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Abstract: When confronted with massive data streams, summarizing data with dimension reduction
methods such as PCA raises theoretical and algorithmic pitfalls. A principal curve acts as a nonlinear
generalization of PCA, and the present paper proposes a novel algorithm to automatically and
sequentially learn principal curves from data streams. We show that our procedure is supported
by regret bounds with optimal sublinear remainder terms. A greedy local search implementation
(called slpc, for sequential learning principal curves) that incorporates both sleeping experts and
multi-armed bandit ingredients is presented, along with its regret computation and performance on
synthetic and real-life data.

Keywords: sequential learning; principal curves; data streams; regret bounds; greedy algorithm;
sleeping experts

1. Introduction

Numerous methods have been proposed in the statistics and machine learning litera-
ture to sum up information and represent data by condensed and simpler-to-understand
quantities. Among those methods, principal component analysis (PCA) aims at identifying
the maximal variance axes of data. This serves as a way to represent data in a more compact
fashion and hopefully reveal as well as possible their variability. PCA was introduced
by [1,2] and further developed by [3]. This is one of the most widely used procedures
in multivariate exploratory analysis targeting dimension reduction or feature extraction.
Nonetheless, PCA is a linear procedure and the need for more sophisticated nonlinear tech-
niques has led to the notion of principal curve. Principal curves may be seen as a nonlinear
generalization of the first principal component. The goal is to obtain a curve which passes
“in the middle” of data, as illustrated by Figure 1. This notion of skeletonization of data
clouds has been at the heart of numerous applications in many different domains, such as
physics [4,5], character and speech recognition [6,7], mapping and geology [5,8,9], to name
but a few.

Figure 1. A principal curve.

1.1. Earlier Works on Principal Curves

The original definition of principal curve dates back to [10]. A principal curve is a
smooth (C∞) parameterized curve f(s) = ( f1(s), . . . , fd(s)) in Rd which does not intersect
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itself, has finite length inside any bounded subset of Rd and is self-consistent. This last
requirement means that f(s) = E[X|sf(X) = s], where X ∈ Rd is a random vector and
the so-called projection index sf(x) is the largest real number s minimizing the squared
Euclidean distance between f(s) and x, defined by

sf(x) = sup
{

s : ‖x− f(s)‖2
2 = inf

τ
‖x− f(τ)‖2

2

}
.

Self-consistency means that each point of f is the average (under the distribution of X) of
all data points projected on f, as illustrated by Figure 2.

Figure 2. A principal curve and projections of data onto it.

However, an unfortunate consequence of this definition is that the existence is not
guaranteed in general for a particular distribution, let alone for an online sequence for
which no probabilistic assumption is made. In order to handle complex data structures,
Ref. [11] proposed principal curves (PCOP) of principal oriented points (POPs) which are
defined as the fixed points of an expectation function of points projected to a hyperplane
minimising the total variance. To obtain POPs, a cluster analysis is performed on the
hyperplane and only data in the local cluster are considered. Ref. [12] introduced the
local principal curve (LPC), whose concept is similar to that of [11], but accelerates the
computation of POPs by calculating local centers of mass instead of performing cluster
analysis, and local principal component instead of principal direction. Later, Ref. [13]
also considered LPC in data compression and regression to reduce the dimension of
predictors space to low-dimension manifold. Ref. [14] extended the idea of localization
to independent component analysis (ICA) by proposing a local-to-global non-linear ICA
framework for visual and auditory signal. Ref. [15] considered principal curves from a
different perspective: as the ridge of a smooth probability density function (PDF) generating
dataset, where the ridges are collections of all points; the local gradient of a PDF is an
eigenvector of the local Hessian, and the eigenvalues corresponding to the remaining
eigenvectors are negative. To estimate principal curves based on this definition, the
subspace constrained mean shift (SCMS) algorithm was proposed. All the local methods
above require strong assumptions on the PDF, such as twice continuous differentiability,
which may prove challenging to be satisfied in the settings of online sequential data.
Ref. [16] proposed a new concept of principal curves which ensures its existence for a large
class of distributions. Principal curves f? are defined as the curves minimizing the expected
squared distance over a class FL of curves whose length is smaller than L > 0; namely,
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f? ∈ arg inf
f∈FL

∆(f),

where
∆(f) = E[∆(f, X)] = E

[
inf

s
‖f(s)− X‖2

2

]
.

If E‖X‖2
2 < ∞, f? always exists but may not be unique. In practical situations where only

i.i.d. copies X1, . . . , Xn of X are observed, the method of [16] considers classes Fk,L of all
polygonal lines with k segments and length not exceeding L, and chooses an estimator f̂k,n
of f? as the one within Fk,L, which minimizes the empirical counterpart

∆n(f) =
1
n

n

∑
i=1

∆(f, Xi)

of ∆(f). It is proved in [17] that if X is almost surely bounded and k ∝ n1/3, then

∆
(

f̂k,n

)
− ∆(f?) = O

(
n−1/3

)
.

As the task of finding a polygonal line with k segments and length of at most L that mini-
mizes ∆n(f) is computationally costly, Ref. [17] proposed a polygonal line algorithm. This
iterative algorithm proceeds by fitting a polygonal line with k segments and considerably
speeds up the exploration part by resorting to gradient descent. The two steps (projection
and optimization) are similar to what is done by the k-means algorithm. However, the
polygonal line algorithm is not supported by theoretical bounds and leads to variable
performance depending on the distribution of the observations.

As the number of segments, k, plays a crucial role (a too small a k value leads to a poor
summary of data, whereas a too-large k yields overfitting; see Figure 3), Ref. [18] aimed to
fill the gap by selecting an optimal k from both theoretical and practical perspectives.

(a) (b)

(c)

Figure 3. Principal curves with different numbers (k) of segments. (a) A too small k. (b) Right k. (c) A
too large k.
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Their approach relies strongly on the theory of model selection by penalization intro-
duced by [19] and further developed by [20]. By considering countable classes {Fk,`}k,` of
polygonal lines with k segments and total length ` ≤ L, and whose vertices are on a lattice,
the optimal (k̂, ˆ̀) is obtained as the minimizer of the criterion

crit(k, `) = ∆n

(
f̂k,`

)
+ pen(k, `),

where

pen(k, `) = c0

√
k
n
+ c1

`

n
+ c2

1√
n
+ δ2

√
wk,`

2n

is a penalty function where δ stands for the diameter of observations and wk,` denotes
the weight attached to class Fk,`; and it has constants c0, c1, c2 depending on δ, maximum
length L and a certain number of dimensions of observations. Ref. [18] then proved that

E
[
∆(f̂k̂, ˆ̀)− ∆(f?)

]
≤ inf

k,`

{
E
[
∆(f̂k,`)− ∆(f?)

]
+ pen(k, `)

}
+

δ2Σ
23/2

√
π

n
, (1)

where Σ is a numerical constant. The expected loss of the final polygonal line f̂k̂, ˆ̀ is close to
the minimal loss achievable over Fk,` up to a remainder term decaying as 1/

√
n.

