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ABSTRACT

A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over
time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware
innovations and falling data storage costs enable longer, more naturalistic neuronal
recordings. The implicit opportunity for understanding the self-organised brain calls for new
analysis methods that link temporal scales: from the order of milliseconds over which neuronal
dynamics evolve, to the order of minutes, days, or even years over which experimental
observations unfold. This review article demonstrates how hierarchical generative models and
Bayesian inference help to characterise neuronal activity across different time scales.
Crucially, these methods go beyond describing statistical associations among observations and
enable inference about underlying mechanisms. We offer an overview of fundamental
concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we
introduce key mathematical principles that underscore a separation of temporal scales, such as
the slaving principle, and review Bayesian methods that are being used to test hypotheses
about the brain with multiscale data. We hope that this review will serve as a useful primer for
experimental and computational neuroscientists on the state of the art and current directions of
travel in the complex systems modelling literature.

AUTHOR SUMMARY

Exploring changes in brain connectivity over time is a major challenge in neuroscience. This
review article discusses the application of hierarchical generative models and Bayesian
statistical methods to investigate modulators of neuronal dynamics across different temporal
scales. By utilizing these innovative techniques, researchers can move beyond describing
statistical associations and ask questions about underlying mechanisms. The article provides
an overview of state-space modelling, dynamics, and a taxonomy of methods. It also
introduces mathematical principles that link temporal scales and reviews the use of Bayesian
statistical methods in testing hypotheses about the brain using multiscale data. This review
aims to serve as a resource for experimental and computational neuroscientists by presenting
the current state of the art and future directions of travel in modelling literature.

UNDERSTANDING THE BRAIN: A MULTISCALE PROBLEM

Phenomena that span multiple temporal scales are ubiquitous in brain research (Breakspear,
2017; D’Angelo & Jirsa, 2022). For instance, an objective of epilepsy research is to understand
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the genesis of seizures by analysing the itinerancy of cortical circuitry parameters over seconds to
minutes (Courtiol, Guye, Bartolomei, Petkoski, & Jirsa, 2020; Depannemaecker, Destexhe, Jirsa,
& Bernard, 2021; Depannemaecker, Ezzati, Wang, Jirsa, & Bernard, 2023; V. Jirsa et al., 2023;
V. K. Jirsa, Stacey, Quilichini, Ivanov, & Bernard, 2014; Lisi, Rivela, Takai, & Morimoto, 2018;
Lopez-Sola et al., 2022; Ponce-Alvarez et al., 2015; R. E. Rosch, Hunter, Baldeweg, Friston, &
Meyer, 2018). In naturalistic experiments, researchers study the dynamics of the freely-behaving
brain in exchange with its environment, on the scale of minutes to hours (Demirtaş et al., 2019;
Echeverria-Altuna et al., 2022; Lee, Aly, & Baldassano, 2021; Meer, Breakspear, Chang,
Sonkusare, & Cocchi, 2020; Shain, Blank, van Schijndel, Schuler, & Fedorenko, 2020). On a larger
time scale, studying the progression of Alzheimer’s disease requires accounting for processes
evolving over months, years, or even decades (Graham, Marr, Buss, Sullivan, & Fair, 2021; Wang
et al., 2020). In these examples, a challenge is to understand how slow and fast components
interact; in other words, how slowly changing variables shape the evolution of rapidly changing
ones, and how the latter reciprocally influence the former (Ellis, Noble, & O’Connor, 2012).

This calls for a statistical framework for evaluating hypotheses when empirical observations
span multiple temporal scales, or when the hypotheses are framed on a different time scale
from that of the observations. Quantitatively comparing the evidence for hypotheses amounts
to building generative models and comparing their ability to predict the data, in terms of
model evidence (a.k.a., marginal likelihood). Modelling multiple temporal scales affords the
potential to better predict future observations.

This review is based on the overarching idea that evaluating hypotheses with multiscale
time series can be systematically addressed by constructing hierarchical models, where each
level of the hierarchy accounts for a different temporal scale. Separating temporal scales can
be rigorously justified and—by pairing such models with Bayesian procedures—they become
useful tools for investigating the causes of observed data.

How can hierarchical models be used to capture changes in neuronal connectivity at dif-
ferent temporal scales, and what is the mathematical justification for their use? How to eval-
uate the evidence for competing hierarchical models, in order to address neuroscientific
hypotheses or make modelling decisions (e.g., which temporal scales should be modelled)?
These questions are the focus of this review. In the three sections that follow, we first introduce
key concepts for modelling the dynamics of time series data at a single timescale. We then
detail principles and strategies for separating timescales within mathematical models. Third,
we introduce Bayesian statistical methods for evaluating the quality of multiscale models,
before concluding with an empirical example in the field of epilepsy research.

MODELING TIME SERIES

To test hypotheses about the temporal structure of our observations, we need to model their
generating process. Clearly, the form of the model depends on the nature of the data, for exam-
ple, whether it is continuous or discrete, and on the assumed nature of the generating process,
for example, deterministic or stochastic. This section introduces several key concepts in time
series modelling, before considering a unified view of the different approaches that are suitable
for neuroimaging. These concepts provide the foundation for linking temporal scales, detailed
in the remainder of the article.

