

2.3. CONTOUR EXAMPLES

Figure 1 demonstrates our two new contour definitions at varying probability levels for
a range of copulas; their upper tail dependence features cover both asymptotic dependence
and asymptotic independence, as defined by limit (2). We first present examples for the
independence setting (case (i)) and two bivariate Gaussian copulas (cases (ii) and (iii)) with
correlation matrices having off-diagonal elements ρ = 0.25, 0.75, respectively. We then
consider some common bivariate extreme value distributions having copula function

C(u, v) = exp {−V (−1/ log u,−1/ log v)} , u, v ∈ [0, 1],

with the exponent measure V satisfying certain constraints; see Coles et al. (1999). The joint
distribution of the corresponding variables (XL ,YL) on standard Laplace scale is given by
FXL ,YL (x, y) = C

{
FXL (x), FYL (y)

}
, with FXL (x), FYL (y) defined as in (3). In Fig. 1,

examples (i) and (iv)–(vi) are all variants of the bivariate asymmetric logistic model of
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Tawn (1988), having exponent measure

V (x, y) = θ1

x
+ θ2

y
+

{(
1 − θ1

x

)1/α

+
(
1 − θ2

y

)1/α
}α

,

with x, y > 0, α ∈ (0, 1] and θ1, θ2 ∈ [0, 1]. Setting θ1 = θ2 = 1 gives independence,
as in case (i); case (iv) is the logistic model (Gumbel 1960), where θ1 = θ2 = 0; in case
(v), we set θ1 = 0 and θ2 = 0.5, leading to a mixture structure where XL can only be
large when YL is also large, but YL can be large independently of XL ; and in case (vi),
we take θ1 = θ2 = 0.5, which has features of both the independence and logistic models.
Where the value of α is relevant, i.e. in cases (iv)–(vi), its value controls the strength of
dependence in the upper tails and therefore the width of the pointed section along the upper-
right diagonal; the closer α is to zero, the narrower this section of the contour. Having
α ∈ (0, 1) corresponds to asymptotic dependence, as defined by limit (2), while α = 1
recovers complete independence.

The independence andGaussian examples all exhibit asymptotic independence in both the
upper and lower joint tails. In contrast, while cases (iv)–(vi) have asymptotic dependence
in their joint upper tails, they exhibit asymptotic independence in their joint lower tails.
Another commonly considered copula in extreme value analysis is the inverted logistic
model (Ledford and Tawn 1997); we note that such examples are not necessary here, since
working on Laplace margins means that the contours C1p and C2p for any inverted logistic
copula are equivalent to its logistic counterpart (i.e. where both have the same dependence
parameter α) up to a rotation about the origin.

For any copula and p, contours C1p and C2p differ due to the angular density fWL (w). For
the copulas in Fig. 1, plots of the fWL (w) values are shown in Fig. 2. For independence and
the Gaussian copula with ρ = 0.25, the range of values taken by fWL (w) for w ∈ (−π, π ]
is relatively small, meaning that C1p and C2p are quite similar. For the logistic model and
the Gaussian copula with ρ = 0.75, fWL (w) takes its largest values around w = π/4 and
w = −3π/4, meaning that C2p appears to be more stretched along the diagonal YL = XL

compared to C1p; this is also true of the two asymmetric logistic cases, but to a lesser extent.
The theory to derive contours such as those presented in Fig. 1, for (XL ,YL) having some
joint density fXL ,YL (x, y), is presented in Section B of the SupplementaryMaterial. We will
revisit these copula examples in Sect. 4, where we demonstrate the efficacy of our estimation
procedure.

3. CONTOUR ESTIMATION

3.1. OVERVIEW OF THE INFERENTIAL APPROACH AND OUR NEW CONTRIBUTION

We now introduce our approach to estimating the new contours C1p and C2p by adapting
the approach of Simpson and Tawn (2022), whose work focuses on limit sets, to allow for
inference of sub-asymptotic contours. We begin by outlining the main ways we adapt the
existing methodology for our new purpose. We then present our estimation approach for C1p
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and C2p in Sects. 3.2 and 3.3, respectively, before discussing tuning parameter selection in
Sect. 3.4 and marginal modelling in Sect. 3.5.