1.2. Motivation

The big data paradigm—where collecting, storing and analyzing massive amounts
of large and complex data becomes the new standard—commands one to revisit some of
the classical statistical and machine learning techniques. The tremendous improvements
of data acquisition infrastructures generates new continuous streams of data, rather than
batch datasets. This has drawn great interest to sequential learning. Extending the notion
of principal curves to the sequential settings opens up immediate practical application
possibilities. As an example, path planning for passengers’ locations can help taxi compa-
nies to better optimize their fleet. Online algorithms that could yield instantaneous path
summarization would be adapted to the sequential nature of geolocalized data. Existing
theoretical works and practical implementations of principal curves are designed for the
batch setting [7,16–18,21] and their adaptation to the sequential setting is not a smooth
process. As an example, consider the algorithm in [18]. It is assumed that vertices of
principal curves are located on a lattice, and its computational complexity is of order
O(nNp) where n is the number of observations, N the number of points on the lattice and
p the maximum number of vertices. When p is large, running this algorithm at each epoch
yields a monumental computational cost. In general, if data are not identically distributed
or even adversary, algorithms that originally worked well in the batch setting may not be
ideal when cast onto the online setting (see [22], Chapter 4). To the best of our knowledge,
little effort has been put so far into extending principal curves algorithms to the sequential
context.

Ref. [23] provided an incremental version of the SCMS algorithm [15] which is
based on a definition of a principal curve as the ridge of a smooth probability density
function generating observations. They applied the SCMS algorithm to the input points
that are associated with the output points which are close to the new incoming sample
and leave the remaining outputs unchanged. Hence, this algorithm can be used to deal
with sequential data. As presented in the next section, our algorithm for sequentially
updating principal curve vertices that are close to new data is similar in spirit to that of
incremental SCMS. However, a difference is that our algorithm outputs polygonal lines. In
addition, the computation complexity of our method is O(n2), and incremental SCMS has
O(n3) complexity, where n is the number of observations. Ref. [24] considered sequential
principal curves analysis in a fairly different setting in which the goal was to derive in an
adaptive fashion a set of nonlinear sensors by using a set of preliminary principal curves.
Unfolding sequentially principal curves and a sequential path for Jacobian integration were
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considered. The “sequential” in this setting represented the generalization of principal
curves to principal surfaces or even a principal manifold of higher dimensions. This way
of sequentially exploiting principal curves was firstly proposed by [11] and later extended
by [14,25,26] to give curvilinear representations using sequence of local-to-global curves. In
addition, Refs. [15,27,28] presented, respectively, principal polynomial and non-parametric
regressions to capture the nonlinear nature of data. However, these methods are not
originally designed for treating sequential data. The present paper aims at filling this
gap: our goal was to propose an online perspective to principal curves by automatically
and sequentially learning the best principal curve summarizing a data stream. Sequential
learning takes advantage of the latest collected (set of) observations and therefore suffers a
much smaller computational cost.

Sequential learning operates as follows: a blackbox reveals at each time t some
deterministic value xt, t = 1, 2, . . . , and a forecaster attempts to predict sequentially the
next value based on past observations (and possibly other available information). The
performance of the forecaster is no longer evaluated by its generalization error (as in
the batch setting) but rather by a regret bound which quantifies the cumulative loss of a
forecaster in the first T rounds with respect to some reference minimal loss. In sequential
learning, the velocity of algorithms may be favored over statistical precision. An immediate
use of aforecited techniques [17,18,21] at each time round t (treating data collected until t
as a batch dataset) would result in a monumental algorithmic cost. Rather, we propose a
novel algorithm which adapts to the sequential nature of data, i.e., which takes advantage
of previous computations.

The contributions of the present paper are twofold. We first propose a sequential
principal curve algorithm, for which we derived regret bounds. We then present an
implementation, illustrated on a toy dataset and a real-life dataset (seismic data). The
sketch of our algorithm’s procedure is as follows. At each time round t, the number of
segments of kt is chosen automatically and the number of segments kt+1 in the next round
is obtained by only using information about kt and a small number of past observations.
The core of our procedure relies on computing a quantity which is linked to the mode of
the so-called Gibbs quasi-posterior and is inspired by quasi-Bayesian learning. The use
of quasi-Bayesian estimators is especially advocated by the PAC-Bayesian theory, which
originated in the machine learning community in the late 1990s, in the seminal works
of [29] and McAllester [30,31]. The PAC-Bayesian theory has been successfully adapted
to sequential learning problems; see, for example, Ref. [32] for online clustering. We refer
to [33,34] for a recent overview of the field.

The paper is organized as follows. Section 2 presents our notation and our online
principal curve algorithm, for which we provide regret bounds with sublinear remainder
terms in Section 3. A practical implementation was proposed in Section 4, and we illustrate
its performance on synthetic and real-life datasets in Section 5. Proofs of all original results
claimed in the paper are collected in Section 6.

2. Notation

A parameterized curve in Rd is a continuous function f : I −→ Rd where I = [a, b] is
a closed interval of the real line. The length of f is given by

L(f) = lim
M→∞

{
sup

a=s0<s1<···<sM=b

M

∑
i=1
‖f(si)− f(si−1)‖2

}
.

Let x1, x2, . . . , xT ∈ B(0,
√

dR) ⊂ Rd be a sequence of data, where B(c, R) stands for the
`2-ball centered in c ∈ Rd with radius R > 0. Let Qδ be a grid over B(0,

√
dR), i.e.,

Qδ = B(0,
√

dR) ∩ Γδ where Γδ is a lattice in Rd with spacing δ > 0. Let L > 0 and define
for each k ∈ J1, pK the collection Fk,L of polygonal lines f with k segments whose vertices
are in Qδ and such that L(f) ≤ L. Denote by Fp = ∪p

k=1Fk,L all polygonal lines with a
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number of segments ≤ p, whose vertices are in Qδ and whose length is at most L. Finally,
let K(f) denote the number of segments of f ∈ Fp. This strategy is illustrated by Figure 4.

Figure 4. An example of a lattice Γδ in R2 with δ = 1 (spacing between blue points) and B(0, 10)
(black circle). The red polygonal line is composed of vertices in Qδ = B(0, 10) ∩ Γδ.

Our goal is to learn a time-dependent polygonal line which passes through the “mid-
dle” of data and gives a summary of all available observations x1, . . . , xt−1 (denoted by
(xs)1:(t−1) hereafter) before time t. Our output at time t is a polygonal line f̂t ∈ Fp depend-
ing on past information (xs)1:(t−1) and past predictions (f̂s)1:(t−1). When xt is revealed, the
instantaneous loss at time t is computed as

∆
(

f̂t, xt

)
= inf

s∈I
‖f̂t(s)− xt‖2

2. (2)

In what follows, we investigate regret bounds for the cumulative loss based on (2). Given
a measurable space Θ (embedded with its Borel σ-algebra), we let P(Θ) denote the set of
probability distributions on Θ, and for some reference measure π, we let Pπ(Θ) be the set
of probability distributions absolutely continuous with respect to π.

For any k ∈ J1, pK, let πk denote a probability distribution on Fk,L. We define the prior
π on Fp = ∪p

k=1Fk,L as

π(f) = ∑
k∈J1,pK

wkπk(f)1{f∈Fk,L}, f ∈ Fp,

where w1, . . . , wp ≥ 0 and ∑k∈J1,pK wk = 1.
We adopt a quasi-Bayesian-flavored procedure: consider the Gibbs quasi-posterior

(note that this is not a proper posterior in all generality, hence the term “quasi”):

ρ̂t(·) ∝ exp(−λSt(·))π(·),

where
St(f) = St−1(f) + ∆(f, xt) +

λ

2
(
∆(f, xt)− ∆(f̂t, xt)

)2,

as advocated by [32,35] who then considered realizations from this quasi-posterior. In the
present paper, we will rather focus on a quantity linked to the mode of this quasi-posterior.
Indeed, the mode of the quasi-posterior ρ̂t+1 is

arg min
f∈Fp

{
t

∑
s=1

∆(f, xs)︸ ︷︷ ︸
(i)

+
λ

2

t

∑
s=1

(
∆(f, xt)− ∆(f̂t, xt)

)2

︸ ︷︷ ︸
(ii)

+
ln π(f)

λ︸ ︷︷ ︸
(iii)

}
,
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where (i) is a cumulative loss term, (ii) is a term controlling the variance of the prediction f
to past predictions f̂s, s ≤ t, and (iii) can be regarded as a penalty function on the complexity
of f if π is well chosen. This mode hence has a similar flavor to follow the best expert or
follow the perturbed leader in the setting of prediction with experts (see [22,36], Chapters 3
and 4) if we consider each f ∈ Fp as an expert which always delivers constant advice.
These remarks yield Algorithm 1.

