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Abstract

The Euler-Poisson equation (or system) is the compressible Euler equation (which
describes a compressible fluid) coupled with the Poisson equation (which describes
Newtonian gravity). In a free boundary context where the domain evolved accord-
ing to the fluid motion, this system describes a classical model of a star – a lump
of compressible gas or liquid surrounded by a vacuum subject to forces created by
its own pressure and gravity – and has been long studied by astrophysicists.

Two classes of important special solutions to this system are the Lane-Emden
stars and the Goldreich-Weber stars. The former is a class of spherically symmet-
ric static solutions describing a static star, while the latter is a class of expand-
ing/collapsing solution which could describe for instance a supernova expansion
or gravitational collapse. An important question regarding these solutions are their
stability properties under perturbations.

The expanding Goldreich-Weber stars consist of two types – one that expands
at a linear rate and one that expands at a self-similar rate. In this thesis we prove that
the former is non-linearly stable under perturbations (allowed to be non-radial), and
the latter class is codimension-1 non-linearly stable under irrotational perturbations
(also allowed to be non-radial).

In the next part of the thesis, we will establish the linear stability properties
of the liquid Lane-Emden stars, in particular we found that it differs from that of
gaseous Lane-Emden stars. We establish various qualitative properties of the liquid
Lane-Emden stars and using them we show that their linear stability properties
depend not only on the adiabatic index but also the central density of the star. Such
dependence on central density is not seen in the gaseous Lane-Emden stars.
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Impact Statement

Partial differential equations (PDEs) are ubiquitous in almost every area of sci-
ence, whether natural science like physics, chemistry and biology, or social or ap-
plied science like engineering, epidemiology and economics. It is tremendously
important and useful to science as it gives a description of how quantities change
or evolve according to rules.

The physics of how our world behaves are described by various partial differ-
ential equations – Maxwell’s equations in electromagnetism, Navier–Stokes equa-
tions in fluid dynamics, Schrödinger equation in quantum mechanics or Einstein’s
equations in general relativity which describes gravity and spacetime. Hence for
the advancement and understanding of science, it is important to have a good math-
ematical understanding of PDEs.

My study of the stability properties to solutions of the Euler-Poisson equation
not only further the understanding of this particular PDE, but has the potential to
shed light on other important PDEs that are similar or related. The Euler equation
with the Euler-Poisson system is in particular a special case of the Navier–Stokes
equations, whose problem of existence and smoothness is one of the biggest and
most important open problems in mathematics, one of the Millennium Prize Prob-
lems.

Euler-Poisson equations also share similarities to many other equations for
being a wave-like equation, as is for example Einstein’s equations. And it was
through the understanding of PDEs, by discovering a certain solution to Einstein’s
equations and proving its stability using mathematics, that physicists were able to
predict the existence of black holes and gravitational waves before they were even
directly observed in our universe.

For many discoveries in pure mathematics, its direct impact to the wider world
might not be immediately apparent, but like number theory in computer cryptogra-
phy, many were to find unexpected use many years later in previously unimagined
places and go on to hugely impact and benefit the wider world. Therefore, I be-
lieve my study of the Euler-Poisson equation here not only contributes to the field
of PDE analysis, but has the potential to have a wider impact in our world too, even
if not as much as the distinguished examples that I mentioned.
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Chapter 1

Introduction

1.1 The Euler-Poisson system

A classical model for stars is given by the Euler-Poisson system, as a lump of
compressible gas or liquid surrounded by vacuum, subjected to forces created by
its own pressure and gravity. This is a system widely studied by (astro)physicists,
for example by Chandrasekhar [4]. The fluid is modelled by the compressible Euler

equations, which model perfect fluids with no heat conduction and no viscosity. It
is given by

ρ
Du

Dt
= −∇p+ ρg (1.1)

∂tρ+∇ · (ρu) = 0 (1.2)

where ρ is the fluid density, u the fluid velocity, g the body accelerations acting
on the fluid (e.g. gravity, inertial accelerations, electric field acceleration etc.), p
the fluid pressure. All these quantities are functions of space x (in Rd) and time
t. Here D

Dt
:= ∂t + u · ∇ denotes the material derivative. Equation (1.1) is the

so-called momentum equation which describes the forces on the fluid particles and
conservation of momentum. Equation (1.2) is the so-called continuity equation

which describes the conservation of mass.

We take g to be the Newtonian gravity

g = ∇φ
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Chapter 1. Introduction

where φ is the gravitational potential is defined by the Poisson equation

∆φ = 4πρ and lim
‖x‖→∞

φ(t,x) = 0. (1.3)

Here the boundary condition at infinity lim‖x‖→∞ φ(t,x) = 0 ensures that we have
a unique solution for φ, and furthermore we require this boundary condition to
be zero since we want to model an isolated star where no energy is coming from
infinity. This case describes a self-gravitating star, subject to gravity induced by
its own mass as well as force coming from its own pressure.

The lump of liquid does not have a fixed shape, its shape and volume can
change - the pressure of the liquid will try to force the liquid to occupy more
space/volume and expend the domain, while any gravitational force will try to
do the opposite. As a result we have a free surface problem where the domain
Ω(t) = supp ρ changes with time, being deformed by the fluid motion itself. We
have the following boundary conditions:

a) the pressure on the boundary matches that of the vacuum outside, i.e. p = 0

on ∂Ω;

b) the normal velocity at which the boundary changes is equal to u · n at any
point on the boundary, where n denotes the outward unit normal vector to ∂Ω.

We now have d+ 1 equations for our fluid (the scalar continuity equation (1.2)
plus the vector momentum equation (1.1)), but d + 2 unknowns (ρ, p and u). To
close the system, we need to specify an equation of state. The classical model
which we will consider is that of a barotropic fluid where pressure is a function
of density only, wherein we have a equation of state p = P (ρ) that relates the
pressure to the density. Under this assumption, we shall consider the classical case
of polytropic fluid where p is related to ρ via

p =

Kργ for gasous stars

Kργ − C for liquid stars.
(1.4)

for some constantK,C > 0 and 2 ≥ γ ≥ 1. Note that under (1.4), since pressure is
0 on the boundary ∂Ω, the density of the fluid will be 0 on the boundary for the gas
case, and (C/K)1/γ on the boundary for the liquid case. Without loss of generality,
we can take K = C = 1. The constant for the power γ, called the adiabatic index,
makes a difference however since it defines the fundamental relationship between
p and ρ. With respect to the natural scaling of the system, the parameter γ plays a
crucial role as natural criticality parameter, with different behaviour to be expected
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1.1. The Euler-Poisson system

from different values of γ. We will refer to the Euler-Poisson system with adiabatic
index γ as the (EP)γ-system.

1.1.1 Physical vacuum condition

Generically, the body of fluid will have non-zero pressure away from the vacuum
boundary. Since the vacuum is the area of zero pressure, we should expect the
forces from the pressure to work to expand the domain Ω(t) (while gravity work to
shrink it). In other words, heuristically, the acceleration due to pressure of the vac-
uum boundary should be non-zero. And in order for the movement of the boundary
to be well-defined it should also be finite. The acceleration of fluid particles due to
pressure is −ρ−1∇p (see momentum equation (1.1)). Note that

−ρ−1∇p ∼ −∇w where w =

ργ−1 when γ > 1

ln ρ when γ = 1.

Hence a “fluid particle” at the vacuum boundary x0 ∈ ∂Ω(t) is accelerated by the
pressure by an amount proportional to −n · ∇w(x0). Hence in order for the free
boundary problem to be well defined, heuristically we expect the condition

0 < −n · ∇w|∂Ω <∞

to be generic and natural to the free boundary problem. This specifies the rate the
density decay towards the vacuum boundary. This condition is known as the physi-

cal vacuum condition. Indeed, it has been shown that outside of this condition, the
problem is in general ill-posed; and when solution exist, it should come to satisfy
the physical vacuum condition in finite time. Whereas within the physical vac-
uum condition framework, well-posedness of the problem has been established via,
for example, the methods of Jang and Masmoudi [33] and Coutand and Shkoller
[7].

Note that gas with γ = 1 can never satisfy the physical vacuum condition, so
it does not admit well-defined solutions with a vacuum region within the physical
vacuum condition framework. For more discussions on the physical vacuum condi-
tion and well-posedness of solutions with a vacuum region, see [32] and [33].
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Chapter 1. Introduction

1.1.2 Conserved quantities and scaling

The Euler-Poisson system (1.1)-(1.3) possesses the following important conserved
quantities – mass, momentum and energy, given respectively by:

M [ρ] :=

∫
Ω(t)

ρ dx, (1.5)

W[ρ,u] :=

∫
Ω(t)

ρu dx, (1.6)

E[ρ,u] :=



∫
Ω(t)

(
1

2
ρ|u|2 +

1

2
ρφ+

1

γ − 1
ργ
)

dx for gas, γ > 1∫
Ω(t)

(
1

2
ρ|u|2 +

1

2
ρφ+ ρ ln ρ

)
dx for gas, γ = 1∫

Ω(t)

(
1

2
ρ|u|2 +

1

2
ρφ+

1

γ − 1
ργ + 1

)
dx for liquid, γ > 1∫

Ω(t)

(
1

2
ρ|u|2 +

1

2
ρφ+ ρ ln ρ+ 1

)
dx for liquid, γ = 1

(1.7)

The Euler-Poisson system possess scaling structures so that if (ρ,u) is a clas-
sical solution of the (EP)γ-system, then (ρ̃, ũ) defined by

ρ̃(t,x) = λ−
2

2−γ ρ

(
t

λ
1

2−γ
,
x

λ

)
(1.8)

ũ(t,x) = λ−
γ−1
2−γu

(
t

λ
1

2−γ
,
x

λ

)
(1.9)

is also a solution to the (EP)γ-system for any fixed λ > 0. And we have

M [ρ̃] = λd−
2

2−γM [ρ]

E[ρ̃, ũ] = λd−
2γ

2−γE[ρ,u].

The mass critical and energy critical indices are the indices γ for which the mass
and energy respectively remains unchanged under this scaling. For d = 3, the mass
critical index is γ = 4/3 and the energy critical index is γ = 6/5.

A γ larger than the mass critical index is said to be mass sub-critical where
good behaviour is expected; while a γ smaller than the mass critical index is said
to be mass super-critical where bad behaviour is expected. A heuristic way to see
this is as follows. Imagine we have a solution in equilibrium where pressure and
gravity are in perfect balance. When λ > 1, the density/mass of (ρ,u) is more
concentrated in space (has larger maximum value and smaller support) than that of
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1.1. The Euler-Poisson system

(ρ̃, ũ). Heuristically this should be due to a stronger gravity effect due to a larger
overall mass. In the mass sub-critical range, the mass of (ρ,u) is larger than (ρ̃, ũ)

as expected, hence good behaviour is expected. Whereas in the mass super-critical
range, the mass of (ρ,u) is smaller than (ρ̃, ũ), this strangeness suggest behaviours
might be not so good, at least when it comes to the stability of such a equilibrium
solution.

Similarly, a γ larger than the energy critical index is said to be energy sub-

critical; while a γ smaller than the energy critical index is said to be energy super-

critical.

1.1.3 Lagrangian formulation

A changing domain is difficult to do analysis on, but since we are dealing with a
fluid made up of “fluid particles”, using this structure we can convert to Lagrangian
coordinates by tracing “fluid particles” and obtain an equivalent formulation where
the domain is fixed. This formulation is particularly well suited to the analysis of
fluids featuring a vacuum boundary.

The Lagrangian formulation is as follows. Let η(t,x) be the the fluid flow
map, defined through

∂tη = u ◦ η with η(0,x) = η0(x),

where u ◦ η(t,x) = u(t,η(t,x)). The spatial domain is then fixed for all time
as Ω0 := η−1

0 (Ω(0)). To reformulate the (EP)γ-system in the new variables, we
introduce

v = u ◦ η (Lagrangian velocity)

f = ρ ◦ η (Lagrangian density)

ψ = φ ◦ η (Lagrangian potential)

A = (∇η)−1 (inverse of the deformation tensor)

J = det(∇η) (Jacobian determinant)

a = JA (cofactor matrix of the deformation tensor)

Under this change of coordinates, the continuity equation becomes fJ = f0J0 and
the momentum equation (1.1) in the domain Ω0 reads

∂tv +
1

f0J0

∂k(A
k(f0J0)γJ1−γ) + A∇ψ = 0, (1.10)
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Chapter 1. Introduction

where Einstein summation convention is used (see Definition 1.4.1). Moreover, ψ
solves the Poisson equation

(A∇) · (A∇)ψ = 4πf0J0J
−1. (1.11)

For details of the Lagrangian description of the Euler-Poisson system, we refer
to [22].

1.2 Lane–Emden and Goldreich-Weber stars

There are two classes of special solutions to the Euler-Poisson system of much
physical importance.

1) The first is the Lane–Emden stars (LE stars) [4], which are time independent
spherically symmetric solutions modelling a static star where pressure and
gravity are in perfect balance. Lane–Emden stars exist for all 2 ≥ γ ≥ 1 and
for both gas and liquid (see section 4.1).

2) The second is the Goldreich-Weber stars (GW stars) [17], which are spheri-
cally symmetric expanding or collapsing solutions modelling a star that is ex-
panding or collapsing in time. Goldreich-Weber stars exist at the mass critical
index γ = 4/3 (when d = 3) for gas.

To obtain these solutions, we look for spherically symmetric solutions to the
Euler-Poisson system of the form η(t,x) = λ(t)x, and assume without loss of
generality that λ(0) = 1. Under this affine ansatz, the momentum equation (1.10)
in R3 reduces to

f0λ̈x + λ−1+3(1−γ)∇fγ0 + λ−2f0∇Kf0 = 0 (1.12)

where
K := 4π∆−1 (1.13)

i.e. Kf(x) = −
∫
R3

f(y)
|x−y|dy for any f ∈ L2(R3); and we observe that

ψ(x) = (Kρ)(η(x)) = −
∫

ρ(y)

|η(x)− y|
dy = −

∫
f(z)J(z)

|η(x)− η(z)|
dz

= −
∫

f0(z)J0(z)

|η(x)− η(z)|
dz = −1

λ

∫
f0(z)

|x− z|
dz =

1

λ
K(f0)(x).
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1.2. Lane–Emden and Goldreich-Weber stars

1.2.1 Lane–Emden stars

To look for time independent solutions like the Lane–Emden stars, we further take
λ(t) = 1 in our ansatz. This reduce (1.12) to

1

f0

∇fγ0 +∇Kf0 = 0

or equivalently

0 =


γ
γ−1

∆fγ−1
0 + 4πf0 when γ > 1

∆ ln f0 + 4πf0 when γ = 1

The assumes d = 3, but a slight modification to the derivation shows the same
formula works for general d ≥ 3. Assuming spherically symmetry, we have ∆ =

r−(d−1)∂r(r
d−1∂r), this gives the ODE which defines the Lane–Emden stars.

Definition 1.2.1 (Lane–Emden solutions). Lane–Emden (LE) stars are time-

independent static solutions of the free-boundary Euler-Poisson system (1.1)–(1.4),
its density ρ is given by the ODE:

i. when γ > 1,

1

rd−1

d
dr

(
rd−1 dw

dr

)
= −4π

γ − 1

γ
wα. (1.14)

or equivalently

dw
dr

= −4π
γ − 1

γ

1

rd−1

∫ r

0

yd−1w(y)αdy (1.15)

where w = ργ−1 and α = (γ − 1)−1.

ii. when γ = 1,

1

rd−1

d
dr

(
rd−1 dh

dr

)
= −4πeh. (1.16)

or equivalently

dh
dr

= −4π
1

rd−1

∫ r

0

yd−1eh(y)dy (1.17)

where h = ln ρ.

We will also refer to these ODEs as the steady state equation since they define
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steady state solutions to the Euler-Poisson system. We also call w the enthalpy and
the ODE for it the enthalpy equation. Solution to these ODEs exist (see Theorem
B.1.3). Moreover, the gaseous solutions has compact support when γ > 2d/(d+2)

(energy sub-critical indices), and infinite support otherwise (see Theorem 4.1.4).
Liquid solutions always have compact support - they are the gaseous solutions
truncated at ρ = 1.

1.2.2 Goldreich-Weber stars

The mass-criticality of the problem allows for the existence of a special class of
expanding solutions, known as the Goldreich-Weber stars [17]. The reason such
solutions exist is, roughly speaking, because the scaling properties of the Euler-
Poisson system in the mass critical case allows us to scale solutions while maintain
the overall mass. This suggests that natural solutions that evolve in time under this
scaling exist (note that solutions must conserve overall mass in time). For reader’s
convenience we provide a brief summary of this special class of solutions of (1.1)–
(1.4) which has been analysed in [17, 46, 15, 11]. A comprehensive overview can
be found in [20].

For notational simplicity, here we will restrict to the physically relevant case
of d = 3. In the mass-criticality index of γ = 4/3, the equation (1.12) becomes
separable. Indeed, we get

λ̈λ2x +
1

f0

∇(f
4
3

0 ) +∇Kf0 = 0

Assuming spherically symmetry we get

λ̈λ2 +
1

rf0

∂r(f
4
3

0 ) +
1

r
∂rKf0 = 0.

Since we can separate variables above, we look for a δ ∈ R and a δ-dependent
solution (λ, f0) = (λδ, f

δ
0 ) so that

λ̈(t)λ(t)2 = δ, (1.18)
4

r
∂rw̄δ +

1

r
∂rK(w̄3

δ) = −δ, (1.19)

where w̄δ is the enthalpy associated with f δ0 satisfying

(w̄δ)
3 := f δ0 . (1.20)
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1.2. Lane–Emden and Goldreich-Weber stars

We also equip (1.18) with initial data

λ(0) = 1, λ̇(0) = λ1 ∈ R. (1.21)

It can be shown that there exists a negative constant δ̃ < 0 such that the solution
(λδ(t), w̄δ) to (1.18)–(1.21) exists for all δ ≥ δ̃, see [15, 20], whereby λδ(·) either
blows up in finite positive time, or exists globally for all t ≥ 0. Moreover, for any
such δ ≥ δ̃, the enthalpy profile w̄δ is compactly supported, has finite total mass,
and by adapting the value w̄δ(0) it can be normalised to be supported on the interval
r ∈ [0, R] for a fixed R > 0. At the vacuum boundary, by analogy to the classical
Lane-Emden stars [20], the Goldreich-Weber star satisfies the so-called physical
vacuum condition, which in this context reads

w̄′δ(r)
∣∣∣
r=R

< 0. (1.22)

Self-similarly expanding Goldreich-Weber stars

The self-similarly expanding Goldreich-Weber stars are the subclass of solutions
to (1.18)–(1.21) of total energy 0, for which λδ(·) exists for all t ≥ 0. Since the
total conserved energy of the above affine motion is easily seen to be

Eδ(t) =
(
λ2

1 + 2δ
) ∫

2πf δ0z
4 dz, (1.23)

solutions with vanishing energy necessitate δ < 0. For any such δ̃ ≤ δ < 0,
equation (1.18) with (1.21) is explicitly solvable with

λδ(t) =

(
1 +

3

2
λ1t

)2/3

, λ2
1 = −2δ. (1.24)

In particular, for any λ1 > 0 we obtain an expanding solution with the explicit rate
of expansion λδ(t) ∼t→∞ t

2
3 . This is the self-similarly expanding Goldreich-Weber

solution.

Definition 1.2.2 (Self-similarly expanding Goldreich-Weber solutions). To any δ ∈
[δ̃, 0) we associate the Goldreich-Weber (GW) star which constitutes a solution of

the mass-critical free-boundary Euler-Poisson system (1.1)–(1.4):

ρ̄(t,x) = λδ(t)
−3w̄3

δ

(
|x|
λδ(t)

)
, ū(t,x) =

λ̇δ(t)

λδ(t)
x, Ω̄(t) = Bλδ(t)(0),

(1.25)
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with λδ(t) given by (1.24) with λ1 > 0 and w̄δ the normalised solution to (1.19) as

above.

These solutions are spherical symmetric about the origin, have zero momentum
W[ρ̄, ū] = 0 and zero energy E[ρ̄, ū] = 0. Without loss of generality, this can be
assumed by setting our frame of reference.

Remark 1.2.3. The Galilean invariance of the Euler-Poisson system (1.1)–(1.3)
implies the conservation of momentum. If we change our frame of reference, we can

obtain an enlarged family of the GW-solutions with arbitrary momentum W̄ ∈ R3.

More precisely, for any motion p(t) = p0 + tp1 we can obtain a new solution via

ρ̄p(t,x) = ρ̄(t,x− p(t)),

ūp(t,x) = ū(t,x− p(t)) + p1,

or equivalently ηp(t,x) = η(t,x) + p(t) in Lagrangian coordinates. It is easy

to verify that (ρ̄p, ūp) so obtained solves the Euler-Poisson system with the total

momentum W[ρ̄p, ūp] = M [ρ̄, ū]p1 and energy E[ρ̄p, ūp] = 1
2
M [ρ̄, ū]|p1|2. The

freedom to choose p1 ∈ R3 thus parametrises the three degrees of freedom associ-

ated with the total linear momentum, and this will play a role in our analysis.

Linearly expanding Goldreich-Weber stars

In the case

δ > 0 or δ = 0 with λ1 > 0 or δ ∈ (δ̃, 0) with λ1 >
√

2|δ|,
(1.26)

the solution λδ(·) exists for all t ≥ 0 and expands indefinitely at a linear rate, i.e.
there exists a constant c > 0 such that

lim
t→∞

λ̇(t) = c.

These solutions have strictly positive energy

Eδ,λ1(t) =
(
λ2

1 + 2δ
) ∫

2πf δ0z
4 dz > 0. (1.27)

This subclass of solutions to (1.18)–(1.21) is the linearly expanding Goldreich-
Weber solution.

Definition 1.2.4 (Linearly expanding Goldreich-Weber solutions). To any δ, λ1 sat-
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1.3. History and results

isfying (1.26) we associate the Goldreich-Weber (GW) star which constitutes a so-

lution of the mass-critical free-boundary Euler-Poisson system (1.1)–(1.4):

ρ̄(t,x) = λδ,λ1(t)−3w̄3
δ

(
|x|

λδ,λ1(t)

)
, ū(t,x) =

λ̇δ,λ1(t)

λδ,λ1(t)
x, Ω̄(t) = Bλδ,λ1

(t)(0),

(1.28)

with λδ(t) the solution to (1.18)(1.21) and w̄δ the normalised solution to (1.19) as

above.

Unless stated otherwise, we shall drop the subscript δ in the definition of the
GW-solution, as this will create no confusion in the analysis.

1.3 History and results

1.3.1 History and background

The Euler equations were first described by Euler in 1757, but even in the absence
of vacuum it is a highly non-trivial problem. In particular, the Euler equations are
prone to singularity/shock formation even from quite regular data, see for example
[6] by Christodoulou and [61] by Sideris. This made the study of existence and
behaviour and global solutions non-trivial. In the presence of vacuum the problem
is even trickier due to the degeneracy of the boundary and its movements. When
the density is bounded away from zero, the system is strictly hyperbolic and the
classical theory of hyperbolic systems for local existence applies: [45]. In the
presence of the vacuum, we have singularity or discontinuity across the boundary
and this no longer applies, and so even local existence is non-trivial, with various
local existence theory only establish recently.

The Euler-Poisson equations with the polytropic equation of state has long
been used to model stellar structure and evolution by astrophysics such as Chan-
drasekhar [4], Shapiro and Teukolsky [59]. Despite and because of its simplicity,
it is a good approximation for certain regions of various types of stars, and so it
serves as the classical model of stars. In particular, many equations of state that
are of astrophysical interest behave like polytropes for low and for high pressures.
One of the most important class of solutions to the Euler-Poisson equation with the
polytropic equation of state are the time independent steady state solutions known
as the Lane–Emden stars (for any γ ∈ [1, 2]). It is the classical model of a spher-
ically symmetric stationary steady star where pressure and gravity are in perfect
balance. In 1980 astrophysicists Goldreich and Weber [17] found a special class of

25



Chapter 1. Introduction

expanding and collapsing solutions for γ = 4/3, the mass critical index where the
natural scaling preserves the mass. This is another important class of solutions as
it models stellar collapse and expansion such as supernova expansion. Importantly,
both the Lane–Emden stars and the Goldreich-Weber stars in the gaseous case has
w ∼ dist( · ,Ωc) near the vacuum boundary.

Therefore, given these special solutions of physical interest, it is important to
have an existence theory for the Euler and Euler-Poisson equation that is com-
patible and includes this particular boundary behaviour – the so-called physical
boundary condition. However, this is not easy due to the degeneracy near the vac-
uum boundary and the fact that w is not smooth across it. There are works, for
example [47] by Makino, Ukai and Kawashima in the 1980s, which established an
existence theory for compact solutions to the compressible Euler equations. How-
ever, their solution can only exist for a finite time, and moreover do not apply
to data satisfying the physical boundary conditions since their method requires a
degree of smoothness across the boundary not satisfied by the physical boundary
conditions.

It was only recently that progress on local existence theory in this area has
been made. In this formulation, one has a moving domain Ω(t), treating ∂Ω(t) as
an unknown that evolves with the flow, prescribing the so-called physical boundary

condition 0 < −n · ∇w < ∞ on the boundary where n is the outward normal of
the boundary, i.e. w ∼ dist( · ,Ωc) near the boundary. For the Euler equations in
the gaseous case in this setting, Coutand and Shkoller [7], and Jang and Masmoudi
[33] have recently independently proved local existence. A different proof based
on Eulerian approach (rather than using Lagrangian coordinates as previous work)
was later given by Ifrim and Tataru [28]. Extensions of local existence result to the
Euler-Poisson equations has been done by using the fact that the gravity term is of
lower order - see [19] by Gu and Lei, and [22] by Hadžić and Jang. For the liq-
uid case, local-existence for the Euler system is established by Lindblad [37] using
Nash–Moser construction; Trakhinin [63] using the theory of symmetric hyperbolic
systems; and Coutand, Hole and Shkoller [8] using the vanishing viscosity method
with a parabolic regularization together with some time-differentiated a priori es-
timates. Local existence for the liquid Euler-Poisson equation has been proven by
Ginsberg, Lindblad and Luo [16]. In the relativistic setting, this has been done by
Oliynyk [49] and Miao, Shahshahani and Wu [48].

Since already the Euler equation alone is prone to singularity/shocks which
made global-in-time behaviour non-trivial, when coupled with an additional at-
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tractive gravitational force, we expect the Euler-Poisson to be even more prone to
singularity or blow ups. Indeed, it has been shown that solutions could blow up in
a finite time - [11, 46]. As a result there are not many global-in-time existence and
uniqueness results for the Euler-Poisson system outside of the aforementioned spe-
cial solutions. One new result in this direction is [5] a global existence result with
radial symmetry in the class of weak solutions. As an aside, we should mention
that in the presence of viscosity (which we do not have here), the parabolic effect
takes over and various asymptotic stability results are available [42, 43].