An important difference between this work and that of Simpson and Tawn (2022) is
that the latter considers variables having standard exponential marginal distributions, while
we work on standard Laplace scale. As mentioned in Sect. 2.1, this allows for positive and
negative associations between the variables, as well as flexibility in modelling both tails
of each marginal distribution. In exponential margins, the angular variable is restricted to
[0, π/2], whereas in LaplacemarginsWL ∈ (−π, π ]; since results at these endpoints should
coincide, we must now carefully consider the cyclic nature of the angular distribution in our
inferential procedure by updating our modelling choices to ensure this feature is preserved.

The definition of C2p in (5) depends on the value of the angular density fWL ; estimation of
this function was not previously required, but must be considered in the present work. The
cyclic nature of fWL (w) overw ∈ (−π, π ] is again a key feature that needs to be considered
in our estimation approach. In addition, having the exceedance probabilities in (5) depend
on fWL means that some of the radial quantiles required to estimate the contour may not be
‘extreme’; we must therefore introduce a way to estimate non-extreme radial quantiles (as
well as extreme ones) into our contour estimation procedure.

A final adaptation comes in the estimation of the marginal distributions. The results in
Simpson and Tawn (2022) only required contours estimated on exponential scale, whichwas
achieved via a rank transformation approach, but here we need to transform the estimated
contours on Laplace margins back to the original scale. Reversing the rank transformation
is not possible for extreme contours beyond the largest observed value in a one or both
margins. To overcome this, we now model each marginal distribution via a combination
of the empirical distribution function and generalised Pareto distributions in the upper and
lower tails, as outlined in Sect. 3.5.

3.2. ESTIMATION OF C1p
Parametric estimation of a contour C1p requires a model for RL | (WL = w) for each

w ∈ (−π, π ], from which we can extract high quantiles. Since we are interested in values
in the upper tail of the distribution of RL | (WL = w), a natural model is provided by the
generalised Pareto distribution (GPD) (Davison and Smith 1990). Following Simpson and
Tawn (2022), for eachw ∈ (−π, π ], and for RL exceeding some angle-dependent threshold
uw > 0, we propose to have

Pr (RL < r | RL > uw,WL = w) = 1 −
[
1 + ξ(w)

{
r − uw

σ(w)

}]−1/ξ(w)

+
, (7)

for x+ = max(x, 0), r > uw, σ(w) > 0 and ξ(w) ∈ R. Once an appropriate threshold
uw has been selected, and estimates σ̂ (w) and ξ̂ (w) of the scale and shape parameters have
been obtained, the value of rp(w) in (4) can be estimated by extracting the relevant quantile
of (7), namely
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r̂ p(w) = uw + σ̂ (w)

ξ̂ (w)

⎡
⎣

{
ζ̂u(w)

p

}ξ̂ (w)

− 1

⎤
⎦ , (8)

with ζ̂u(w) denoting an estimate of ζu(w) = Pr(R > uw | W = w), often taken to be empir-
ical. A corresponding estimate of the contour C1p is given by Ĉ1p := {

r̂ p(w) : w ∈ (−π, π ]}.
Applying the GPD requires us to select thresholds uw and derive estimates of σ(w)

and ξ(w) for w ∈ (−π, π ], using observations (rL ,1, wL ,1), . . . , (rL ,n, wL ,n) of (RL ,WL).
There will not be sufficiently many equal observations of any given w value to be able to
fit the generalised Pareto distribution in (7) directly for RL | (WL = w). Instead, following
Simpson and Tawn (2022) by assuming that the parameters uw, σ(w) and ξ(w) in (7) vary
smoothly with w, we employ a generalised additive modelling (GAM) framework, which
was adapted for use with the generalised Pareto distribution by Youngman (2019).

The thresholds uw are selected via quantile regression at some quantile level (1− pu)with
pu > p, i.e. such that ζ̂u(w) = pu for all w ∈ (−π, π ]. This is achieved by fitting an asym-
metric Laplace (Yu and Moyeed 2001) GAM to log RL , with cyclic P-splines (see Wood,
2017) used for the model parameters with WL as a covariate, before back-transforming to
obtain quantile estimates of RL .

For exceedances above the threshold function, we again propose using cyclic P-splines
for the parameter log σ(w). A spline approach could also be used to model ξ(w), but taking
this to be constant has shown to produce less variable estimates in our experiments, which
was also found bySimpson andTawn (2022);we therefore fix ξ(w) = ξ for allw ∈ (−π, π ].
Estimation for theGPD-GAMframework is carried out in theR packageevgam (Youngman
2020). Once all of these parameters have been calculated/estimated, equation (8) can again
be used to extract radial quantiles at the required level.