Algorithm 1 Sequentially learning principal curves.

1: Input parameters: p > 0, η > 0, π(z) = e−z
1{z>0} and penalty function h : Fp → R+

2: Initialization: For each f ∈ Fp, draw zf ∼ π and ∆f,0 = 1
η (h(f)− zf)

3: For t = 1, . . . , T
4: Get the data xt
5: Obtain

f̂t = arg inf
f∈Fp

{
t−1

∑
s=0

∆f,s

}
,

where ∆f,s = ∆(f, xs), s ≥ 1.
6: End for

3. Regret Bounds for Sequential Learning of Principal Curves

We now present our main theoretical results.

Theorem 1. For any sequence (xt)1:T ∈ B(0,
√

dR), R ≥ 0 and any penalty function h : Fp →
R+, let π(z) = e−z

1{z>0}. Let 0 < η ≤ 1
d(2R+δ)2 ; then the procedure described in Algorithm 1

satisfies

T

∑
t=1

Eπ

[
∆(f̂t, xt)

]
≤ (1 + c0(e− 1)η)ST,h,η +

1
η

1 + ln ∑
f∈Fp

e−h(f)

,

where c0 = d(2R + δ)2 and

ST,h,η = inf
k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) +
h(f)

η

}.

The expectation of the cumulative loss of polygonal lines f̂1, . . . , f̂T is upper-bounded
by the smallest penalized cumulative loss over all k ∈ {1, . . . , p} up to a multiplicative
term (1 + c0(e− 1)η), which can be made arbitrarily close to 1 by choosing a small enough
η. However, this will lead to both a large h(f)/η in ST,h,η and a large 1

η (1+ ln ∑f∈Fp e−h(f)).
In addition, another important issue is the choice of the penalty function h. For each f ∈ Fp,
h(f) should be large enough to ensure a small ∑f∈Fp e−h(f), but not too large to avoid
overpenalization and a larger value for ST,h,η . We therefore set

h(f) ≥ ln(pe) + ln
∣∣∣∣{f ∈ Fp,K(f) = k}

∣∣∣∣ (3)

for each f with k segments (where |M| denotes the cardinality of a set M) since it leads to

∑
f∈Fp

e−h(f)) = ∑
k∈J1,pK

∑
f∈Fp

K(f)=k

e−h(f) ≤ ∑
k∈J1,pK

1
pe
≤ 1

e
.
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The penalty function h(f) = c1K(f) + c2L + c3 satisfies (3), where c1, c2, c3 are constants
depending on R, d, δ, p (this is proven in Lemma 3, in Section 6). We therefore obtain the
following corollary.

Corollary 1. Under the assumptions of Theorem 1, let

η = min

{
1

d(2R + δ)2 ,

√
c1 p + c2L + c3

c0(e− 1) inff∈Fp ∑T
t=1 ∆(f, xt)

}
.

Then

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ inf

k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) +
√

c0(e− 1)rT,k,L

}
+
√

c0(e− 1)rT,p,L + c0(e− 1)(c1 p + c2L + c3),

where rT,k,L = inff∈Fp ∑T
t=1 ∆(f, xt)(c1k + c2L + c3).

Proof. Note that

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ ST,h,η + ηc0(e− 1) inf

f∈Fp

T

∑
t=1

∆(f, xt) + c0(e− 1)(c0 p + c2L + c3),

and we conclude by setting

η =

√
c1 p + c2L + c3

c0(e− 1) inff∈Fp ∑T
t=1 ∆(f, xt)

.

Sadly, Corollary 1 is not of much practical use since the optimal value for η depends
on inff∈Fp ∑T

t=1 ∆(f, xt) which is obviously unknown, even more so at time t = 0. We
therefore provide an adaptive refinement of Algorithm 1 in the following Algorithm 2.

Algorithm 2 Sequentially and adaptively learning principal curves.

1: Input parameters: p > 0, L > 0, π, h and η0 =

√
c1 p+c2L+c3

c0
√

e−1

2: Initialization: For each f ∈ Fp, draw zf ∼ π, ∆f,0 = 1
η0
(h(f)− zf) and f̂0 = arg inf

f∈Fp

∆f,0

3: For t = 1, . . . , T

4: Compute ηt =

√
c1 p+c2L+c3

c0
√

(e−1)t

5: Get data xt and compute ∆f,t = ∆(f, xt) +
(

1
ηt
− 1

ηt−1

)
(h(f)− zf)

6: Obtain

f̂t = arg inf
f∈Fp

{
t−1

∑
s=0

∆f,s

}
. (4)

7: End for

Theorem 2. For any sequence (xt)1:T ∈ B(0,
√

dR), R ≥ 0, let h(f) = c1K(f) + c2L + c3 where
c1, c2, c3 are constants depending on R, d, δ, ln p. Let π(z) = e−z

1{z>0} and

η0 =

√
c1 p + c2L + c3

c0
√

e− 1
, ηt =

√
c1 p + c2L + c3

c0
√
(e− 1)t

,
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where t ≥ 1 and c0 = d(2R + δ)2. Then the procedure described in Algorithm 2 satisfies

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ inf

k∈J1,pK

{
inf

f∈Fp
K(f)=k

{ T

∑
t=1

∆(f, xt) + c0

√
(e− 1)T(c1k + c2L + c3)

}}

+ 2c0

√
(e− 1)T(c1 p + c2L + c3).

The message of this regret bound is that the expected cumulative loss of polygonal
lines f̂1, . . . , f̂T is upper-bounded by the minimal cumulative loss over all k ∈ {1, . . . , p},
up to an additive term which is sublinear in T. The actual magnitude of this remainder
term is

√
kT. When L is fixed, the number k of segments is a measure of complexity of the

retained polygonal line. This bound therefore yields the same magnitude as (1), which is
the most refined bound in the literature so far ([18] where the optimal values for k and L
were obtained in a model selection fashion).

4. Implementation

The argument of the infimum in Algorithm 2 is taken over Fp = ∪p
k=1Fk,L which has a

cardinality of order |Qδ|p, making any greedy search largely time-consuming. We instead
turn to the following strategy: Given a polygonal line f̂t ∈ Fkt ,L with kt segments, we
consider, with a certain proportion, the availability of f̂t+1 within a neighborhood U(f̂t)
(see the formal definition below) of f̂t. This consideration is well suited for the principal
curves setting, since if observation xt is close to f̂t, one can expect that the polygonal line
which well fits observations xs, s = 1, . . . , t lies in a neighborhood of f̂t. In addition, if each
polygonal line f is regarded as an action, we no longer assume that all actions are available
at all times, and allow the set of available actions to vary at each time. This is a model
known as “sleeping experts (or actions)” in prior work [37,38]. In this setting, defining
the regret with respect to the best action in the whole set of actions in hindsight remains
difficult, since that action might sometimes be unavailable. Hence, it is natural to define
the regret with respect to the best ranking of all actions in the hindsight according to their
losses or rewards, and at each round one chooses among the available actions by selecting
the one which ranks the highest. Ref. [38] introduced this notion of regret and studied both
the full-information (best action) and partial-information (multi-armed bandit) settings
with stochastic and adversarial rewards and adversarial action availability. They pointed
out that the EXP4 algorithm [37] attains the optimal regret in the adversarial rewards case
but has a runtime exponential in the number of all actions. Ref. [39] considered full and
partial information with stochastic action availability and proposed an algorithm that runs
in polynomial time. In what follows, we materialize our implementation by resorting
to “sleeping experts”, i.e., a special set of available actions that adapts to the setting of
principal curves.