State-Space Models

When observations come from a continuous set of values, the modelling problem lends itself
to the apparatus of dynamical systems. In particular, state-space models capture the evolution
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over time of some latent or unobserved variables called states, x, which give rise to obser-
vations y. Using this framework, which was established in the 1960s in the field of control
theory (Kalman, 1960), a broad class of dynamical systems can be modelled using equations
of the form

d
dt
x tð Þ ¼ f x tð Þ;u tð Þ; θð Þ

y tð Þ ¼ g x tð Þ;u tð Þ; θð Þ þ ω tð Þ

(
(1)

where all variables can be vectors. The first equation is the evolution equation or state

equation. At time t, the velocity of the system’s states d
dt x tð Þ depends on the states them-

selves x(t ), some inputs u(t ), and some parameters θ, which can be viewed as states that
change infinitely slowly. The states are observed through the observations y(t ) produced
by the observation equation. The observations might be corrupted by some additive
measurement noise ω (t ).

A state space is a geometric space, the axes of which are the states of the system (e.g., the
firing rates of different neuronal populations), as illustrated in Figure 1. Given some inputs and
parameters, the first line of Equation 1 attributes a velocity vector at each point of state space.
The mapping from states to velocity is the flow of the system and plays an important role in
understanding its evolution: every state trajectory evolves along the flow. The heterogeneity of
the flow (intuitively, arrows pointing at each other) gives rise to attractors, that is, dense sets of
points (i.e., a single point, a circle, or a sphere) attracting trajectories in their basin of attrac-
tion. Attractors define the steady state behaviour of the system: any trajectory in the basin of
attraction evolves towards—and remains in—the attractor.

A multistable dynamical system has multiple attractors, thus its steady state depends on the
attraction basin in which the system is initialized. Additionally, changes in inputs or parame-
ters can cause bifurcations, that is, changes in the flow such that the topology of the attractor
changes, for instance, from a fixed point to a limit cycle (Guckenheimer & Holmes, 1983).
Bifurcations and multistability appear only in nonlinear dynamical systems and play a critical
role in modelling biological systems (Breakspear, 2017; Deco & Jirsa, 2012; Haken, 1978;
Haken, Kelso, & Bunz, 1985; V. Jirsa, 2020; Kelso, 2012; Ponce-Alvarez, Kringelbach, &
Deco, 2023; Tognoli & Kelso, 2014).

When the evolution is purely deterministic as in Equation 1, one can represent the output of
a dynamical system as a function of past inputs, without reference to internal states. In other
words, the output signal can be derived from the inputs, without having to solve an initial
value problem, that is, to integrate the equations through time. For linear systems, the depen-
dence of outputs on past inputs is captured by a linear response function which, convolved
with an input time series, gives the output time series. For nonlinear systems, a series of higher
order response functions (a Volterra expansion) captures the dependence of outputs on past
inputs (Fliess, Lamnabhi, & Lamnabhi-Lagarrigue, 1983).

An example application of response functions in functional MRI (fMRI) research is the
use of a Volterra formulation to summarise the dynamics of the blood oxygen level–
dependent (BOLD) response (Friston, Mechelli, Turner, & Price, 2000). In this case, the
first-order Volterra kernel corresponds to the change in the BOLD response due to a brief
stimulus, and the second-order Volterra kernel quantifies how the BOLD response to one
stimulus depends on the time elapsed since the previous stimulus (i.e., nonlinear effects of
time). These Volterra kernels can be generated from the underlying state-space model. In
practice, one is interested in finding the simplest model of the observations that can
explain the most data (this is formally motivated thereafter). In fMRI, the relevant properties

Initial value problem:
The problem of solving a differential
equation with given initial
conditions.

Response function:
A function that describes the output
or behaviour of a system in response
to a given input or stimulus.
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of nonlinear systems are well-captured by retaining the first terms of the Volterra expan-
sion, which corresponds to approximating the flow of the nonlinear dynamical system with
a bilinear (Friston, Harrison, & Penny, 2003; Friston et al., 2000) or second-order polyno-
mial form (Stephan et al., 2008).

For modelling neuronal connectivity and dynamics, the response function of a dynam-
ical system plays an important role, because it captures how the system transforms the
frequency spectrum of the input signal. This is particularly helpful for modelling systems
that are driven by random fluctuations, such as neural mass models, which capture the
activity of populations of neurons. When driven by endogenous cortical noise, it is impos-
sible to track the evolution of a neural mass model: despite having a deterministic evolu-
tion, their trajectories depend nonlinearly on a particular realisation of the input noise
process which is unavailable to the experimenter. In that case, we can model the output
spectrum of neural masses by applying their linearized response function to their input
spectrum (Chen, Kiebel, & Friston, 2008; R. Moran, Pinotsis, & Friston, 2013; R. J. Moran
et al., 2007; R. J. Moran, Stephan, Dolan, & Friston, 2011; R. E. Rosch, Wright, et al.,

Figure 1. Important concepts of the theory of dynamical systems. (A) An example of flow in state-space (grey arrows), governing the evolution
of trajectories (coloured curves) from different initial states (coloured circles). (B) The corresponding trajectories in the time domain for both x1
and x2 axes. (C) An example of bifurcation of the flow: trajectories converge towards a fixed point of state space when the bifurcation param-
eter α is below a critical value αc, and towards a limit cycle when the bifurcation parameter is above the critical value (Andronov-Hopf
bifurcation). (D) An example of a multistable system: the attractor to which the trajectory evolves depends on the initial state, as indicated
by the colours of the trajectories.
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2018; Symmonds et al., 2018). The use of a linear approximation can be motivated by the
fact that coupled neural systems exhibit linear dynamics over short timescales (Heitmann &
Breakspear, 2018).