The degree of the splines used within this modelling framework can impact the success of
the approach. Following Simpson and Tawn (2022), we choose a spline degree d ∈ {1, 2, 3},
denoting the resulting radial quantile estimates by r̂ (d)

p (w), for w ∈ (−π, π ], in each case.
Choice of d is discussed further in Sect. 3.4, along with the selection of the other necessary
tuning parameters. Once the appropriate degree, denoted d∗, has been selected, our final

estimate of C1p is Ĉ1p :=
{
r̂ (d∗)
p (w) : w ∈ (−π, π ]

}
.

3.3. ESTIMATION OF C2p
The main difference between the definitions of C1p and C2p is that the latter requires radial

quantiles to be extracted at different probability levels, while for the former this level is
constant. This requires us to estimate the angular density fWL (w) and to take into account
that some of the quantiles required in (5) may fall below the GPD threshold, such that we
also require a model for non-extreme events.

We propose to use kernel density estimation for fWL (w). We have adapted the stan-
dard approach implemented in the density base function of R to account for WL

being cyclic. To enforce this cyclicity, we first use data {(wL ,1 − 2π), . . . , (wL ,n −
2π),wL ,1, . . . , wL ,n, (wL ,1 + 2π), . . . , (wL ,n + 2π)}, resulting in a kernel density esti-
mate f̂ ∗

WL
(w) over (−3π, 3π ]. We then take f̂WL (w) = 3 f̂ ∗

WL
(w) forw ∈ (−π, π ]. Default
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Figure 2. Angular density fWL (w) for each of the models in Fig. 1 (black). The red lines correspond to estimates
using our cyclic kernel density approach, for 100 different samples of size n = 10, 950.

selections of the kernel bandwidth often rely on the standard deviation of the observations,
but this will be affected by our choice to artificially replicate the data. Instead, we use the
approach of Sheather and Jones (1991), which is a non-default option in R, that appears to
workwell in our setting. Estimation of fWL (w) is demonstrated in Fig. 2 for the six examples
in Fig. 1.

The required probability in (5) can be calculated for any angle w by substituting f̂WL (w)

for fWL (w); the required scaling constant cp in (6) is calculated numerically. At any angle
where the required exceedance probability in (5) is less than the threshold exceedance
probability pu , the appropriate radial quantile can be extracted from the GPD-GAMmodel,
giving us an estimate r̂∗

p(w) of r∗
p(w). However, for exceedance probabilities greater than

pu , the GPD is not appropriate. At any such levels, we adopt the same quantile regression
model as for the threshold, using an asymmetric Laplace GAM for log RL | (WL = w) at
this quantile level, and extract the appropriate estimate r̂∗

p(w) of r∗
p(w). The overall estimate

of C2p is Ĉ2p :=
{
r̂∗
p(w) : w ∈ (−π, π ]

}
.

3.4. TUNING PARAMETER SELECTION

The estimation procedures introduced in Sects. 3.2 and 3.3 require the selection of several
tuning parameters: the threshold exceedance probability pu ; the number and location of
knots in the cyclic P-splines; and the degree of the basis functions. We now discuss each of
these choices in turn.

Simpson and Tawn (2022) propose to set pu = 0.5, and while this does seem to provide
quite a low choice for the threshold of the GPD, we have also found it to work well in our
setting (see Section C of the Supplementary Material for simulation results that support
this choice). We therefore adopt this as our default tuning parameter. The plots in Fig. 1
demonstrate that there are important angles in particular settings, which it may be wise
to consider when selecting spline knot locations. Under independence, the angles w ∈
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{−π/2, 0, π/2, π} correspond to the largest radial values on any given contour and the
contours also exhibit a pointed shape here. If we are to capture such features using splines,
it would be useful to have knots placed at these angles. For similar reasons, in the symmetric
models exhibiting positive asymptotic dependence (cases (ii) and (iv)), the angle w = π/4
is particularly important. Angles w ∈ {3π/4,−π/4,−3π/4} would also be important
under negative asymptotic dependence or asymptotic dependence with one variable large
while the other is small. All together, this suggests knots should be placed at all angles
w = −π + jπ/4, j = 1, . . . , 8. However, this is generally not a sufficient number of knots,
so we propose to add additional, equally spaced knots between these angles, so the knot
locations arew = −π +2 jπ/κ , j = 1, . . . , κ , with κ a multiple of eight; our default choice
is κ = 24.