Let σ denote an ordering of |Fp| actions, and At a subset of the available actions at
round t. We let σ(At) denote the highest ranked action in At. In addition, for any action
f ∈ Fp we define the reward rf,t of f at round t, t ≥ 0 by

rf,t = c0 − ∆(f, xt).

It is clear that rf,t ∈ (0, c0). The convention from losses to gains is done in order to facilitate
the subsequent performance analysis. The reward of an ordering σ is the cumulative
reward of the selected action at each time:

T

∑
t=1

rσ(At),t,

and the reward of the best ordering is maxσ ∑T
t=0 rσ(At),t (respectively, E

[
maxσ ∑T

t=1 rσ(At),t

]
when At is stochastic).
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Our procedure starts with a partition step which aims at identifying the “relevant”
neighborhood of an observation x ∈ Rd with respect to a given polygonal line, and then
proceeds with the definition of the neighborhood of an action f. We then provide the full
implementation and prove a regret bound.

Partition. For any polygonal line f with k segments, we denote by
⇀
V = (v1, . . . , vk+1)

its vertices and by si, i = 1, . . . , k the line segments connecting vi and vi+1. In the sequel,

we use f(
⇀
V) to represent the polygonal line formed by connecting consecutive vertices in

⇀
V if no confusion arises. Let Vi, i = 1, . . . , k + 1 and Si, i = 1, . . . , k be the Voronoi partitions
of Rd with respect to f, i.e., regions consisting of all points closer to vertex vi or segment si.
Figure 5 shows an example of Voronoi partition with respect to f with three segments.

Neighborhood. For any x ∈ Rd, we define the neighborhood N(x) with respect to f
as the union of all Voronoi partitions whose closure intersects with two vertices connecting
the projection f(sf(x)) of x to f. For example, for the point x in Figure 5, its neighborhood
N(x) is the union of S2, V3, S3 and V4. In addition, let Nt(x) = {xs ∈ N(x), s = 1, . . . , t.}
be the set of observations x1:t belonging to N(x) and N̄t(x) be its average. Let D(M) =
supx,y∈M ||x − y||2 denote the diameter of set M ⊂ Rd. We finally define the local grid

Qδ,t(x) of x ∈ Rd at time t as

Qδ,t(x) = B(N̄t(x),D(Nt(x)) ∩ Qδ.

Figure 5. An example of a Voronoi partition.

We can finally proceed to the definition of the neighborhood U(f̂t) of f̂t. Assume f̂t has

kt + 1 vertices
⇀
V = (v1:it−1︸ ︷︷ ︸

(i)

, vit :jt−1︸ ︷︷ ︸
(ii)

, vjt :kt+1︸ ︷︷ ︸
(iii)

), where vertices of (ii) belong to Qδ,t(xt) while

those of (i) and (iii) do not. The neighborhood U(f̂t) consists of f sharing vertices (i) and
(iii) with f̂t, but can be equipped with different vertices (ii) in Qδ,t(xt); i.e.,

U(f̂t) =

{
f(

⇀
V),

⇀
V =

(
v1:it−1, v1:m, vjt :kt+1

)}
,

where v1:m ∈ Qδ,t(xt) and m is given by

m =


jt − it − 1 reduce segments by 1 unit,
jt − it same number of segments,
jt − it + 1 increase segments by 1 unit.
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In Algorithm 3, we initiate the principal curve f̂1 as the first component line segment
whose vertices are the two farthest projections of data x1:t0 (t0 can be set to 20 in practice)
on the first component line. The reward of f at round t in this setting is therefore rf,t =
c0 − ∆(f, xt0+t). Algorithm 3 has an exploration phase (when It = 1) and an exploitation
phase (It = 0). In the exploration phase, it is allowed to observe rewards of all actions and
to choose an optimal perturbed action from the set Fp of all actions. In the exploitation
phase, only rewards of a part of actions can be accessed and rewards of others are estimated
by a constant, and we update our action from the neighborhood U

(
f̂t−1

)
of the previous

action f̂t−1. This local update (or search) greatly reduces computation complexity since
|U(f̂t−1)| �

∣∣Fp
∣∣when p is large. In addition, this local search will be enough to account for

the case when xt locates in U
(

f̂t−1

)
. The parameter β needs to be carefully calibrated since

it should not be too large to ensure that the condition cond(t) is non-empty; otherwise, all
rewards are estimated by the same constant and thus lead to the same descending ordering
of tuples for both

(
∑t−1

s=1 r̂f,s, f ∈ Fp

)
and

(
∑t

s=1 r̂f,s, f ∈ Fp
)
. Therefore, we may face the

risk of having f̂t+1 in the neighborhood of f̂t even if we are in the exploration phase at time
t + 1. Conversely, very small β could result in large bias for the estimation rf,t

P(f̂t=f|Ht)
of rf,t.

Note that the exploitation phase is close yet different to the label efficient prediction ([40],
Remark 1.1) since we allow an action at time t to be different from the previous one.
Ref. [41] proposed the geometric resampling method to estimate the conditional probability
P
(

f̂t = f|Ht

)
since this quantity often does not have an explicit form. However, due to the

simple exponential distribution of zf chosen in our case, an explicit form of P
(

f̂t = f|Ht

)
is straightforward.

Algorithm 3 A locally greedy algorithm for sequentially learning principal curves.

1: Input parameters: p > 0, R > 0, L > 0, ε > 0, α > 0, 1 > β > 0 and any penalty
function h

2: Initialization: Given (xt)1:t0 , obtain f̂1 as the first principal component
3: For t = 2, . . . , T
4: Draw It ∼ Bernoulli(ε) and zf ∼ π.
5: Let

σ̂t = sort

(
f,

t−1

∑
s=1

r̂f,s −
1

ηt−1
h(f) +

1
ηt−1

zf

)
,

i.e., sorting all f ∈ Fp in descending order according to their perturbed cumulative
reward till t− 1.

6: If It = 1, set At = Fp and f̂t = σ̂t(At) and observe rf̂t ,t
7:

r̂f,t = rf,t for f ∈ Fp.

8: If It = 0, set At = U(f̂t−1), f̂t = σ̂t(At) and observe rf̂t ,t
9:

r̂f,t =

{ rf,t
P(f̂t=f|Ht)

if f ∈ U(f̂t−1) ∩ cond(t) and f̂t = f,

α otherwise,

where Ht denotes all the randomness before time t and cond(t) ={
f ∈ Fp : P

(
f̂t = f|Ht

)
> β

}
. In particular, when t = 1, we set r̂f,1 = rf,1 for

all f ∈ Fp, U
(

f̂0

)
= ∅ and r̂σ̂1(U(f̂0)),1 ≡ 0.

10: End for
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Theorem 3. Assume that p > 6, T ≥ 2|Fp|2 and let β =
∣∣Fp
∣∣− 1

2 T−
1
4 , α = c0

β , ĉ0 = 2c0
β ,

ε = 1−
∣∣Fp
∣∣ 1

2−
3
p T−

1
4 and

η1 = η2 = · · · = ηT =

√
c1 p + c2L + c3√

T(e− 1)ĉ0
.