Dynamic causal modelling (DCM) (Frässle, Aponte, et al., 2021; Friston et al., 2003) and
The Virtual Brain (V. K. Jirsa et al., 2017; Sanz Leon et al., 2013) are examples of applying
state-space modelling to neuronal dynamics, and in particular for investigating effective
connectivity, namely, the effects of neuronal populations on one another. In this context,
the states are continuous variables, and the evolution equation typically describes the change
in neuronal activity over time, whereas the observation function generates the measurements
one would expect to make, for example, using electro-encephalography (EEG) or functional
magnetic resonance imaging (fMRI).

A Taxonomy of Modelling Frameworks

Forming a model necessitates two key decisions. First, whether the dynamics will be determin-
istic, as in Equation 1, or stochastic, meaning there will be some degree of randomness to the
evolution of the states. Stochastic models are covered by the more general framework of ran-
dom dynamical systems (Arnold, 1995). The second decision is whether the states themselves
will be discrete or continuous variables. Examples of these different kinds of modelling frame-
works are provided in Figure 2.

A special case arises when the dynamics are stochastic, and the states are discrete values.
This typically calls for Markov chains and related models (Fraser, 2008). Markov chains are
stochastic processes that model probabilistic transitions between a finite collection of states.
More precisely, Markov chains model the evolution of the states’ distribution, that is, the prob-
ability of being in a certain state at a certain time, by means of state transition probabilities,

Effective connectivity:
The directed influence of neuronal
populations on one another.

Figure 2. Taxonomy of the different modelling frameworks discussed here. The key factors guiding the selection of a particular framework are
the nature of dynamics (discrete or continuous) and the nature of state space (stochastic or deterministic). In addition, the nature of the inputs
(stochastic or deterministic) has relevance for continuous deterministic systems. In the particular case of continuous deterministic systems with
stochastic inputs, one can use a linear response function, which is the first-order term of the Volterra kernel representation of the system, to
directly approximate the outputs from the inputs without reference to the states. Effectively, this implies that the dynamics do not need to be
integrated over time, which greatly simplifies model inversion. In all other cases, model inversion entails tracking the states or their distribution
through time.
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which gives the probability of switching from a state to another. Markov chains fulfil the
Markov property: knowing the current state distribution and the state transition probabilities
is sufficient to determine the future state distribution.

Markov chains have the same role as the evolution equation of dynamical systems. As such,
they can also be equipped with an observation function transforming abstract “states” into the
expected distribution over observations. The resulting models are known as Hidden Markov
Models (HMMs) and are popular devices in modelling time series (Baker et al., 2014; Bishop &
Nasrabadi, 2006; Cabral et al., 2017; Rabiner, 1989; Vidaurre et al., 2016; Vidaurre, Smith, &
Woolrich, 2017). Relevant examples of HMM applications include (i) analysing the switching
dynamics of resting-state networks in a large cohort (Vidaurre et al., 2018), (ii) evaluating how
brain network dynamics are altered during natural movie watching (Meer et al., 2020), and (iii)
identifying brain networks activated during replay (Higgins et al., 2021).

Both stochastic and deterministic state-space models are routinely used in the DCM model-
ling framework, which is implemented in freely available software (SPM; Penny, Friston,
Ashburner, Kiebel, & Nichols, 2011; TAPAS, Frässle, Aponte, et al., 2021). DCM pairs the spec-
ification of models with Bayesian system identification techniques, in order to estimate the
evidence for alternative candidate models. Recent developments have included continuous
state-space models of psychiatric disease progression (Friston, Redish, & Gordon, 2017),
whole-brain effective connectivity in resting-state fMRI (Frässle, Harrison, et al., 2021; Frässle
et al., 2018), as well as discrete state-space models of Covid-19 progression (Friston, Flandin,
& Razi, 2022; Friston et al., 2020). Figure 2 includes examples of particular variants of DCM
that handle different kinds of states and evolution equations.

To summarize, time series can be modelled as resulting from the dynamics of latent states,
where the dynamics may be deterministic or stochastic and where the states may be contin-
uous or discrete. Despite the apparent heterogeneity of modelling methods, they are con-
structed from common components: an evolution equation, guiding the system’s state through
time, and an observation equation, producing the measured quantities. Response functions
can then be derived from the state-space model, serving as a useful device for obtaining the
output of a system from its input. The choice of approach is determined only by the nature of
the states and that of the evolution equation, for the particular application domain.

SEPARATING TIMESCALES

The fundamental concepts in time series modelling reviewed above can be applied to situa-
tions where observations have a temporal structure at different temporal scales. This is the case
when the duration of the observations is long enough to allow the slower temporal features to
unfold—and when the sampling rate is high enough to capture fast temporal features. In this
case, modelling the evolution at different time scales becomes crucial, in order to infer the
common underlying generative processes or mechanisms that give rise to the data.

Motivation

Considering the temporal evolution of time series at various scales is a natural approach for
studying neuronal dynamics. One common practice involves examining power fluctuations in
the frequency bands of EEG or MEG data. The power spectrum of a signal summarizes short-
term signal changes, while the power of specific frequency bands (a..k.a., band power) reveals
longer term variations. By using a model with parameters governing the shape of the spectral
density, such as the response function of a neural mass model, we can connect the rapid

Hidden Markov model:
A probabilistic model that describes
a sequence of observable events
generated by an underlying
unobservable Markov chain.
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fluctuations in electrical activity over milliseconds to the slow evolution of these parameters
over seconds or minutes.

These models allow us to quantify how experimental manipulations relate to continuous
changes in slow parameters. For instance, R. E. Rosch, Wright, et al. (2018) demonstrated
how the concentration of an epilepsy-inducing drug modulated the power spectra of neuronal
activity by affecting certain synaptic rate constants. In the future, this type of model could
prove valuable in characterising the dynamics of the self-inhibition of superficial pyramidal
neurons, thought to encode prediction precision in predictive coding accounts of brain func-
tion, for instance, during naturalistic experiences (Adams, Bauer, Pinotsis, & Friston, 2016;
Bastos et al., 2012; Kanai, Komura, Shipp, & Friston, 2015).