Due to their physical significance, it is important to understand what happens in
the vicinity of these special Lane–Emden and Goldreich-Weber solutions, whether
they are linearly and non-linearly stable. On the problem of stability of gaseous
Lane–Emden stars it is known [38, 34, 39] that the Lane–Emden stars in R3 are
linearly unstable in the mass super-critical range when 1 < γ < 4/3 and linearly
stable when 4/3 ≤ γ < 2 (The nonradial linear stability question is treated by
[34, 39] from the Lagrangian and the Eulerian perspective respectively). Recently,
nonlinear instability in the range 6/5 ≤ γ < 4/3 has been proven in [30, 31] by
Jang. Nonlinear stability in the range 4/3 < γ < 2 has not been fully proven yet
and remains open, but under the assumption that a global-in-time solution exists,
nonlinear stability in the range 4/3 < γ < 2 has been shown by variation argu-
ments, see [53] by Rein, and [40] by Luo and Smoller. In the critical case γ = 4/3

the Lane-Emden star is nonlinearly unstable despite the conditional linear stability
- in fact the family of expanding/collapsing Goldreich-Weber stars that exist for
this γ can get arbitrarily close to the Lane-Emden star. Nonlinear stability of the
expanding gaseous Goldreich-Weber stars against radially symmetric perturbations
was proven by Hadžić and Jang [20].

1.3.2 Statement of main results and plan for the thesis

The first two results to be presented in this thesis are the generalisation of
Goldreich-Weber stars’ nonlinear stability under radial perturbations proven in [20]
by Hadžić and Jang to nonlinear stability under non-radial perturbations. In Chap-
ter 2 and 3 respectively, we will prove our results, the following two theorems,
which are joint work with Hadžić and Jang.

Theorem 1.3.1. The self-similarly expanding Goldreich-Weber stars are co-

dimension 4 non-linearly stable under irrotational perturbations. The class of self-

similarly expanding Goldreich-Weber stars is co-dimension 1 non-linearly stable

under irrotational perturbations.
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Theorem 1.3.2. The linearly expanding Goldreich-Weber stars are non-linearly

stable (under general perturbations).

The precise statement of these theorems will be stated (formulated in detailed
notations) in Chapter 2 and 3 respectively. More precisely, Theorem 1.3.1 corre-
sponds to Theorem 2.1.7 and Corollary 2.1.8, while Theorem 1.3.2 corresponds to
Theorem 3.1.3. The content of Chapter 2 proving Theorem 1.3.1 is the content of
our paper [23].

Since in the mass critical case γ = 4
3
, the Lane–Emden solutions are embedded

in a larger family of collapsing/expanding Goldreich-Weber solutions, our results
can be viewed as a definitive nonradial instability statement about the mass-critical
LE-solutions.

The driving stabilisation mechanism that allows for the global existence in The-
orem 2.1.7 is the expansion of the support of the background GW-star. Intuitively,
this is because density must goes to zero as the support of the star expanding since
overall mass of the star is conserved. When there is no vacuum boundary present,
the dispersion induced by the expansion was used by Grassin [18], Serre [58], and
Rozanova [57] to give examples of global-in-time solutions to the compressible
Euler flows.

The GW-stars belong to a class of so-called affine motions. In the context
of compressible flows the notion of an affine motion goes back to the works of
Ovsiannikov [50] and Dyson [13]. In the presence of vacuum, Sideris [62] showed
the existence of a finite-parameter family of compactly supported expanding affine
flows, whose nonlinear stability was shown by Hadžić and Jang [21] and Shkoller
and Sideris [60] for the pure Euler flows. For expanding profiles with small initial
densities, but not necessarily close to the Sideris solutions, see [52]. Further results
in this direction, in the nonisentropic setting and in the presence of heat convec-
tion can be found in [54, 55, 56]. A similar method works for the Euler-Poisson
system and global-in-time flows were shown to exist in both the gravitational and
electrostatic case [22], where the Euler part of the flow entirely dominates the grav-
itational/electrostatic response of the model. Another application of an expansion-
induced stabilisation is the work of Parmeshwar [51] where an N -body configura-
tion of expanding stars is shown to exist globally in-time. If damping is present
in Euler flows it can drive sublinear expansion of Barenblatt-like solutions, see
[44, 64, 65].

Our result concerning the self-similarly expanding GW stars in Theorem 1.3.1
has one notable difference to the above results. Our result for the linearly expanding
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GW stars in Theorem 1.3.2 is in fact easier than that for self-similarly expanding
GW stars in Theorem 1.3.1. The reason for that is that the linearly expanding GW
stars expands at a faster rate than the self-similarly expanding GW stars, as a result
the stability resulting from the dispersion due to expansion is stronger. As a result
in particular, the gravitational forces in the linearly expanding case are of secondary
order. The various results we mentioned above, interestingly, like this linearly
expanding GW case in Theorem 1.3.2 do not depend on the attractive/repulsive
nature of the force field. Our result on the self-similarly expanding GW stars in
Theorem 1.3.1 are for this reason in a different dynamic regimes.

My final result is on the liquid Lane–Emden stars. Despite the linear stability
results on the gaseous Lane–Emden stars, the question of linear stability of liquid

Lane–Emden stars has not been established. My third result presented in the final
Chapter 4 is thus on exactly this, and it is the content of my paper [36].

The linear stability of the gaseous Lane–Emden stars does not depend on its
central density. However, notably, we found that in the liquid case, the stability of
the Lane–Emden stars does depend on its central density.

Definition 1.3.3. For a liquid Lane–Emden stars with density profile ρ, we say that

it has small relative central density if ρ(0)− 1 is close to 0.

The main theorem we will prove in the final Chapter 4 is the following.

Theorem 1.3.4. Assume d < 10. The liquid Lane–Emden stars are, against radial

perturbations,

i. linearly stable when γ ≥ 2(d− 1)/d;

ii. linearly stable when γ < 2(d − 1)/d for stars with small relative central

density (see Definition 1.3.3);

iii. linearly unstable when γ < 2(d− 1)/d for stars with large central density.

This kind of dependence on central density is seen in relativistic stars described
by the Einstein–Euler equations, where it was found in [24] by Hadžić, Lin and
Rein that strongly relativistic steady stars (those with very large central density) are
unstable. It turns out the imposition of a liquid boundary creates extrema points on
the mass-radius plot when γ < 2(d−1)/d so that they end up similar to those in the
relativistic case, where a turning point principle proven by Hadžić, Lin and Rein
[24, 25] dictates that such extrema points introduces unstable modes (see diagram).
The two problems share similarity in such a way that the methods of dynamical
system utilised in [24] can be adapted for use in our study of liquid Lane–Emden
stars - we use that to prove part iii of our theorem.
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Making use of my linear (in)stability analysis concerning liquid Lane–Emden
stars, very recently Hao and Miao have proven in [26] non-linear instability of
liquid Lane–Emden stars in R3 with large central density in the regime 1 ≤ γ <

4/3.

1.3.3 Overview of methods and results in this thesis

In this subsection we will mainly only outline the connections, relationships, sim-
ilarities and differences between the three main results of this thesis. More detail
outline of methods specific to each results will be described in their own respective
chapters.

Chapter 2 and 3 are on the non-linear and non-radial stability of expanding GW
stars, whereas Chapter 4 is on the linear radial (in)stability of liquid LE stars.

The mechanism that allows for proving non-linear stability for GW stars is the
dispersion effect coming from the expansion of the GW star. But this relies on hav-
ing linear stability firstly, hence in both Chapter 2 and 4, we have to prove positivity
of the linear operator L and L associated with the Euler-Poisson system linearised
around the self-similarly expanding GW and liquid LE stars respectively.

Since for GW stars we seek to establish non-radial stability, this requires the
analysis of a PDE operator L in Chapter 2, rather than just an ODE operator L
for the radial (in)stability results for the liquid LE stars in Chapter 4. For this we
adapt and extend the methods by Jang and Makino in [34], where they proved non-
negativity for the linear PDE operator associated with the gaseous LE stars in the
mass-subcritical range, to the GW star. In this thesis we have not extended this
non-radial analysis to liquid LE stars — in that case there will be extra challenges
arising from boundary terms coming from the discontinuity of density near the
vacuum boundary — this deserved to be studied in future works.

Thus our results on liquid LE stars in Chapter 4 were just on radial (in)stability.
However, the work to establish this radial (in)stability is not trivial, since we have
to obtain precise estimates regarding the profile of the liquid stars in order to prove
properties of the linear operator L for the liquid LE stars.

These kind of precise linear analysis is not needed for the linearly expanding
GW star in Chapter 3 because there the rate of expansion is fast enough that gravi-
tational effects essentially becomes lower order in the dynamics and which means
the pressure effect automatically gave the desired positivity.

The radius of the expanding GW stars is proportional to λ(t). For the self-
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similarly expanding GW star λ(t) ∼ t2/3, while for the linearly expanding GW star
λ(t) ∼ t. The faster rate of expansion for the latter case means that the problem is
easier since there is a stronger dispersive effect that we can harness. Using the high

order energy method, this dispersive effect allow us to upgrade linear stability into
non-linear stability for the expanding GW stars.

For both cases we convert to a rescaled time coordinate s such that lnλ(s) ∼ s,
and rescaled all variables so that they centred around the expanding GW profile. In
the new coordinate, the deviation θ away from the expanding GW star satisfies
((2.7) and (3.7))

∂2
sθ−

1

2
b∂sθ︸ ︷︷ ︸
V

+δθ + P + G = 0 (self-similarly expanding GW star)

λ∂2
sθ + λ′∂sθ︸ ︷︷ ︸

W

+δθ + P + G = 0 (linearly expanding GW star)

where b is some negative constant, P is the pressure term and G is the gravity
term.

In the first equation for the self-similarly expanding GW star, the term V comes
from and represents the dispersive effect of the expansion. It gives an effect analo-
gous to the “damping term” ẋ in a damped harmonic oscillator ẍ + ẋ + x = 0. Its
stabilising behaviour allows us to close the estimate to prove non-linear stability
for the self-similarly expanding GW star.

In the second equation for the linearly expanding GW star, the even stronger
dispersive effect is expressed in W . Since λ ∼ eCs for some C > 0, for large
s, the equation is approximately just ∂2

sθ + C∂sθ = 0. So heuristically we can
expect ‖∂sθ‖∗ ∼ e−Cs in some appropriate norm ‖ · ‖∗, i.e. we have great decay
on the “velocity level”. And again this stabilising behaviour allows us to close the
estimate to prove non-linear stability for the linearly expanding GW star. However,
the term P in this case is not negligible and is in fact very important, the reason
being that it contains the highest number of space derivatives with P containing
something like ∇∇ · θ. To obtain control for space derivatives of θ, it is thus
necessary to use the structure of P.

Due to the good decaying effect of the “velocity level” ‖∂sθ‖∗, control for
‖θ‖∗ comes basically for free in a process analogous to the fundamental theorem
of calculus. This is also the reason why the gravity term G, being not top order
in space derivatives unlike P, is basically negligible in the dynamics in this case.
We do not have this very strong decaying effect of the “velocity level” for the
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self-similarly expanding GW star however, so obtaining control for ‖θ‖∗ is more
difficult for the self-similarly expanding case. In this case we need to assume the
fluid to be irrotational and use this extra structure to help control ‖θ‖∗. It is not
very clear whether this restriction is just technical or more fundamental, future
work could probably investigate if the irrotational condition can be dropped in this
case.

1.4 Notation

As Chapter 2, 3 and 4 are devoted to the self-similarly expanding GW stars, linearly
expanding GW stars and liquid LE stars respectively, we will write w̄ to denote the
the self-similarly expanding GW stars, linearly expanding GW stars and liquid LE
stars enthalpy profile respectively (see Definition 1.2.2, 1.2.4 and 1.2.1) in these
chapters.

Since the gaseous Euler-Poisson system is degenerate near the vacuum bound-
ary, we will need to make use of weighted Sobolev spaces. Let L2(BR, w) denote
the L2 space on BR weighted by a non-negative weight w. Of crucial importance
in this thesis are the weighted inner products

〈g, h〉k :=

∫
BR

ghw̄kdx, (1.29)

〈g,h〉k :=

∫
BR

g · hw̄kdx, (1.30)

defined for any scalar fields g, h ∈ L2(BR, w̄
k) and vector fields g,h ∈

L2(BR, w̄
k)3. The weighted inner product for tensor fields are defined in the same

way. The associated norm is then given by

‖f‖2
k =

∫
BR

|f(x)|2w̄(x)kdx. (1.31)

To capture the structure of the roughly spherical stars, we will need to use the
following specially defined radial and tangential derivatives in our analysis. We
define

Xr := xi∂i = r∂r

/∂i := εijkx
j∂k

/∂ij := xi∂j − xj∂i
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where εijk is the alternating symbol (see Definition 1.4.1). Note that /∂ij = εijk/∂k.
We denote

div θ := ∇ · θ

[curlθ]kl := ∂lθ
k − ∂kθl

divAθ := (A∇) · θ

[curlAθ]kl := A∂lθ
k −A∂kθ

l

where A∇ := Ak∂k and A∂i := Ak
i ∂k.

In this thesis, especially Chapter 2 and 3, we will be using some fairly standard
notations in the following that the reader will have seen elsewhere.

Definition 1.4.1 (Standard notations).

i. Greek letter superscript on derivatives are multi-index notation for deriva-

tives. For example, /∂α = /∂α1
1 /∂α2

2 /∂α3
3 where α = (α1, α2, α3). And |α| =

α1 + α2 + α3.

ii. Roman letter indices such as i, j, k, l,m on derivatives and vector or tensor

fields are assumed to range over {1, 2, 3}. However, this does not apply to

s which we reserved to denote the rescaled time variable. Also, it does not

apply when they are indices of non-vector or non-tensor objects, for example

Ψlm and Λlm in Chapter 2.

iii. The Einstein summation convention will be used, i.e. repeated indices on

derivatives and vector or tensor fields are summed over. For example, ∂iθi =∑3
i=1 ∂iθ

i. However, this does not apply to non-vector or non-tensor objects,

for example Ψlm and Λlm in Chapter 2.

iv. I denotes the identity matrix, δij or δij the Kronecker delta, εijk the alternating

symbol (Levi-Civita symbol).

v. C will denote generic “analyst’s constant”, whose exact value can change

from line to line and term to term. When appearing in equalities, it can po-

tentially denote any real constant, but when appearing in inequalities, it is

generally assumed to be non-negative. We will use subscript to emphasise its

dependence on certain variables, for example Cδ is a constant that depends

on δ.

vi. ei (i = 1, 2, 3) denotes the standard basis of R3, while er denotes the radial

unit vector x/|x|.

Now we will define some important special new notations that the reader prob-
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ably will not have seen before.

Definition 1.4.2 (Special notations).

i. We will denote ∂• as a generic derivative, so it can be any of ∂s, ∂i, /∂ or Xr.

ii. We will use • to denote an unspecified index, or to emphasise the vecto-

rial/tensorial nature of non-scalar quantities. For example if A is a matrix,

we can write Ak•.

iii. When the exact value/ordering of the indices is not important, we shall often

write 〈?〉 for a generic term that looks like ? to avoid invoking indices. For

example, 〈CA∇θ〉 could represent a term like CAi
j∂kθ

l for some i, j, k, l and

constant C ∈ R.

iv. We will write R[?] to denote terms that can be bounded by ?, e.g. |R[SnEn]| .
SnEn.

v. We will write 1? to denote the usual indicator function, and write 1[?] to denote

the Iverson bracket. For example, 1A(x) = 1[x ∈ A].
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Chapter 2

Nonradial stability of self-similarly
expanding Goldreich-Weber stars

2.1 Introduction

2.1.1 Equation in self-similar coordinates

Let (ρ̄, ū) be a given self-similarly expanding GW-flow from Definition 1.2.2 with
the corresponding radius Rλ(t) and the associated enthalpy w̄ : [0, R] → R+. In
order to study the stability of the flow, we follow the strategy introduced in [20, 21]
and renormalise the equation by introducing a new unknown

ξ(t,x) =
η(t,x)

λ(t)
. (2.1)

We suitably renormalise the inverse of the Jacobian gradient and the Jacobian de-
terminant, so that

A := (∇ξ)−1 = λA

J := det(∇ξ) = λ−3J

a := JA = λ−2a

Φ := −
∫

f0(z)J0(z)

|ξ(x)− ξ(z)|
dz = λψ

We next formulate the problem in self-similar variables. To this end we introduce
the self-similar time coordinate s adapted to the expanding profile via

ds

dt
= λ(t)−

3
2 .
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We then have the following change of coordinate formula ∂t = λ−3/2∂s. The
condition λ̈λ2 = δ (1.18) becomes

δ = λ1/2∂s(λ
−3/2∂sλ) =

∂2
sλ

λ
− 3

2

(∂sλ)2

λ2
= ∂s

(
∂sλ

λ

)
− 1

2

(∂sλ)2

λ2
= −1

2
b2

(2.2)

where

b := −∂sλ
λ

= −
√

2|δ| < 0. (2.3)

Then the Euler-Poisson equations (1.10) becomes

0 = ∂tv + (f0J0)−1∂k(A
k(f0J0)4/3J−1/3) + A∇ψ

= λ−3/2∂s(λ
−3/2∂s(λξ)) + λ−2(f0J0)−1∂k(A

k(f0J0)4/3J−1/3) + λ−2A∇Φ

Times the equation by λ2 we get

0 = λ1/2∂s(λ
−3/2∂s(λξ)) + (f0J0)−1∂k(A

k(f0J0)4/3J−1/3) + A∇Φ

=

(
∂2
sξ +

1

2

∂sλ

λ
∂sξ +

(
∂2
sλ

λ
− 3

2

(∂sλ)2

λ2

)
ξ

)
+ (f0J0)−1∂k(A

k(f0J0)4/3J−1/3)

+ A∇Φ

=

(
∂2
sξ −

1

2
b∂sξ + δξ

)
+ (f0J0)−1∂k(A

k(f0J0)4/3J−1/3) + A∇Φ

So the Euler-Poisson equations in terms of ξ (2.1) is:

∂2
sξ −

1

2
b∂sξ + δξ +

1

f0J0

∂k(A
k(f0J0)4/3J−1/3) + A∇Φ = 0. (2.4)

The self-similarly expanding GW-star is a particular s-independent solution
of (2.4) of the form ξ(x) ≡ x and f0 = w̄3. Before formulating the stability
problem, we must first make the use of the labelling gauge freedom and fix the
choice of the initial enthalpy (f0J0)1/3 for the general perturbation to be exactly
identical to the background enthalpy w̄, i.e. we set

(f0J0)1/3 = w̄ on BR(0). (2.5)

Equation (2.5) can be re-written in the form ρ0 ◦ η0 det[∇η0] = w̄3 on the initial
domainBR(0). By a result of Dacorogna-Moser [10] and similarly to [20, 21] there
exists a choice of an initial bijective map η0 : BR(0) → Ω(0) so that (2.5) holds
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true. The gauge fixing condition (2.5) is necessary as it constrains the freedom to
arbitrary relabel the particles at the initial time.

We now introduce the perturbation

θ(x) := ξ(x)− x, (2.6)

which measures the deviation of the nonlinear flow to the background Goldreich-
Weber profile.

Lemma 2.1.1 (Euler-Poisson in self-similar coordinate). The perturbation θ de-

fined in (2.6) formally solves

∂2
sθ −

1

2
b∂sθ + δθ + P + G = 0, (2.7)

where the nonlinear pressure operator P and the nonlinear gravity operator G

read

P := w̄−3∂k(w̄
4(Ak

•J
−1/3 − Ik• )), (2.8)

G := A∇Φ−K∇w̄3 = Kξ∇ · (A•w̄3)−K∇w̄3 (2.9)

= Kξ((A− I)∇w̄3 − w̄3Ai
mA

l
•∂i∂lθ

m) + (Kξ −K)∇w̄3, (2.10)

and

(Kξg)(x) := −
∫

g(z)

|ξ(x)− ξ(z)|
dz (2.11)

Proof. Recall that the GW-enthalpy satisfies

0 = δx + 4∇w̄ +∇Kw̄3 (2.12)

Using the gauge condition (2.5), the momentum equation (2.4) becomes

w̄3

(
∂2
sθ −

1

2
b∂sθ + δθ

)
+ ∂k(w̄

4(AkJ−1/3 − Ik)) + w̄3(A∇Φ−∇Kw̄3) = 0.

Note that formally

(∇Kρ)(x) = −
∫
∇x

ρ(z)

|x− z|
dz =

∫
∇z

ρ(z)

|x− z|
dz = −

∫
∇ρ(z)

|x− z|
dz

= (K∇ρ)(x)
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and so

A∇ψ(x) = (∇φ)(η(x)) = (∇Kρ)(η(x)) = (K∇ρ)(η(x))

= −
∫

∇ρ(y)

|η(x)− y|
dx = −

∫
A∇f(z)J(z)

|η(x)− η(z)|
dz

= −
∫
a∇(fJJ−1)(z)

|η(x)− η(z)|
dz = −

∫
a∇(w̄3J−1)(z)

|η(x)− η(z)|
dz

= −
∫
∇ · (aw̄3J−1)(z)

|η(x)− η(z)|
dz = −

∫
∇ · (Aw̄3)(z)

|η(x)− η(z)|
dz

=
1

λ2
(Kξ∇ · (Aw̄3))(x),

where we denote∇ ·M = ∂iM
i for a matrix M and recall (2.11). We then have

A∇Φ = λ2A∇ψ(x) = Kξ∇ · (Aw̄3).

Hence, we can write the momentum equation as

0 = ∂2
sθ −

1

2
b∂sθ + δθ + w̄−3∂k(w̄

4(AkJ−1/3 − Ik)) + Kξ∇ · (Aw̄3)−K∇w̄3

= ∂2
sθ −

1

2
b∂sθ + δθ + P + G,

where we have also made use of (2.12). Note that we can write

G = Kξ(∇ · (Aw̄3)−∇w̄3) + (Kξ −K)∇w̄3

= Kξ((A− I)∇w̄3 − w̄3Ai
mA

l
•∂i∂lθ

m) + (Kξ −K)∇w̄3.

2.1.2 Total energy and momentum

Next we will give expressions for the total momentum and energy in terms of θ.
We will write the expressions in a way that separates the linear and non-linear terms
of θ clearly. To that end, we first derive the following identity.

Lemma 2.1.2. For any θ sufficiently smooth we have the identity∫
BR

(
w̄4∇ · θ +

1

2
b2w̄3θ · x− 1

2
w̄3(K

(1)
ξ w̄3)

)
dx = 0,
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where

(K
(1)
ξ g)(x) :=

∫
(x− z) · (θ(x)− θ(z))

|x− z|3
g(z)dz, (2.13)

and we recall (2.3).

Proof. We have∫
w̄(x)3(K

(1)
ξ w̄3)(x)dx =

∫ ∫
w̄(x)3w̄(z)3 (x− z) · (θ(x)− θ(z))

|x− z|3
dzdx

= 2

∫ ∫
w̄(x)3w̄(z)3 (x− z) · θ(x)

|x− z|3
dzdx

= 2

∫
w̄(x)3θ(x) ·

∫
w̄(z)3 x− z

|x− z|3
dzdx

= 2

∫
w̄3θ · ∇Kw̄3dx

Also, using (2.12), we have∫ (
w̄4∇ · θ − w3θ · ∇Kw̄3

)
dx =

∫ (
−θ · ∇w̄4 − w3θ · ∇Kw̄3

)
dx

=

∫
δw̄3θ · xdx = −1

2
b2

∫
w̄3θ · xdx.

With this identity we can now derive the expression for the momentum and the
energy in terms of θ.

Lemma 2.1.3 (Momentum and energy in self-similar coordinate). Fix a δ ∈ [δ̃, 0).

In self-similar Lagrangian coordinates introduced above, the total momentum (1.6)
and energy (1.7) are respectively denoted by

Wδ[θ](s) := Wδ(s,θ(s), ∂sθ(s)),

Eδ[θ](s) := Eδ(s,θ(s), ∂sθ(s)),

where

Wδ(s,θ(s), ∂sθ(s))

= W̄ +
1

λ(s)1/2

∫
(∂sθ(s)− bθ(s))w̄3dx,

Eδ(s,θ(s), ∂sθ(s))
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= Ē +
1

λ(s)

∫ (
1

2
w̄3

(
|∂sθ(s)− bθ(s)|2 − bx ·

(
2∂sθ(s)− 5

2
bθ(s)

)))
dx

+
1

λ(s)

∫ (
3w̄4

(
J(s)−

1
3 − 1 +

1

3
∇ · θ(s)

)
+

1

2
w̄3(Kξ −K−K

(1)
ξ )w̄3(s)

)
dx,

and W̄ := Wδ[0] = 0 and Ē := Eδ[0] = 0 are respectively the momentum and

energy of the GW star given by Definition 1.2.2.

Proof. We clearly have

W[ρ,u] =

∫
fJ∂tη dx =

∫
f0J0∂tη dx =

∫
w̄3λ−3/2∂s(λ(x + θ))dx

= W̄ +
1

λ1/2

∫
(∂sθ − bθ)w̄3dx,

E[ρ,u] =

∫ (
1

2
f |∂tη|2 + 3f

4
3 +

1

2
fψ

)
Jdx

=

∫ (
1

2
f0J0|∂tη|2 + 3J−

1
3 (f0J0)

4
3 +

1

2
f0J0ψ

)
dx

=

∫ (
1

2
w̄3|λ−3/2∂s(λ(x + θ))|2 +

3

λ
J−

1
3 w̄4 +

1

2λ
w̄3Φ

)
dx

= Ē +
1

λ

∫ (
1

2
w̄3(|∂sθ − bθ|2 − 2bx · (∂sθ − bθ))

+ 3(J−
1
3 − 1)w̄4 +

1

2
w̄3(Kξ −K)w̄3

)
dx

= Ē +
1

λ

∫ (
1

2
w̄3

(
|∂sθ − bθ|2 − bx ·

(
2∂sθ −

5

2
bθ

)))
dx

+
1

λ

∫ (
3w̄4

(
J−

1
3 − 1 +

1

3
∇ · θ

)
+

1

2
w̄3(Kξ −K−K

(1)
ξ )w̄3

)
dx.

When re-writing E[ρ,u] above, we have used Lemma 2.1.2 and (2.12).

Remark 2.1.4. If instead we consider the GW solutions ηp translated at constant

velocity p1 as in Remark 1.2.3, we will get W̄ = Mp1 and Ē = 1
2
M |p1|2 instead

of W̄ = 0 and Ē = 0.

2.1.3 High-order energies and the main theorem

We now introduce high-order weighted Sobolev norm that measures the size of the
deviation θ without time derivatives. Recall the notation in section 1.4 in Chapter
1. Assuming that (s,y) 7→ θ(s,y) is a sufficiently smooth field, for any n ∈ N0
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and s ≥ 0 we let

Zn(s) :=
∑
|β|+b≤n

‖Xb
r/∂

βθ‖3+b +
∑
c≤n

‖∇cθ‖3+2c (2.14)

Zn(s) := sup
τ∈[0,s]

Zn(τ). (2.15)

Next we define energy norms with time-derivatives - they will be a basis of our
high-order energy method explained in Section 2.5.