Then the procedure described in Algorithm 3 satisfies the regret bound

T

∑
t=1

E
[
∆
(

f̂t, xt

)]
≤ inf

f∈Fp
E
[

T

∑
t=1

∆(f, xt)

]
+O(T

3
4 ).

The proof of Theorem 3 is presented in Section 6. The regret is upper bounded by

a term of order
(∣∣Fp

∣∣ 1
2 T

3
4

)
, sublinear in T. The term (1 − ε)c0T = c0

∣∣Fp
∣∣ 1

2 T
3
4 is the

price to pay for the local search (with a proportion 1 − ε) of polygonal line f̂t in the
neighborhood of the previous f̂t−1. If ε = 1, we would have that ĉ0 = c0, and the last
two terms in the first inequality of Theorem 3 would vanish; hence, the upper bound
reduces to Theorem 2. In addition, our algorithm achieves an order that is smaller (from
the perspective of both the number

∣∣Fp
∣∣ of all actions and the total rounds T) than [39]

since at each time, the availability of actions for our algorithm can be either the whole
action set or a neighborhood of the previous action while [39] consider at each time only
partial and independent stochastic available set of actions generated from a predefined
distribution.

5. Numerical Experiments

We illustrate the performance of Algorithm 3 on synthetic and real-life data. Our
implementation (hereafter denoted by slpc—Sequential Learning of Principal Curves)
is conducted with the R language and thus our most natural competitors are the R
package princurve, which is the algorithm from [10], and incremental, which is the
algorithm from SCMS [23]. We let p = 50, R = maxt=1,...,T ||x||2/

√
d, L = 0.1p

√
dR. The

spacing δ of the lattice is adjusted with respect to data scale.
Synthetic data We generate a dataset

{
xt ∈ R2, t = 1, . . . , 500

}
uniformly along the

curve y = 0.05× (x− 5)3, x ∈ [0, 10]. Table 1 shows the regret (first row) for

• the ground truth (sum of squared distances of all points to the true curve),
• princurve and incremental SCMS (sum of squared distances between observation

xt+1 and fitted princurve on observations x1:t),
• slpc (regret being equal to ∑T−1

t=0 E[∆(f̂t+1, xt+1)] in both cases).

The mean computation time with different values for the time horizons T are also
reported.

Table 1. The first line is the regret (cumulative loss) on synthetic data (average over 10 trials, with
standard deviation in brackets). Second and third lines are the average computation time for two
values of the time horizon T. princurve and incremental SCMS are deterministic, hence the zero
standard deviation for regret.

Ground Truth Princurve Incremental SCMS slpc

2.48 (0) 26.02 (0) 19.09 (0) 20.83 (3.23)
T = 500 0.029 s (0.0001 s) 18.79 s (0.007 s) 1.44 s (0.030 s)

T = 5000 0.35 s (0.006 s) >60 s (NA) 4.13 s (0.807 s)

Table 1 demonstrates the advantages of our method slpc, as it achieved the optimal
tradeoff between performance (in terms of regret) and runtime. Although princurve
outperformed the other two algorithms in terms of computation time, it yielded the largest
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regret, since it outputs a curve which does not pass in “the middle of data” but rather bends
towards the curvature of the data cloud, as shown in Figure 6 where the predicted principal
curves f̂t+1 for princurve, incremental SCMS and slpc are presented. incremental SCMS
and slpc both yielded satisfactory results, although the mean computation time of splc
was significantly smaller than that of incremental SCMS (the reason being that eigenvectors
of the Hessian of PDF need to be computed in incremental SCMS). Figure 7 showed,
respectively, the estimation of the regret of slpc and its per-round value (i.e., the cumulative
loss divided by the number of rounds) both with respect to the round t. The jumps in the
per-round curve occurred at the beginning, due to the initialization from a first principal
component and to the collection of new data. When data accumulates, the vanishing
pattern of the per-round curve illustrates that the regret is sublinear in t, which matches
our aforementioned theoretical results.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Synthetic data. Black dots represent data x1:t. The red point is the new observation
xt+1. princurve (solid red) and slpc (solid green). (a) t = 150, princurve. (b) t = 450, princurve.
(c) t = 150, incremental SCMS. (d) t = 450, incremental SCMS. (e) t = 150, slpc. (f) t = 450, slpc.

In addition, to better illustrate the way slpc works between two epochs, Figure 8
focuses on the impact of collecting a new data point on the principal curve. We see that
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only a local vertex is impacted, whereas the rest of the principal curve remains unaltered.
This cutdown in algorithmic complexity is one the key assets of slpc.

(a)

(b)

Figure 7. Mean estimation of regret and per-round regret of slpc with respect to time round t, for the
horizon T = 500. (a) Mean estimation of the regret of slpc over 20 trials (black line) and a bisection
line (green) with respect to time round t. (b) Per-round of estimated regret of slpc with respect to t.

(a) (b)

Figure 8. Synthetic data. Zooming in: how a new data point impacts the principal curve only locally.
(a) At time t = 97. (b) And at time t = 98.
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Synthetic data in high dimension. We also apply our algorithm on a dataset {xt ∈ R6,
t = 1, 2, . . . , 200} in higher dimension. It is generated uniformly along a parametric curve
whose coordinates are 

0.5t cos(t)
0.5t sin(t)

0.5t
−t√

t
2 ln(t + 1)


where t takes 100 equidistant values in [0, 2π]. To the best of our knowledge, [10,16,18]
only tested their algorithm on 2-dimensional data. This example aims at illustrating that
our algorithm also works on higher dimensional data. Table 2 shows the regret for the
ground truth, princurve and slpc.

Table 2. Regret (cumulative loss) on synthetic high dimensional data in (average over 10 trials, with
standard deviation in brackets). princurve and incremental SCMS are deterministic, hence the zero
standard deviation.

Ground Truth Princurve Incremental SCMS slpc

3.290 (0) 14.204 (0) 5.38 (0) 6.797 (0.409)

In addition, Figure 9 shows the behaviour of slpc (green) on each dimension.

(a) (b)

(c)

Figure 9. slpc (green line) on synthetic high dimensional data from different perspectives. Black
dots represent recordings x1:99; the red dot is the new recording x200. (a) slpc, t = 199, 1st and 2nd
coordinates. (b) slpc, t = 199, 3th and 5th coordinates. (c) slpc, t = 199, 4th and 6th coordinates.

Seismic data. Seismic data spanning long periods of time are essential for a thorough
understanding of earthquakes. The “Centennial Earthquake Catalog” [42] aims at provid-
ing a realistic picture of the seismicity distribution on Earth. It consists in a global catalog
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of locations and magnitudes of instrumentally recorded earthquakes from 1900 to 2008.
We focus on a particularly representative seismic active zone (a lithospheric border close
to Australia) whose longitude is between E130◦ to E180◦ and latitude between S70◦ to
N30◦, with T = 218 seismic recordings. As shown in Figure 10, slpc recovers nicely the
tectonic plate boundary, but both princurve and incremental SCMS with well-calibrated
bandwidth fail to do so.

Lastly, since no ground truth is available, we used the R2 coefficient to assess the
performance (residuals are replaced by the squared distance between data points and their
projections onto the principal curve). The average over 10 trials was 0.990.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Seismic data. Black dots represent seismic recordings x1:t; the red dot is the new
recording xt+1. (a) princurve, t = 100. (b) princurve, t = 125. (c) incremental SCMS, t = 100.
(d) incremental SCMS, t = 125. (e) slpc, t = 100. (f) slpc, t = 125.
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Back to Seismic Data. Figure 11 was taken from the USGS website (https://earthquake.
usgs.gov/data/centennial/) and gives the global locations of earthquakes for the period
1900–1999. The seismic data (latitude, longitude, magnitude of earthquakes, etc.) used in
the present paper may be downloaded from this website.