For C1p, to choose the spline degree d∗, we again adopt the approach of Simpson and
Tawn (2022) to derive local estimates of rp(w) and use these to inform the value of d∗; the
procedure is summarised here. For a given anglew, a ‘local estimate’ is obtained by defining
a neighbourhood of radial values corresponding to the m nearest points to w. Maximum
likelihood estimation is then used to fit the generalised Pareto distribution in (7) using these
radial values. This is repeated over k angles w∗

j = −π + jπ/100, j = 1, . . . , k, with the
desired radial quantiles extracted and denoted by r̂ localp (w∗

1), . . . , r̂
local
p (w∗

k ). As in Simpson
and Tawn (2022), our default tuning parameter choices are m = 100 and k = 200. Figure1
shows that some contours have smooth, curved shapes, while others are quite ‘pointy’; this
suggests that in some cases, linear basis functions may be appropriate, while in others,
quadratic or cubic splines will perform better. We therefore estimate three different versions
of the quantiles in (8) via the GAM-GPD approach, using degree d = 1, 2, 3 basis functions
for both the log uw model and log σ(w). We denote the resulting estimates by r̂ (d)

p (w), for
w ∈ (−π, π ], d = 1, 2, 3. To select the spline degree, we find

d∗ = argmin
d=1,2,3

k∑
j=1

∣∣∣r̂ (d)
p (w∗

j ) − r̂ localp (w∗
j )

∣∣∣ ,

i.e. the choice of basis function degree that allows the estimates to be as close to the local
estimates as possible, but with the added benefit of smoothness in the resulting contour
estimate. An equivalent approach is used to choose the spline degree in the estimation of
C2p, but at angles where a non-extreme radial quantile is required, an empirical quantile is
used as the local estimate.

3.5. MARGINAL MODEL

We end by describing the approach used to transform the original margins to Laplace
scale. This is applied separately to each of the variables X and Y to obtain standard Laplace
margins XL and YL , from where the contour estimation procedure can be implemented. We
focus on the model for X in this section, but an analogous approach is used for Y . Supposing
that X has distribution function FX , transformation to Laplace scale can be achieved through
application of the probability integral transform, defining
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XL =
{
log {2FX (X)} , FX (X) ≤ 1/2,

− log [2{1 − FX (X)}] , FX (X) > 1/2,
(9)

so that the distribution function of XL is as in (3). In practice, the distribution of X is
unknown, so we use a combination of the empirical distribution function, denoted by F̃X ,
and generalised Pareto models for both tails. That is, for vL and vU denoting lower and
upper thresholds, respectively, we take

FX (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λL
{
1 + ξ L (vL−x)

σ L

}−1/ξ L

+ , x ≤ vL ,

F̃X (x), vL < x < vU ,

1 − λU
{
1 + ξU (x−vU )

σU

}−1/ξU

+ , x ≥ vU ,

(10)

where σ L > 0, σU > 0, ξ L ∈ R, ξU ∈ R, λL = Pr
(
X < vL

)
and λU = Pr

(
X > vU

)
.

This is the two-tailed extension of the marginal modelling approach presented by Coles and
Tawn (1991).

Model (10) requires the selection of two thresholds, which we choose such that λL =
λU = 0.05. More sophisticated threshold selection techniques are available (see Scarrott
andMacDonald (2012) for an overview, andWadsworth (2016) or Northrop et al. (2017) for
examples of recent developments), but we choose this approach for ease. Estimation of the
scale (σ L , σU ) and shape (ξ L , ξU ) parameters is carried out via maximum likelihood esti-
mation, as implemented in the R package ismev (Heffernan and Stephenson 2018). Once
all parameters in (10) are estimated, transformation (9) can be applied to each observation to
provide the marginal observations on Laplace scale. Inversion of the transformation is also
possible if the final results are required on the original scale; when inverting the empirical
distribution function, we linearly interpolate where values between available X observations
are required.

4. SIMULATION STUDY

4.1. OVERVIEW

Wenowdemonstrate howwell the inferential procedurewe introduced inSect. 3 estimates
the two types of contour defined in Sect. 2. We consider two scenarios: in Sect. 4.2, we work
directly with data on Laplace margins; in Sect. 4.3 we allow the data to have more general,
unknownmargins. In the latter case, we compare our approach of estimating the contours on
the transformed Laplace marginal scale before back transforming to the data scale, with an
equivalent approach applied directly on the original scale of the data, which we demonstrate
can lead to undesirable results.