Sn(s) :=
∑

a+|β|+b≤n
a>0

(
‖∂a+1

s Xb
r/∂

βθ‖2
3+b + ‖∂asXb

r/∂
βθ‖2

3+b + ‖∂as∇Xb
r/∂

βθ‖2
4+b

)
Sn,c(s) :=

∑
a+|β|+b≤n

a>0
|β|+b≤c

(
‖∂a+1

s Xb
r/∂

βθ‖2
3+b + ‖∂asXb

r/∂
βθ‖2

3+b + ‖∂as∇Xb
r/∂

βθ‖2
4+b

)

Sn,c,d(s) :=
∑

a+|β|+b≤n
a>0
|β|+b≤c
b≤d

(
‖∂a+1

s Xb
r/∂

βθ‖2
3+b + ‖∂asXb

r/∂
βθ‖2

3+b + ‖∂as∇Xb
r/∂

βθ‖2
4+b

)

Qn(s) :=
∑

a+c≤n+1
a>0

‖∂as∇cθ‖2
3+2c

Qn,d(s) :=
∑

a+c≤n+1
a>0
c≤d+1

‖∂as∇cθ‖2
3+2c

Note that Sn,n,n = Sn. We will also use the convention that Sn,−1 = 0 etc.

Remark 2.1.5. The indexing above is needed to describe qualitative differences

between taking the time, the angular, and the radial derivatives. We shall need this

distinction to later close our estimates via a delicate induction argument in high-

order spaces, which not only depends on the number of derivatives, but also on the

order in which the derivatives are taken.

We define the total instant energy via

En := Sn +Qn. (2.16)

We shall run the energy identity using En; energies Sn and Qn will be used for
high-order estimates near the vacuum boundary and near the origin respectively.
In particular, the control afforded by Qn is stronger near the origin, while Sn is
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stronger near the boundary. Finally we define

S•(s) := sup
τ∈[0,s]

S•(τ) +

∫ s

0

S•(τ)dτ, (2.17)

Q•(s) := sup
τ∈[0,s]

Q•(τ) +

∫ s

0

Q•(τ)dτ, (2.18)

En(s) := sup
τ∈[0,s]

En(τ) +

∫ s

0

En(τ)dτ, (2.19)

where • stands for indices of the form n; n, c; n, c, d in (2.17), and of the form n;
n, c in (2.18). The norms (2.17)–(2.19) will play the role of the “left hand side” in
the high-order energy identities.

Remark 2.1.6. We emphasise that the higher order energiesEn we defined (always

with a subscript n ∈ N0) are different from the total conserved energy E (and Eδ)

defined in (1.7). Where no confusion arises, we will refer to both as “energy”.

In this chapter, we make the following a priori assumption:

A priori assumption: E•, Z• ≤ ε where ε > 0 is some small constant. (2.20)

We now state our main theorem.

Theorem 2.1.7 (Nonlinear stability of GW stars). Let n ≥ 21. There exists δ̃ ≤
δ∗ < 0 such that for any δ ∈ (δ∗, 0) the associated GW expanding star from

Definition 1.2.2 is codimension-4 nonlinearly stable in the class of irrotational

perturbations. More precisely, there exists an ε0 > 0 such that for any initial data

(θ(0), ∂sθ(0)) satisfying

En(0) + Zn(0)2 ≤ ε0 (2.21)

Wδ(0,θ(0), ∂sθ(0)) = Wδ[0] =: W̄ = 0 (2.22)

Eδ(0,θ(0), ∂sθ(0)) = Eδ[0] =: Ē = 0 (2.23)

curlA ∂tη(0) = 0, (2.24)

the associated solution s 7→ (θ(s, · ), ∂sθ(s, · )) to (2.7) exists for all s ≥ 0 and is

unique in the class of all data with finite norm En + Z2
n. Moreover, there exists a

constant C > 0 such that

En(s) + Zn(s)2 ≤ Cε0 for all s ≥ 0,

and En(s) decays exponentially fast in s.
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Note that condition (2.24) is the Lagrangian statement that the fluid veloc-
ity is irrotational. The momentum and energy constraints (2.22)–(2.23) define the
codimension-4 “manifold” of initial data.

Heuristically speaking, since momentum and energy are conserved quantities
for the Euler-Poisson system, it is necessary that our perturbation does not alter the
momentum and energy if our background solution were to be the right asymptotic-
in-time “limit”. Indeed, the momentum and energy constraints (2.22)–(2.23) are
necessary in our stability analysis due to the presence of growing modes of the
linearised operator in self-similar coordinates induced by the conservation of the
energy and momentum. However if our perturbation does alter the momentum
W and energy E away from 0 and 0 such that E = 1

2
|W|2/M , our proof can

be easily adapted to show that it still leads to global existence with the solution
staying close to a GW star for all time, but one translated at constant velocity p1

with W = Mp1 and E = 1
2
M |p1|2 as described in Remarks 1.2.3 and 2.1.4.

In this sense the “manifold” of GW-solutions is codimension-1 nonlinearly stable
in the class of irrotational perturbations, even though each individual GW-star is
only codimension-4 stable. In particular, given any initial data (ρ0,u0) such that
E[ρ0,u0] = 1

2
|W[ρ0,u0]|2/M [ρ0,u0], we can change our frame of reference and

subtract a constant velocity of p1 = W[ρ0,u0]|/M [ρ0,u0] from u0 to obtain

W[ρ0,u0 − p1] = W[ρ0,u0]−M [ρ0,u0]p1 = 0

E[ρ0,u0 − p1] = E[ρ0,u0]−
∫
R3

ρ0u0 · p1dx +
1

2

∫
R3

ρ0|p1|2dx

= E[ρ0,u0]− p1 ·W[ρ0,u0] +
1

2
|p1|2M [ρ0,u0] = 0

So in this new frame of reference, the constraints (2.22) and (2.23) are satis-
fied.

To formalise this, note that for any p1 ∈ R3, θ = p1tλ(t)−1 is a global-in-
time solution to (2.7) which corresponds to a Lagrangian description of a GW-star
translated by a constant velocity. Then, as a corollary of Theorem 2.1.7 we have
the following result.

Corollary 2.1.8. Let n ≥ 21. There exists δ̃ ≤ δ∗ < 0 such that for any δ ∈ (δ∗, 0),

the “manifold” of GW-stars (ρ̄p, ūp), p = p1t, p1 ∈ R3 (from Remark 1.2.3) is

codimension-1 nonlinearly stable in the class of irrotational perturbations. More

precisely, for given any initial data (θ̃(0), ∂sθ̃(0)) define

θ0 = θ̃(0)
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(∂sθ)0 = ∂sθ̃(0)− p1,

where

p1 =
Wδ(0, θ̃(0), ∂sθ̃(0))

M [w̄3]
.

Then, there exists an ε0 > 0 such that for any initial data (θ̃(0), ∂sθ̃(0)) such that

(En + Z2
n)[θ0, (∂sθ)0] ≤ ε0

Eδ(0, θ̃(0), ∂sθ̃(0)) =
1

2
|Wδ(0, θ̃(0), ∂sθ̃(0))|2/M [w̄3]

curlA ∂tη(0) = 0

the associated solution s 7→ (θ̃(s, · ), ∂sθ̃(s, · )) to (2.7) exists for all s ≥ 0 and is

unique in the class of all data with finite norm (En+Z2
n)[θ̃]. Moreover, there exists

a constant C > 0 such that

(En + Z2
n)[θ](s) ≤ Cε0 for all s ≥ 0,

where θ = θ̃ − p1tλ(t)−1, and En[θ](s) decays exponentially fast in s.

Remark 2.1.9. Our goal is not to optimise the number n of derivatives in our

spaces. As usual, the size of n is conditioned by the Hardy-Sobolev type embed-

dings, which allow us to bound the L∞-norms of contributions with less than bn
2
c

derivatives by w̄k-weighted Sobolev norms.

Remark 2.1.10. The subclass of expanding GW-stars with non-zero total energy

(in the frame of reference of 0 momentum) consists of stars that expand at a linear

rate in time, i.e. not at the self-similar rate considered above. This problem leads

to a stronger damping effect which allows the “Euler part” of the flow to dominate

the dynamics. The stability of such GW-stars is the content of Chapter 3.

Local-in-time well-posedness. The presence of vacuum is known to pose
challenges in the well-posedness theory for compressible fluid flows. To develop
a satisfactory local existence and uniqueness theory, one needs to impose an ad-
ditional assumption on the initial data - the so-called physical vacuum condi-
tion (1.1.1). In the works of Jang and Masmoudi [33] and independently Coutand
and Shkoller [7] the local well-posedness for the compressible Euler equations was
shown in the Lagrangian coordinates (for a more recent treatment in Eulerian co-
ordinates see [28]). From the point of view of regularity theory, gravity represents
a lower order term, so the techniques from [33, 7] can be adapted to obtain a local-
in-time well-posedness result for the free boundary EP-system [31, 19, 41, 22]. In
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particular, a simple adaptation of the methods in [33, 22] yields the following local
well-posedness result in the weighted high-order energy space En + Z2

n.

Theorem 2.1.11 (Local well-posedness). Let n ≥ 21. Then for any given initial

data (θ(0), ∂sθ(0)) such that En(0) + Zn(0)2 < ∞, there exist some T > 0 and

a unique solution (θ, ∂sθ) : [0, T ] × BR → R3 × R3 to (2.7) such that En(s) +

Zn(s)2 ≤ 2(En(0) + Zn(0)2) for all s ∈ [0, T ].

Theorem 2.1.11 is a starting point for the continuity argument that will culmi-
nate in the proof of Theorem 2.1.7.

2.1.4 Proof strategy

The basic idea behind the global existence in Theorem 2.1.7 is the presence of the
damping term −1

2
b∂sθ in (2.7), which clearly suggests a stabilising mechanism in

the problem. Such a term appears as a direct consequence of the expanding charac-
ter of the underlying GW-motion (and it would be of the opposite sign if we were
linearising about a collapsing GW-star). This stabilisation effect was first exhibited
in [20] where the purely radial version of Theorem 2.1.7 was established.

Since the problem features the vacuum free boundary satisfying the physical
vacuum condition (1.1.1), we use weighted high-order energy spaces introduced by
Jang and Masmoudi [33]. The key idea to overcome a possible loss of derivatives
is to introduce increasing powers of w̄ into the function spaces, as we increase the
number of radial derivatives, but not the tangential ones. In particular, the proof of
the main result is based on a high-order energy method which necessitates commut-
ing the equation (2.7) with operators of the form ∂asX

n
r /∂

β . To understand the energy
contribution from the combined pressure and gravity term P+G (see (2.8)–(2.9)),
we must linearise (2.7). As shown in Lemma 2.2.1, this linearisation reads

∂2
sθ −

1

2
b∂sθ + Lθ = 0, (2.25)

where the linearised operator L takes the form

Lθ := −4

3
∇(w̄−2∇ · (w̄3θ))−∇K∇ · (w̄3θ), (2.26)

where we recall (2.3) and (1.13). The fundamental challenge with respect to the
radial result [20] is to show the coercivity of the operator L in suitably weighted
spaces, dictated by our local-in-time well-posedness theory.

The difficulty in proving a useful coercivity bound for the operator L lies in the
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antagonism between the nonlocal nature of the gravitational interaction described
by G in (2.9), and the Lagrangian perspective, which is naturally imposed on us
by the problem. The operator L has a nontrivial unstable space, spanned by the
eigenvectors x and the standard basis ei, i = 1, 2, 3. The 4-dimensional nature of
the unstable space is a reflection of the energy and momentum conservation laws,
which in self-similar variables induce formally unstable modes.

Nonradial linearised analysis around the Lane-Emden stars (δ = λ1 = 0) is
given in [34] where the non-negativity of the associated quadratic form is shown
using the expansion in spherical harmonics. In this work we work in a similar spirit,
but our linear analysis around the GW-stars improves upon [34] considerably, as
we show strict quantitative coercivity bound

〈Lθ,θ〉3 &
∫
BR

w̄−2|∆Ψ|2dx +

∫
R3

|∇Ψ|2dx, (2.27)

under the crucial orthogonality conditions

〈θ,x〉3 = 0 = 〈θ, ei〉3, i = 1, 2, 3, (2.28)

where ∆Ψ = div(w̄3θ). This is the central estimate of Section 2.2 (see The-
orem 2.2.5) and it relies on a careful decomposition in spherical harmonics. It
is non-trivial as it requires a careful use of the above orthogonality conditions to
obtain quantitative lower bounds for the 0-th and the 1-st order spherical harmon-
ics. In the former case, the problem essentially reduces to the radial coercivity
bound from [20], while the analysis of the projection of L onto 1-st order spherical
harmonics requires a careful use of Sturm-Liouville theory, see Lemma 2.2.10, a
related argument was used in [34].

One of the main challenges is that the quantity
∫
BR
w̄−2|∆Ψ|2dx+

∫
R3 |∇Ψ|2dx

on the right-hand side of (2.27) a priori does not appear useful for the energy esti-
mates as we need to control the norms ‖θ‖2

3 +‖∇θ‖2
4, which are localised to the set

BR by definition, see (1.31). An intermediate step towards a resolution of this is-
sue is to relate the general estimate (2.27) (which holds for any sufficiently smooth
map θ), to the nonlinear dynamics. In Section 2.3, by linearising the nonlinear
energy-momentum constraints

E[ρ,u] = Ē, W[ρ,u] = W̄, (2.29)

we obtain effective ODEs (modulo lower order nonlinear terms) that allow to dy-
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namically control the inner products 〈θ,x〉3 and 〈θ, ei〉3. With this in hand we
prove in Proposition 2.3.6 a high-order differentiated version of the bound (2.27)
for the solutions of (2.25) satisfying the constraints (2.29):∫

BR

w̄−2|∇ · (w̄3∂as/∂
βθ)|2dx + ‖∂a+1

s /∂βθ‖2
3

. 〈L∂as/∂βθ, ∂as/∂βθ〉3 + ‖∂a+1
s /∂βθ‖2

3 + l.o.t. (2.30)

The final and crucial step toward useful lower bounds is to exploit the irrota-
tionality assumption ∇× u = 0 to obtain a dynamic control over ‖θ‖2

3 + ‖∇θ‖2
4.

Looking at (2.30), this necessitates a careful examination of the w̄-weighted di-
vergence appearing on the left-hand side. It is clear that any vectorfield such that
∇ · (w̄3θ) = 0 formally belongs to the kernel of L and therefore, to obtain strict
coercivity, we must mod out this infinite-dimensional kernel. The orthogonal com-
plement with respect to the 〈·, ·〉3-inner product consists precisely of the gradients,
so the first key observation is the content of Lemma 2.4.1, which roughly states
that ∂asθ is a gradient modulo “good” terms for a ≥ 1, assuming∇×u = 0. Here,
in simplest possible terms, the issue is that the irrotationality in Lagrangian vari-
ables creates error terms that a priori seem problematic, but luckily all such terms
can be absorbed into a pure gradient. The second key ingredient is Lemma 2.4.6,
which is an exact identity relating the norm of the weighted divergence of θ to the
weighted norms of the derivative of θ. This can be viewed as a form of “elliptic reg-
ularity”. Finally, we use these ingredients in the central statement of Section 2.4
- Proposition 2.4.7 - to show that natural energy norms obtained via integration-
by-parts from (2.25) control the weighted norms of the pure time derivatives of
θ. In Proposition 2.4.9 we treat also the angular derivatives in our operators, and
the same statement as in the previous proposition holds, modulo the presence of a
linear (and therefore not small) contribution, which fortunately involves one angu-
lar derivative less. This decoupling structure enables us to use a careful inductive
procedure to eventually close the nonlinear estimates.

The nonlinear arguments are presented in Sections 2.5 and 2.6. The global
nonlinear stability will follow from the bound

En . En(0) + (En + Z2
n)1/2En (2.31)

in the regime where En + Z2
n is sufficiently small. To prove such a bound, we

commute (2.7) with high-order derivatives and while the discussion above refers
to the extraction of coercive bounds for the linear part of the operator, we are still
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left with the nonlinear estimates. Propositions 2.5.5, 2.5.6, and 2.5.12 show that
the deviation of the pressure term P and the gravity term G from its linearisation,
can be controlled by the good trilinear error (En + Z2

n)1/2En modulo some terms
that scale like the linear norms, but always decouple at the top order of differenti-
ation, so that they involve, for example, “one spatial derivative less and one time
derivative more”. This decoupling is crucial for the closure of the estimates, and
the key effective reduction to the linear problem is formulated in Theorem 2.5.14.
This feature of the problem suggests that we can show (2.31) inductively by taking
derivatives in the right order. Key energy bounds for the nonlinear contributions
from the pressure and the gravity are presented in Sections 2.6.1 and 2.6.2 respec-
tively. The final continuity argument and the exponential decay based on (2.31) is
presented in Section 2.6.3.

2.2 Linearisation and coercivity

2.2.1 The linear and non-linear part of Euler-Poisson sys-
tem

The proof of Theorem 2.1.7 crucially relies on good coercive properties of the lin-
earisation around the background GW-star. In the next lemma we formally derive
the linearised Euler-Poisson system.

Lemma 2.2.1 (Linearised Euler-Poisson). The formal linearisation of (2.7) reads

∂2
sθ −

1

2
b∂sθ + Lθ = 0 (2.32)

where

Lθ := −4

3
∇(w̄−2∇ · (w̄3θ))−∇K∇ · (w̄3θ) (2.33)

and we recall (2.3). Moreover, the formal linearisation of the gravitational contri-

bution G (2.9) is given by the operator

GLθ := θ · ∇∇Kw̄3 −∇K∇ · (w̄3θ) = K
(1)
ξ ∇w̄

3 −K∂i(w̄
3∇θi), (2.34)

where we recall (2.11) and (2.13).

Proof. Since ∇ξ = I + ∇θ, to first order (in θ) we have A = I − ∇θ and
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J= 1 +∇ · θ. So to first order we have

AJ−1/3 = (I −∇θ)(1 +∇ · θ)−1/3 = (I −∇θ)

(
1− 1

3
∇ · θ

)
=

(
1− 1

3
∇ · θ

)
I −∇θ

and

1

w̄3
∂k(w̄

4(AkJ−1/3 − Ik)) = − 1

3w̄3
∇(w̄4∇ · θ)− 1

w̄3
∂k(w̄

4∇θk)

= −4

3
∇(w̄∇ · θ)− 4∇(θ · ∇w̄) + 4θ · ∇∇w̄

= −4

3
∇(w̄−2∇ · (w̄3θ)) + 4θ · ∇∇w̄

= −4

3
∇(w̄−2∇ · (w̄3θ))− θ · ∇(δx +∇Kw̄3)

= −4

3
∇(w̄−2∇ · (w̄3θ))− δθ − θ · ∇∇Kw̄3

Since

|ξ(x)− ξ(z)|2 = |x− z + θ(x)− θ(z)|2

= |x− z|2 + 2(x− z) · (θ(x)− θ(z)) + |θ(x)− θ(z)|2,

to first order we have

1

|ξ(x)− ξ(z)|
=

1

|x− z|

(
1− (x− z) · (θ(x)− θ(z))

|x− z|2

)
.

So to first order we have

Φ(x) = −
∫

w̄(z)3

|ξ(x)− ξ(z)|
dz

= −
∫

w̄(z)3

|x− z|
dz +

∫
(x− z) · (θ(x)− θ(z))

|x− z|3
w̄(z)3dz

= (Kw̄3)(x) +

∫ (
−θ(x) · ∇x

1

|x− z|
− θ(z) · ∇z

1

|x− z|

)
w̄(z)3dz

= (Kw̄3)(x) + θ · ∇(Kw̄3)(x)− (K∇ · (w̄3θ))(x)

and

A∇Φ = (I i −∇θi)∂i(Kw̄3 + θ · ∇Kw̄3 −K∇ · (w̄3θ))

= ∇Kw̄3 − (∇θi)∂iKw̄3 +∇(θ · ∇Kw̄3)−∇K∇ · (w̄3θ)
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= ∇Kw̄3 + θ · ∇∇Kw̄3 −∇K∇ · (w̄3θ)

= ∇Kw̄3 + GLθ,

where we have used (2.34) in the last line. Therefore the linearisation of the mo-
mentum equation (2.7) takes the form (2.32). Note that

GLθ = θ · ∇K∇w̄3 −K∂i(∇w̄3θi)−K∂i(w̄
3∇θi)

=

∫
(x− z) · (θ(x)− θ(z))

|x− z|3
∇w̄(z)3dz−K∂i(w̄

3∇θi)

= K
(1)
ξ ∇w̄

3 −K∂i(w̄
3∇θi),

which completes the proof of the lemma.

Finally, it will be important to keep track of the precise structure of the nonlin-
ear correction G−GLθ, which is given in the next lemma.

Lemma 2.2.2 (Non-linear part of gravity term). We have

G−GLθ = Kξ(A
i
l(∂kθ

l)(∇θk)∂iw̄3 − w̄3(Ai
mA

l
• − I imI l•)∂i∂lθm)

− (Kξ −K)∂i(w̄
3∇θi) + (Kξ −K−K

(1)
ξ )∇w̄3 (2.35)

Proof. Since A= (∇ξ)−1, we have

I ij = Ai
k∂jξ

k = Ai
k(I

k
j + ∂jθ

k).

Therefore Ai
j − I ij = −Ai

k∂jθ
k. We have

G−GLθ = Kξ((A− I)∇w̄3 − w̄3Ai
mA

l
•∂i∂lθ

m) + (Kξ −K−K
(1)
ξ )∇w̄3

+ K∂i(w̄
3∇θi)

= Kξ((∇θi −Ai
k∇θk)∂iw̄3 − w̄3(Ai

mA
l
• − I imI l•)∂i∂lθm)

+ (K−Kξ)∂i(w̄
3∇θi) + (Kξ −K−K

(1)
ξ )∇w̄3

= Kξ(A
i
l(∂kθ

l)(∇θk)∂iw̄3 − w̄3(Ai
mA

l
• − I imI l•)∂i∂lθm)

− (Kξ −K)∂i(w̄
3∇θi) + (Kξ −K−K

(1)
ξ )∇w̄3.

We next derive helpful identities for the operators Kξ−Kand Kξ−K−K
(1)
ξ
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appearing on the right-hand side of (2.35). We first note that

(Kξ −K)g(x) = −
∫
R3

K1(x, z)g(z)dz, (2.36)

(Kξ −K−K
(1)
ξ )g(x) = −

∫
R3

K2(x, z)g(z)dz, (2.37)

where

K1(x, z) : =
1

|ξ(x)− ξ(z)|
− 1

|x− z|
, (2.38)

K2(x, z) : =
1

|ξ(x)− ξ(z)|
− 1

|x− z|
+

(x− z) · (θ(x)− θ(z))

|x− z|3
. (2.39)

In the following lemma, we write K1 and K2 explicitly in terms of θ, which will
play a role in our energy estimates. In particular, we see that θ appears at least
linearly in K1, and at least quadratically in K2.

Lemma 2.2.3. We have

K2(x, z) = K1(x, z) +
(x− z) · (θ(x)− θ(z))

|x− z|3

= −1

2

|θ(x)− θ(z)|2

|x− z|3
(2.40)

+
3

4|x− z|

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)2

$ 1
2

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)
, (2.41)

where

$q(y) :=

∫ 1

0

1− z
(1 + yz)q+2

dz, y > −1, q ∈ R. (2.42)

Proof. Let q ∈ R \ {−1, 0}. Then for y > −1 and y 6= 0∫ 1

0

1− z
(1 + yz)q+2

dz = − 1

(q + 1)y

[
1− z

(1 + yz)q+1

]1

0

− 1

(q + 1)y

∫ 1

0

1

(1 + yz)q+1
dz

=
1

(q + 1)y

(
1 +

1

qy

[
1

(1 + yz)q

]1

0

)

=
1

q(q + 1)y2

(
−1 + qy +

1

(1 + y)q

)
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and thus

1

(1 + y)q
= 1− qy + q(q + 1)y2$q(y), y > −1 (2.43)

where we note that (2.43) trivially holds for y = 0 and q = −1, 0. Since

|ξ(x)− ξ(z)|2 = |x− z + θ(x)− θ(z)|2

= |x− z|2 + 2(x− z) · (θ(x)− θ(z)) + |θ(x)− θ(z)|2,

we have

|ξ(x)− ξ(z)|2

|x− z|2
= 1 + 2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2
.

Hence by applying (2.43) with y = 2 (x−z)·(θ(x)−θ(z))
|x−z|2 + |θ(x)−θ(z)|2

|x−z|2 and q = 1
2
, we

see that

|x− z|
|ξ(x)− ξ(z)|

= 1−
(

(x− z) · (θ(x)− θ(z))

|x− z|2
+

1

2

|θ(x)− θ(z)|2

|x− z|2

)
+

3

4

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)2

$ 1
2

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)
.

Therefore, we obtain

K2(x, z) =
1

|ξ(x)− ξ(z)|
− 1

|x− z|︸ ︷︷ ︸
=K1(x,z)

+
(x− z) · (θ(x)− θ(z))

|x− z|3

= −1

2

|θ(x)− θ(z)|2

|x− z|3

+
3

4|x− z|

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)2

$ 1
2

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)
.

2.2.2 Coercivity of L

A fundamental prerequisite for the understanding of the nonlinear stability is a
good linear stability theory. This entails a precise understanding of the coercivity
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properties of the operator L and this is the subject of this section.

For sufficiently smooth θ, we have

〈Lθ1,θ2〉3 =

∫
BR

(
4

3
w̄−2∇ · (w̄3θ2)∇ · (w̄3θ1) +∇ · (w̄3θ2)K∇ · (w̄3θ1)

)
dx

Note this is defined in a weak sense for θi (i = 1, 2) such that ∇ · (w̄3θi) ∈
L2(BR, w̄

−2). We see that L is symmetric under 〈 · , · 〉3 since∫
∇ · (w̄3θ2)K∇ · (w̄3θ1)dx = −

∫ ∫
∇ · (w̄3θ2)(x)∇ · (w̄3θ1)(y)

|x− y|
dxdy.

Before stating the main theorem, we first characterise the growing modes for
the linearised dynamics.

Proposition 2.2.4 (Growing modes). Let ei (i = 1, 2, 3) be the standard basis of

R3. Then ei and x are eigenfunctions for L with eigenvalue δ and 3δ respectively.

Proof. Let f ∈ R3 be a constant vector. Since 0 = δx + 4∇w̄ +∇Kw̄3, we have

Lf = −∇
(

4

3
w̄−2∇ · (w̄3f) + K∇ · (w̄3f)

)
= −∇

(
4

3
w̄−2f · ∇w̄3 + Kf · ∇w̄3

)
= −∇

(
4f · ∇w̄ + f · ∇Kw̄3

)
= ∇ (δf · x)

= δf

And

Lx = −∇
(

4

3
w̄−2∇ · (w̄3x) + K∇ · (w̄3x)

)
= −∇

(
4x · ∇w̄ + Kx · ∇w̄3 + 4w̄ + 3Kw̄3

)
= −∇

(
4x · ∇w̄ + x · ∇Kw̄3 + 4w̄ + Kw̄3

)
= ∇

(
δx · x− 4w̄ −Kw̄3

)
= 2δx + δx = 3δx

where we have used

K(x · ∇w̄3)(y) = −
∫

x · ∇w̄(x)3

|y − x|
dx

=

∫ (
w̄(x)3∇ · x
|y − x|

+ w̄(x)3x · ∇x
1

|y − x|

)
dx

=

∫ (
3w̄(x)3

|y − x|
+ w̄(x)3x · y − x

|y − x|3

)
dx
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=

∫ (
2w̄(x)3

|y − x|
+ w̄(x)3y · y − x

|y − x|3

)
dx

= −2Kw̄3 + y · ∇Kw̄3.