However, building and analysing models with dynamics over different temporal scales can
be challenging. Determining the appropriate temporal scale for each variable—and under-
standing its interaction with other variables—is not straightforward. In many cases, interactions
among variables evolving at different timescales can result in circular causality, complicating
the analysis and leading to complex multiscale dynamics. A key example of this is
experience-dependent plasticity, where slow fluctuations in synaptic efficacy depend upon
fast fluctuations in neuronal activity. At the same time, distributed neuronal activity depends
upon synaptic efficacy. Fortunately, there are mathematical principles that can help simplify
these complex models while still capturing the essential aspects of their dynamics.

This section proceeds in three parts. First, we introduce mathematical arguments, starting
with foundational and abstract concepts and gradually transition to more practical applica-
tions. Second, we explore the application of these arguments to stochastic dynamics. Last,
we discuss their relevance to models with slow discrete dynamics such as HMMs.

Mathematical Perspectives

In dynamical systems, different temporal scales appear when some states evolve quickly rel-
ative to others. That is, if each state is conceptualized as forming a dimension of a state space
(as we saw in Figure 1A), then different temporal scales emerge when the flow governing the
evolution of trajectories is stronger in some directions than in others. The components of the
dynamics in the stronger directions of the flow converge rapidly towards their steady state,
with negligible displacements along the weaker directions of the flow. From the perspective
of fast components, slow components may be considered as, effectively, static. Reciprocally,
on the temporal scale at which slow components evolve, the fast components instantaneously
reach their steady state. Inherent to the concept of separation of temporal scales is the reduc-
tion of the number of dynamical degrees of freedoms: over long periods of time, the macro-
scopic behaviour of the system can be described by the evolution of slow variables (Kuramoto
& Nakao, 2019). This natural separation of temporal scales is crucial for modelling high-
dimensional systems such as the brain (see Figure 3).

Mathematically, the separation of temporal scales in a nonlinear dynamical system can be
proved rigorously. The centre manifold theorem (see Figure 4) is used to show the exponential
decay of the fast components towards a manifold, that is, a generalised surface that is aligned
with the weak directions of the flow (Carr, 1981). When the centre manifold theorem applies,
one can consider that the dynamics are separated into fast and slow components evolving on
different temporal scales, and approximate the overall dynamics by the trajectory on the mani-
fold. However, this approximation is a local result; in other words, it can only be used in the
vicinity of a fixed point. Recently, interest has been drawn to inertial manifolds. Similarly to
centre manifolds, inertial manifolds are surfaces that attract trajectories exponentially quickly,
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and can indeed be seen as global centre manifolds (Foias, Sell, & Temem, 1988). However, in
contrast to centre manifolds, there is no generic method to prove the existence of an inertial
manifold, which needs to be assessed on a case by case basis.

Manifolds give a practical way to construct multiscale dynamical systems: one can specify
an equation for the (inertial) manifold, mapping from slow to fast states, and prescribe strong
normal (perpendicular) flow to make fast states quickly collapse onto the manifold. The frame-
work of structured flows on manifolds (SFM) adopts this procedure. SFM explains how slow
low-dimensional variables, such as movement parameters, could be instantiated by the col-
lective behaviour of a large number of fast variables, such as networks of neurons (V. Jirsa &
Sheheitli, 2022; V. K. Jirsa, McIntosh, & Huys, 2019; Pillai & Jirsa, 2017). In SFM, the fast
components of the flow drive neuronal activity to rapidly evolve into synchronization modes
(functional modes) that correspond to points on the manifold. Simultaneously, the flow on the
manifold progressively modifies the functional modes, thereby generating slowly changing
behavioural variables.

Frameworks such as SFM are important for brain research because they give a mechanistic
account of brain activity and its relationship to behaviour (V. Jirsa & Sheheitli, 2022; McIntosh
& Jirsa, 2019). Interestingly, this type of theoretical modelling approach aligns well with the
needs of empirical work on intracranial recordings of neuronal activity. Typically, an objective
is to understand how movement variables are encoded by stable low-dimensional dynamics of
neuronal populations in the motor cortex (Chaudhuri, Gerçek, Pandey, Peyrache, & Fiete,
2019; Churchland et al., 2012; Gallego et al., 2018; Langdon, Genkin, & Engel, 2023; Lara,
Cunningham, & Churchland, 2018; Saxena, Russo, Cunningham, & Churchland, 2022). Com-
bining more advanced modelling frameworks—together with the statistical machinery
described later—can provide valuable tools to show on how empirical recordings support dif-
ferent theoretical perspectives on motor control.