Before presenting our results, we first detail the different tools and metrics that are used
in our simulation study. We assess our methods based on how well the true contours are
estimated, given data sampled from a range of different copula models (based on those
presented in Fig. 1). Throughout this section, we simulate data sets of size n = 10, 950
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(corresponding to a realistic scenario of daily observations over 30 years) and we use 100
replicates for each setting.

Our first strategy is to compare our estimated contours to the truth pictorially, allowing
us to assess the estimation procedures by eye. We formalise this assessment by using two
metrics for comparison. In the first, we count the number of points in the sample lying outside
the estimated contour, denoting this by n̂ p , so that the proportion of points outside the contour
is n̂ p/n.We thenquantify the relative error from p, the target contour exceedance probability,
to this empirical proportion by calculating the empirical relative error n̂ p/(np) − 1. When
n̂ p/(np) − 1 = 0, we have correctly recovered the true probability.

The empirical relative error measure is suitable when the exceedance level p and the
sample size n are such that a reasonable number of points is expected to lie outside the true
contour. To cover more extreme cases, we also adopt the symmetric difference metric �,
used by Einmahl et al. (2013), which measures the difference between a true contour C and
its estimate Ĉ via

C � Ĉ =
∫

{EC\EĈ}∪{EĈ\EC}
fX,Y (x, y)dxdy,

where EC denotes the set of (x, y) ∈ R that are more extreme than C, with EĈ defined
similarly, and fX,Y (x, y) is the joint density under the truemarginal and copula specification.
In our setting, we calculate this in Laplace space using the polar coordinates (RL ,WL)

with associated joint density fRL ,WL (r, w). Here, EĈ and EC are given by {(r, w) : r >

r̂(w),−π < w ≤ π} and {(r, w) : r > rtrue(w),−π < w ≤ π}, respectively, with r̂(w)

and rtrue(w) given implicitly by the forms of Ĉ and C, and

C � Ĉ =
∫ π

−π

∫ rmax(w)

rmin(w)

fRL ,WL (r, w)drdw

≈
k∑

i=1

(2π/k)
∫ rmax(−π+ 2π i

k )

rmin(−π+ 2π i
k )

fRL ,WL

(
r,−π + 2π i

k

)
dr, (11)

where rmin(w) = min{r̂(w), rtrue(w)} and rmax(w) = max{r̂(w), rtrue(w)}, for each
w ∈ (−π, π ]. Symmetric difference results for contours C1p and C2p can be deceptive when
comparing across different probability levels p. We instead present a scaled symmetric
difference, i.e. (C1p � Ĉ1p)/p for contour definition 1.

4.2. ESTIMATION ON LAPLACE MARGINS

Figure 3 shows visual assessments of our estimators where we have known Laplace
marginal distributions and the dependence structure is given by the six copula models shown
in Fig. 1, covering both asymptotic independence and asymptotic dependence examples
for the joint upper tail. Here, we produce estimates of C1p and C2p at probabilities p ∈
{0.1, 0.01, 0.001}. These plots show that our approach gives reasonably limited bias, but
with increasing variability as p decreases, i.e. as we extrapolate further into the tails of
the radial distributions at each angle. The performance appears to be equally good over all
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Figure 3. Top two rows: estimated contours Ĉ10.1 (purple), Ĉ10.01 (blue) and Ĉ10.001 (red) for 100 data sets sampled
under independence, from two Gaussian copulas, and from three bivariate extreme value copulas with logistic or
asymmetric logistic models. Bottom two rows: equivalent estimated contours Ĉ2p , p ∈ {0.1, 0.01, 0.001}. The true
contours are shown in black in all cases, for p = 0.1 (dotted lines), p = 0.01 (dashed lines) and p = 0.001 (solid
lines).

angles, for all six copulas and for both contour types. The methods pick up the contour
shape whether it is pointed on the diagonal, or more rounded and flat in that region, for
asymptotically dependent and asymptotically independent cases, respectively. The contours
that are estimated for the asymmetric logistic models are especially impressive, given their
very different levels of smoothness. The key to us achieving such flexibility comes from our
selection of appropriate degrees of smoothing in the splines of the GPD parameters.
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Figure 4. Boxplots of the empirical relative errors in the probability of lying outside the estimated contours Ĉ1p
(top row) and true contours C1p (bottom row) for 100 data sets sampled under independence (i), from a Gaussian
copula with ρ = 0.75 (iii), and from two bivariate extreme value copulas with a logistic (iv) or asymmetric logistic
(vi) model, with p ∈ {0.1, 0.01, 0.001}. Here, the numbering of the copulas is chosen to be consistent with Figs. 1,
2 and 3, but with cases (ii) and (v) omitted .