The main result of this section states that if the perturbation θ is orthogonal to
the four eigenvectors from Proposition 2.2.4, then the operator L is non-negative
and we provide a quantitative lower bound.

Theorem 2.2.5 (Non-negativity of L). Recall that w̄ = w̄δ and L (2.33) depends

on δ. There exists ε > 0 such that for any δ ∈ (−ε, 0) the following holds. If θ is

such that ‖θ‖3 + ‖∇θ‖4 <∞ and

〈θ,x〉3 = 0 = 〈θ, ei〉3, i = 1, 2, 3 (2.44)

then we have

〈Lθ,θ〉3 &
∫
BR

w̄−2|∆Ψ|2dx +

∫
R3

|∇Ψ|2dx (2.45)

where the constants do not depend on δ, and Ψ is the gravitational potential in-

duced by the flow disturbance w̄3θ:

Ψ :=
1

4π
K∇ · (w̄3θ) ∈ H1(R3) ∩ C1(R3)

∆Ψ = ∇ · (w̄3θ) ∈ L2(BR, w̄
−2)

The proof of Theorem 2.2.5 is a simple consequence of Lemmas 2.2.8–2.2.11.
Our strategy is to use spherical harmonics to break down the problem into a se-
quence of scalar problems for each individual mode, by analogy to [34]. The
modes l = 0, 1 correspond to radial and translational motion, and therefore, al-
though formally unstable, can be factored out from the dynamics through suitable
orthogonality conditions.

Lemma 2.2.6 (Spherical harmonics decomposition). Suppose θ is such that ‖θ‖3+

‖∇θ‖4 <∞. Then

g := ∇ · (w̄3θ) ∈ L2(BR, w̄
−2) (2.46)

Ψ(x) :=
1

4π
Kg(x) ∈ H1(R3) ∩ C1(R3), (2.47)
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and they can be expanded in spherical harmonics

g(x) =
∞∑
l=0

l∑
m=−l

glm(r)Ylm(x) on BR, (2.48)

Ψ(x) =
∞∑
l=0

l∑
m=−l

Ψlm(r)Ylm(x) on R3, (2.49)

that converge in L2(BR, w̄
−2) and L2(R3) respectively, where the spherical har-

monics Ylm are introduced in Appendix A.2. Moreover, Ψlm are related to glm by

Ψlm(r) =
−1

2l + 1

(∫ r

0

yl+2

rl+1
glm(y)dy +

∫ R

r

rl

yl−1
glm(y)dy

)
(2.50)

glm = ∆〈l〉Ψlm :=

(
1

r2

(
r2Ψ′lm

)′ − l(l + 1)

r2
Ψlm

)
. (2.51)

With this, the following identity holds:

〈Lθ,θ〉3 =
∞∑
l=0

l∑
m=−l

Λlm, (2.52)

where

Λlm :=

∫ R

0

(
4

3
w̄−2g2

lm + 4πglmΨlm

)
r2dr, l ≥ 0, m ∈ {−l, . . . , l}.

(2.53)

Proof. From ‖θ‖3 + ‖∇θ‖4 < ∞, Corollary A.3.2 of Hardy-Poincaré inequal-
ity means that we have ‖θ‖2 + ‖∇θ‖4 < ∞. This immediately gives that g ∈
L2(BR, w̄

−2). Since Ψ is a convolution of g with the kernel ‖ · ‖−1, where g is triv-
ially extended by 0 on R3\BR, standard computation shows Ψ ∈ C1(R3)∩H1(R3).
Since spherical harmonics form an L2 basis (see [1, 29, 9] and Appendix A.2), we
have the spherical harmonics expansion (2.48)-(2.49) for g and Ψ in L2.

By Lemma A.2.1 we have

1

|x− y|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Ylm(y)Ylm(x)

which converge uniformly on all compact set in {(x,y) : |x| 6= |y|}. So we have

Kg(x)
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= −4π
∞∑
l=0

l∑
m=−l

1

2l + 1
Ylm(x)

(∫
B|x|(0)

|y|l

|x|l+1
gYlmdy +

∫
B|x|(0)c

|x|l

|y|l+1
gYlmdy

)

= −4π
∞∑
l=0

l∑
m=−l

1

2l + 1
Ylm(x)

(∫ |x|
0

yl+2

|x|l+1
glmdy +

∫ R

|x|

|x|l

yl−1
glmdy

)
.

We therefore conclude that

Ψlm(r) =
−1

2l + 1

(∫ r

0

yl+2

rl+1
glm(y)dy +

∫ R

r

rl

yl−1
glm(y)dy

)
since spherical harmonics expansion is unique (using standard Hilbert space theory
and the fact that spherical harmonics forms a L2 basis for L2 functions on the
sphere). Inverting this expression, we get (2.51).

Now using the spherical harmonics expansion for g and Ψ, we get

〈Lθ,θ〉3 =

∫ (
4

3
w̄−2|∇ · (w̄3θ)|2 +∇ · (w̄3θ)K∇ · (w̄3θ)

)
dx

=

∫ (
4

3
w̄−2|g|2 + 4πgΨ

)
dx =

∞∑
l=0

l∑
m=−l

Λlm,

with Λlm as in (2.53).

From [20] we have the following lemma.

Lemma 2.2.7. There exists ε > 0 such that for any δ ∈ (−ε, 0) and the associated

w̄ = w̄δ, we have

〈Lϕ, ϕ〉w̄3r4 & ‖ϕ′‖2
w̄4r4 + ‖ϕ‖2

w̄3r4 whenever 〈ϕ, 1〉w̄3r4 = 0

where the constants do not depend on δ, and

Lϕ := − 4

3w̄3r4
∂r
(
w̄4r4∂rϕ

)
+ 3δϕ

〈f, g〉w̄kr4 :=

∫ R

0

f(r)g(r)w̄(r)kr4dr.

We shall use Lemma 2.2.7 to obtain coercivity for the quadratic form Λ00 under
the orthogonality assumption 〈θ,x〉3 = 0.

Lemma 2.2.8 (l = 0 mode bound). Suppose θ is as in Lemma 2.2.6 and 〈θ,x〉3 =
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0. Then we have Ψ′00(r) = 0 for r ≥ R and

Λ00 &
∫ R

0

(
w̄−2g2

00 + (Ψ′00)2
)
r2dr, (2.54)

where we recall (2.53).

Proof. From ‖θ‖3 + ‖∇θ‖4 < ∞, Corollary A.3.2 of Hardy-Poincaré inequality
means that we have ‖θ‖2 + ‖∇θ‖4 < ∞. It follows that w̄3θ is well defined on
∂BR (trace theorem) and must vanish there. Since w̄3θ = ∇Ψ + C where C is
divergence-free, we have∫

∂BR

∂rΨ dS =

∫
∂BR

∇Ψ · dS =

∫
∂BR

w̄3θ · dS = 0.

It follows that Ψ′00(R) = 0. Now taking the derivative of (2.50) and using g00(r) =

0 for r > R, we see that in fact we must have

Ψ′00(r) = 0 for r ≥ R. (2.55)

From the orthogonality condition 〈θ,x〉3 = 0 we infer that

0 = 〈θ,x〉3 =
1

2

∫
w̄3θ · ∇|x|2 dx =

1

2

∫
g|x|2 dx.

This means ∫ R

0

g00(r)r4dr = 0. (2.56)

and therefore by (2.51) and (2.55) in terms of Ψ00,∫ R

0

Ψ′00(r)r3dr = 0. (2.57)

Since Ψ ∈ H1(R3) ∩ C1(R3), we have that ∂rΨ ∈ L2(R3) ∩ C(R3 \ {0}). So
∂rΨ has spherical harmonics expansion ∂rΨ =

∑∞
l=0

∑l
m=−l Ψr,lmYlm in L2(R3)

with

Ψr,lm(r) =
1

4πr2

∫
∂Br

(∂rΨ)YlmdS =
1

4πr2
∂r

∫
Br

ΨYlmdS = ∂rΨlm(r) = Ψ′lm(r).

(2.58)
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If we denote

ϕ := Ψ′00/(rw̄
3), (2.59)

then by (2.57) we have

0 =

∫ R

0

Ψ′00(r)r3dr =

∫ R

0

ϕ(r)w̄3r4dr

and thus 〈ϕ, 1〉w̄3r4 = 0. Using (2.51) and (2.55), we get

Λ00 =

∫ R

0

(
4

3
w̄−2g2

00 + 4πg00Ψ00

)
r2dr

=

∫ R

0

(
4

3r2
w̄−2

((
r2Ψ′00

)′)2

+ 4π
(
r2Ψ′00

)′
Ψ00

)
dr

=

∫ R

0

(
4

3r2
w̄−2

((
r2Ψ′00

)′)2

− 4πr2(Ψ′00)2

)
dr + 4πR2Ψ′00(R)Ψ00(R)

=

∫ R

0

(
4

3r2
w̄−2

((
r3w̄3ϕ

)′)2

− 4πϕ2w̄6r4

)
dr

Now since 0 = 3δ + 4∆w̄ + 4πw̄3 as in (2.12), we see that

Λ00 =

∫ R

0

(
4

3r2
w̄−2

((
r3w̄3ϕ

)′)2

+ (3δ + 4∆w̄)ϕ2w̄3r4

)
dr

=

∫ R

0

(
4

3r2
w̄−2

(
3r2w̄3ϕ+ 3r3w̄2w̄′ϕ+ r3w̄3ϕ′

)2

+ 4(r2w̄′)′ϕ2w̄3r2 + 3δϕ2w̄3r4

)
dr

=

∫ R

0

(
4

3

(
3rw̄2ϕ+ 3r2w̄w̄′ϕ+ r2w̄2ϕ′

)2

− 4r2w̄′(ϕ2w̄3r2)′ + 3δϕ2w̄3r4

)
dr

=

∫ R

0

(
4

3

(
9r2w̄4ϕ2 + 9r4w̄2(w̄′)2ϕ2 + r4w̄4(ϕ′)2

+ 18r3w̄3w̄′ϕ2 + 6r4w̄3w̄′ϕϕ′ + 6r3w̄4ϕϕ′
)

− 4(2ϕϕ′w̄3w̄′r4 + 3ϕ2w̄2(w̄′)2r4 + 2ϕ2w̄3w̄′r3) + 3δϕ2w̄3r4

)
dr

=

∫ R

0

(
4

3

(
9r2w̄4ϕ2 + r4w̄4(ϕ′)2 + 12r3w̄3w̄′ϕ2 + 6r3w̄4ϕϕ′

)
+ 3δϕ2w̄3r4

)
dr

58



2.2. Linearisation and coercivity

=

∫ R

0

(
4

3
r4w̄4(ϕ′)2 + 3δϕ2w̄3r4

)
dr = 〈Lϕ, ϕ〉w̄3r4

& ‖ϕ′‖2
w̄4r4 + ‖ϕ‖2

w̄3r4 =

∫ R

0

((ϕ′)2w̄4 + ϕ2w̄3)r4dr

Then for ε small enough, we get

Λ00 &
∫ R

0

(
ε

(
4

3
r4w̄4(ϕ′)2 + 3δϕ2w̄3r4

)
+ ϕ2w̄3r4

)
dr

=

∫ R

0

(
ε

(
4

3
w̄−2g2

00 − 4π(Ψ′00)2

)
+ w̄−3(Ψ′00)2

)
r2dr.

Finally by choosing ε small enough we get (2.54).

In order to prove positivity of the higher modes, we will need the following
lemma which provides an estimate from below for Λlm by an elliptic operator; a
related bound was also used in [34].

Lemma 2.2.9. Suppose θ is as in Lemma 2.2.6. Then for any l ≥ 0,m ∈
{−l, . . . , l}, we have

Λlm ≥ 4π

∫ R

0

(
−∆〈l〉 − 3πw̄2

)
(Ψlm)Ψlmr

2dr.

Proof. We have

Λlm =

∫ R

0

(
4

3
w̄−2g2

lm + 4πglmΨlm

)
r2dr

=

∫ R

0

∣∣∣∣ 2√
3w̄

glm + 2π
√

3w̄Ψlm

∣∣∣∣2 r2dr − 4π

∫ R

0

(
glmΨlm + 3πw̄2Ψ2

lm

)
r2dr

≥ 4π

∫ R

0

(
−∆〈l〉 − 3πw̄2

)
(Ψlm)Ψlmr

2dr.

With this bound from below by an elliptic operator, we can prove the positivity
of Λlm using elliptic ODE theory.

Lemma 2.2.10 (l = 1 modes bound). Suppose θ is as in Lemma 2.2.6 and

〈θ, ei〉3 = 0 for i = 1, 2, 3. Then we have Ψ1m(r) = 0 for r ≥ R and

Λ1m &
∫ R

0

(
w̄−2g2

1mr
2 + Ψ′21mr

2 + Ψ2
1m

)
dr, m = −1, 0, 1, (2.60)
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where we recall (2.53).

Proof. For these modes, we adapt the method of proof as found in [34] that makes
use of the Sturm-Liouville theory. We have by Lemma 2.2.9

Λ1m ≥ 4π〈A1Ψ1m,Ψ1m〉r2

where 〈y1, y2〉r2 :=
∫ R

0
y1y2r

2dr and

A1 := −∆〈1〉 − 3πw̄2. (2.61)

As this operator A1 resembles the operator A analyzed in [34] (cf. (7.15) of [34]),
by arguing analogously, we deduce that the operator A1 has the Friedrichs exten-
sion in the Hilbert space induced by the inner product 〈y1, y2〉r2 , denoted by the
same A1. Moreover it is of Sturm-Liouville type and the eigenvalues are simple
under the Dirichlet boundary condition on r = R, i.e. y(R) = 0 (cf. Section VII
of [34]).

We next claim the least eigenvalue µ1 of A1 is strictly positive. Let φ1 be an
associated eigenfunction such that A1φ1 = µ1φ1. Since φ1 must have no zeros on
(0, R) by Sturm-Liouville theory, we may assume that φ1(r) > 0 for r ∈ (0, R)

so that φ′1(R) ≤ 0 and φ1(R) = 0. In fact we must have φ′1(R) < 0, for if
φ′1(R) = 0, then φ1 must be the zero function, which is a contradiction. To see the
latter assertion, note that A1 is a second order ODE operator with C1 coefficients
away from the origin. Picard-Lindelöf existence theorem implies that for any ε > 0

the solution u on (ε, R] satisfying u′(R) = u(R) = 0 must be unique. Since u = 0

is such a solution, we must have φ′1 = u = 0. On the other hand, recalling ∆(4w̄) =

−3δ − 4πw̄3, we see that A1w̄
′ = 0. Note that w̄′(R) 6= 0, so w̄′ 6∈ DomA1 where

DomA1 denotes the domain of A1 under the Sturm-Liouville theory framework.
By using A1w̄

′ = 0, the properties of φ1 and integration by parts, we have

0 = 〈A1w̄
′, φ1〉r2 = 〈w̄′, A1φ1〉r2 +R2w̄′(R)φ′1(R)

= µ1〈w̄′, φ1〉r2 +R2w̄′(R)φ′1(R).

Since w̄′(r) < 0 for r ∈ (0, R], we see that 〈w̄′, φ1〉r2 < 0. Also R2w̄′(R)φ′1(R) >

0. Therefore we must have µ1 > 0.

By the orthogonality condition

0 = 〈θ, ei〉3 =

∫
BR

w̄3θ · ∇xi dx =

∫
BR

gxi dx,
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we conclude that 0 =
∫ R

0
g1mr

3dr and therefore

Ψ1m(r) = 0 for r ≥ R. (2.62)

This (2.62) means that Ψ1m ∈ DomA1, it follows that

Λ1m ≥ 4π〈A1Ψ1m,Ψ1m〉r2 ≥ 4πµ1〈Ψ1m,Ψ1m〉r2 ≥ 0. (2.63)

The second inequality of (2.63) implies∫ R

0

(
Ψ′21m +

2

r2
Ψ2

1m − 3πw̄2Ψ2
1m

)
r2dr ≥ µ1

∫ R

0

Ψ2
1mr

2dr

which we can rewrite as

(1 + ε)

∫ R

0

(
Ψ′21m +

2

r2
Ψ2

1m − 3πw̄2Ψ2
1m

)
r2dr

≥ ε

∫ R

0

(
Ψ′21m +

2

r2
Ψ2

1m − 3πw̄2Ψ2
1m

)
r2dr + µ1

∫ R

0

Ψ2
1mr

2dr

≥ ε

∫ R

0

(
Ψ′21mr

2 + 2Ψ2
1m

)
dr + (µ1 − 3επw̄(0)2)

∫ R

0

Ψ2
1mr

2dr

Chose ε small enough so that the last term is non-negative. Hence we see that∫ R

0

(
Ψ′21m +

2

r2
Ψ2

1m − 3πw̄2Ψ2
1m

)
r2dr &

∫ R

0

(
Ψ′21mr

2 + Ψ2
1m

)
dr

Together with (2.63) we deduce that

Λ1m =

∫ R

0

(
4

3
w̄−2g2

1m + 4πg1mΨ1m

)
r2dr &

∫ R

0

(
Ψ′21mr

2 + Ψ2
1m

)
dr

We can rewrite this as, for some C > 0,

(1 + ε)Λ1m ≥ ε

∫ R

0

(
4

3
w̄−2g2

1m + 4πg1mΨ1m

)
r2dr + C

∫ R

0

(
Ψ′21mr

2 + Ψ2
1m

)
dr

= ε

∫ R

0

(
4

3
w̄−2g2

1mr
2 + 4π

(
(r2Ψ′1m)′ − 2Ψ1m

)
Ψ1m

)
dr

+ C

∫ R

0

(
Ψ′21mr

2 + Ψ2
1m

)
dr

= ε

∫ R

0

(
4

3
w̄−2g2

1mr
2 − 4π

(
Ψ′21mr

2 + 2Ψ2
1m

))
dr
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+ C

∫ R

0

(
Ψ′21mr

2 + Ψ2
1m

)
dr

Choosing ε small enough we obtain (2.60).

Lemma 2.2.11 (l ≥ 2 modes bound). Suppose θ is as in Lemma 2.2.6. Then for

l ≥ 2,

Λlm &
∫ R

0

w̄−2g2
lmr

2dr +

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr, m ∈ {−l, . . . , l}.

(2.64)

Proof. For these higher modes, we use a continuity argument. We have by Lemma
2.2.9

Λlm ≥ 4π

∫ R

0

(
−∆〈l〉 − 3πw̄2

)
(Ψlm)Ψlmr

2dr

= 4π

∫ R

0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2Ψ2

lm

)
r2dr − 4πR2Ψlm(R)Ψ′lm(R)

= 4π

∫ R

0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2Ψ2

lm

)
r2dr (2.65)

+ 4π

(∫ ∞
R

(
Ψ′2lmr

2 + (r2Ψ′lm)′Ψlm

)
dr
)

= 4π

∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2Ψ2

lm

)
r2dr (2.66)

= 4π

∫ ∞
0

(
−∆〈1〉 − 3πw̄2

)
(Ψlm)Ψlmr

2dr + 4π

∫ ∞
0

(l(l + 1)− 2)Ψ2
lmdr

(2.67)

where we used

glm(r) = ∆〈l〉Ψlm(r) =
1

r2
(r2Ψ′lm)′ − l(l + 1)

r2
Ψlm = 0 for r > R.

Recall that w̄ = w̄δ depends on δ. In the proof of Lemma 2.2.10 we have
shown that ∫ R

0

(
−∆〈1〉 − 3πw̄2

δ

)
(y)yr2dr ≥ 0

for all y ∈ H2([0, R], r2) such that y(R) = 0. In fact when w̄δ = w̄0 (the Lane-
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Emden star), the same analysis can be extended to any R′ ≥ R to give rise to∫ R′

0

(
−∆〈1〉 − 3πw̄2

0

)
(y)yr2dr ≥ 0 (2.68)

for all y ∈ H2([0, R′], r2) such that y(R′) = 0. To do so, we replace w̄′0 (used
to argue the non-negativity of the least eigenvalue) with w̃′, where w̃ := −1

4
Kw̄3

0

(recall w̄0 = 0 for r > R). Note that w̃ is C3(R3), or C3([0,∞)) as a function of
the radial variable. By (1.19), we see that w̃′ = w̄′0 on [0, R]. Moreover, w̃′ < 0

on (0,∞). Since ∆w̃ = −πw̄3
0, taking ∂r we get ∆〈1〉w̃ = −3πw̄2

0w̄
′
0 = −3πw̄2

0w̃
′.

So we have (−∆〈1〉 − 3πw̄2
0)w̃′ = 0 on [0,∞) which allows us to apply the same

proof in Lemma 2.2.10.

Let

yR′(r) = Ψlm(r)−Ψlm(R)

(
R

R′

)l+1
r

R′

From (2.50) we see that yR′(R′) = 0. By using ∆〈1〉r = 0 and applying (2.68) with
y = yR′ , we obtain∫ R′

0

(
−∆〈1〉 − 3πw̄2

0

)
(Ψlm)Ψlmr

2dr

=

∫ R′

0

(
−∆〈1〉 − 3πw̄2

0

)
(yR′(r))

(
yR′(r) + Ψlm(R)

(
R

R′

)l+1
r

R′

)
r2dr

−
∫ R

0

3πw̄2
0Ψlm(r)Ψlm(R)

(
R

R′

)l+1
r

R′
r2dr

≥
∫ R′

0

(
−∆〈1〉 − 3πw̄2

0

)
(yR′(r))Ψlm(R)

(
R

R′

)l+1
r3

R′
dr

−
∫ R

0

3πw̄2
0Ψlm(r)Ψlm(R)

(
R

R′

)l+1
r3

R′
dr

Denote the last two integral terms by K. By integrating by parts and using the
boundary condition yR′(R′) = 0,

K = −R′2y′R′(R′)Ψlm(R)

(
R

R′

)l+1

−
∫ R

0

3πw̄2
0yR′(r)Ψlm(R)

(
R

R′

)l+1
r3

R′
dr

−
∫ R

0

3πw̄2
0Ψlm(r)Ψlm(R)

(
R

R′

)l+1
r3

R′
dr
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= −R′2Ψ′lm(R′)Ψlm(R)

(
R

R′

)l+1

+R′(Ψlm(R))2

(
R

R′

)2l+2

+ 3π

∫ R

0

w̄2
0(Ψlm(R))2

(
R

R′

)2l+2
r4

R′2
dr

− 6π

∫ R

0

w̄2
0Ψlm(r)Ψlm(R)

(
R

R′

)l+1
r3

R′
dr

→ 0 as R′ →∞

when l ≥ 1, where we used (2.50) to see for example that Ψ′lm(R′) → 0 as R′ →
∞.

Therefore we have proven1 that for any l ≥ 1,

∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2

0Ψ2
lm

)
r2dr

≥
∫ ∞

0

(l(l + 1)− 2)Ψ2
lmdr for all Ψlm. (2.69)

So we have∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2

δΨ
2
lm

)
r2dr

≥
∫ ∞

0

(l(l + 1)− 2)Ψ2
lmdr − 3π

∥∥(w̄2
δ − w̄2

0)r2
∥∥
L∞

∫ ∞
0

Ψ2
lmdr︸ ︷︷ ︸

=M

For sufficiently small δ we have

M ≥ (l(l + 1)− 3)

∫ ∞
0

Ψ2
lmdr

which leads to

Λlm ≥ 4π(l(l + 1)− 3)

∫ ∞
0

Ψ2
lmdr ≥ 0.

Observe that

(1 + ε)

∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2

δΨ
2
lm

)
r2dr

≥ ε

∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2

δΨ
2
lm

)
r2dr + (l(l + 1)− 3)

∫ ∞
0

Ψ2
lmdr.

1The proof of (2.69) can be easily adapted to correct an inconsistency appearing in [34] and
establish the non-negativity of the quadratic form 〈Lθ,θ〉3 around the Lane-Emden stars.
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Choosing ε > 0 small enough we see that∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm − 3πw̄2

δΨ
2
lm

)
r2dr

&
∫ ∞

0

(
Ψ′2lmr

2 + (l(l + 1)− 4)Ψ2
lm

)
dr

&
∫ ∞

0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr.

We have

Λlm =

∫ R

0

(
4

3
w̄−2g2

lm + 4πglmΨlm

)
r2dr &

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr.

We can rewrite this as, for some C > 0,

(1 + ε)Λlm ≥ ε

∫ R

0

(
4

3
w̄−2g2

lm + 4πglmΨlm

)
r2dr

+ C

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr

= ε

∫ R

0

(
4

3
w̄−2g2

lmr
2 + 4π

(
(r2Ψ′lm)′ − l(l + 1)Ψlm

)
Ψlm

)
dr

+ C

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr

=
4

3
ε

∫ R

0

w̄−2g2
lmr

2dr + 4πε

∫ ∞
0

(
Ψ′2lmr

2 − l(l + 1)Ψ2
lm

)
dr

+ C

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr

where we used the fact that

4π

∫ R

0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm

)
r2dr − 4πR2Ψlm(R)Ψ′lm(R)

= 4π

∫ ∞
0

(
Ψ′2lm +

l(l + 1)

r2
Ψ2
lm

)
r2dr

proved in (2.66). Choosing ε > 0 small enough we obtain the desired (2.64).

Proof of Theorem 2.2.5. Combining all the bounds we have for each l,m from
Lemmas 2.2.8–2.2.11, we have

〈Lθ,θ〉3 =
∞∑
l=0

l∑
m=−l

Λlm
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&
∞∑
l=0

l∑
m=−l

∫ R

0

w̄−2g2
lmr

2dr +

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr.

We know ∫
BR

w̄−2|∆Ψ|2dx = 4π
∞∑
l=0

l∑
m=−l

∫ R

0

w̄−2g2
lmr

2dr.

It remains to show that∫
R3

|∇Ψ|2dx = 4π
∞∑
l=0

l∑
m=−l

∫ ∞
0

(
Ψ′2lmr

2 + l(l + 1)Ψ2
lm

)
dr (2.70)

Since ∇Ψ ∈ L2(R3)3, it has a vector spherical harmonics expansion in L2(R3)3

[2, 14],

∇Ψ =
∞∑
l=0

l∑
m=−l

(
Ψ

[0]
lmY

[0]
lm + Ψ

[1]
lmY

[1]
lm + Ψ

[2]
lmY

[2]
lm

)
. (2.71)

where

Y
[0]
lm = Ylmr̂, Y

[1]
lm = r∇Ylm, Y

[2]
lm = r×∇Ylm

are the vector spherical harmonics [2, 14]. We have

Ψ
[0]
lm(r) =

1

r2

∫
∂Br

∇Ψ ·Y[0]
lmdS =

1

r2

∫
∂Br

(∂rΨ)YlmdS = Ψ′lm(r)

using (2.58). And

Ψ
[1]
lm(r) =

1

l(l + 1)r2

∫
∂Br

∇Ψ ·Y[1]
lmdS

= − 1

l(l + 1)r2

∫
∂Br

(Ψr∆Ylm + Ψr̂ · ∇Ylm)dS

=
1

r3

∫
∂Br

ΨYlmdS =
1

r
Ψlm(r)

where we used the fact that ∆Ylm = −l(l + 1)r−2Ylm. Also,

Ψ
[2]
lm(r) =

1

l(l + 1)r2

∫
∂Br

∇Ψ ·Y[2]
lmdS

= − 1

l(l + 1)r2

∫
∂Br

Ψ∇ · (r×∇Ylm)dS = 0.
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Evaluating
∫
R3 |∇Ψ|2dx using (2.71) we get (2.70). This completes the proof of

(2.70).