Figure 3. Multiscale dynamics of brain signals: mapping slow and fast variables. (A) Slow quantities in the brain, such as synaptic efficacy
between regions, exhibit large time constants and evolve slowly over time. The evolution of two slow variables are illustrated here, as yellow
and purple lines. (B) The evolution of slow variables can also be represented by dynamics in a slow state space. (C) Importantly, for every
location in the slow state space (horizontal axes), there is a corresponding mode of fast dynamics (vertical axis). Three modes are depicted
here, numbered 1–3. These fast dynamics give rise to rapid brain signals, such as field potentials in pyramidal neurons (D). The mathematical
relationship between the slow and the fast timescale is given by dt = εdT (ε ≪ 1); in other words, the dynamics at faster scale t unfolds over a
fraction (ε) of the slower scale T. In summary, the brain is understood to navigate slowly (A) through a repertoire of fast stable dynamics (D).
Crucially, the slow variables are directly linked to the dynamics of the fast variables (C). Similarly, changes in the fast variables’ dynamics can
be attributed to changes in the slow variables. Therefore, modelling the complex dynamics of multiscale dynamical systems can be simplified
by focusing on the dynamics of the slow variables and the mapping from slow to fast variables.
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We can also go one step further with the separation of temporal scales and neglect the
dynamics of fast variables when considering the evolution of slow variables (as illustrated in
Figure 4). This separation is formally known as the adiabatic approximation: the fast variables
are replaced by their steady-state solution, leaving only the differential equations of the slow
variables (Friston, Li, Daunizeau, & Stephan, 2011; Haken, 1978). The adiabatic approxima-
tion is particularly appealing for multiscale systems as it allows one to replace references to the
fast variables in the slow dynamics by a fixed mapping from slow variables, thereby finessing
the problem of circular causality.

The mathematical arguments of slow-fast decomposition originate from theoretical physics
and have been used in works on self-organisation and synergetics (Haken, 1977, 1978).
Haken and colleagues framed the decomposition of temporal scales in terms of a “slaving
principle,” where slow collective parameters, the order parameters, govern the dynamics of
fast individual variables. This was elegantly used to construct the Haken-Kelso-Bunz (HKB)
model of synchronisation during rhythmic finger movements, which provides a simple yet rep-
resentative example of the slaving principle underpinning the slow-fast decomposition (Haken
et al., 1985). They found that when participants moved their index fingers at a fast speed, those
initially moving in opposite phases suddenly synchronized. By using the slaving principle,
they summarised the complex behaviour of the coupled finger dynamics through a single slow
collective variable (the phase difference), which served as an order parameter. Their model
shows that when the speed of finger movements exceeds a critical frequency, a bifurcation
occurs in the order parameter: the antiphase movements become unstable, and the fingers

Figure 4. Illustration of the centre manifold theorem with a three-dimensional dynamical system. (A) The three-dimensional state-space of the
system. The blue surface is the centre manifold, and gives a height x = h(θ1,θ2) to each point of the (θ1,θ2) plane. Trajectories initialized away
from the manifold converge rapidly towards the surface (black curves). This is due to the presence of a strong flow orthogonal to the centre
manifold (B) for a section of state space. The strong flow (green arrows) converges towards the centre manifold (blue curve). The flow parallel
to the manifold (blue arrows) is weaker by orders of magnitude. Hence, trajectories quickly collapse to the centre manifold before evolving
alongside it. This is reflected in the exponential decay of the distance to the manifold (C). Hence, the x-component of the trajectory is well
approximated by a static function from the location on the (θ1,θ2) plane (D). This can motivate an adiabatic approximation: as the rapidly
changing x component of the trajectory can be approximated by the mapping h(θ1,θ2), we may consider x as a spurious dimension of the
system and restrict our description to the evolution on the (θ1,θ2) plane; in other words, we can approximate the fast vanishing states by a fixed
mapping from the slow states.

Adiabatic approximation:
Neglecting rapidly changing
variables in comparison to slowly
changing ones.

Synergetics:
The study of complex systems and
their emergent properties, examining
interactions between parts to
understand their holistic dynamics.
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synchronize. This celebrated example illustrates the power of the slaving principle in simpli-
fying intricate multiscale phenomena.

To summarize, a dynamical system evolving on two different timescales can be described
by a weak flow on a manifold, that is, a surface within state space, and a component normal to
the manifold whose amplitude decays exponentially with time. This fact can be used, not only
to assess the existence of a separation of temporal scales in a given system, but also to con-
struct a multiscale dynamical system by prescribing a manifold, a flow on the manifold, and a
strong convergent flow normal to the manifold. This is the approach taken by the SFM frame-
work. Multiscale dynamical systems can be further simplified by discarding the normal
component, a step known as the adiabatic approximation. The adiabatic approximation has
a particular advantage when dealing with dynamical systems driven by noisy inputs.

Stochastic Dynamics and Conditioning

We have discussed separating timescales in continuous deterministic dynamical systems.
However, the dynamics may be influenced by noise, and it is useful to understand how ran-
dom fluctuations enter a dynamical system with multiple timescales.

A key mathematical result is that the centre manifold theory and the adiabatic approxima-
tion apply to stochastic systems (Boxler, 1989; Knobloch & Wiesenfeld, 1983). Naturally, the
timescale separation takes a different form than in the deterministic case: we need to
describe the stochatic evolution of the system over time, for instance, through the evolution
of the state probability distribution (see Roberts, 2014, Chap. 21, for details). Under a sepa-
ration of temporal scales, the state distribution factorizes into a marginal, time-dependent
distribution of slow modes p (r, t ) and a conditional, time-independent distribution of fast
components p (s|r ). In other words, the distribution of the fast modes is fully determined
by the slow modes.

The application of the centre manifold theorem to stochastic systems has important conse-
quences. The distribution of fast modes is conditioned on the slow modes. For multiscale sto-
chastic dynamical systems, this conditioning separates the different temporal scales. Thus, a
generative model of multiscale time series naturally has a hierarchical structure, where the
hierarchical depth accommodates the multiple fine or coarse graining of the systems temporal
structure.

Discrete Systems and the Slaving Principle

The slaving principle describes the general idea that slow quantities determine the evolution of
fast quantities. For the particular case of continuous dynamical systems, the principle is
evinced by the centre manifold theorem and the adiabatic approximation. However, the slav-
ing principle is more general and also integrates common applications of discrete switching
models such as HMMs. Here, we show how discrete systems can be reconciled with the over-
arching slaving principle.