Figure 5. These boxplots are equivalent to those in Fig. 4, but for Ĉ2p .

For a subset of the estimated contours in Fig. 3, results for the empirical relative error
metric n̂ p/(np)−1 are presented in Figs. 4 and 5 for C1p and C2p, respectively. For clarity, we
omit results for one of the Gaussian copulas (case (ii)) and one of the asymmetric logistic
copulas (case (v)), but these are similar to those that are shown. Results are shown for both
the estimated and true contours, with the same simulated data sets used in each case. We
include these empirical relative errors for the truth to demonstrate the base level of sampling
variability for this metric; we cannot expect to improve on this level of performance with
the estimated contours. The empirical relative errors for the true contours naturally show no
bias but exhibit increasing variability with decreasing p.

In Figs. 4 and 5, there is no discernible difference between the performance of our esti-
mators across the two different contour types, indicating that the additional complexity of
estimating the angular density in C2p does not appear to have had an adverse effect. The
performance, as judged by this metric, is very similar across the copula choices, with no
evidence that contours for complex copulas are any more difficult to estimate than for the
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Figure 6. Boxplots of the scaled symmetric difference (C1p � Ĉ1p)/p for 100 data sets sampled under independence
(i), from two Gaussian copulas (ii-iii), and from three bivariate extreme value copulas with logistic or asymmetric
logistic models (iv-vi), with p ∈ {0.1, 0.01, 0.001}. We used k = 800 in (11).

independence copula. Our estimation procedure is generally successful and unbiased, partic-
ularly for the p = 0.1 and p = 0.01 contours. For further extrapolation, i.e. the p = 0.001
contours, the empirical relative errors tend to be positive, but are less than one, suggesting
the bias is small. Importantly, over all combinations of copula, p and contour type, the
variability of the empirical relative error for our estimated contours is similar to that of the
true contours, indicating that much of the variability in our estimators is due to sampling
variability rather than from our inference.

With a larger sample size, wewould expect improved contour estimates for the p = 0.001
cases, but we can see from the results for the true contour that given this sample size, the
empirical relative errormetric has limitations at such small levels of p. In Fig. 6, we therefore
present a scaled symmetric difference (C1p � Ĉ1p)/p for p ∈ {0.1, 0.01, 0.001}. We only
show results for the contour C1p, given the similarity of results for the contour types seen
in Figs. 4 and 5. Although the symmetric differences naturally decrease with decreasing
p, the scaled versions instead increase, in a similar pattern to the empirical relative errors.
However, for the smallest p, they reveal that the asymmetric logistic with α = 0.25 has the
most difficult contour to estimate of the copulas we have considered, with both the largest
mean and variance in the scaled symmetric differences over replicated samples.

4.3. ESTIMATION ON ORIGINAL MARGINS

A natural question is why we choose to define the contours on Laplace scale rather
than considering (X,Y ) as generic random variables, and defining the polar coordinates as
R = √

X2 + Y 2 andW = tan−1(Y/X) to construct the corresponding contours directly on
the original (X,Y ) scale. We considered this approach during development of this work, but
found it often didn’t work well, particularly when the dependence exhibited some mixture
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Figure 7. Left: example of data simulated from a bivariate extreme value copula with an asymmetric model,
where X and Y have marginal GEV distributions with −0.1 and +0.1 shape parameters, respectively. Centre: 100
examples of contour estimates analogous to C10.01 but having polar coordinates defined on the original (X, Y ) scale.

Right: 100 examples of contour estimates of C10.01 calculated on Laplace margins and then transformed back to
the original (X, Y ) scale.

structure (e.g. in the asymmetric logistic model). We now provide additional simulations to
demonstrate this issue.

One issuewhenworking on the general (X,Y ) scale is that the variables do not necessarily
have a natural centre at (0, 0), as they do in theLaplace case. To overcome this,we considered
defining the marginal medians as mX and mY for X and Y , respectively, and the polar
coordinates as

R =
√

(X − mX )2 + (Y − mY )2, W = tan−1
{
Y − mY

X − mX

}
.