2.3 Momentum and energy

The energy and momentum conservation account for a four-dimensional freedom
in the parameter space of the self-similar Goldreich-Weber solutions, see Defini-
tion 1.2.2. We shall require that the initial perturbation belongs to a codimension
4 “manifold” of initial data so that they have the same total momentum and total
energy as the background GW star, i.e. (2.22) and (2.23). We will show that the
linearisation of this requirement allows us to dynamically control the inner prod-
ucts

〈θ,x〉3, 〈θ, ei〉3, i = 1, 2, 3,

modulo nonlinear terms, which is necessary for the proof of linear coercivity in
Theorem 2.2.5. Hence, by fixing the total momentum and energy, we will be able
to apply the non-negativity results we have for the linear operator L to control∫
BR
w̄−2|∇ · (w̄3∂as/∂

βθ)|2dx with 〈L∂as/∂βθ, ∂as/∂βθ〉3 + ‖∂a+1
s /∂βθ‖2

3 modulo a cor-
rection involving non-linear terms. This is the main result of this section, stated
and proved in Proposition 2.3.6.

Firstly, the momentum condition (2.22) gives us the following.

Lemma 2.3.1. Let θ be a solution of (2.7) in the sense of Theorem 2.1.11, and

such that W = W̄ (2.22). Then

−1

2
〈∂a+1
s /∂βθ, ei〉23 = δ〈∂as/∂βθ, ei〉23, a ≥ 0, |β| ≥ 0.

Proof. From Lemma 2.1.3, we see that when Wδ[θ] = W̄ we have

〈∂sθ, ei〉3 = b〈θ, ei〉3 for i = 1, 2, 3.

and hence for any a with θ sufficiently smooth,

〈∂a+1
s θ, ei〉3 = b〈∂asθ, ei〉3 for i = 1, 2, 3. (2.72)

Now note that, using integration by parts,

〈∂a+1
s /∂j/∂

β′θ, ei〉3 = −〈∂a+1
s /∂β

′
θ, /∂jei〉3 (2.73)

= 0 = b〈∂as/∂j/∂β
′
θ, ei〉3 for i = 1, 2, 3. (2.74)
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We are done noting δ = −1
2
b2 (2.2).

We now turn our attention to the energy condition (2.23).

Lemma 2.3.2. Let θ be a solution of (2.7) in the sense of Theorem 2.1.11, and

such that E = Ē (2.23). Then

5

2
b2〈∂asθ,x〉3 = 2b〈∂a+1

s θ,x〉3

−
∫ (

w̄3∂as |∂sθ − bθ|2 + 6w̄4∂as

(
J−

1
3 − 1 +

1

3
∇ · θ

))
dx

−
∫
w̄3∂as (Kξ −K−K

(1)
ξ )w̄3dx. (2.75)

Proof. From Lemma 2.1.3, we see that when Eδ[θ] = Ē we have

5

2
b2〈θ,x〉3 = 2b〈∂sθ,x〉3

−
∫ (

w̄3|∂sθ − bθ|2 + 6w̄4

(
J−

1
3 − 1 +

1

3
∇ · θ

)
+ w̄3(Kξ −K−K

(1)
ξ )w̄3

)
dx.

And hence for any a ≥ 0 the identity (2.75) easily follows.

We collect a few more easy statements in the next lemma.

Lemma 2.3.3. (i) For any K : BR × BR → R sufficiently nice and g ∈ H1
0 (BR)

we have

/∂i,x

∫
BR

K(x, z)g(z)dz =

∫
BR

(g(z)(/∂i,x + /∂i,z)K(x, z) +K(x, z)/∂i,zg(z)) dz

(ii) For any θ : BR → R3 sufficiently smooth and x,y ∈ BR we have

|∂as/∂βθ(x)− ∂as/∂βθ(z)| ≤ ‖∇∂as/∂βθ‖L∞(BR)|x− z| (2.76)

|/∂βx− /∂βz| ≤ |x− z| (2.77)

Proof. For part (i), integrate by parts to get∫
BR

K(x, z)/∂i,zg(z)dz = −
∫
BR

g(z)/∂i,zK(x, z)dz.

For part (ii), use the mean value inequality to get (2.76). Bound (2.77) follows from
/∂ijx

k = xiδkj − xjδki .
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Lemma 2.3.4. Let n ≥ 20 and a+ |β| ≤ n with a > 0. We have

|∂as (/∂x + /∂z)
βK2(x, z)| . (En + Z2

n)1/2

|x− z|2
∑

0<a′≤a
β′≤β

|∂a′s /∂β
′
θ(x)− ∂a′s /∂β

′
θ(z)|

+
E

1/2
n

|x− z|2
∑
β′≤β

|/∂β′θ(x)− /∂β′θ(z)|,

where we recall K2 (2.39).

Proof. From Lemma 2.2.3,

K2(x, z) = −1

2

|θ(x)− θ(z)|2

|x− z|3

+
3

4|x− z|

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)2

$ 1
2

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)
︸ ︷︷ ︸

:=y(x,z)

Note that |y(x, z)| . ‖∇θ‖L∞ . Our a priori assumption (2.20) together with the
embedding theorems A.3.5 and A.3.6 mean that ‖∇θ‖L∞ is bounded by a small
constant. So we can assume |y(x, z)| ≤ 1/2. Then from the definition of $q (2.42)
we can see that

$
(k)
1
2

(y(x, z)) . 1 for any k ≥ 0.

Now using part (ii) of Lemma 2.3.3, chain and product rule for derivatives and
the embedding theorems A.3.5 and A.3.6, we can see that ∂as (/∂x + /∂z)

βK2(x, z)

satisfies the stated bounds.

Lemma 2.3.5. Let n ≥ 20 and a+ |β| ≤ n with a > 0, |β| ≥ 0. Let θ be a solution

of (2.7) in the sense of Theorem 2.1.11, and such that E = Ē (2.23). Then∣∣∣∣3δ〈∂as/∂βθ,x〉23 +
24

25
〈∂a+1
s /∂βθ,x〉23

∣∣∣∣ . Sn,|β|−1,0 + Cδ(En + Z2
n)1/2En.

Proof. First we deal with the case |β| = 0. From (2.75) we get

2〈∂a+1
s θ,x〉3 =

5

2
b〈∂asθ,x〉3
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+ b−1

∫ (
w̄3∂as |∂sθ − bθ|2 + 6w̄4∂as

(
J−

1
3 − 1 +

1

3
∇ · θ

))
dx

+ b−1

∫
w̄3∂as (Kξ −K−K

(1)
ξ )w̄3dx. (2.78)

With the embedding theorems A.3.5 and A.3.6, it is easy to see that∣∣∣∣∫ (w̄3∂as |∂sθ − bθ|2 + 6w̄4∂as

(
J−

1
3 − 1 +

1

3
∇ · θ

))
dx
∣∣∣∣

.δ (En + Z2
n)1/2E1/2

n .

Now using Lemmas 2.3.3–2.3.4 and Young’s convolution inequality we have∣∣∣∣∫ w̄3∂as (Kξ −K−K
(1)
ξ )w̄3dx

∣∣∣∣ =

∣∣∣∣∫ ∫ w̄3(x)w̄3(z)∂asK2(x, z)dxdz
∣∣∣∣

. (En + Z2
n)1/2E1/2

n . (2.79)

Therefore, upon taking the square of (2.78) and using the simple bound
|〈∂asθ,x〉3| . E

1
2
n , we obtain∣∣∣∣4〈∂a+1

s θ,x〉23 −
25

4
b2〈∂asθ,x〉23

∣∣∣∣ .δ (En + Z2
n)1/2En,

which concludes the proof for when |β| = 0 since δ = −1
2
b2 (recall (2.2)).

Now note that, using integration by parts,

|〈∂a+1
s /∂j/∂

β′θ,x〉3| = |〈∂a+1
s /∂β

′
θ, /∂jx〉3| . S

1/2
n,|β′|,0.

Similarly we have |〈∂as/∂j/∂β
′
θ,x〉3| . S

1/2
n,|β′|,0. Noting that |δ| . 1 and we are

done.

Proposition 2.3.6. Let n ≥ 20 and a + |β| ≤ n with a > 0. Let θ be a solution

of (2.7) in the sense of Theorem 2.1.11 such that W = W̄ (2.22) and E = Ē

(2.23). Then

|b|2
∫
BR

w̄−2|∇ · (w̄3∂as/∂
βθ)|2dx . 〈L∂as/∂βθ, ∂as/∂βθ〉3 +

49

50
‖∂a+1

s /∂βθ‖2
3

+ Sn,|β|−1,0 + Cδ(En + Z2
n)1/2En. (2.80)
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Proof. Let

θ̃ = ∂as/∂
βθ − 〈∂

a
s/∂

βθ,x〉3
‖x‖2

3

x−
3∑
i=1

〈∂as/∂βθ, ei〉3
‖ei‖2

3

ei (2.81)

θ′ = ∂a+1
s /∂βθ − 〈∂

a+1
s /∂βθ,x〉3
‖x‖2

3

x−
3∑
i=1

〈∂a+1
s /∂βθ, ei〉3
‖ei‖2

3

ei (2.82)

Then 〈θ̃,x〉3 = 0 = 〈θ̃, ei〉3 for i = 1, 2, 3, and

‖∂a+1
s /∂βθ‖2

3 = ‖θ′‖2
3 +
〈∂a+1
s /∂βθ,x〉23
‖x‖2

3

+
3∑
i=1

〈∂a+1
s /∂βθ, ei〉23
‖ei‖2

3

. (2.83)

Since x and ei are eigenfunctions of L with eigenvalues 3δ and δ respectively, we
have

〈L∂as/∂βθ, ∂as/∂βθ〉3 =

〈
Lθ̃ + 3δ

〈∂as/∂βθ,x〉3
‖x‖2

3

x +
3∑
i=1

δ
〈∂as/∂βθ, ei〉3
‖ei‖2

3

ei,

θ̃ +
〈∂as/∂βθ,x〉3
‖x‖2

3

x +
3∑
i=1

〈∂as/∂βθ, ei〉3
‖ei‖2

3

ei

〉
3

= 〈Lθ̃, θ̃〉3 + 3δ
〈∂as/∂βθ,x〉23
‖x‖2

3

+
3∑
i=1

δ
〈∂as/∂βθ, ei〉23
‖ei‖2

3

. (2.84)

We use Lemmas 2.3.1 and 2.3.5 to control the last two terms on the right-most side
of (2.84) to get

〈Lθ̃, θ̃〉3 ≤ 〈L∂as/∂βθ, ∂as/∂βθ〉3 +
24

25

〈∂a+1
s /∂βθ,x〉23
‖x‖2

3

+
1

2

3∑
i=1

〈∂a+1
s /∂βθ, ei〉23
‖ei‖2

3

+ CSn,|β|−1,0 + Cδ(En + Z2
n)1/2En (2.85)

≤ 〈L∂as/∂βθ, ∂as/∂βθ〉3 +
24

25
‖∂a+1

s /∂βθ‖2
3

+ CSn,|β|−1,0 + Cδ(En + Z2
n)1/2En, (2.86)

where we have used (2.83) in the last line. We now use the decomposition (2.81)
and then apply Theorem 2.2.5 (with θ = θ̃) to obtain

ε

∫
BR

w̄−2|∇ · (w̄3∂as/∂
βθ)|2dx

≤ Cε

∫
BR

w̄−2|∇ · (w̄3θ̃)|2dx + Cε
〈∂as/∂βθ,x〉23
‖x‖2

3

+ Cε

3∑
i=1

〈∂as/∂βθ, ei〉23
‖ei‖2

3
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≤ 〈Lθ̃, θ̃〉3 +
Cε

|δ|
‖∂a+1

s /∂βθ‖2
3 + CSn,|β|−1,0 + Cδ(En + Z2

n)1/2En

≤ 〈L∂as/∂βθ, ∂as/∂βθ〉3 +
24

25
‖∂a+1

s /∂βθ‖2
3 +

Cε

|δ|
‖∂a+1

s /∂βθ‖2
3

+ CSn,|β|−1,0 + Cδ(En + Z2
n)1/2En

≤ 〈L∂as/∂βθ, ∂as/∂βθ〉3 +
49

50
‖∂a+1

s /∂βθ‖2
3 + CSn,|β|−1,0 + Cδ(En + Z2

n)1/2En,

(2.87)

where we have chosen ε small enough so that Cε . 1 in the second line and then
further shrink ε so that Cε

|δ| <
1
50

in the fourth line. Note that since δ = −1
2
b2

(recall (2.2)), the dependence of ε on b is ε ∼ |b|2. We have used Lemmas 2.3.1
and 2.3.5 in the second bound, and (2.86) in the third bound.

2.4 Coercivity via irrotationality

Note that Proposition 2.3.6 only controls the weighted divergence g = ∇ · (w̄3θ)

and not the norms of θ in our energy spaces. It is therefore still not strong enough
for our energy estimates in Sections 2.5–2.6. To derive the coercivity we seek, we
must mod out the kernel of L, i.e. the subspace of θ with weighted divergence
g = 0. This is naturally linked to the assumption of irrotationality (2.24) which
guarantees, we show this in the key result of this section – Proposition 2.4.9, that
we can in fact dynamically control ‖∂as/∂βθ‖2

3 + ‖∂as∇/∂βθ‖2
4 modulo lower order

nonlinear terms.

2.4.1 Lagrangian description of irrotationality

From (2.33) it is clear that any H2 vectorfield θ such that g = ∇ · (w̄3θ) = 0 is in
the kernel of the operator L. In particular, to obtain strict coercivity of L we restrict
ourselves to 〈·, ·〉3-orthogonal complement of K = {θ : ∇· (w̄3θ) = 0}. Note that
{θ = ∇ϑ} ⊆ K⊥ since for any θ0 ∈ K we have

〈∇ϑ,θ0〉3 =

∫
∇ϑ · θ0w̄

3dx =

∫
ϑ∇ · (θ0w̄

3)dx = 0.

Therefore, the natural assumption to hope for the strict coercivity of the term
on the left-hand side of (2.80) is that θ is in fact a gradient. In this section we
show that this is true to the top order if we assume that the fluid is irrotational. The
challenge is that the irrotationality condition in the Lagrangian variables (2.24) is
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expressed at the level of the s-derivative of the flow map, and a careful analysis is
necessary to obtain satisfactory lower bounds.

Lemma 2.4.1. Let θ be a solution of (2.7) in the sense of Theorem 2.1.11, given

on its maximal interval of existence. Assume further that the fluid is irrotational,

i.e. initially (2.24) holds. Then for a > 0 we have

∂sθ = ∇
(
H̃ +

1

2
b|θ + x|2

)
− (∂sθ

k)∇θk (2.88)

∂asθ = ∇Ha −
ba−1

2
c∑

j=0

Ca,j(∂
a−j
s θk)∇∂jsθk (2.89)

for some real constants Ca,j , j ∈ {1, . . . , ba−1
2
c} and H1-functions Ha and H̃ .

Proof. Since the Euler-Poisson equation preserves the fluid irrotational condition,
(2.24) implies that curlA ∂tη = 0 for t, or equivalently in Eulerian coordinates
∇ × u = 0. Since any curl-free vector field can be written as a gradient, we have
u = ∇Ĥ for some Ĥ , or equivalently ∂tη = A∇H for some H in Lagrangian
coordinates. Since

∂tη = λ−3/2∂s(λ(θ + x)) = λ−3/2((θ + x)∂sλ+ λ∂sθ) = λ−1/2(∂sθ − b(θ + x)),

this means on the level of θ we have

∂sθ − b(θ + x) = A∇H̃.

Hence we have

∂sθ = ∇H̃ + (A− I)∇H̃ + b(θ + x) = ∇H̃ + (I −A−1)A∇H̃ + b(θ + x)

= ∇H̃ − (∂sθ
k − b(θk + xk))∇θk + b(θ + x)

= ∇
(
H̃ +

1

2
b|θ + x|2

)
− (∂sθ

k)∇θk.

This proves (2.88). To prove (2.89), we will use induction. We have shown that it
is true for a = 1. Suppose it is true for some a ≥ 1. Then

∂a+1
s θ = ∇∂sHa − ∂s

ba−1
2
c∑

j=0

Ca,j(∂
a−j
s θk)∇∂jsθk
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= ∇∂sHa −
ba−1

2
c∑

j=0

Ca,j(∂
a+1−j
s θk)∇∂jsθk −

ba−1
2
c∑

j=0

Ca,j(∂
a−j
s θk)∇∂j+1

s θk

= ∇∂sHa −
ba−1

2
c∑

j=0

Ca,j(∂
a+1−j
s θk)∇∂jsθk −

ba−1
2
c+1∑

j=1

Ca,j−1(∂a+1−j
s θk)∇∂jsθk.

Note that ba−1
2
c+1 > ba

2
c if and only if a is odd. Assume therefore that a = 2a′+1

for some a′ ∈ N ∪ {0}. Then ba−1
2
c+ 1 = a′ + 1 and ba

2
c = a′. When j = a′ + 1

in the last sum, we have

C2a′+1,a′(∂
2a′+2−(a′+1)
s θk)∇∂a′+1

s θk = C2a′+1,a′(∂
a′+1
s θk)∇∂a′+1

s θk

=
1

2
C2a′+1,a′∇(∂a

′+1
s θk)2

which can be absorbed into Ha+1. Therefore

∂a+1
s θ = ∇

(
∂sHa +

1

2
1[a odd]Ca,a′∇(∂a

′+1
s θk)2

)

−
ba−1

2
c∑

j=0

Ca,j(∂
a+1−j
s θk)∇∂jsθk −

ba
2
c∑

j=1

Ca,j−1(∂a+1−j
s θk)∇∂jsθk

= ∇Ha+1 −
ba

2
c∑

j=0

Ca+1,j(∂
a−j
s θk)∇∂jsθk,

where 1[?] denotes the Iverson bracket (see Definition 1.4.2). This completes the
induction argument.

Remark 2.4.2. The above lemma is a purely structural statement about (suitably

smooth) irrotational fields. Strictly speaking we do not need θ to be a solution of

the Euler-Poisson system (2.7).

With this we can now show that the curl of ∂asX
b
r/∂

βθ equals lower order terms
and non-linear terms.

Lemma 2.4.3. Let θ be a solution of (2.7) in the sense of Theorem 2.1.11, given

on its maximal interval of existence. Assume further that the fluid is irrotational,

i.e. initially (2.24) holds. Then for a > 0 we have

∇× ∂asθ = −∂a−1
s ((∇∂sθk)×∇θk). (2.90)
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Moreover, for some constants Cγ,β > 0 we have

∇× ∂as/∂βθ = −∂a−1
s /∂β((∇∂sθk)×∇θk) +

∑
|γ|<|β|

Cγ,β〈∇∂as/∂γθ〉, (2.91)

∇× ∂asXb
r/∂

βθ = −∂a−1
s Xb

r/∂
β((∇∂sθk)×∇θk) +

∑
|γ|+d<|β|+b

Cγ,β〈∇∂asXd
r /∂

γθ〉,

(2.92)

where we recall notations defined in Definition 1.4.2.

Proof. Apply ∇ × ∂a−1
s to (2.88) to get (2.90). Formulas (2.91)–(2.92) follow

trivially when |β| = 0 = b. Now assume formula (2.91) is true for a multi-index β,
|β| ≥ 0. Then

∇× ∂as/∂j/∂βθ = 〈∇∂as/∂βθ〉+ /∂j∇× ∂as/∂βθ

= 〈∇∂as/∂βθ〉 − ∂a−1
s /∂j/∂

β((∇∂sθk)×∇θk) +
∑
|γ|<|β|

Cγ,β〈/∂j∇∂as/∂γθ〉

= −∂a−1
s /∂j/∂

β((∇∂sθk)×∇θk) +
∑

|γ|<|β|+1

C ′γ,β〈∇∂as/∂γθ〉,

where we recall the notation from Definition 1.4.2 and the commutation relation
[/∂j,∇] = 〈∇〉 from Lemma A.1.2. The proof then follows by induction. The proof
of (2.92) is similar, using the commutation relation [Xr,∇] = 〈∇〉 from Lemma
A.1.2.

Corollary 2.4.4. Let θ be a solution of (2.7) in the sense of Theorem 2.1.11, given

on its maximal interval of existence. Assume further that the fluid is irrotational,

i.e. initially (2.24) holds. Let n ≥ 20.

i. For a+ |β| ≤ n with a > 0 we have

‖∇ × ∂as/∂βθ‖2
4 . Sn,|β|−1,0 + (En + Z2

n)En.

ii. For a+ |β|+ b ≤ n with a > 0 we have

‖∇ × ∂asXb
r/∂

βθ‖2
4+b . Sn,|β|+b−1 + (En + Z2

n)En.

Proof. Use Lemma 2.4.3 and note that

∥∥∂a−1
s /∂β((∇∂sθk)×∇θk)

∥∥2

4
. (En + Z2

n)En
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stars∥∥∥∥∥∥

∑
|γ|<|β|

Cγ,β〈∇∂as/∂γθ〉

∥∥∥∥∥∥
2

4

. Sn,|β|−1,0,

which yields the first claim. The second claim follows similarly.

2.4.2 Coercivity of L

The lemmas in the last subsection showed that ∂asθ is a gradient on the linear level,
which will ultimately help us show that ‖∂as/∂βθ‖2

3 + ‖∂as∇/∂βθ‖2
4 can be “con-

trolled” by the linearised dynamics. We start by showing we can control ‖∂asθ‖2
3 in

the following lemma.

Lemma 2.4.5. Let θ be a solution of (2.7) in the sense of Theorem 2.1.11, given

on its maximal interval of existence. Assume further that the fluid is irrotational,

i.e. initially (2.24) holds. Let n ≥ 20. Then we have the bound

‖∂asθ‖2
3 .

∫
BR

w̄−2|∇ · (w̄3∂asθ)|2dx + (En + Z2
n)1/2En for 0 < a ≤ n.

(2.93)

Proof. Let g = ∇ · (w̄3∂asθ). Multiply both sides of this equation by Ha and
integrate over BR to get∫

BR

w̄3(∇Ha) · ∂asθ dx = −
∫
BR

gHadx = −
∫
BR

g(Ha − (Ha)B2R/3
)dx

≤ ε−1

∫
BR

w̄−2g2dx + ε

∫
BR

(Ha − (Ha)B2R/3
)2w̄2dx

≤ ε−1

∫
BR

w̄−2g2dx + εC ′
∫
BR

|∇Ha|2w̄4dx

where we have used the Hardy-Poincaré inequality in the last line, see Theo-
rem A.3.1. From this and Lemma 2.4.1 we get∫

BR

w̄3|∂asθ|2dx ≤ ε−1

∫
BR

w̄−2g2dx + εC ′
∫
BR

|∂asθ|2w̄4dx

+ (1 + ε)C ′′(En + Z2
n)1/2En

where we bound for example∣∣∣∣∣∣
∫
BR

w̄3

ba−1
2
c∑

j=0

Ca,j(∂
a−j
s θk)∇∂jsθk

 · ∂asθ dx

∣∣∣∣∣∣
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. (En + Z2
n)1/2

∣∣∣∣∣∣
∫
BR

w̄3

ba−1
2
c∑

j=0

Ca,j(∂
a−j
s θk)

 · ∂asθ dx

∣∣∣∣∣∣
. (En + Z2

n)1/2Sn

Choosing ε small enough, we get (2.93).

Before proving the key result of this section, we have the following structural
decomposition, which holds for any sufficiently smooth vectorfield θ.

Lemma 2.4.6. For any θ such that ‖θ‖3 + ‖∇θ‖4 <∞ we have∫
BR

4

3
w̄−2|∇ · (w̄3θ)|2dx

=

∫
BR

(
w̄4

(
1

3
|∇ · θ|2 + |∇θ|2 + [curlθ]kl ∂kθ

l

)
− 4w̄3θkθl∂k∂lw̄

)
dx

=

∫
BR

(
w̄4

(
1

3
|∇ · θ|2 + |∇θ|2 − 1

2
| curlθ|2

)
− w̄3

(
w̄′′|θ · er|2 +

w̄′

r
(|θ|2 − |θ · er|2)

))
dx.

where er denotes the radial unit vector x/|x|.

Proof. The first line follows from the following identity:

−4

3
∇(w̄−2∇ · (w̄3θ)) = − 1

3w̄3
∇(w̄4∇ · θ)− 1

w̄3
∂k(w̄

4∇θk)− 4θ · ∇∇w̄

= − 1

3w̄3
∇(w̄4∇ · θ)− 1

w̄3
∂k(w̄

4(∂kθ + [curlθ]k•)

− 4θ · ∇∇w̄.

And then the second line follows from

[curlθ]kl [curlθ]kl = (∂lθ
k − ∂kθl)(∂lθk − ∂kθl)

= (∂kθ
l − ∂lθk)∂kθl − (∂lθ

k − ∂kθl)∂kθl

= −2(∂lθ
k − ∂kθl)∂kθl = −2[curlθ]kl ∂kθ

l

and

θkθl∂k∂lw̄ = θkθl∂k

(
w̄′
xl

r

)
= θkθl

(
w̄′′
xlxk

r2
+ w̄′

δlk
r
− w̄′x

lxk

r3

)
= w̄′′|θ · er|2 +

w̄′

r
(|θ|2 − |θ · er|2).
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Using this, we can now prove that we can control ‖∂asθ‖2
3 + ‖∂as∇θ‖2

4.

Proposition 2.4.7. Let n ≥ 20. Let θ be a solution of (2.7) in the sense of The-

orem 2.1.11, given on its maximal interval of existence. Assume further that the

energy, momentum, and irrotationality constraints (2.22), (2.23), and (2.24) hold

respectively. Then for any 0 < a ≤ n we have

‖∂asθ‖
2
3 + ‖∂as∇θ‖

2
4 . |b|

−2

(
49

50

∥∥∂a+1
s θ

∥∥2

3
+ 〈L∂asθ, ∂asθ〉

)
+ Cδ(En + Z2

n)1/2En

(2.94)

Proof. Combining Proposition 2.3.6 and Lemma 2.4.5 we have, for small ε,

ε

∫
BR

w̄−2|∇ · (w̄3∂asθ)|2dx + ‖∂asθ‖2
3︸ ︷︷ ︸

:=M

. |b|−2

(
〈L∂asθ, ∂asθ〉3 +

49

50
‖∂a+1

s θ‖2
3

)
+ Cδ(En + Z2

n)1/2En.