Figure 11. Seismic data from https://earthquake.usgs.gov/data/centennial/.

Daily Commute Data. The identification of segments of personal daily commuting
trajectories can help taxi or bus companies to optimize their fleets and increase frequencies
on segments with high commuting activity. Sequential principal curves appear to be an
ideal tool to address this learning problem: we tested our algorithm on trajectory data
from the University of Illinois at Chicago (https://www.cs.uic.edu/~boxu/mp2p/gps_
data.html). The data were obtained from the GPS reading systems carried by two of the
laboratory members during their daily commute for 6 months in the Cook county and the
Dupage county of Illinois. Figure 12 presents the learning curves yielded by princurve
and slpc on geolocalization data for the first person, on May 30. A particularly remarkable
asset of slpc is that abrupt curvature in the data sequence was perfectly captured, whereas
princurve does not enjoy the same flexibility. Again, we used the R2 coefficient to assess
the performance (where residuals are replaced by the squared distances between data
points and their projections onto the principal curve). The average over 10 trials was 0.998.

https://earthquake.usgs.gov/data/centennial/
https://earthquake.usgs.gov/data/centennial/
https://earthquake.usgs.gov/data/centennial/ 
https://www.cs.uic.edu/~boxu/mp2p/gps_data.html
https://www.cs.uic.edu/~boxu/mp2p/gps_data.html
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(a) (b)

(c) (d)

Figure 12. Daily commute data. Black dots represent collected locations x1:t. The red point is the new
observation xt+1. princurve (solid red) and slpc (solid green). (a) t = 10, princurve. (b) t = 127,
princurve. (c) t = 10, slpc. (d) t = 127, slpc.

6. Proofs

This section contains the proof of Theorem 2 (note that Theorem 1 is a straightforward
consequence, with ηt = η, t = 0, . . . , T) and the proof of Theorem 3 (which involves
intermediary lemmas). Let us first define for each t = 0, . . . , T the following forecaster
sequence (f̂?t )t

f̂?0 = arg inf
f∈Fp

{∆f,0} = arg inf
f∈Fp

{
1
η0

h(f)− 1
η0

zf

}
,

f̂?t = arg inf
f∈Fp

{
t

∑
s=0

∆f,s

}
= arg inf

f∈Fp

{
t

∑
s=1

∆(f, xs) +
1

ηt−1
h(f)− 1

ηt−1
zf

}
, t ≥ 1.

Note that f̂?t is an “illegal” forecaster since it peeks into the future. In addition, denote by

f? = arg inf
f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}

the polygonal line in Fp which minimizes the cumulative loss in the first T rounds plus
a penalty term. f? is deterministic, and f̂?t is a random quantity (since it depends on zf,
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f ∈ Fp drawn from π). If several f attain the infimum, we chose f?T as the one having the
smallest complexity. We now enunciate the first (out of three) intermediary technical result.

Lemma 1. For any sequence x1, . . . , xT in B(0,
√

dR),

T

∑
t=0

∆f̂?t ,t ≤
T

∑
t=0

∆f̂?T ,t, π-almost surely. (5)

Proof. Proof by induction on T. Clearly (5) holds for T = 0. Assume that (5) holds for
T − 1:

T−1

∑
t=0

∆f̂?t ,t ≤
T−1

∑
t=0

∆f̂?T−1,t.

Adding ∆f̂?T ,T to both sides of the above inequality concludes the proof.

By (5) and the definition of f̂?T , for k ≥ 1, we have π-almost surely that

T

∑
t=1

∆(f̂?t , xt) ≤
T

∑
t=1

∆(f̂?T , xt) +
1

ηT
h(f̂?T)−

1
ηT

Zf̂?T
+

T

∑
t=0

(
1

ηt−1
− 1

ηt

)(
h(f̂?t )− Zf̂?t

)
≤

T

∑
t=1

∆(f?, xt) +
1

ηT
h(f?)− 1

ηT
Zf? +

T

∑
t=0

(
1

ηt−1
− 1

ηt

)(
h(f̂?t )− Zf̂?t

)
= inf

f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}
− 1

ηT
Zf? +

T

∑
t=0

(
1

ηt−1
− 1

ηt

)(
h(f̂?t )− Zf̂?t

)
,

where 1/η−1 = 0 by convention. The second and third inequality is due to respectively the
definition of f̂?T and f?T . Hence

E
[

T

∑
t=1

∆
(

f̂?t , xt

)]
≤ inf

f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}
− 1

ηT
E[Zf?T

]

+
T

∑
t=0

E
[(

1
ηt
− 1

ηt−1

)(
−h(f̂?t ) + Zf̂?t

)]

≤ inf
f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}
+

T

∑
t=1

(
1
ηt
− 1

ηt−1

)
E
[

sup
f∈Fp

(−h(f) + Zf)

]

= inf
f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}
+

1
ηT

E
[

sup
f∈Fp

(−h(f) + Zf)

]
,

where the second inequality is due to E[Zf?T
] = 0 and

(
1
ηt
− 1

ηt−1

)
> 0 for t = 0, 1, . . . , T

since ηt is decreasing in t in Theorem 2. In addition, for y ≥ 0, one has

P(−h(f) + Zf > y) = e−h(f)−y.

Hence, for any y ≥ 0

P
(

sup
f∈Fp

(−h(f) + Zf) > y

)
≤ ∑

f∈Fp

P(Zf ≥ h(f) + y) = ∑
f∈Fp

e−h(f)e−y = ue−y,
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where u = ∑f∈Fp e−h(f). Therefore, we have

E
[

sup
f∈Fp

(−h(f) + Zf)− ln u

]
≤ E

[
max

(
0, sup

f∈Fp

(−h(f) + Zf − ln u)

)]

≤
∫ ∞

0
P
(

max

(
0, sup

f∈Fp

(−h(f) + Zf − ln u)

)
> y

)
dy

≤
∫ ∞

0
P
(

sup
f∈Fp

(−h(f) + Zf) > y + ln u

)
dy

≤
∫ ∞

0
ue−(y+ln u)dy = 1.

We thus obtain

E
[

T

∑
t=1

∆
(

f̂?t , xt

)]
≤ inf

f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}
+

1
ηT

1 + ln ∑
f∈Fp

e−h(f)

. (6)

Next, we control the regret of Algorithm 2.