Contours can be defined analogously to C1p and C2p, but using these radial-angular coordi-
nates. Estimation can be carried out in a similar way to the approach described in Sect. 3,
but with mX and mY added marginally to the resulting contour estimates as a final step, to
obtain a contour centred on (mX ,mY ).

Figure 7 presents results for the asymmetric logistic copula model from case (iv) of
Fig. 1 with margins following generalised extreme value (GEV) distributions. For X , the
GEV location, scale and shape parameters are (0, 1,−0.1), and for Y they are (0, 1, 0.1),
so Y has the heavier upper tail. In Fig. 7, we show a sample of size n = 10, 950 from this
model, as well as estimated contours at the 0.01 probability level from 100 samples of size
n, using both approaches. Visually, Fig. 7 clearly shows that the approach of transforming to
Laplace margins before estimating the contours gives more consistent results, and there is
no need to use the metrics introduced in Sect. 4.1 to see the distinct improvement using our
proposed method. Specifically, our method is better at identifying the non-convex shape of
the distribution. For these reasons, we prefer to define and estimate the contours on Laplace
scale.



E. S. Simpson, J. A. Tawn

Figure 8. Estimates of C1p (top row) and C2p (bottom row) for nitric oxide and PM10 across the full year (left),
summer only (centre) andwinter only (right). Estimated contours (solid lines) are shown for p ∈ {0.1, 0.01, 0.001},
lying progressively further from (0, 0), alongside pointwise 95% bootstrapped confidence intervals (dotted lines).
The grey points represent the data in each case.

5. AIR POLLUTION APPLICATION

We now apply our approach to air pollution data collected at a site in Bloomsbury, Lon-
don, between 1 January 1993 and 31 December 2020. These data were provided by the
Department for Environment Food and Rural Affairs (Defra) and are available to download
from https://uk-air.defra.gov.uk,1.We focus on dailymaximum concentrations for two com-
ponents of air pollution (nitric oxide NO and particulate matter PM10) for the full year and
also for summer (June, July, August) and winter (December, January, February) seasons.
Values in the data set are rounded to the nearest whole number, so we add random noise
simulated independently from a Uniform(−0.5, 0.5) distribution (or Uniform(0, 0.5) if the
value is zero, to preserve non-negativity of concentration) to each observation, to mitigate
issues with over-rounding. Approximately 9% of the NO values and 10% of the PM10 values
are missing; we assume that they are missing at random and proceed with estimating our
contours. Retaining only those instances where both pollutants are available leaves us with
8,865 complete observations.

In Fig. 8, we present our estimated contours Ĉ1p and Ĉ2p for p ∈ {0.1, 0.01, 0.001}, using
data from each of the three time periods (full year, summer, winter). The results are shown
on Laplace scale, with the marginal transformations applied separately in each time period.
We also provide pointwise 95% confidence intervals for the estimated radial quantiles at
each angular value. This uncertainty is quantified using 200 bootstrapped samples via the
block bootstrap scheme of Politis and Romano (1994); the samples are taken from the data

1© Crown copyright 2021 Defra via uk-air.defra.gov.uk licensed under the Open Government Licence.

https://uk-air.defra.gov.uk
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Figure 9. Data, estimated contours and confidence intervals from Fig. 8 shown after back-transformation to the
original margins of the data.

after transformation to Laplace margins with the missing values retained. As the time series
of NO and PM10 observations both exhibit strong auto-correlation, we fix the average block-
length in the bootstrapping procedure to be 14 in all cases. Carrying out bootstrapping after
marginal transformation means that only uncertainty in the dependence features is taken
into account in the confidence intervals, but allows for equivalent contours and confidence
intervals to be obtained on the original scale by reversing the marginal transformations;
these results are given in Fig. 9.

From Figs. 8 and 9, we can see that the dependence properties of the data vary between
season. In particular, there is much stronger extremal dependence in both the upper and
lower tails of NO and PM10 in the winter than in the summer; this feature is visible in the
data and successfully captured by our contour estimates. Further, our contours are able to
capture the mixture of dependence features that is present when considering data for the full
year. The maximum value across NO concentrations is 336 in summer and 1251 in winter,
while PM10 has a smaller variation between seasons, with a maximum of 399 in summer
and 243 in winter. Since the winter months dominate the upper tail of the NO values, the
feature from the summer months that NO can be large while PM10 takes values close to its
median is obscured when considering data across the full year. On the other hand, features
corresponding to the upper tail of PM10 in both summer and winter are preserved when
considering the full year, i.e. NO and PM10 can be simultaneously large but PM10 can also
be large when NO takes values around its median.