Note that by Corollary 2.4.4 ‖ curl ∂asθ‖2
4 . (En +Z2

n)En. Using Lemma 2.4.6 we
have

M =

∫
R3

(
εw̄−2|∇ · (w̄3∂asθ)|2 + w̄3|∂asθ|2

)
dx

≥
∫
R3

(
ε
3

4
w̄4

(
|∇∂asθ|2 −

1

2
| curl ∂asθ|2

)
− ε3

4
w̄3w̄′′|∂asθ · er|2 + w̄3|∂asθ|2

)
dx

≥
∫
R3

(
ε
3

4
w̄4|∇∂asθ|2 − ε

3

4
w̄3w̄′′|∂asθ · er|2 + w̄3|∂asθ|2

)
dx− εC(En + Z2

n)En

Choosing ε small enough, we then have

M + (En + Z2
n)Sn &

∫
R3

(
w̄4|∇∂asθ|2 + w̄3|∂asθ|2

)
dx.

Next we will upgrade our estimate to control ‖∂as/∂βθ‖2
3+‖∂as∇/∂βθ‖2

4 for |β| >
0. First we will need the following lemma.

Lemma 2.4.8. For any vector field θ and ε > 0,

‖θ‖2
3 . ε‖Xrθ‖2

4 + (1 + ε−1)‖θ‖2
4.

78



2.4. Coercivity via irrotationality

Proof. We have

−
∫
BR

|θ|2rw̄′w̄3dx = −1

4

∫
BR

|θ|2Xrw̄
4dx

=
1

2

∫
BR

w̄4θ ·Xrθ dx +
3

4

∫
BR

|θ|2w̄4dx

≤ ε‖Xrθ‖2
4 +

1

4
(3 + ε−1)‖θ‖2

4.

Now

‖θ‖2
3 . ‖θ‖2

4 −
∫
BR

|θ|2rw̄′w̄3dx ≤ ε‖Xrθ‖2
4 +

1

4
(7 + ε−1)‖θ‖2

4.

Proposition 2.4.9. Let n ≥ 20. Let θ be a solution of (2.7) in the sense of The-

orem 2.1.11, given on its maximal interval of existence. Assume further that the

energy, momentum, and irrotationality constraints (2.22), (2.23), and (2.24) hold

respectively. Then for any a+ |β| ≤ n with a, |β| > 0 we have

∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

. |b|−2

(
49

50

∥∥∂a+1
s /∂βθ

∥∥2

3
+ 〈L∂as/∂βθ, ∂as/∂βθ〉

)
+CSn,|β|−1,0+Cδ(En+Z2

n)1/2En

(2.95)

Proof. By Proposition 2.3.6 and Lemma 2.4.6 we have

‖∇∂as/∂βθ‖2
4 −

1

2
‖ curl ∂as/∂

βθ‖2
4 −

∫
BR

w̄′′w̄3|∂as/∂βθ · er|2dx

≤
∫
BR

4

3
w̄−2|∇ · (w̄3∂as/∂

βθ)|2dx

. |b|−2

(
〈L∂as/∂βθ, ∂as/∂βθ〉3 +

49

50
‖∂a+1

s /∂βθ‖2
3

)
+ Cδ(En + Z2

n)En.

By Corollary 2.4.4 we have

‖∇∂as/∂βθ‖2
4 −

∫
BR

w̄′′w̄3|∂as/∂βθ · er|2dx

. |b|−2

(
〈L∂as/∂βθ, ∂as/∂βθ〉3 +

49

50
‖∂a+1

s /∂βθ‖2
3

)
+ CSn,|β|−1,0 + Cδ(En + Z2

n)En.

Now by Lemma 2.4.8, we have 1
2ε
‖∂as/∂βθ‖2

3 − 1
2
‖∇∂as/∂βθ‖2

4 .ε ‖∂as/∂βθ‖2
4 ≤
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Sn,|β|−1,0. Adding this and the above equation, and chosing ε small enough we get

‖∂as/∂βθ‖2
3 + ‖∇∂as/∂βθ‖2

4

. |b|−2

(
〈L∂as/∂βθ, ∂as/∂βθ〉3 +

49

50
‖∂a+1

s /∂βθ‖2
3

)
+CSn,|β|−1,0+Cδ(En+Z2

n)En.

Remark 2.4.10. Estimate (2.95) features an order 1 term CSn,|β|−1,0 on the right-

hand side. This could be problematic for the closure of the estimates, but the key

point is that this term is effectively decoupled, as it features one tangential deriva-

tive less. This will allows us later to close the estimates via induction on the order

of derivatives in the problem.

2.5 Reduction to linear problem

In order to prove the bound (2.31), we will need to apply the coercivity estimates
from Section 2.4. In particular, we must control the non-linear terms in order to
effectively reduce the problem to a linear one. In Sections 2.5.1 and 2.5.2 we will
prove high-order energy bounds for the nonlinear contributions from the pressure
and the gravity term respectively. We will also prove high-order energy bounds for
the full gravity term (including the linear part) in Section 2.5.2 that we will need for
induction on radial derivatives. Then using these, we will reduce the full non-linear
problem to the linear one in Section 2.5.3. This will then allow us to prove energy
estimates and our main theorem in Section 2.6.

2.5.1 Estimating the non-linear part of the pressure term

In this subsection we will estimate the non-linear part of the pressure term
∂asX

b
r/∂

βP (2.7), and show that it can be bounded by (En + Z2
n)1/2En.

Recall from (2.8) that P := w̄−3∂k(w̄
4(AkJ−1/3 − Ik)). In the next two

lemmas, we will compute the commutators between the operator ∂asX
b
r/∂

β and the
weighted derivative w̄−3∂k(w̄

4·). Lemma 2.5.1 deals with the case b = 0 (no ra-
dial derivatives) while Lemma 2.5.2 includes the radial derivatives. Lemmas 2.5.1
and 2.5.2 are necessary to control all the non-“top-order” contributions coming
from ∂asX

b
r/∂

βP by our energy norms.
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Lemma 2.5.1. For any tensor field T ki sufficiently smooth, we have

/∂β
(
w̄−3∂k(w̄

4T ki )
)

= w̄−3∂k(w̄
4/∂βT ki ) +

∑
|β′|≤|β|−1

〈Cw̄−3∇(w̄4/∂β
′
T )〉 (2.96)

for i = 1, 2, 3, where we recall notations defined in Definition 1.4.2.

Proof. We will prove this by induction. Assume this is true for β, then we have

/∂j/∂
β
(
w̄−3∂k(w̄

4T ki )
)

= w̄−3∂k(w̄
4/∂j/∂

βT ki )− w̄−3εjkl∂l(w̄
4/∂βT ki )

+ /∂j
∑

|β′|≤|β|−1

〈Cw̄−3∇(w̄4/∂β
′
T )〉

= w̄−3∂k(w̄
4/∂j/∂

βT ki ) +
∑
|β′|≤|β|

〈Cw̄−3∇(w̄4/∂β
′
T )〉.

where we used the commutation relation for [/∂j, ∂k] from Lemma A.1.2.

The use of radial derivatives naturally changes the weighting structure, which
is one of the key observations that makes the high-order energy argument possible
and goes back to [33].

Lemma 2.5.2. For any tensor field T ki sufficiently smooth, we have

Xr

(
w̄−c∂k(w̄

1+cT ki )
)

= w̄−(1+c)∂k(w̄
2+cXrT

k
i )

+ (1 + c)(T ki Xr∂kw̄) + (∂kw̄)/∂kjT
j
i − w̄∂kT ki

/∂j
(
w̄−c∂k(w̄

1+cT ki )
)

= w̄−c∂k(w̄
1+c/∂jT

k
i )

− εjkl((1 + c)(∂lw̄)T ki + w̄∂lT
k
i ))

Xd
r /∂

β
(
w̄−3∂k(w̄

4T ki )
)

= w̄−(3+d)∂k(w̄
4+dXd

r /∂
βT ki )

+

 ∑
d′≤d

|β′|≤|β|−1

+
∑

d′≤d−1
|β′|≤|β|+1

 〈CωXd′

r /∂
β′T 〉

+

 ∑
d′≤d−1
|β′|≤|β|−1

+
∑

d′≤d−2
|β′|≤|β|

 〈CXd′

r /∂
β′∇T 〉

+

 ∑
d′≤d

|β′|≤|β|−1

+
∑

d′≤d−1
|β′|≤|β|

 〈Cw̄Xd′

r /∂
β′∇T 〉 (2.97)

for any c ≥ 0 and i = 1, 2, 3, where ω denotes some derivatives of w̄. Here we
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used notations defined in Definition 1.4.2.

Proof. First note that

xiXrT
i = xixj∂jT

i = r2∂iT
i + xj(xi∂j − xj∂i)T i = r2∂iT

i − xi/∂ijT j.

Using this we have

Xr

(
w̄−c∂k(w̄

1+cT ki )
)

= Xr

(
(1 + c)T ki ∂kw̄ + w̄∂kT

k
i

)
= (1 + c)

(
(XrT

k
i )∂kw̄ + T ki Xr∂kw̄

)
+ (x · ∇w̄)∂kT

k
i

+ w̄Xr∂kT
k
i

= (1 + c)
(
(XrT

k
i )∂kw̄ + T ki Xr∂kw̄

)
+ (x · ∇w̄)r−2(xkXrT

k
i + xk/∂kjT

j
i )

+ w̄∂kXrT
k
i − w̄∂kT ki

= (1 + c)
(
(XrT

k
i )∂kw̄ + T ki Xr∂kw̄

)
+ (∂kw̄)(XrT

k
i + /∂kjT

j
i ) + w̄∂kXrT

k
i − w̄∂kT ki

= w̄−(1+c)∂k(w̄
2+cXrT

k
i ) + (1 + c)(T ki Xr∂kw̄)

+ (∂kw̄)/∂kjT
j
i − w̄∂kT ki

/∂j
(
w̄−c∂k(w̄

1+cT ki )
)

= w̄−c∂k(w̄
1+c/∂jT

k
i )− εjklw̄−c∂l(w̄1+cT ki ).

where we used commutation relations from Lemma A.1.2. The final formula can
be proven by induction.

The next lemma deals with the terms we get when we apply ∂asX
b
r/∂

β to
AJ−1/3 − I .

Lemma 2.5.3. Let

T := AJ−1/3 − I. (2.98)

Recall notations defined in Definition 1.4.2. For a > 0 and |γ| > 0, we have

∂•T = TT [∂•∇θ], (2.99)

∂asX
d
r /∂

βT = TT [∂asX
b
r/∂

β∇θ] + TR:a,β,d (2.100)

∂γT = TT [∂γ∇θ] + TR:γ. (2.101)
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where

TT [M ]k := −J−1/3

(
Ak
mA

l +
1

3
AkAl

m

)
Mm

l , k = 1, 2, 3 (2.102)

TR:a,β,d := J−1/3

a+d+|β|∑
c=2

∑
∑c
i=1(ai,di,βi)=(a,d,β)
|ai|+|di|+|βi|>0

〈C〉〈A〉1+c

c∏
i=1

〈∂ais Xdi
r /∂

βi∇θ〉

(2.103)

TR:γ := J−1/3

|γ|∑
c=2

∑
∑c
i=1 γi=γ
|γi|>0

〈C〉〈A〉1+c

c∏
i=1

〈∂γi∇θ〉. (2.104)

Proof. Applying Lemma A.1.1 we get that

∂•(A
kJ−1/3 − Ik) = −J−1/3Ak

mA
l∂∂lθ

m − 1

3
J−1/3AkAl

m∂•∂lθ
m

= −J−1/3

(
Ak
mA

l +
1

3
AkAl

m

)
∂•∂lθ

m.

Hence ∂•T k = TT [∂•∇θ]k. By repeated application of this we get the next two
formulas.

We have from (2.7)

∂asX
b
r/∂

βP = ∂asX
b
r/∂

β
(
w̄−3∂k(w̄

4T k)
)

Let

Pdθ := w̄−3−d∂k(w̄
4+dTT [∇θ]k) (2.105)

= −w̄−(3+d)∂k

(
w̄4+d

(
Ak
mA

l +
1

3
AkAl

m

)
∂lθ

m

)
(2.106)

Let Pd,L be the linear part of Pd, i.e.

Pd,Lθ := −w̄−(3+d)∂k

(
w̄4+d

(
IkmI

l +
1

3
IkI lm

)
∂lθ

m

)
= − 1

3w̄3+d
∇(w̄4+d∇ · θ)− 1

w̄3+d
∂k(w̄

4+d∇θk) (2.107)

In doing energy estimates, the term 〈∂asXb
r/∂

βP, ∂asX
b
r/∂

βθ〉 and
〈∂asXb

r/∂
βP, ∂a+1

s Xb
r/∂

βθ〉 will arise. Using the lemmas in this subsection, we
will next show that P here can be reduced to Pd,L modulo remainder terms that
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can be estimated.

To that end we will first derive the following identity.

Lemma 2.5.4. For any vector field θ1,θ2 sufficiently smooth we have

〈Pdθ1,θ2〉3+d

=

∫ (
(A∂mθ1) · (A∂mθ2) +

1

3
(divAθ1)(divAθ2)

− 1

2
[curlAθ1]mj [curlAθ2]mj

)
J−1/3w̄4+ddx (2.108)

〈Pd,Lθ1,θ2〉3+d

=

∫ (
(∂mθ1) · (∂mθ2) +

1

3
(div θ1)(div θ2)− 1

2
[curlθ1]mj [curlθ2]mj

)
w̄4+ddx

(2.109)

Proof. We have

〈Pdθ1,θ2〉3+d =

∫ (
(A∂lθ

m
1 ) · (A∂mθl2) +

1

3
(divAθ1)(divAθ2)

)
J−1/3w̄4+ddx.

We are done for Pd noting that

[curlAθ1]mj [curlAθ2]mj = (A∂jθ
m
1 −A∂mθ

j
1)(A∂jθ

m
2 −A∂mθ

j
2)

= 2(A∂jθ
m
1 )(A∂jθ

m
2 )− 2(A∂jθ

m
1 )(A∂mθ

j
2).

Similarly for Pd,L.

Using this lemma, we will estimate the difference between “Pb” and
“Pb,L”.

Proposition 2.5.5. Let n ≥ 20 and a + |β| + b ≤ n with a > 0. For any θ that

satisfies our a priori assumption (2.20) we have∣∣∣∣∫ s

0

〈Pb∂
a
sX

b
r/∂

βθ, ∂a+1
s Xb

r/∂
βθ〉3+bdτ −

1

2
〈Pb,L∂

a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+b

∣∣s
0

∣∣∣∣
. (En + Z2

n)1/2En

∣∣∣∣∫ s

0

〈Pb∂
a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+bdτ −
∫ s

0

〈Pb,L∂
a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+bdτ
∣∣∣∣

. (En + Z2
n)1/2En
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Proof. By Lemma 2.5.4

〈Pb∂
a
sX

b
r/∂

βθ, ∂a+1
s Xb

r/∂
βθ〉3+b

=

∫ (
(A∂m∂

a
sX

b
r/∂

βθ) · (A∂m∂a+1
s Xb

r/∂
βθ)

+
1

3
(divA∂

a
sX

b
r/∂

βθ)(divA∂
a+1
s Xb

r/∂
βθ)

− 1

2
[curlA∂

a
sX

b
r/∂

βθ]mj [curlA∂
a+1
s Xb

r/∂
βθ]mj

)
J−1/3w̄4+bdx

=

∫ (
(A∂m∂

a
sX

b
r/∂

βθ) · ∂s(A∂m∂asXb
r/∂

βθ)

+
1

3
(divA∂

a
sX

b
r/∂

βθ)∂s(divA∂
a
sX

b
r/∂

βθ)

− 1

2
[curlA∂

a
sX

b
r/∂

βθ]mj ∂s[curlA∂
a
sX

b
r/∂

βθ]mj

)
J−1/3w̄4+bdx

+ R[(En + Z2
n)1/2En]

=
1

2
∂s

∫ (
|A∂m∂asXb

r/∂
βθ|2 +

1

3
| divA∂

a
sX

b
r/∂

βθ|2

− 1

2
|[curlA∂

a
sX

b
r/∂

βθ]|2
)
J−1/3w̄4+bdx

+ R[(En + Z2
n)1/2En]

=
1

2
∂s

∫ (
|∂m∂asXb

r/∂
βθ|2 +

1

3
| div ∂asX

b
r/∂

βθ|2 − 1

2
|[curl ∂asX

b
r/∂

βθ]|2
)
w̄4+bdx

+ ∂sR[(En + Z2
n)1/2En] + R[(En + Z2

n)1/2En]

=
1

2
∂s〈Pb,L∂

a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+b + ∂sR[(En + Z2
n)1/2En]

+ R[(En + Z2
n)1/2En]

where we recall notation R[?] introduced in Definition 1.4.2. Integrating in time
we get the first equation. For the second equation, note that

〈Pb∂
a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+b = 〈Pb,L∂
a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3 + R[(En + Z2
n)1/2En].

Integrating in time we get the second equation.

And finally we will estimate the difference between “P” and “Pb”.

Proposition 2.5.6. Let n ≥ 20. For any θ that satisfies our a priori assumption

(2.20) we have
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i. For a+ |β| ≤ n with a > 0 we have∣∣∣∣∫ s

0

〈∂as/∂βP−P0∂
a
s/∂

βθ, ∂a+1
s /∂βθ〉3dτ

∣∣∣∣ . S
1/2
n,|β|−1,0S

1/2
n,|β|,0 + (En + Z2

n)1/2En∣∣∣∣∫ s

0

〈∂as/∂βP−P0∂
a
s/∂

βθ, ∂as/∂
βθ〉3dτ

∣∣∣∣ . S
1/2
n,|β|−1,0S

1/2
n,|β|,0 + (En + Z2

n)1/2En

ii. For a+ |β|+ b ≤ n with a > 0 we have∣∣∣∣∫ s

0

〈∂asXb
r/∂

βP−Pb∂
a
sX

b
r/∂

βθ, ∂a+1
s Xb

r/∂
βθ〉3+bdτ

∣∣∣∣
. (S

1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)S

1/2
n,|β|+b + (En + Z2

n)1/2En

∣∣∣∣∫ s

0

〈∂asXb
r/∂

βP−Pb∂
a
sX

b
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+bdτ
∣∣∣∣

. (S
1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)S

1/2
n,|β|+b + (En + Z2

n)1/2En

Proof. i. Using Lemma 2.5.1 we have∣∣∣∣∫ s

0

〈∂as/∂βP−PL∂
a
s/∂

βθ, ∂a+1
s /∂βθ〉3dτ

∣∣∣∣
≤
∣∣∣∣∫ s

0

∫
BR

∂k(w̄
4(TR:a,β)ki )∂

a+1
s /∂βθi dxdτ

∣∣∣∣
+

∣∣∣∣∣∣
∫ s

0

∫
BR

∑
|β′|≤|β|−1

〈C∇(w̄4∂as/∂
β′T )〉〈∂a+1

s /∂βθ〉 dxdτ

∣∣∣∣∣∣
≤
∣∣∣∣∫ s

0

∫
BR

w̄4∂s(TR:a,β)ki ∂
a
s∂k/∂

βθi dxdτ
∣∣∣∣

+

∣∣∣∣∣∣
∫ s

0

∫
BR

∑
|β′|≤|β|−1

w̄4〈C∂a+1
s /∂β

′
T 〉〈∂as∇/∂βθ〉 dxdτ

∣∣∣∣∣∣
+ (En + Z2

n)(0)1/2En(0) + (En + Z2
n)(s)1/2En(s)

+ Sn,|β|−1,0(0)1/2Sn,|β|,0(0)1/2 + Sn,|β|−1,0(s)1/2Sn,|β|,0(s)1/2

. S
1/2
n,|β|−1,0S

1/2
n,|β|,0 + (En + Z2

n)1/2En.

Proof of the second formula is similar and easier.
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ii. By Lemma 2.5.2 we need to estimate the following.∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b

|β′|≤|β|−1

+
∑
b′≤b−1
|β′|≤|β|+1

 〈Cω∂asXb′

r /∂
β′T 〉〈∂a+1

s Xb
r/∂

βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

∑
b′≤b

|β′|≤|β|−1

〈CωTT [∂a+1
s Xb′

r /∂
β′∇θ]〉〈∂asXb

r/∂
βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

∑
b′≤b−1
|β′|≤|β|+1

〈CωTT [∂asX
b′

r /∂
β′∇θ]〉〈∂a+1

s Xb
r/∂

βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
+ S

1/2
n,|β|+b−1S

1/2
n,|β|+b + (En + Z2

n)1/2En

. (S
1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)S

1/2
n,|β|+b + (En + Z2

n)1/2En

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b−1
|β′|≤|β|−1

+
∑
b′≤b−2
|β′|≤|β|

 〈C∂asXb′

r /∂
β′∇T 〉〈∂a+1

s Xb
r/∂

βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b−1
|β′|≤|β|−1

+
∑
b′≤b−2
|β′|≤|β|

 〈C∂a+1
s Xb′

r /∂
β′T 〉〈∂as∇Xb

r/∂
βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b−1
|β′|≤|β|−1

+
∑
b′≤b−2
|β′|≤|β|

 〈C∂a+1
s Xb′

r /∂
β′T 〉〈ω∂asXb

r/∂
βθ〉w̄2+bdxdτ

∣∣∣∣∣∣∣∣
+ S

1/2
n,|β|+b−1S

1/2
n,|β|+n + (En + Z2

n)1/2En

. S
1/2
n,|β|+b−1S

1/2
n,|β|+n + (En + Z2

n)1/2En

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b

|β′|≤|β|−1

+
∑
b′≤b−1
|β′|≤|β|

 〈Cw̄Xb′

r /∂
β′∇T 〉〈∂a+1

s Xb
r/∂

βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b

|β′|≤|β|−1

+
∑
b′≤b−1
|β′|≤|β|

 〈C∂a+1
s Xb′

r /∂
β′T 〉〈∂as∇Xb

r/∂
βθ〉w̄4+bdxdτ

∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣
∫ s

0

∫
BR

 ∑
b′≤b

|β′|≤|β|−1

+
∑
b′≤b−1
|β′|≤|β|

 〈C∂a+1
s Xb′

r /∂
β′T 〉〈ω∂asXb

r/∂
βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
+ S

1/2
n,|β|+b−1S

1/2
n,|β|+n + (En + Z2

n)1/2En

. S
1/2
n,|β|+b−1S

1/2
n,|β|+n + (En + Z2

n)1/2En

This proves the first formula. Proof of the second formula is similar and easier.

2.5.2 Estimating the linear and non-linear part of the gravity
term

In this subsection we will estimate the gravity term ∂asX
b
r/∂

βG (2.7) and show that
it can be bounded by En. We will also estimate the non-linear part of ∂as/∂

βG, and
show that it can be bounded by (En + Z2

n)1/2En.

Since the gravity term is a non-local term, we need to estimate convolution-
like operator. However, rather than the convolution kernel |x − z|−1 we actually
need to estimate |ξ(x) − ξ(z)|−1. The next two lemmas tell us how to reduce the
latter to the former, which will allows us to estimate using the Young’s convolution
inequality.

Lemma 2.5.7. Let ξ be as in (2.6). For any x,y ∈ BR we have

|x− z| ≤ ‖A‖L∞(BR)|ξ(x)− ξ(z)|

|∂as/∂βxξ(x)− ∂as/∂βz ξ(z)| ≤ ‖∇∂as/∂βξ‖L∞(BR)|x− z|

Proof. Using the mean value inequality we have

|x− z| = |ξ−1ξ(x)− ξ−1ξ(z)|

≤ ‖∇ξ−1‖L∞(BR)|ξ(x)− ξ(z)| = ‖A‖L∞(BR)|ξ(x)− ξ(z)|

and

|∂ais /∂βix ξ(x)− ∂ais /∂βiz ξ(z)| ≤ ‖∇∂ais /∂βiξ‖L∞(BR)|x− z|.

Lemma 2.5.8. Let ξ and θ be as in (2.6), and θ satisfies our a priori assumption
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(2.20). Let n ≥ 21 and a+ |β| ≤ n with a > 0.

i. When a+ |β| > n/2 we have∣∣∣∣∂as (/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)∣∣∣∣
.

1

|x− z|2
∑

n/2<a′+|γ|≤n
a′>0

|∂a′s /∂γxθ(x)− ∂a′s /∂γzθ(z)|

+
E

1/2
n

|x− z|2
∑

n/2<|γ|≤n

|/∂γxξ(x)− /∂γzξ(z)|

ii. When |β| > n/2 we have∣∣∣∣(/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)∣∣∣∣ . 1

|x− z|2
∑

n/2<|γ|≤n

|/∂γxξ(x)− /∂γzξ(z)|

iii. When a+ |β| ≤ n/2 we have∣∣∣∣∂i,z∂as (/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)∣∣∣∣ . E
1/2
n

|x− z|2

iv. When |β| ≤ n/2 we have∣∣∣∣∂i,z(/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)∣∣∣∣ . 1

|x− z|2

Proof. These follows from Lemma 2.5.7, the embedding theorems A.3.5 and
A.3.6, the a priori bounds En, Zn . 1 (2.20), and the following.

∂as (/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)
=

a+|β|∑
m=1

∑
∑m
i=1(ai+a

′
i)=a∑m

i=1(βi+β
′
i)=β

|ai|+|βi|>0

(−1)m(2m)!

m!2m
1

|ξ(x)− ξ(z)|1+2m

m∏
i=1

(∂ais /∂
βi
x ξ(x)− ∂ais /∂βiz ξ(z)) · (∂a

′
i
s /∂

β′i
x ξ(x)− ∂a

′
i
s /∂

β′i
z ξ(z)).

Since we cannot commute extra weights into the non-local gravity term, the
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radial derivatives which eat up weight need to be estimated differently in a way
that would negate the non-local integral and allow extra weights to be used. Using
methods from [22], the following two lemmas provide the way to do this. More
precisely, the radial derivative can be estimated with curl, divergence and tangential
derivatives. And this is useful because the curl and divergence of the gravity term
consist only of local or non-linear terms, which we can estimate.

Lemma 2.5.9. For any vector field G̃ ∈ H1
loc

|XrG̃|2 . |r∇ · G̃|2 + |r∇× G̃|2 +
3∑

k=1

|/∂kG̃|2.

Proof. Note that

|x · G̃|2 = (xiG̃i)(xjG̃j) = (xjG̃i)(xiG̃j) = (xjG̃i)(xjG̃i) + (xjG̃i)(xiG̃j − xjG̃i)

= |x|2|G̃|2 − 1

2
(xiG̃j − xjG̃i)(xiG̃j − xjG̃i) = r2|G̃|2 − |x× G̃|2

We have by definition

∂i =
xj

r2
/∂ji +

xi

r2
Xr, i = 1, 2, 3.

The divergence and the curl of G̃ can be written as

r2∇ · G̃ = xj/∂jiG̃
i + x ·XrG̃ and r2∇× G̃ = xj/∂j• × G̃ + x×XrG̃

We then obtain

r2|XrG̃|2 = |r2∇ · G̃− xj/∂jiGi|2 + |r2∇× G̃− xj/∂j• × G̃|2

from which we deduce the result.