Lemma 2. Assume that zf is sampled from the symmetric exponential distribution in R, i.e.,
π(z) = e−z

1{z>0}. Assume that supt=1,...,T ηt−1 ≤ 1
d(2R+δ)2 , and define c0 = d(2R + δ)2. Then

for any sequence (xt) ∈ B(0,
√

dR), t = 1, . . . , T,

T

∑
t=1

E
[
∆
(

f̂t, xt

)]
≤

T

∑
t=1

(1 + ηt−1c0(e− 1))E
[
∆
(

f̂?t , xt

)]
. (7)

Proof. Let us denote by

Ft(Zf) = ∆
(

f̂t, xt

)
= ∆

(
arg inf

f∈F

(
t−1

∑
s=1

∆(f, xs) +
1

ηt−1
h(f)− 1

ηt−1
Zf

)
, xt

)

the instantaneous loss suffered by the polygonal line f̂t when xt is obtained. We have

E[∆
(

f̂?t , xt

)
] =

∫
Ft(z− ηt−1∆(f, xt))π(z)dz

=
∫

Ft(z)π(z + ηt−1∆(f, xt))dz

=
∫

Ft(z)e−(z+ηt−1∆(f,xt))dz

≥ e−ηt−1d(2R+δ)2
∫

Ft(z)e−zdz

= e−ηt−1d(2R+δ)2E[∆
(

f̂t, xt

)
],

where the inequality is due to the fact that ∆(f, x) ≤ d(2R + δ)2 holds uniformly for any
f ∈ Fp and x ∈ B(0,

√
dR). Finally, summing on t on both sides and using the elementary

inequality ex ≤ 1 + (e− 1)x if x ∈ (0, 1) concludes the proof.
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Lemma 3. For k ∈ J1, pK, we control the cardinality of set
{

f ∈ Fp,K(f) = k
}

as

ln
∣∣{f ∈ Fp,K(f) = k

}∣∣ ≤ (ln(8peVd) + 3d
3
2 − d

)
k +

(
ln 2

δ
√

d
+

d
δ

)
L + d ln

(√
d(2R + δ)

δ

)
∆
= c1k + c2L + c3,

where Vd denotes the volume of the unit ball in Rd.

Proof. First, let Nk,δ denote the set of polygonal lines with k segments and whose vertices
are in Qδ. Notice that Nk,δ is different from {f ∈ Fp,K(f) = k} and that

∣∣{f ∈ Fp,K(f) = k}
∣∣ ≤ (p

k

)∣∣Nk,δ
∣∣.

Hence

ln
∣∣{f ∈ Fp,K(f) = k}

∣∣ ≤ ln
(

p
k

)
+ ln

∣∣Nk,δ
∣∣

≤ k ln
pe
k

+ k
(

ln 8Vd + 3d
3
2 − d

)
+

(
ln 2√

dδ
+

d
δ

)
L + d ln

(√
d(2R + δ)

δ

)

≤ k ln(pe) + k
(

ln 8Vd + 3d
3
2 − d

)
+

(
ln 2√

dδ
+

d
δ

)
L + d ln

(√
d(2R + δ)

δ

)
,

where the second inequality is a consequence to the elementary inequality (p
k) ≤

( pe
k
)k

combined with Lemma 2 in [16].

We now have all the ingredients to prove Theorem 1 and Theorem 2.

First, combining (6) and (7) yields that

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ inf

f∈Fp

{
T

∑
t=1

∆(f, xt) +
1

ηT
h(f)

}
+

1
ηT

1
2
+ ln ∑

f∈Fp

e−h(f)


+ c0(e− 1)

T

∑
t=1

ηt−1E
[
∆(f̂?t , xt)

]

≤ inf
k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) +
h(f)
ηT

}+
1

ηT

1
2
+ ln ∑

f∈Fp

e−h(f)


+ c0(e− 1)

T

∑
t=1

ηt−1E
[
∆(f̂?t , xt)

]
.

Assume that ηt = η, t = 0, . . . , T and h(f) = c1K(f) + c2L + c3 for f ∈ Fp, then ( 1
2 +

∑f∈Fp e−h(f)) ≤ 0 and moreover

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ ST,h,η +

1
η

1
2
+ ln ∑

f∈Fp

e−h(f)

+ c0(e− 1)η
T

∑
t=1

E
[
∆(f̂?t , xt)

]
≤ ST,h,η + c0(e− 1)ηST,h,η

≤ ST,h,η + ηc0(e− 1) inf
f∈Fp

T

∑
t=1

∆(f, xt) + c0(e− 1)(c1 p + c2L + c3),
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where

ST,h,η = inf
k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) +
h(f)

η

}
and the second inequality is obtained with Lemma 1. By setting

η =

√
c1 p + c2L + c3

c0(e− 1) inff∈Fp ∑T
t=1 ∆(f, xt)

we obtain

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ inf

k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) +
√

c0(e− 1)rT,k,L

}
+
√

c0(e− 1)LT,p,L + c0(e− 1)c1 p + c2L + c3,

where rT,k,L = inff∈Fp ∑T
t=1 ∆(f, xt)(c1k + c2L + c3). This proves Theorem 1.

Finally, assume that

η0 =

√
c1 p + c2L + c3

c0
√
(e− 1)

and ηt =

√
c1 p + c2L + c3

c0
√
(e− 1)t

, t = 1, . . . , T.

Since E
[
∆(f̂?t , xt)

]
≤ c0 for any t = 1, . . . , T, we have

T

∑
t=1

E
[
∆(f̂t, xt)

]
≤ inf

k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) +
h(f)
ηT

}+
1

ηT

1 + ln ∑
f∈Fp

e−h(f)


+ c2

0(e− 1)
T

∑
t=1

ηt−1

≤ inf
k∈J1,pK

 inf
f∈Fp

K(f)=k

{
T

∑
t=1

∆(f, xt) + c0

√
(e− 1)T(c0k + c2L + c3)

}
+ 2c0

√
(e− 1)T(c0 p + c2L + c3),

which concludes the proof of Theorem 2.

Lemma 4. Using Algorithm 3, if 0 < ε ≤ 1, 0 < β < 1, α ≥ (1−β)c0
β and

∣∣∣U(f̂t−1

)∣∣∣ ≥ 2 for all

t ≥ 2, where
∣∣∣U(f̂t−1

)∣∣∣ is the cardinality of U
(

f̂t−1

)
, then we have

T

∑
t=1

E
[
rf̂t ,t

]
≥

T

∑
t=1

E
[
r̂σ̂t(At),t

]
− 2(1− ε)αβ

T

∑
t=1

∣∣∣U(f̂t−1

)∣∣∣.
Proof. First notice that At = U

(
f̂t−1

)
if It = 0, and that for t ≥ 2
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E
[

rf̂t ,t

∣∣∣∣Ht, It = 0
]
=E
[

rσ̂t(At),t

∣∣∣∣Ht, It = 0
]

= ∑
f∈At∩cond(t)

rf,tP
(

σ̂t(At) = f
∣∣∣∣Ht

)
+ ∑

f∈At∩cond(t)c
rf,tP

(
σ̂t(At) = f

∣∣∣∣Ht

)

≥ ∑
f∈At∩cond(t)

rf,t + ∑
f∈At∩cond(t)c

αP
(

σ̂t(At) = f
∣∣∣∣Ht

)

− (1− β) ∑
f∈At∩cond(t)

rf,t − ∑
f∈At∩cond(t)c

(α− rf,t)P
(

σ̂t(At) = f
∣∣∣∣Ht

)

=E
[

r̂σ̂t(At),t

∣∣∣∣Ht, It = 0
]
− (1− β) ∑

f∈At∩cond(t)
rf,t

− ∑
f∈At∩cond(t)c

(α− rf,t)P
(

σ̂t(At) = f
∣∣∣∣Ht

)

≥E
[

r̂σ̂t(At),t

∣∣∣∣Ht, It = 0
]
− (1− β)c0|At| − αβ|At|

≥E
[

r̂σ̂t(At),t

∣∣∣∣Ht, It = 0
]
− 2αβ|At|,

where cond(t)c denotes the complement of set cond(t). The first inequality above is due to

the assumption that for all f ∈ At ∩ cond(t), we have P
(

σ̂t(At) = f
∣∣∣∣Ht

)
≥ β. For t = 1,

the above inequality is trivial since r̂σ̂1(U(f̂0)),1 ≡ 0 by its definition. Hence, for t ≥ 1, one
has

E
[

rf̂t ,t

∣∣∣∣Ht

]
= εE

[
rσ̂t(Fp),t

∣∣∣∣Ht, It = 1
]
+ (1− ε)E

[
rσ̂t(At),t

∣∣∣∣Ht, It = 0
]

≥ E
[

r̂f̂t ,t

∣∣∣∣Ht

]
− 2αβ|At|. (8)

Summing on both sides of inequality (8) over t terminates the proof of Lemma 4.