When studying brain signals, it appears that brain activity is confined to modes or states of
activity. These modes are defined by specific patterns of activity across the brain, which can be
described through functional or effective connectivity between different brain regions. Nota-
bly, these stable modes of activity are activated in a sequential manner, and analysing the
sequences of activation can provide valuable insights into the overall dynamics of the brain
on a large scale. Analysing brain network dynamics—especially in resting state—has proved
useful, for instance, in pain research, in epilepsy research (V. K. Jirsa et al., 2017; R. Rosch,
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Baldeweg, Moeller, & Baier, 2018), and in Alzheimer’s research (Kuang et al., 2019; Núñez
et al., 2021; Smailovic et al., 2019).

A recent trend in neuroimaging involves employing HMMs to capture the sequential acti-
vation of the fast stable modes (Baker et al., 2014; Cabral et al., 2017; Vidaurre et al., 2016,
2017). With electrophysiological data, the overall evolution of brain-wide neuronal activity is
represented by both the cross-spectral coherence, which captures continuous short-term brain
activity, and a Markov chain that models the switching dynamics over longer time scales
(O’Neill et al., 2018; Vidaurre et al., 2018, 2016). The use of HMMs is licensed by the fact
that the transitions between states happen rapidly, whereas the duration spent in each state is
sufficiently long to enable the rapid activity to reach its steady state (Deco & Jirsa, 2012;
Ponce-Alvarez et al., 2015; Rabinovich, Huerta, Varona, & Afraimovich, 2008). Thus, the
switching dynamics of neuronal connectivity in HMMs adheres to the slaving principle: the
slow Markov chain governs the dynamics of the fast brain signals, as captured by the cross-
spectral coherence.

To summarize, time series at different temporal scales can be separated and individually
modelled. Separating temporal scales implies committing to the slaving principle, that is,
the idea that slow quantities govern the dynamics of fast quantities. The mathematical
arguments underpinning the slaving principle are, for now, restricted to continuous systems;
however, the principle can be intuitively applied to systems with switching dynamics such as
HMMs. Naturally, this perspective shows that a model of multiscale time series has a hierar-
chical structure, with each layer accounting for a different temporal scale. As a result, we
can model the power spectra of EEG or MEG signals using a fast neural mass model alongside
a slow model for parameter dynamics. Similarly, the dynamics of a group of neurons can be
captured by a fast spike rate model along with a slow model for population dynamics. The
next section will focus on how to utilize hierarchical models to test hypotheses with
empirical data.

EVALUATING HYPOTHESES WITH HIERARCHICAL MODELS OF MULTISCALE
TIME SERIES

A mathematical model, of the sort described above, specifies a hypothesis about how the
measured data were generated. Arbitrating between hypotheses entails specifying a suitable
set of models, and having the statistical machinery in place to compare their evidence. This
section sets out recent developments in Bayesian statistical methods, which are proving
useful in neuroimaging and related fields that deal with multiscale time series data and
dynamic models.

Statistical Methodology and the Case for Modelling

In Bayesian statistics, the key quantity summarising the quality of a model is the log model
evidence, also called the marginal likelihood, ln p (y |m). This is the log of the probability of
having observed the data y given the model m. Two or more models can then be compared
in terms of their relative log evidence, which is called the log Bayes factor: ln B = ln p (y |m1) −
ln p (y|m2) (Kass & Raftery, 1995). This procedure is called Bayesian model comparison.

During model development, Bayesian model comparison provides a principled framework
for evaluating modelling decisions. Then, when testing hypotheses in an empirical setting,
Bayesian model comparison serves as the basis for evaluating how well each model explains
the data. This widespread use of the log evidence is justified because it has a number of attrac-
tive properties. For instance, it can be decomposed into the difference between the accuracy

Bayes factor:
A statistical measure that quantifies
the evidence supporting one
hypothesis, as represented by a
model, over another.
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and complexity of a model, so it can be used to identify the simplest explanation for the data
that maximizes the explained variance. Furthermore, through a generalization of the Neyman-
Pearson lemma (Fowlie, 2021; Neyman & Pearson, 1933), it can be shown that the Bayes
factor maximizes statistical power.

Generative models that describe how neuronal dynamics give rise to observed neuroimag-
ing data typically contain many parameters. These may include coupling strengths between
brain regions or the rate of depolarization of a neuronal membrane. Prior knowledge about
model parameters are generally available, and the probability distribution over the parameters
is refined by observing the data. Bayesian inversion refers to the process of transforming a prior
probability distribution over the parameters into a posterior distribution through observing the
data. This depends on calculating or estimating the model evidence, which as stated above,
quantifies how well the model explains the data, once any uncertainty about the parameters
has been accounted for.

Calculating the exact posterior distribution is generally impossible. Bayes rule gives the pos-
terior distribution of parameters p(θ|y ) as the joint probability of parameters and data p(θ,y )
over the marginal probability of the data (or model evidence) p(y ), that is, p(θ|y ) = p(θ,y )/
p(y ). Computing the evidence requires marginalising out (i.e., integrating over) the parameters
in the joint distribution (i.e., p (y ) = ∫ p (θ,y )dθ ), which is unfeasible in practice. Hence, one
resorts to approximating the posterior, for which two categories of methods exist. With the first
category of methods—Markov chain Monte Carlo—one first constructs a Markov chain whose
equilibrium distribution is the posterior distribution and then samples from the Markov chain
to approximate the posterior. With the second category of methods—variational Bayes—one
first specifies the functional form of an approximate posterior and then minimises a statistical
difference between the true and approximate posterior.