Lemma 2.5.10. Let G be as in (2.9). We have

∇ ·G = (I −A)∇ ·G + (I −A)∇ · ∇Kw̄3 + 4πw̄3(J−1 − 1)

∇×G = (I −A)∇×G + (I −A)∇×∇Kw̄3.

Proof. By definition G = A∇Φ−∇Kw̄3, so

A∇ ·G = (A∇) · (A∇)Φ−A∇ · ∇Kw̄3

= (A∇) · (A∇)Φ + (I −A)∇ · ∇Kw̄3 − 4πw̄3
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And we have

(A∇) · (A∇)Φ(x) = λ3(A∇) · (A∇)ψ(x) = λ3(∇ · ∇Kρ)(η(x))

= λ34πρ(η(x)) = λ34πf(x) = λ34πw̄3J−1 = 4πw̄3J−1.

(2.110)

So we get the first formula. Proof for the second formula is similar but we use
(A∇)× (A∇) = 0.

Finally we can prove the main results of this subsection.

Proposition 2.5.11. Let n ≥ 21 and suppose θ satisfies our a priori assumption

(2.20). For a+ |β|+ b ≤ n with a > 0 we have

‖∂asXb
r/∂

βG‖2
3+b . En. (2.111)

Proof. By definition

G = Kξ∇ · (Aw̄3)−K∇w̄3 = −
∫
R3

∂k(A
kw̄3)

|ξ(x)− ξ(z)|
dz +

∫
R3

∇w̄3

|x− z|
dz

Consider first when b = 0. Since a > 0, by Lemma 2.3.3 we have

∂as/∂
βG(x)

= ∂as/∂
βKξ∇ · (Aw̄3)(x) = −∂as/∂β

∫
R3

∂k(A
kw̄3)

|ξ(x)− ξ(z)|
dz

= −
∫
R3

∑
a1+a2=a
β1+β2=β

∂a1
s (/∂x + /∂z)

β1

(
1

|ξ(x)− ξ(z)|

)
∂a2
s /∂

β2
z ∂k(A

kw̄3)(z)dz

= −
∫
R3

∑
a1+a2=a
β1+β2=β

a1+|β1|>n/2

∂a1
s (/∂x + /∂z)

β1

(
1

|ξ(x)− ξ(z)|

)
∂a2
s /∂

β2
z ∂k(A

kw̄3)(z)dz

−
∫
R3

∑
a1+a2=a
β1+β2=β

a1+|β1|≤n/2

∂a1
s (/∂x + /∂z)

β1

(
1

|ξ(x)− ξ(z)|

)
∂a2
s /∂

β2
z ∂k(A

kw̄3)(z)dz

= −
∫
R3

∑
a1+a2=a
β1+β2=β

a1+|β1|>n/2

∂a1
s (/∂x + /∂z)

β1

(
1

|ξ(x)− ξ(z)|

)
∂a2
s /∂

β2
z ∂k(A

kw̄3)(z)dz

+

∫
R3

∑
a1+a2=a
β1+β2≤β

a1+|β1|≤n/2

〈∇z〉∂a1
s (/∂x + /∂z)

β1

(
1

|ξ(x)− ξ(z)|

)
(〈∂a2

s /∂
β2
z A〉w̄3)(z)dz
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Now using Lemma 2.5.8, we get

|∂as/∂βG(x)| .
∫
R3

1

|x− z|2
∑

n/2<a′+|γ|≤n
a′>0

|∂a′s /∂γxθ(x)− ∂a′s /∂γzθ(z)|dz

+

∫
R3

E
1/2
n

|x− z|2
∑

n/2<|γ|≤n

|/∂γxξ(x)− /∂γzξ(z)|dz

+

∫
R3

∑
0<a2≤a
β2≤β

1

|x− z|2
(〈∂a2

s /∂
β2
z A〉w̄3)(z)dz

+

∫
R3

∑
β2≤β

E
1/2
n

|x− z|2
(〈/∂β2

z A〉w̄3)(z)dz

Now using Young’s convolution inequality we get

‖∂as/∂βG(x)‖L2(R3) . E1/2
n .

Hence ‖∂as/∂βG‖2
3 . En. From the above proof, with small modification, we can

further see that

‖∂as/∂βG(x)‖L∞(R3) . E1/2
n when a+ |β| ≤ n/2

‖/∂βG(x)‖L∞(R3) . 1 when |β| ≤ n/2.

Now we deal with the case b > 0. Let

Wn,c =
∑

a+|β|+b≤n
a>0
|β|+b≤c

‖∂asXb
r/∂

βG‖2
3+b

Wn,c,d =
∑

a+|β|+b≤n
a>0
|β|+b≤c
b≤d

‖∂asXb
r/∂

βG‖2
3+b

Vn,c =
∑

a+|β|+b≤n
a>0
|β|+b≤c

sup
R3

(
w̄b|∂asXb

r/∂
βG|2

)

Vn,c,d =
∑

a+|β|+b≤n
a>0
|β|+b≤c
b≤d

sup
R3

(
w̄b|∂asXb

r/∂
βG|2

)
.
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For a+ |β|+ b ≤ n/2, using the above lemmas 2.5.9 and 2.5.10 we have

w̄b|∂asXb
r/∂

βG|2

. w̄b|r∂as∇ ·Xb−1
r /∂βG|2 + w̄b|r∂as∇×Xb−1

r /∂βG|2 +
3∑

k=1

w̄b|∂asXb−1
r /∂k/∂

βG|2

. w̄b|r∂asXb−1
r /∂β∇ ·G|2 + w̄b|r∂asXb−1

r /∂β∇×G|2 + Vn,b+|β|−1 + Vn,b+|β|,b−1

. w̄b|r∂asXb−1
r /∂β(I −A)∇ ·G|2 + w̄b|r∂asXb−1

r /∂β(I −A)∇×G|2

+ En + Vn,b+|β|−1 + Vn,b+|β|,b−1

. w̄b|r(I −A)∂asX
b−1
r /∂β∇ ·G|2 + w̄b|r(I −A)∂asX

b−1
r /∂β∇×G|2

+ En + Vn,b+|β|−1 + Vn,b+|β|,b−1

. w̄b(En + Z2
n)|r∂asXb−1

r /∂β∇G|2 + En + Vn,b+|β|−1 + Vn,b+|β|,b−1

So

Vn,b+|β|,b . (En + Z2
n)Vn,b+|β|,b + En + Vn,b+|β|−1 + Vn,b+|β|,b−1

By a priori assumption (2.20), we have En + Z2
n � 1, so

Vn,b+|β|,b . En + Vn,b+|β|−1 + Vn,b+|β|,b−1.

We know Vn′,c,0 . En for all c ≤ n′ ≤ n/2, so by induction we get Vn′,c,d . En

for all d ≤ c ≤ n′ ≤ n/2.

Now for a+ |β|+ b ≤ n, using the above lemmas 2.5.9 and 2.5.10 and results
for V we have

‖∂asXb
r/∂

βG‖2
3+b

. ‖r∂as∇ ·Xb−1
r /∂βG‖2

3+b + ‖r∂as∇×Xb−1
r /∂βG‖2

3+b +
3∑

k=1

‖∂asXb−1
r /∂k/∂

βG‖2
3+b

. ‖r∂asXb−1
r /∂β∇ ·G‖2

3+b + ‖r∂asXb−1
r /∂β∇×G‖2

3+b +Wn,b+|β|−1 +Wn,b+|β|,b−1

. ‖r∂asXb−1
r /∂β(1−A)∇ ·G‖2

3+b + ‖r∂asXb−1
r /∂β(1−A)∇×G‖2

3+b

+ En +Wn,b+|β|−1 +Wn,b+|β|,b−1

. ‖r(1−A)∂asX
b−1
r /∂β∇ ·G‖2

3+b + ‖r(1−A)∂asX
b−1
r /∂β∇×G‖2

3+b

+ En +Wn,b+|β|−1 +Wn,b+|β|,b−1

. (En + Z2
n)‖r∂asXb−1

r /∂β∇G‖2
3+b + En +Wn,b+|β|−1 +Wn,b+|β|,b−1
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So

Wn,b+|β|,b . (En + Z2
n)Wn,b+|β|,b + En +Wn,b+|β|−1 +Wn,b+|β|,b−1

By a priori assumption (2.20), we have En + Z2
n � 1, so

Wn,b+|β|,b . En +Wn,b+|β|−1 +Wn,b+|β|,b−1.

We know Wn,c,0 . En for all c, so by induction we get Wn,c,d . En for all d ≤
c ≤ n.

We are now in the position to estimate the difference between the high
order derivatives of nonlinear gravity term G (2.9) and its linearised part
GL (2.34).

Proposition 2.5.12. Let n ≥ 21 and suppose θ satisfies our a priori assumption

(2.20). For a+ |β| ≤ n with a > 0 we have∣∣∣∣∫ s

0

〈∂as/∂βG−GL∂
a
s/∂

βθ, ∂a+1
s /∂βθ〉3dτ

∣∣∣∣ . (En + Z2
n)1/2En∣∣∣∣∫ s

0

〈∂as/∂βG−GL∂
a
s/∂

βθ, ∂as/∂
βθ〉3dτ

∣∣∣∣ . (En + Z2
n)1/2En

Proof. Since ‖∂a+1
s /∂βθ‖3 + ‖∂as/∂βθ‖3 . E

1/2
n , it suffice to prove that

‖∂as/∂βG−GL∂
a
s/∂

βθ‖3 . (En + Z2
n)1/2E1/2

n .

Recall from Lemma 2.2.2 that

G−GLθ = Kξ(A
i
l(∂kθ

l)(∇θk)∂iw̄3 − w̄3(Ai
mA

l
• − I imI l•)∂i∂lθm)︸ ︷︷ ︸

:=M1

−(Kξ −K)∂i(w̄
3∇θi)︸ ︷︷ ︸

:=M2

+ (Kξ −K−K
(1)
ξ )∇w̄3︸ ︷︷ ︸

:=M3

.

Now ‖∂as/∂βM1‖3 can be estimated in a similar way as the previous Proposition
2.5.11, and ‖∂as/∂βM3‖3 can be estimated in the same way as in Lemma 2.3.5 in
equation (2.79). Now in the same way as in Lemma 2.3.4 and recalling K1 (2.38)
we can show that

|∂as (/∂x + /∂z)
βK1(x, z)| . 1

|x− z|2
∑

0<a′≤a
β′≤β

|∂a′s /∂β
′
θ(x)− ∂a′s /∂β

′
θ(z)|
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+
E

1/2
n

|x− z|2
∑
β′≤β

|/∂β′θ(x)− /∂β′θ(z)|

|(/∂x + /∂z)
βK1(x, z)| . 1

|x− z|2
∑
β′≤β

|/∂β′θ(x)− /∂β′θ(z)|

And when a+ |β| ≤ n/2,

|∂i,z∂as (/∂x + /∂z)
βK1(x, z)| . E

1/2
n

|x− z|2

and when |β| ≤ n/2,

|∂i,z(/∂x + /∂z)
βK1(x, z)| . (En + Z2

n)1/2

|x− z|2
.

Using these bounds (in the same way we use Lemma 2.5.8 in the proof of the
previous Proposition 2.5.11), we can estimate ‖∂as/∂βM2‖3.

2.5.3 Reduction to linear problem

Having estimated the non-linear parts of the equation in the last two subsections,
in this section we will use them to reduce our problem to the linear problem for
which we have the coercivity result that we can apply. We only need to do this for
the case with no radial derivatives, the case with radial derivatives can be obtained
by induction.

Lemma 2.5.13. For any θ that satisfies our a priori assumption (2.20) we have∫ s

0

〈GL∂
a
s/∂

βθ, ∂a+1
s /∂βθ〉3dτ =

1

2
〈GL∂

a
s/∂

βθ, ∂as/∂
βθ〉3

∣∣s
0

〈L∂as/∂βθ, ∂as/∂βθ〉3 = δ‖∂as/∂βθ‖2
3 + 〈P0,L∂

a
s/∂

βθ, ∂as/∂
βθ〉3

+ 〈GL∂
a
s/∂

βθ, ∂as/∂
βθ〉3,

where we recall (2.33), (2.34) and (2.107).

Proof. We have from (2.34)

〈GL∂
a
s/∂

βθ, ∂a+1
s /∂βθ〉3

=

∫ (
(∂as/∂

βθi)(∂a+1
s /∂βθj)w̄3∂i∂jKw̄

3

− (4π)−1(∇K∇ · (w̄3∂as/∂
βθ)) · (∇K∇ · (w̄3∂a+1

s /∂βθ))

)
dx
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=
1

2
∂s

∫ (
(∂as/∂

βθi)(∂as θ
j)w̄3∂i∂jKw̄

3 − (4π)−1|∇K∇ · (w̄3∂as/∂
βθ)|2

)
dx

=
1

2
∂s〈GL∂

a
s/∂

βθ, ∂as/∂
βθ〉3.

The second formula follows from the definition of L, P0,L and GL.

The following theorem reduces the full non-linear problem to the linear
one.

Theorem 2.5.14. Let n ≥ 20 and suppose θ satisfies our a priori assumption

(2.20). For a+ |β| ≤ n with a > 0 we have∣∣∣∣∫ s

0

〈∂as/∂β(δθ + P + G), ∂a+1
s /∂βθ〉3dτ − 1

2
〈L∂as/∂βθ, ∂as/∂βθ〉3

∣∣s
0

∣∣∣∣
. S

1/2
n,|β|−1,0S

1/2
n,|β|,0 + (En + Z2

n)1/2En (2.112)

∣∣∣∣∫ s

0

〈∂as/∂β(δθ + P + G), ∂asθ〉3dτ −
∫ s

0

〈L∂as/∂βθ, ∂as/∂βθ〉3dτ
∣∣∣∣

. S
1/2
n,|β|−1,0S

1/2
n,|β|,0 + (En + Z2

n)1/2En (2.113)

Proof. Using Lemma 2.5.13 and Propositions 2.5.5, 2.5.6, and 2.5.12, we conclude
the proof.

This theorem above reduces the non-linear problem for time and tangential
derivatives to the linear problem. Now applying our linear coercivity results from
before, we get the following coercivity result for our non-linear problem, allowing
us to control ‖∂a+1

s /∂βθ‖2
3+b + ‖∂as/∂βθ‖2

3+b + ‖∂as∇/∂βθ‖2
4+b.

Corollary 2.5.15. Let n ≥ 20. Let θ be a solution of (2.7) in the sense of The-

orem 2.1.11, given on its maximal interval of existence. Assume further that the

energy, momentum, and irrotationality constraints (2.22), (2.23), and (2.24) hold

respectively. Then for a+ |β| ≤ n with a > 0 we have

∥∥∂a+1
s /∂βθ

∥∥2

3
+
∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

. |b|−2

(
CSn,|β|,0(0) +

1

2

∥∥∂a+1
s /∂βθ

∥∥2

3

∣∣∣s
0

+

∫ s

0

〈∂as/∂β(δθ + P + G), ∂a+1
s /∂βθ〉3dτ

)
+ C

(
Sn,|β|−1,0 + |b|−2S

1/2
n,|β|−1,0S

1/2
n,|β|,0

)
+ Cδ(En + Z2

n)1/2En (2.114)
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0

(∥∥∂a+1
s /∂βθ

∥∥2

3
+
∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

)
dτ

. |b|−2

∫ s

0

(∥∥∂a+1
s /∂βθ

∥∥2

3
+ 〈∂as/∂β(δθ + P + G), ∂as/∂

βθ〉3
)

dτ

+ C
(
Sn,|β|−1,0 + |b|−2S

1/2
n,|β|−1,0S

1/2
n,|β|,0

)
+ Cδ(En + Z2

n)1/2En (2.115)

Proof. Combining Theorem 2.5.14 and Propositions 2.4.7 and 2.4.9 we conclude
the proof.

To control the version with radial derivative ‖∂a+1
s Xb

r/∂
βθ‖2

3+b +

‖∂asXb
r/∂

βθ‖2
3+b + ‖∂as∇Xb

r/∂
βθ‖2

4+b, we do not need to apply the linear co-
ercivity result like Theorem 2.5.14 above. This is because we get control
of ‖∂as∇Xb

r/∂
βθ‖2

4+b directly from the pressure term, while the control of
‖∂a+1

s Xb
r/∂

βθ‖2
3+b + ‖∂asXb

r/∂
βθ‖2

3+b and the gravity term we get automatically
from induction from the step with one less space derivative, as follows.

Corollary 2.5.16. Let n ≥ 21 and suppose θ satisfies our a priori assumption

(2.20). For a+ |β|+ b ≤ n with a, b > 0 we have

∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b
+
∥∥∂as∇Xb

r/∂
βθ
∥∥2

4+b

. CSn,|β|+b,b(0) +
1

2

∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
(2.116)

+

∫ s

0

〈∂asXb
r/∂

β(δθ + P + G), ∂a+1
s Xb

r/∂
βθ〉3+bdτ

+ C
(
Sn,|β|+b−1 + (S

1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)E1/2

n + (En + Z2
n)1/2En

)
(2.117)

∫ s

0

(∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b
+
∥∥∂as∇Xb

r/∂
βθ
∥∥2

4+b

)
dτ

.
∫ s

0

(∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+ 〈∂asXb

r/∂
β(δθ + P + G), ∂asX

b
r/∂

βθ〉3+b

)
dτ

+ C
(
Sn,|β|+b−1 + (S

1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)E1/2

n + (En + Z2
n)1/2En

)
(2.118)

Proof. By Propositions 2.5.6 and 2.5.5, we can replace ∂asX
b
r/∂

βP by
Pb,L∂

a
sX

b
r/∂

βθ. Now by Lemma 2.5.4 we have

1

2

[
‖∂as∇Xb

r/∂
βθ‖2

4+b +
1

3
‖∂as∇ · (Xb

r/∂
βθ)‖2

4+b −
1

2
‖[∂as curlXb

r/∂
βθ]‖2

4+b

]s
0
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=

∫ s

0

〈Pb,L∂
a
sX

b
r/∂

βθ, ∂a+1
s Xb

r/∂
βθ〉3+bdτ

Now using Corollary 2.4.4 we get

‖∂as∇Xb
r/∂

βθ‖2
4+b . CSn,|β|+b,b(0) +

∫ s

0

〈Pb,L∂
a
sX

b
r/∂

βθ, ∂a+1
s Xb

r/∂
βθ〉3+bdτ

+ C
(
Sn,|β|+b−1 + (En + Z2

n)En
)
.

Furthermore, note that

∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b

.
∥∥∂a+1

s ∇Xb−1
r /∂βθ

∥∥2

4+(b−1)
+
∥∥∂as∇Xb−1

r /∂βθ
∥∥2

4+(b−1)
. Sn,|β|+b−1.

Now note that, using Proposition 2.5.11,∣∣∣∣∫ s

0

〈δ∂asXb
r/∂

βθ, ∂a+1
s Xb

r/∂
βθ〉3+bdτ

∣∣∣∣ . Sn,|β|+b−1∣∣∣∣∫ s

0

〈∂asXb
r/∂

βG, ∂a+1
s Xb

r/∂
βθ〉3+bdτ

∣∣∣∣ . S
1/2
n,|β|+b−1E

1/2
n

then we are done for the first formula. Proof for the second formula is similar.

2.6 Energy estimates and proof of the main theo-
rem

In this section we finally commute the momentum equation (2.7) and then derive
the high-order energy estimates. Since the bounds near the vacuum boundary are
more delicate as they are sensitive to the weights, we present them in Section 2.6.1
and the estimates away from the vacuum boundary in Section 2.6.2. Then finally
we will prove our main theorem in section 2.6.3 using the energy estimates.

2.6.1 Near boundary energy estimate

In this subsection we will prove the energy estimate for Sn (recall (2.17)).

Theorem 2.6.1 (Near boundary energy estimate). Let n ≥ 21, and assume that

ε > 0 and |δ| are sufficiently small. Let θ be a solution of (2.7) in the sense of

Theorem 2.1.11, given on its maximal interval of existence. Assume further that the

energy, momentum, and irrotationality constraints (2.22), (2.23), and (2.24) hold
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respectively. Then there exist m > 0 such that

Sn − CεEn .ε |b|−mSn(0) + Cδ(En + Z2
n)1/2En (2.119)

whenever our a priori assumption (2.20) is satisfied. Here we recall Defini-

tion (2.19) of the total norm En.

Proof. Let a+ |β|+ b ≤ n. Apply ∂asX
b
r/∂

β to the momentum equation (2.7) to get

∂a+2
s Xb

r/∂
βθ − b

2
∂a+1
s Xb

r/∂
βθ + ∂asX

b
r/∂

β(δθ + P + G) = 0

Taking the 〈·, ·〉3+b-inner with ∂a+1
s Xb

r/∂
βθ we get

0 =
1

2
∂s‖∂a+1

s Xb
r/∂

βθ‖2
3+b + 〈∂asXb

r/∂
β(δθ + P + G), ∂a+1

s Xb
r/∂

βθ〉3+b

− b

2
‖∂a+1

s Xb
r/∂

βθ‖2
3+b.

On the other hand, taking inner product of the equation with ∂asX
b
r/∂

βθ we get

0 = ∂s〈∂a+1
s Xb

r/∂
βθ, ∂asX

b
r/∂

βθ〉3+b − ‖∂a+1
s Xb

r/∂
βθ‖2

3+b −
b

4
∂3+b‖∂asXb

r/∂
βθ‖2

3+b

+ 〈∂asXb
r/∂

β(δθ + P + G), ∂asX
b
r/∂

βθ〉3+b

where we used the identiity 〈∂a+2
s Xb

r/∂
βθ, ∂asX

b
r/∂

βθ〉 =

∂s〈∂a+1
s Xb

r/∂
βθ, ∂asX

b
r/∂

βθ〉 − ‖∂a+1
s Xb

r/∂
βθ‖2. Multiply the latter equation

by c, add to it two times the equation before, and then integrate w.r.t. s to obtain

0 =

(
1

2
‖∂a+1

s Xb
r/∂

βθ‖2
3+b + c〈∂a+1

s Xb
r/∂

βθ, ∂asX
b
r/∂

βθ〉3+b −
cb

4
‖∂asXb

r/∂
βθ‖2

3+b

)∣∣∣∣s
0

+

∫ s

0

(
〈∂asXb

r/∂
β(δθ+P+G), ∂a+1

s Xb
r/∂

βθ〉3+b+c〈∂asXb
r/∂

β(δθ+P+G), ∂asX
b
r/∂

βθ〉3+b

−
(
c+

b

2

)
‖∂a+1

s Xb
r/∂

βθ‖2
3+b

)
dτ.

i. When b = 0, using Corollary 2.5.15 we get

∥∥∂a+1
s /∂βθ

∥∥2

3
+
∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

+ c

∫ s

0

(∥∥∂a+1
s /∂βθ

∥∥2

3
+
∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

)
dτ

+ |b|−2

(
c〈∂a+1

s /∂βθ, ∂as/∂
βθ〉3 −

cb

4
‖∂as/∂βθ‖2

3

)∣∣∣∣s
0
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− |b|−2

∫ s

0

(
2c+

b

2

)
‖∂a+1

s /∂βθ‖2
3dτ

. |b|−2Sn,|β|,0(0) + Sn,|β|−1,0 + |b|−2S
1/2
n,|β|−1,0S

1/2
n,|β|,0 + Cδ(En + Z2

n)1/2En.

Choosing c small enough (e.g. c = |b|2/100 when b� 1), we get

∥∥∂a+1
s /∂βθ

∥∥2

3
+
∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

+

∫ s

0

(∥∥∂a+1
s /∂βθ

∥∥2

3
+
∥∥∂as/∂βθ∥∥2

3
+
∥∥∂as∇/∂βθ∥∥2

4

)
dτ

. |b|−2(|b|−2Sn,|β|,0(0) + Sn,|β|−1,0 + |b|−2S
1/2
n,|β|−1,0S

1/2
n,|β|,0

+ Cδ(En + Z2
n)1/2En),

and so (noting that the constant implicit in the notation . do not depend on s)

Sn,|β|,0 . |b|−4Sn,|β|,0(0) + |b|−2Sn,|β|−1,0 + |b|−4S
1/2
n,|β|−1,0S

1/2
n,|β|,0

+ Cδ(En + Z2
n)1/2En.

In particular when |β| = 0 we have Sn,0,0 . |b|−4Sn,0,0(0) + Cδ(En +

Z2
n)1/2En. And so using Young’s inequality and by induction on |β| we have

Sn,|β|,0 . |b|−4−8|β|Sn,|β|,0(0) + Cδ(En + Z2
n)1/2En (2.120)

for all |β| ≤ n.

ii. When b > 0, using Corollary 2.5.16 we get

∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b
+
∥∥∂as∇Xb

r/∂
βθ
∥∥2

4+b

+ c

∫ s

0

(∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b
+
∥∥∂as∇Xb

r/∂
βθ
∥∥2

4+b

)
dτ

+

(
c〈∂a+1

s Xb
r/∂

βθ, ∂asX
b
r/∂

βθ〉3 −
cb

4
‖∂asXb

r/∂
βθ‖2

3

)∣∣∣∣s
0

−
∫ s

0

(
2c+

b

2

)
‖∂a+1

s Xb
r/∂

βθ‖2
3dτ

. Sn,|β|+b,b(0) + Sn,|β|+b−1 + (S
1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)E1/2

n

+ Cδ(En + Z2
n)1/2En

Choosing c small enough we get

∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b
+
∥∥∂as∇Xb

r/∂
βθ
∥∥2

4+b
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+

∫ s

0

(∥∥∂a+1
s Xb

r/∂
βθ
∥∥2

3+b
+
∥∥∂asXb

r/∂
βθ
∥∥2

3+b
+
∥∥∂as∇Xb

r/∂
βθ
∥∥2

4+b

)
dτ

. |b|−1(Sn,|β|+b,b(0) + Sn,|β|+b−1 + (S
1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)E1/2

n

+ Cδ(En + Z2
n)1/2En)

and so

Sn,|β|+b,b . |b|−1(Sn,|β|+b,b(0) + Sn,|β|+b−1 + Sn,|β|+b,b−1

+ (S
1/2
n,|β|+b−1 + S

1/2
n,|β|+b,b−1)E1/2

n + Cδ(En + Z2
n)1/2En).

or equivalently

Sn,c,d . |b|−1(Sn,c,d(0) + Sn,c−1 + Sn,c,d−1

+ (S
1/2
n,c−1 + S

1/2
n,c,d−1)E1/2

n + Cδ(En + Z2
n)1/2En).

We already know Sn,c,0 . |b|−4−8cSn,c,0(0) + Cδ(En + Z2
n)1/2En. And so

using Young’s inequality and by induction on c and d we have

Sn,c,d − CεEn .ε |b|−mSn,c,d(0) + Cδ(En + Z2
n)1/2En.

for all d ≤ c ≤ n. This means we have Sn−CεEn .ε |b|−mSn(0) +Cδ(En +

Z2
n)1/2En.

2.6.2 Near origin energy estimate

In this subsection we will prove the energy estimate for Qn, see (2.18).