Focusing only on the separate summer and winter plots in Fig. 9, we now consider the
implications that these estimated environmental contours have for potentially setting envi-
ronmental controls. Given that large values of each pollutant have impacts on health, the key
segments of the environmental contours in this case are where either of PM10 and NO are
large. Large values of NO only occur in winter, whereas very similar large levels of PM10



E. S. Simpson, J. A. Tawn

occur in both seasons, so if there are implications on health from jointly large values of these
two pollutants, winter is the period of most risk. However, it is these segments of the envi-
ronmental contours that are most uncertain, particularly in winter, with approximate 95%
confidence intervals differing up to±25% from the point estimates, evenwithout accounting
for the marginal estimation uncertainty. For these two pollutants, there are relatively small
differences in the estimates of the two different environmental contours in the key segments;
this is due to the angular distributions on Laplace margins being reasonably uniform here.
Here, we have focused on the contour C1p but equally, given interest in large values of the
pollutants, we could have focused instead on the contour C1p([0, π/2]) proposed in Sect. 2.2.

Having estimated the environmental contours, contributions fromdomain experts are now
essential. Although in this pollutant example they may not have a formally defined structure
function, they should be able to identify combinations of pollutants on the contours that
are the most likely to lead to adverse health effects, possibly relating to a range of different
symptoms. Likewise, the pollutant regulatory bodies can use this information to see if certain
combinations of pollutants they have concerns about are likely to occur too often. If this is
the case, they could look to set new control limits, or aim to remove or reduce the sources
of these air pollutants so that future extreme combination levels are lowered.

6. DISCUSSION

In some application areas, there may be only a subset of anglesWL that are of interest. If
thiswere the case, the contour definitions couldbe adapted toonly consider radial exceedance
probabilities for angles in a subset of (−π, π ]. The estimation procedure we present could
still be used, but with radial quantiles at a different set of levels extracted from the final
estimates.

An area where our approach could be improved is in the construction of the splines
used in the GPD threshold model and log-scale parameter. We use basis functions of the
same degree across all knots, with this degree chosen as described in Sect. 3, irrespective of
whether the copula is asymptotically independent or asymptotically dependent. However,
in some cases, it may be more appropriate to allow different types of basis function at
different knots. An example of this is the asymptotically dependent logistic model, where
in case (ii) of Fig. 1, we can see that the contours are ‘pointy’ in the upper-right quadrant (so
that linear basis functions may be more appropriate) and smooth in the lower-left quadrant
(so that quadratic or cubic basis functions may perform better). Considering such bespoke
spline constructions would add a significant level of complexity to our modelling procedure,
so we did not pursue this idea here, but it does present a possible avenue for future work.
Critically, our proposedmethod does not require us to pre-specify whether or not the copulas
are asymptotically dependent, and this is a feature that it would be desirable to retain in any
extension of the methodology.

Although the primary motivation for developing these novel environmental contours
was for applications to engineering safety design and for setting environmental standards,
an alternative potential use for these methods is in bivariate outlier or anomaly detection. Of
course, multivariate outlier detection is a very widely studied topic, which goes well beyond
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simply using extreme value methods (see, for example, Hubert et al. 2015), although they
are highly relevant for some problems (Dupuis and Morgenthaler 2002). Unlike the latter
paper, we use univariate extreme value methods without needing to adopt a copula model, so
adapting our approach to the anomaly detection settingmay have the advantage of additional
flexibility over existing methods.

We have focused on developing methodology for estimating bivariate contours, but the
contour definitions can be extended to higher dimensions.With more than three dimensions,
visualising the contours is impossible, and care would be needed to present the results in a
usable format that offers easy interpretation. An option may be to project the contours onto
lower dimensional subsets of interest.

Finally, the approach we have taken in this paper involves a combination of extending
previous work related to limit set estimation and gauge functions (Simpson and Tawn 2022),
and exploiting an alternative radial-angular representation for a given, common marginal
distribution (here, Laplace). This appears to be a profitable line of future research; specifi-
cally, while our paper has been in the review process, two independently developed papers
(Mackay and Jonathan 2023; Papastathopoulos et al. 2023) have been uploaded to arXiv
that consider aspects linked to these strategies, though with different objectives.

SUPPLEMENTARYMATERIAL

Online supplementarymaterial providesmathematical details to support themethodology
presented in this paper and additional simulation results to assess sensitivity to threshold
choice.
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