Lemma 5. Let ĉ0 = c0
β + α. If 0 < η1 = η2 = · · · = ηT = η < 1

ĉ0
, then we have

E
[

max
σ̂

{
T

∑
t=1

r̂σ̂(At),t −
1
η

h(σ̂(At))

}]
−

T

∑
t=1

E
[
r̂σ̂t(At),t

]
≤

ĉ2
0(e− 1)ηT + ĉ0(e− 1)(c1 p + c2L + c3).

Proof. By the definition of r̂f,t in Algorithm 3, for any f ∈ Fp and t ≥ 1, we have

r̂f,t ≤ max


rf,t

P
(

f̂t = f
∣∣∣∣Ht

) , α, rf,t

 ≤ max
{

c0

β
, α

}
≤ ĉ0,

where in the second inequality we use that rf,t ≤ c0 for all f and t, and that P
(

f̂t = f
∣∣∣∣Ht

)
≥

β when f ∈ U
(

f̂t−1

)
∩ cond(t). The rest of the proof is similar to those of Lemmas 1 and 2.

In fact, if we define by ∆̂(f, xt) = ĉ0− r̂f,t, then one can easily observe the following relation
when It = 1 (similar relation in the case that It = 0)
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f̂t = σ̂t(Fp
)
= arg max

f∈Fp

{
t−1

∑
s=1

r̂f,s +
1
η
(zf − h(f))

}

= arg min
f∈Fp

{
t−1

∑
s=1

∆̂(f, xs) +
1
η
(h(f)− zf)

}
.

Then applying Lemmas 1 and 2 on this newly defined sequence ∆̂
(

f̂t, xt

)
, t = 1, . . . T leads

to the result of Lemma 5.

The proof of the upcoming Lemma 6 requires the following submartingale inequality:
let Y0, . . . YT be a sequence of random variable adapted to random events H0, . . . ,HT such
that for 1 ≤ t ≤ T, the following three conditions hold:

E[Yt|Ht] ≤ 0, Var(Yt|Ht) ≤ a2, Yt −E[Yt|Ht] ≤ b.

Then for any λ > 0,

P
(

T

∑
t=1

Yt > Y0 + λ

)
≤ exp

(
− λ2

2T(a2 + b2)

)
.

The proof can be found in Chung and Lu [43] (Theorem 7.3).

Lemma 6. Assume that 0 < β < 1
|Fp| , α ≥ c0

β and η > 0, then we have

E
[

max
σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
−E

[
max

σ̂

{
T

∑
t=1

r̂σ̂(At),t −
1
η

h(σ̂(At))

}]

≤
(
1−

∣∣Fp
∣∣β)
√√√√2T

[
c2

0
β
+ α2(1− β) + (c0 + 2α)2

]
ln
(

1
β

)
+
∣∣Fp
∣∣βc0T.

Proof. First, we have almost surely that

max
σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}
−max

σ̂

{
T

∑
t=1

r̂σ̂(At),t −
1
η

h(σ̂(At))

}
≤ max

f∈Fp

T

∑
t=1

(rf,t − r̂f,t).

Denote by Yf,t = rf,t − r̂f,t. Since

E
[

r̂f,t

∣∣∣∣Ht

]
=

{
rf,t + (1− ε)α

(
1− P

(
f̂t = f|Ht

))
if f ∈ U(f̂t−1) ∩ cond(t),

εrf,t + (1− ε)α otherwise,

and α > c0 ≥ rf,t uniformly for any f and t, we have uniformly that E[Yt|Ht] ≤ 0, satisfying
the first condition.
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For the second condition, if f ∈ U
(

f̂t−1

)
∩ cond(t), then

Var(Yt|Ht) =E
[
r̂2

f,t|Ht

]
− (E[r̂f,t|Ht])

2

≤εr2
f,t + (1− ε)

 r2
f,t

P
(

f̂t = f|Ht

) + α
(

1− P
(

f̂t = f|Ht

))
−
[
rf,t + (1− ε)α

(
1− P

(
f̂t = f|Ht

))]2

≤
r2

f,t

β
+ α2(1− β) ≤

c2
0

β
+ α2(1− β).

Similarly, for f 6∈ U
(

f̂t−1

)
∩ cond(t), one can have Var(Yt|Ht) ≤ α2. Moreover, for the

third condition, since
E[Yf,t|Ht] ≥ −2α,

then
Yf,t −E[Yf,t|Ht] ≤ rf,t + 2α ≤ c0 + 2α.

Setting λ =

√
2T
[

c2
0
β + α2(1− β) + (c0 + 2α)2

]
ln
(

1
β

)
leads to

P
(

T

∑
t=1

Yf,t ≥ λ

)
≤ β.

Hence the following inequality holds with probability 1−
∣∣∣∣Fp

∣∣∣∣β
max
f∈Fp

T

∑
t=1

(rf,t − r̂f,t) ≤

√√√√2T

[
c2

0
β
+ α2(1− β) + (c0 + 2α)2

]
ln
(

1
β

)
.

Finally, noticing that maxf∈Fp ∑T
t=1(rf,t − r̂f,t) ≤ c0T almost surely, we terminate the proof

of Lemma 6.

Proof of Theorem 3. Assume that p > 6, T ≥ 2|Fp|2 and let

β =
∣∣Fp
∣∣− 1

2 T−
1
4 , α =

c0

β
, ĉ0 =

2c0

β
,

η1 = η2 = · · · = ηT =

√
c1 p + c2L + c3√

T(e− 1)ĉ0
, ε = 1−

∣∣Fp
∣∣ 1

2−
3
p T−

1
4 .

With those values, the assumptions of Lemmas 4, 5 and 6 are satisfied. Combining their
results lead to the following
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T

∑
t=1

E
[
rf̂t ,t

]
≥E

[
max

σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
− 2αβ(1− ε)

T

∑
t=1

∣∣∣U(f̂t−1

)∣∣∣
− ĉ2

0(e− 1)ηT − ĉ0(e− 1)(c1 p + c2L + c3)

−
(
1−

∣∣Fp
∣∣β)
√√√√2T

[
c2

0
β
+ α2(1− β) + (c0 + 2α)2

]
ln
(

1
β

)
−
∣∣Fp
∣∣βc0T

≥E
[

max
σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
− (1− ε)

∣∣Fp
∣∣ 3

p c0T

− ĉ2
0(e− 1)ηT − ĉ0(e− 1)(c1 p + c2L + c3)

−
(
1−

∣∣Fp
∣∣β)
√√√√2T

[
c2

0
β
+ α2(1− β) + (c0 + 2α)2

]
ln
(

1
β

)
−
∣∣Fp
∣∣βc0T

≥E
[

max
σ

{
T

∑
t=1

rσ(At),t −
1
η

h(σ(At))

}]
−O

(∣∣Fp
∣∣ 1

2 T
3
4

)
,

where the second inequality is due to the fact that the cardinality
∣∣∣U(f̂t−1

)∣∣∣ is upper

bounded by
∣∣Fp
∣∣ 3

p for t ≥ 1. In addition, using the definition of rf,t that rf,t = c0 − ∆(f, xt)
terminates the proof of Theorem 3.
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