Variational methods are preferred when the objective is to evaluate hypotheses by compar-
ing models. Although sampling methods can be used to compute any kind of complex, mul-
timodal posterior probability distribution, there is no standardized method to reliably compute
the model evidence. In contrast, variational Bayes methods approximate the log model evi-
dence using a quantity known as the variational free energy or an evidence lower bound
(ELBO). An optimization algorithm is applied, which searches for a setting of the model param-
eters that maximize the free energy. When maximized, the free energy approaches the log
evidence. The quality of the approximation depends on the model complexity and becomes
exact for general linear models. The variational Bayes treatment of stochastic and deterministic
nonlinear dynamical systems has a long history of use in neuroimaging (Daunizeau, Friston, &
Kiebel, 2009; Friston et al., 2003).

Inverting Hierarchical Models

We have established that evaluating hypotheses amounts to comparing models in terms of
the ratio of model evidence, and that models of multiscale time series have a hierarchical
structure, with higher levels of the hierarchy accommodating longer temporal scales. This
raises the following question: how to invert hierarchical models and estimate their model
evidence?

To recap, each level of a hierarchical model has parameters that are constrained by the
level above. For example, with neuronal recordings, a neural mass model may be used at
the first level, with parameters that encode synaptic connection strengths. Slow changes in
these synaptic parameters over a longer time period (e.g., seconds or minutes) are described
by the second level of the model, with parameters that govern the slow dynamics.

Posterior distribution:
The updated probability distribution
of a variable after considering new
data.
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The Bayesian treatment of hierarchical models is particular. Because it is generally hard to
prescribe a priori the probability distribution of the parameters at arbitrary levels of the hier-
archy, one is required to use empirical priors. The posterior distributions at each level are
constrained by the priors of the level above. However, using an empirical Bayes approach
with hierarchical models creates a circular dependency: empirical priors must be estimated
from the posterior distribution of levels below, which in turn depends on empirical priors of
levels above. An established solution to the circularity problem is to use an iterative procedure
and alternately update our estimates of empirical priors and posteriors (Efron & Morris, 1973;
Kass & Steffey, 1989).

A good example of empirical Bayes is found in Bayesian approaches to group studies.
Subject-level data are modelled with parameters that are constrained by a group-level prior
distribution. Each subject’s model is inverted using the group level prior to produce a posterior
estimate per subject. The prior group-level distribution is then refined from the collection of
subject-level posterior estimates. The refined group-level empirical prior is used to produce
new subject-level posterior estimates, which can be used to refine the empirical prior, and
so forth.

Bayesian model reduction is a simpler approach that avoids the need to iterate between
levels of the hierarchical model and is used extensively in the context of neuroimaging (Friston
et al., 2016). The free energy—applied here to approximate the log evidence of the entire
hierarchical model—can be separated into a partial free-energy for each hierarchical level.
Each partial free-energy quantifies the complexity of that level and its accuracy at predicting
the posterior density of the level below. Crucially, the free-energy of a level can be optimized
regardless of higher levels. Thus, one can approximate the posterior of the first level using the
empirical data, then approximate the posterior of the second level using the posterior of the
first level, and repeat this procedure upwards in the hierarchy. This provides a straightforward
analysis procedure for group studies in neuroimaging, which begins with modelling each
participant’s data individually (first level analysis), and then conveying the free energy and
posteriors to the group level (second level analysis).

The Bayesian model reduction approach to hierarchical models echoes the separation of
temporal scales (Jafarian, Zeidman, Wykes, Walker, & Friston, 2021). In hierarchical models
of multiscale time series, each level represents a different temporal scale, with higher levels rep-
resenting longer timescales. With a genuine empirical Bayes procedure, one would iterate over
different timescales, which would make the problem computationally demanding. However,
when we commit to the variational Bayes approach, each temporal scale is inverted only once.

In summary, the variational Bayes approach to inverting hierarchical temporal models is a
statistical framework that can be used to quantitatively evaluate hypotheses about multiscale
data. In particular, it extends a summary statistic approach, in which one would compute
summary statistics of the fast variables and then perform post hoc analysis of the slow
dynamics. In the following section, we present an example of how this treatment of multi-
scale dynamical systems has been used successfully.

EXAMPLE: ADIABATIC DYNAMIC CAUSAL MODELLING

We have now introduced three key ingredients for modelling time series data at multiple
temporal scales: (i) state-space models, (ii) their extension to multiple temporal scales via
hierarchical models, and (iii) Bayesian inference methods needed to invert these models
and evaluate their evidence.

Empirical priors:
Prior distributions estimated from the
empirical distribution of data or
lower-level posteriors.

Bayesian model reduction:
A statistical technique based on
Bayesian inference that simplifies
complex models by eliminating
irrelevant variables and retaining
important ones.
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These methods are already proving useful for modelling multiscale data in practice. For
instance, to investigate the role of antibodies against NMDA receptors (NMDAr-Ab) in auto-
immune encephalitis, Rosch and colleagues used multiscale modelling to understand how
NMDAr-Ab cause abnormal EEG spectra (R. E. Rosch, Wright, et al., 2018) (see Figure 5). They
recorded the local field potential (LFP) of control and NMDAr-Ab-positive mouse models
during epileptic seizures induced by pentylenetetrazol (PTZ). The spectra of the LFPs were
modelled for short time windows using a canonical microcircuit (CMC) model, composed
of several interacting neuronal populations.

In their work, Rosch and colleagues used the CMC model as the first-level model (encap-
sulating fast variables) for each time window. The time constants of each neuronal population
were the slow variables. The study evaluated how these slow variables interacted with the PTZ
concentration, changing slowly through time, and with the presence of NMDAr-Ab. This was
done by comparing models at the second level (i.e., between time windows). Under their
model, they observed a strong effect of PTZ on the synaptic time constants of different neuro-
nal populations that was further amplified by the presence of NMDAr-Ab.

This example illustrates how Bayesian model reduction and hierarchical temporal models
can be used in practice. The complex multiscale modelling problem was decomposed in two
simpler modelling problems:

i. linking slow parameters of the models to the fast measurements,
ii. modelling the effect of slow experimental effects on the slow parameters.

Opting for this decomposition allowed the authors to evaluate their research hypotheses in
a principled manner. The method used has been more extensively formalized in the adiabatic
DCM framework (Jafarian et al., 2021). The reader interested in an analogous method with
discrete slow dynamics can refer to the dynamic effective connectivity framework introduced
in Zarghami and Friston (2020).

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

The mechanisms of interest for brain research generally span multiple temporal scales.
Because of this apparent complexity, here we returned to first principles and pursued

Figure 5. Hierarchical modelling approach used to link slow effects to fast observations. First, the authors extracted sliding window data from
their LFP time series (A). Then, they estimated the power spectral density for each window, to produce a time-frequency representation of the
data (B). Then they fitted a state-space model, called a canonical microcircuit (CMC) dynamic causal model (DCM), for each window of power
spectral densities (C). This resulted in a time course of posterior densities for the parameters of the DCM models. Finally, the authors added a
second level to the model to test for between-window effects, enabling them to evaluate hypotheses of interest, that is, the interaction between
interventions (PTZ concentration, presence or absence of NMDAr-Ab) and the parameters of the CMC model (D). Adapted with permission
from R. E. Rosch et al. (2018 Q1).
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established mathematical paths. Evaluating hypotheses amounts to constructing generative
models of our observations, for which there are readily available methods. The slaving prin-
ciple means that slow and fast processes can be analysed separately: we can therefore model
each timescale individually, lending a hierarchical structure to our generative models. More-
over, the slaving principle entails switching dynamics, for instance, of brain networks dynam-
ics, which licenses the combination of discrete models (e.g., HMMs) for slow changes in brain
states and continuous models of fast neuronal dynamics, as we have illustrated.

Evaluating and comparing the evidence for hypotheses regarding multiscale time series
requires us to invert hierarchical temporal models, that is, to compute the posterior distribution
over model parameters. In most cases, the inversion problem cannot be solved exactly
because of both the complexity and hierarchical structure of the model. This forces us to
approximate the posterior distribution, a task for which variational Bayes methods are pre-
ferred. In particular, variational Bayes can be combined with empirical Bayes to invert arbi-
trary hierarchical models with empirical priors at intermediate levels. This suggests a simple
procedure to invert hierarchical temporal models: first, model the fast temporal scale by fitting
a model to each time window of time series data, and then invert these models to obtain a time
series of estimated parameters (posteriors), which are expected to change slowly. Finally, use
the time series of these slowly changing parameters as observations for the level above in the
hierarchy.

A practical question is how to determine whether it is better to model several time scales,
and how to identify which time scales shall be modelled. The general answer is that addi-
tional model complexity must be justified by having a better explanation of the data. The
trade-off between model complexity and accuracy is effectively summarized by the log evi-
dence of the model—and its approximation, the variational free energy—(Bernardo et al.,
2003; Soch, Haynes, & Allefeld, 2016). From this perspective, models accounting for different
temporal scales are seen as competing hypotheses, and can be systematically compared
using Bayesian model comparison. In other words, modelling different temporal scales is jus-
tified if the multiscale model has a greater free-energy than a model without multiple scales.
More generally, we recommend comparing the free-energy as a systematic way to arbitrate
between different models, even when derived under different sets of assumptions. For
instance, each temporal scale could be dynamically independent (e.g., frequency multiplex-
ing); this would be considered as a hypothesis and mitigated against alternative hypotheses
by comparing free-energies.

The impact of statistical models for multiscale dynamical systems in neuroscience is poised
to grow. A remarkable example is the development of The Virtual Epileptic Patient, which
helps construct personalized epilepsy models to aid in clinical comprehension of epileptic
cases (Hashemi et al., 2020; V. Jirsa et al., 2023; V. K. Jirsa et al., 2017). Several promising
directions for developing these models are worth exploring. First, HMMs of EEG and MEG
signals could be extended to reflect the itinerancy between the various attractors of the (multi-
stable) system arising from interconnected cortical population, for instance, using the escape
rates introduced in (Cooray, Rosch, & Friston, 2023a, 2023b). Such transformation would
allow one to relate the switching statistics of the Markov chain to properties of the network,
effectively uncovering mechanistic explanations for state transitions. Second, employing
models with continuous slow dynamics allows tracking synaptic gain in pyramidal neurons,
believed to encode the precision (inverse variance) of top-down predictions on the lower
levels of the predictive coding hierarchy. Investigating how these precisions change with
experimental manipulations and over time would be particularly interesting. A third avenue
for hierarchical models of multiscale time series would be to use theoretical frameworks like
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structured flow on manifolds (SFM) to model empirical observations. For instance, applying
an SFM-based generative model of neuronal activity to motor experiments, in the spirit of
Churchland et al. (2012), Lara et al. (2018), and Saxena et al. (2022) could offer valuable
insights into the dynamics of motor tasks.

In conclusion, by combining hierarchical state-space models with Bayesian analysis
methods, time series data with different temporal scales can be linked and their interactions
investigated. This has widespread application within neuroscience research, as well as in
empirical science more generally.
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