Lemma 2.6.2. Let k ≥ 0. For any θ we have

‖∇θ‖2
k+2 . ‖∇ · θ‖2

k+2 + ‖∇ × θ‖2
k+2 + ‖θ‖2

k

Proof. We have∫
|∇θ|2w̄k+2dx

=

∫
(∂jθ

i)(∂jθ
i)w̄k+2dx =

∫
(∂jθ

i)(∂iθ
j + [curlθ]ij)w̄

k+2dx

=

∫
(∂jθ

i)(∂iθ
j)w̄k+2dx +

∫
(∂jθ

i)[curlθ]ijw̄
k+2dx
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= −
∫

(∂i∂jθ
i)(θj)w̄k+2dx +

∫
(∂jθ

i)[curlθ]ijw̄
k+2dx

− (k + 2)

∫
(∂jθ

i)(θj)w̄k+1∂iw̄dx

=

∫
(∂iθ

i)(∂jθ
j)w̄k+2dx +

∫
(∂jθ

i)[curlθ]ijw̄
k+2dx

+ (k + 2)

(∫
(∂iθ

i)(θj)w̄k+1∂jw̄dx−
∫

(∂jθ
i)(θj)w̄k+1∂iw̄dx

)
. δ′

∫
|∇θ|2w̄k+2dx +

1

δ′

(∫
(|∇ · θ|2 + |∇ × θ|2)w̄k+2dx +

∫
|θ|2w̄kdx

)
.

Picking δ′ small enough, we are done.

Using this lemma, the following lemma shows that in fact we only need to con-
trol the divergence ∂as∇c∇ · θ in order to control the near origin energy Qn.

Lemma 2.6.3. Let n ≥ 20 and c ≤ n. Let θ be a solution of (2.7) in the sense

of Theorem 2.1.11, given on its maximal interval of existence. Assume further that

the irrotationality constraint (2.24). Then

Qn,c . ‖∂as∇c∇ · θ‖2
3+2(c+1) +Qn,c−1 + (En + Z2

n)En.

Proof. Let a+ c ≤ n with a > 0. Using the previous Lemma 2.6.2, we have

‖∂as∇c+1θ‖2
3+2(c+1) . ‖∂as∇c∇ · θ‖2

3+2(c+1) + ‖∂as∇c∇× θ‖2
3+2(c+1)

+ ‖∂as∇cθ‖2
3+2c

≤ ‖∂as∇c∇ · θ‖2
3+2(c+1) + ‖∂as∇c∇× θ‖2

3+2(c+1) +Qn,c−1.

Recalling (2.88) we have ∂as∇c∇× θ = −∂a−1
s ∇c((∂s∇θk)×∇θk) and therefore

‖∂as∇c∇× θ‖2
3+2(c+1) . (En + Z2

n)En.

Lemma 2.6.4. For any tensor field T smooth enough we have

∂γ
(
w̄−3∂k(w̄

4T k)
)

= w̄∂γ∂kT
k +

∑
|γ′|≤|γ|

w̄|γ|−|γ
′|〈C∂γ′T k〉.

where we recall notations introduced in Definition 1.4.2.

Proof. The statement follows easily by induction.
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Theorem 2.6.5 (Near origin energy estimate). Let n ≥ 21 and δ small. Let θ

be a solution of (2.7) in the sense of Theorem 2.1.11, given on its maximal inter-

val of existence. Assume further that the energy, momentum, and irrotationality

constraints (2.22), (2.23), and (2.24) hold respectively. Then we have

Qn . |b|−4En(0) + Cδ(En + Z2
n)1/2En (2.121)

whenever our a priori assumption (2.20) is satisfied.

Proof. Recall the momentum equation (2.7) is

0 = ∂2
sθ −

1

2
b∂sθ + δθ + w̄−3∂k(w̄

4(AkJ−1/3 − Ik︸ ︷︷ ︸
=T

)) + A∇Φ−∇Kw̄3.

where we recall T in (2.98). Also recall from (2.110) (A∇) · (A∇)Φ(x) =

4πw̄3J−1. So taking the divergence of the gravity term makes it easy to estimate.
From Lemma 2.6.3 we also know that to control Qn it suffices to estimate the di-
vergence. Let a + |γ| + 1 ≤ n. Evaluating the dot product of (2.7) with ∂as∂

γA∇
we get

0 = ∂as∂
γA∇ · ∂2

sθ −
1

2
b∂as∂

γA∇ · ∂sθ + δ∂as∂
γA∇ · θ

+ ∂as∂
γA∇ ·

(
w̄−3∂k(w̄

4T k)
)

+ 4π∂as∂
γ(w̄3J−1)− (∂as∂

γA∇) · ∇Kw̄3

= ∂as∂
γA∇ · ∂2

sθ −
1

2
b∂as∂

γA∇ · ∂sθ + δ∂as∂
γA∇ · θ

+ ∂as∂
γA∇ ·

(
w̄−3∂k(w̄

4T k)
)

+ 4π∂as∂
γ(w̄3(J−1 − 1))

− (∂as∂
γ(A− I)∇) · ∇Kw̄3

From here we will the do two things (i) and (ii) as follows

(i) Times the equation with w̄6+2|γ|∂a+1
s ∂γA∇ · θ and integrate in time and space

we get

0 =

∫ s

0

(〈
∂as∂

γA∇ · ∂2
sθ −

1

2
b∂as∂

γA∇ · ∂sθ + δ∂as∂
γA∇ · θ,

∂a+1
s ∂γA∇ · θ

〉
6+2|γ|

+
〈
∂as∂

γA∇ ·
(
w̄−3∂k(w̄

4T k)
)
, ∂a+1

s ∂γA∇ · θ
〉

6+2|γ|

+
〈
4π∂as∂

γ(w̄3(J−1 − 1))− (∂as∂
γ(A− I)∇) · ∇Kw̄3,

∂a+1
s ∂γA∇ · θ

〉
6+2|γ|

)
dτ
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Now commuting A with space and time derivatives, we get a non-linear re-
mainder R[(En+Z2

n)1/2En] (recall notation R[?] defined in Definition 1.4.2),

0 =

∫ s

0

(〈
∂sA∇ · ∂a+1

s ∂γθ − 1

2
bA∇ · ∂a+1

s ∂γθ,A∇∂a+1
s ∂γ · θ

〉
6+2|γ|

+ 〈δA∇ · ∂as∂γθ, ∂sA∇ · ∂as∂γθ〉6+2|γ|

+
〈
A∇ · ∂as∂γ

(
w̄−3∂k(w̄

4T k)
)
, ∂sA∇ · ∂as∂γθ

〉
6+2|γ|

+
〈
4π(J−1 − 1)∂as∂

γ(w̄3)− (A− I)∇ · ∇K∂as∂γw̄3,

∂a+1
s ∂γA∇ · θ

〉
6+2|γ|

)
dτ

+ R[(En + Z2
n)1/2En]

Now terms in the first two line we factorised, and terms in the last line in the
integral we can estimate by Q

1/2
n,|γ|Q

1/2
n,|γ|+1 and Q

1/2
n−1Q

1/2
n,|γ|+1,

0 =

∫ s

0

(
1

2
∂s
∥∥A∇ · ∂a+1

s ∂γθ
∥∥2

6+2|γ| −
1

2
b
∥∥A∇ · ∂a+1

s ∂γθ
∥∥2

6+2|γ|

+
1

2
δ∂s ‖A∇ · ∂as∂γθ‖

2
6+2|γ|

+
〈
A∇ ·

(
w̄∂as∂

γ∂kT
k
)
, ∂sA∇ · ∂as∂γθ

〉
6+2|γ|

)
dτ

+ R[(En + Z2
n)1/2En] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now terms that are full time derivatives can be evaluated, and ∂as∂
γ∂kT

k can
be converted to TT [∂as∂

γ∂k∇θ]k (recall Lemma 2.5.3) leaving a reminder that
we can estimate with (En + Z2

n)1/2En.

0 =
1

2

(∥∥A∇ · ∂a+1
s ∂γθ

∥∥2

6+2|γ| + δ ‖A∇ · ∂as∂γθ‖
2
6+2|γ|

)∣∣∣s
0

+

∫ s

0

(
− 1

2
b
∥∥A∇ · ∂a+1

s ∂γθ
∥∥2

6+2|γ|

+
〈
A∇ ·

(
w̄TT [∂as∂

γ∂k∇θ]k
)
, ∂sA∇ · ∂as∂γθ

〉
6+2|γ|

)
dτ

+ R[(En + Z2
n)1/2En] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now all the term before the term with TT can be bounded by Q
1/2
n,|γ|Q

1/2
n,|γ|+1 and

Q
1/2
n−1Q

1/2
n,|γ|+1, and we integrate by parts on the term with TT ,

0 = −
∫ s

0

〈
w̄TT [∂as∂

γ∂k∇θ]k, ∂sA∇(A∇ · ∂as∂γθ)
〉

6+2|γ| dτ
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+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now we expend the terms by definition and simplify,

0

=

∫ s

0

〈
J−1/3

(
Ak
mA

l +
1

3
AkAl

m

)
∂as∂

γ∂k∂lθ
m, ∂s(A

jA`
i∂j∂`∂

a
s∂

γθi)

〉
7+2|γ|

dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=

∫ s

0

〈
J−1/3

(
Ak
mA

l
o +

1

3
Ak
oA

l
m

)
∂k∂l∂

a
s∂

γθm, ∂s(A
j
oA

`
i∂j∂`∂

a
s∂

γθi)

〉
7+2|γ|

dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=

∫ s

0

4

3

〈
J−1/3Ak

oA
l
m∂k∂l∂

a
s∂

γθm, ∂s(A
j
oA

`
i∂j∂`∂

a
s∂

γθi)
〉

7+2|γ| dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now the term in the integral can be factorised into a time derivative,

0 =
2

3

∫ s

0

∫
BR

J−1/3∂s
∥∥AkAl

m∂k∂l∂
a
s∂

γθm
∥∥2
w̄7+2|γ|dxdτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now we can evaluate the time integral using integration by parts, leaving a
remainder term that can be estimated with (En + Z2

n)1/2En when the time
derivative falls on J−1/3,

0 =
2

3

∫
BR

J−1/3
∥∥AkAl

m∂k∂l∂
a
s∂

γθm
∥∥2
w̄7+2|γ|dx

∣∣∣∣s
0

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=
2

3

∫
BR

‖∇∇ · ∂as∂γθ‖
2 w̄7+2|γ|dx

∣∣∣∣s
0

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

It follows that

‖∇∇ · ∂as∂γθ‖
2
3+2(2+|γ|)

. Qn,|γ|+1(0) + Qn,|γ| + Q
1/2
n,|γ|Q

1/2
n,|γ|+1 + Q

1/2
n−1Q

1/2
n,|γ|+1 + (En + Z2

n)1/2En.
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Using Lemma 2.6.3 we get

Qn,|γ|+1 . Qn,|γ|+1(0)+Qn,|γ|+Q
1/2
n,|γ|Q

1/2
n,|γ|+1+Q

1/2
n−1Q

1/2
n,|γ|+1+(En+Z2

n)1/2En

(ii) Times the equation with w̄6+2|γ|∂as∂
γA∇ · θ and integrate in time and space

we get

0 =

∫ s

0

(〈
∂as∂

γA∇ · ∂2
sθ −

1

2
b∂as∂

γA∇ · ∂sθ + δ∂as∂
γA∇ · θ,

∂as∂
γA∇ · θ

〉
6+2|γ|

+
〈
∂as∂

γA∇ ·
(
w̄−3∂k(w̄

4T k)
)
, ∂as∂

γA∇ · θ
〉

6+2|γ|

+
〈
4π∂as∂

γ(w̄3(J−1 − 1))− (∂as∂
γ(A− I)∇) · ∇Kw̄3,

∂as∂
γA∇ · θ

〉
6+2|γ|

)
dτ

Now commuting A with space and time derivatives, we get a non-linear re-
mainder R[(En + Z2

n)1/2En],

0 =

∫ s

0

(〈
∂sA∇ · ∂a+1

s ∂γθ − 1

2
bA∇ · ∂a+1

s ∂γθ,A∇∂as∂γ · θ
〉

6+2|γ|

+ 〈δA∇ · ∂as∂γθ,A∇ · ∂as∂γθ〉6+2|γ|

+
〈
A∇ · ∂as∂γ

(
w̄−3∂k(w̄

4T k)
)
,A∇ · ∂as∂γθ

〉
6+2|γ|

+
〈
4π(J−1 − 1)∂as∂

γ(w̄3)− (A− I)∇ · ∇K∂as∂γw̄3,

∂as∂
γA∇ · θ

〉
6+2|γ|

)
dτ

+ R[(En + Z2
n)1/2En]

Now all the terms, apart from the top order term involving TT from the pres-
sure, can be bounded by (En+Z2

n)1/2En]+R[Qn,|γ|+Qn,|γ|+Q
1/2
n,|γ|Q

1/2
n,|γ|+1 +

Q
1/2
n−1Q

1/2
n,|γ|+1,

0 = −
∫ s

0

(〈
A∇ · ∂a+1

s ∂γθ, ∂sA∇∂as∂γ · θ
〉

6+2|γ|

+
〈
A∇ ·

(
w̄∂as∂

γ∂kT
k
)
,A∇ · ∂as∂γθ

〉
6+2|γ|

)
dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]
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=

∫ s

0

〈
A∇ ·

(
w̄TT [∂as∂

γ∂k∇θ]k
)
,A∇ · ∂as∂γθ

〉
6+2|γ| dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now we integrate by parts,

0 = −
∫ s

0

〈
w̄TT [∂as∂

γ∂k∇θ]k,A∇(A∇ · ∂as∂γθ)
〉

6+2|γ| dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

Now we expend the terms by defintion and simplify,

0 =

∫ s

0

〈
J−1/3

(
Ak
mA

l +
1

3
AkAl

m

)
∂as∂

γ∂k∂lθ
m,AjA`

i∂j∂`∂
a
s∂

γθi
〉

7+2|γ|
dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=

∫ s

0

〈
J−1/3

(
Ak
mA

l
o +

1

3
Ak
oA

l
m

)
∂k∂l∂

a
s∂

γθm,Aj
oA

`
i∂j∂`∂

a
s∂

γθi
〉

7+2|γ|
dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=

∫ s

0

4

3

〈
J−1/3Ak

oA
l
m∂k∂l∂

a
s∂

γθm,Aj
oA

`
i∂j∂`∂

a
s∂

γθi
〉

7+2|γ| dτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=
4

3

∫ s

0

∫
BR

J−1/3
∥∥AkAl

m∂k∂l∂
a
s∂

γθm
∥∥2
w̄7+2|γ|dxdτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

=
4

3

∫ s

0

∫
BR

‖∇∇ · ∂as∂γθ‖
2 w̄7+2|γ|dxdτ

+ R[(En + Z2
n)1/2En] + R[Qn,|γ|] + R[Q

1/2
n,|γ|Q

1/2
n,|γ|+1] + R[Q

1/2
n−1Q

1/2
n,|γ|+1]

It follows that∫ s

0

‖∇∇ · ∂as∂γθ‖
2
3+2(2+|γ|) dτ

. Qn,|γ|+1(0) + Qn,|γ| + Q
1/2
n,|γ|Q

1/2
n,|γ|+1 + Q

1/2
n−1Q

1/2
n,|γ|+1 + (En + Z2

n)1/2En.

Using Lemma 2.6.3 we get∫ s

0

Qn,|γ|+1dτ

. Qn,|γ|+1(0) + Qn,|γ| + Q
1/2
n,|γ|Q

1/2
n,|γ|+1 + Q

1/2
n−1Q

1/2
n,|γ|+1 + (En + Z2

n)1/2En
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Combining the results of (i) and (ii) and noting that . does not depend on s, we
get that

Qn,|γ|+1 . Qn,|γ|+1(0) + Qn,|γ| + Q
1/2
n,|γ|Q

1/2
n,|γ|+1 + Q

1/2
n−1Q

1/2
n,|γ|+1 + (En + Z2

n)1/2En

. En(0) + Qn,|γ| + Q
1/2
n,|γ|Q

1/2
n,|γ|+1 + Q

1/2
n−1Q

1/2
n,|γ|+1 + (En + Z2

n)1/2En

We have by definition and equation (2.120) in the previous theorem

Qn,0 . Sn,0 . |b|−4Sn(0) + Cδ(En + Z2
n)1/2En

≤ |b|−4En(0) + Cδ(En + Z2
n)1/2En

And so using Young’s inequality and by induction we have

Qn,d . |b|−4En(0) + Cδ(En + Z2
n)1/2En

for all d ≤ n. Therefore we have Qn . |b|−4En(0) + Cδ(En + Z2
n)1/2En.

2.6.3 Bootstrapping scheme and final theorem

In this subsection we will prove our main theorem that the energy En decays ex-
ponentially while Zn remains bounded. To do so we will use the bootstrapping
scheme in the following lemma and proposition.

Lemma 2.6.6. Suppose E : [0, T ]→ [0,∞] is continuous and

E(t) ≤ C1E(0) + C2E(t)3/2 whenever sup
τ∈[0,t]

E(τ) ≤ C3.

whereC1 ≥ 1. ThenE ≤ 2C1E(0) wheneverE(0) ≤ min{(25C1C
2
2)−1, C3/2C1}.

Proof. We will prove this by a standard bootstrap argument. Let

I =

{
t ∈ [0, T ] : sup

τ∈[0,t]

E(τ) ≤ min{2C1E(0), C3}

}
.

Then I is non-empty (since 0 ∈ I) and closed (sinceE is continuous). If I = [0, T ],
then we are done. Otherwise, let t0 = inf{t ∈ [0, T ] : t 6∈ I}. We must have t0 ∈ I
since 0 ∈ I and I is closed. Then we have

E(t0) ≤ C1E(0) + C2(2C1E(0))3/2 ≤ 3

2
C1E(0) ≤ 3

4
C3.

108



2.6. Energy estimates and proof of the main theorem

So by continuity of E, a neighbourhood of t0 must lie in I . But this contradicts the
definition of t0. So we must have I = [0, T ].

Proposition 2.6.7. Suppose E,Z : [0,∞) → [0,∞] are continuous and for all

t ≥ t0 ≥ 0 we have

Et0(t) ≤ C0Et0(t0) + C1Z(t0)Et0(t) + C2(1 + (t− t0)k)Et0(t)3/2

Z(t) ≤ Z(t0) + C3(t− t0)lE
1/2
t0 (t)

whenever supτ∈[t0,t](E(τ) + Z(τ)) ≤ C4, where k, l ≥ 0 and

Et0(t) = sup
τ∈[t0,t]

E(τ) +

∫ t

t0

E(τ)dτ.

Then there exist ε > 0 such that E0 ≤ 6C0E0(0) whenever E0(0), Z(0) ≤ ε.

Moreover, E(t) ≤ 16(4−t/32C0)C0E(0).

Proof. Let T = 32C0 and C1Z(0) < min{1/4, C1C4/4} ≤ 1/2. Then by the
above Lemma 2.6.6, for small enough ε, we have E0 ≤ 4C0E0(0) on [0, T ] when-
ever E0(0) ≤ ε. On [T/2, T ], there must exist a point T1 such thatE(T1) ≤ 1

4
E0(0),

otherwise E0(T ) > 4C0E0(0).

By having a small enough ε, we can assume 2C
1/2
0 C1C3T

lE0(0)1/2 <

min{1/8, C1C4/8}. Now

C1Z(T1) ≤ C1Z(0) + 2C
1/2
0 C1C3T

lE0(0)1/2

≤ min

{
1

4
,
C1C4

4

}
+ min

{
1

8
,
C1C4

8

}
≤ min

{
1

2
,
C1C4

2

}
.

Then by the above Lemma 2.6.6, we get that ET1 ≤ 4C0ET1(T1) = 4C0E(T1) ≤
C0E0(0) on [T1, T1 + T ]. On [T1 + T/2, T1 + T ], there must exist a point T2 such
that E(T2) ≤ 1

4
ET1(T1) = 1

4
E(T1), otherwise ET1(T ) > 4C0ET1(T1).

Repeating inductively, we can get Tn ∈ [Tn−1 + T/2, Tn−1 + T ] such that

C1Z(Tn) ≤ C1Z(Tn−1) + C1C3T
lETn−1(Tn)1/2

≤

(
1

4

n−1∑
m=0

1

2m
+

1

4

1

2n

)
min{1, C1C4} ≤

1

2
min{1, C1C4}

ETn ≤ 41−nC0E0(0) on [Tn, Tn + T ].
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Now

E0 ≤ E0(∞) ≤ E0(T1) + ET1(T2) + ET2(T3) + · · · ≤ 6C0E0(0).

Finally, before proving the main theorem, we provide a simple lemma based
on the fundamental theorem of calculus, which relates the Zn-norm (2.15) to the
total energy norm En (2.19).

Lemma 2.6.8. We have

Z1(s) ≤ Z1(0) + Cs1/2S
1/2
1 (s)

Zn(s) ≤ Zn(0) + Cs1/2E1/2
n (s)

Proof. We have h(s)− h(0) =
∫ s

0
∂sh(τ)dτ and therefore

(h(s)− h(0))2 =

(∫ s

0

∂sh(τ)dτ
)2

≤ s

∫ s

0

(∂sh(τ))2dτ.

This easily gives ‖h(s) − h(0)‖2
k ≤ s

∫ s
0
‖∂sh(τ)‖2

kdτ and thus ‖h(s)‖k ≤
‖h(0)‖k + s1/2

(∫ s
0
‖∂sh(τ)‖2

kdτ
)1/2

, which concludes the proof.

Theorem 2.6.9. Let n ≥ 21 and δ small. Let (θ, ∂sθ) be a solution of (2.7) in

the sense of Theorem 2.1.11 and that satisfies (2.22), (2.23) and (2.24) (i.e. the

perturbation does not change the momentum or energy of the star, and correspond

to an irrotational flow). Then there is some m > 0 such that we have

En(s) . |b|−mEn(0) + Cδ
(
Zn(0)En(s) + (1 + s1/2)En(s)3/2

)
(2.122)

whenever our a priori assumption (2.20) is satisfied. Moreover, there exists ε0 > 0

such that if En(0)+Zn(0)2 ≤ ε0, then we have En . En(0) with En(s) . e−C|b|
ms

(decaying exponentially on [0,∞)) and Zn bounded on [0,∞).

Proof. By the energy estimates in Theorem 2.6.1 and 2.6.5 (for Sn and Qn) in the
last two subsections and Lemma 2.6.8 we have (choosing ε small enough)

En . Sn + Qn − CεEn .ε |b|−mEn(0) + Cδ(En + Z2
n)1/2En

. |b|−mEn(0) + Cδ
(
Zn(0)En(s) + (1 + s1/2)En(s)3/2

)
Using Proposition 2.6.7 above, we get En . En(0) with En(s) . e−C|b|

ms and Zn
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bounded on [0,∞).
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Chapter 3

Nonradial stability of linearly
expanding Goldreich-Weber stars

3.1 Introduction

3.1.1 Equation in linearly-expanding coordinates

Let (ρ̄, ū) be a given linearly expanding GW-flow from Definition 1.2.4 with the
corresponding radius Rλ(t) and the associated enthalpy w̄ : [0, R]→ R+. In order
to study the stability of the flow, like in the last chapter renormalise the equation
by introducing a new unknown

ξ(t,x) =
η(t,x)

λ(t)
. (3.1)

We suitably renormalise the inverse of the Jacobian gradient and the Jacobian de-
terminant, so that

A := (∇ξ)−1 = λA

J := det(∇ξ) = λ−3J

a := JA = λ−2a

Φ := −
∫

f0(z)J0(z)

|ξ(x)− ξ(z)|
dz = λψ

We next formulate the problem in “linear” variables. To this end we introduce the
linear time coordinate s adapted to the expanding profile via

ds

dt
= λ(t)−1.
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Chapter 3. Nonradial stability of linearly expanding Goldreich-Weber stars

In this new coordinate, λ(s) is an increasing function such that

λ(s) ∼ es
√
λ2

1+2δ as s→∞. (3.2)

We have the following change of coordinate formula ∂t = λ−1∂s. The condition
λ̈λ2 = δ (1.18) becomes

δ = λ∂s(λ
−1∂sλ) = ∂2

sλ−
(∂sλ)2

λ
(3.3)

Then the Euler-Poisson equations (1.10) becomes

0 = ∂tv + (f0J0)−1∂k(A
k(f0J0)4/3J−1/3) + A∇ψ

= λ−1∂s(λ
−1∂s(λξ)) + λ−2(f0J0)−1∂k(A

k(f0J0)4/3J−1/3) + λ−2A∇Φ

Times the equation by λ2 we get

0 = λ∂s(λ
−1∂s(λξ)) + (f0J0)−1∂k(A

k(f0J0)4/3J−1/3) + A∇Φ

= λ

(
∂2
sξ +

∂sλ

λ
∂sξ +

(
∂2
sλ

λ
− (∂sλ)2

λ2

)
ξ

)
+ (f0J0)−1∂k(A

k(f0J0)4/3J−1/3)

+ A∇Φ

=
(
λ∂2

sξ + (∂sλ)∂sξ + δξ
)

+ (f0J0)−1∂k(A
k(f0J0)4/3J−1/3) + A∇Φ

So the Euler-Poisson equations in terms of ξ (3.1) is:

λ∂2
sξ + λ′∂sξ + δξ +

1

f0J0

∂k(A
k(f0J0)4/3J−1/3) + A∇Φ = 0, (3.4)

where λ′ := ∂sλ.

The GW-star is a particular s-independent solution of (3.4) of the form ξ(x) ≡
x and f0 = w̄3. Before formulating the stability problem, we must first make
the use of the labelling gauge freedom and fix the choice of the initial enthalpy
(f0J0)1/3 for the general perturbation to be exactly identical to the background
enthalpy w̄, i.e. we set

(f0J0)1/3 = w̄ on BR(0). (3.5)

Equation (3.5) can be re-written in the form ρ0 ◦ η0 det[∇η0] = w̄3 on the initial
domainBR(0). By a result of Dacorogna-Moser [10] and similarly to [20, 21] there
exists a choice of an initial bijective map η0 : BR(0) → Ω(0) so that (3.5) holds
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true. The gauge fixing condition (3.5) is necessary as it constraints the freedom to
arbitrary relabel the particles at the initial time.

We now introduce the perturbation

θ(x) := ξ(x)− x, (3.6)

which measures the deviation of the nonlinear flow to the background Goldreich-
Weber profile.

Lemma 3.1.1 (Euler-Poisson in linearly-expanding coordinate). The perturbation

θ defined in (3.6) formally solves

λ∂2
sθ + λ′∂sθ + δθ + P + G = 0, (3.7)

where the nonlinear pressure operator P and the nonlinear gravity operator G

read

P := w̄−3∂k(w̄
4(Ak

•J
−1/3 − Ik• )), (3.8)

G := A∇Φ−K∇w̄3 = Kξ∇ · (A•w̄3)−K∇w̄3 (3.9)

= Kξ((A− I)∇w̄3 − w̄3Ai
mA

l
•∂i∂lθ

m) + (Kξ −K)∇w̄3, (3.10)

and

(Kξg)(x) := −
∫

g(z)

|ξ(x)− ξ(z)|
dz (3.11)

Proof. Recall that the GW-enthalpy satisfies

0 = δx + 4∇w̄ +∇Kw̄3 (3.12)

Using the gauge condition (3.5), the momentum equation (3.4) becomes

w̄3
(
λ∂2

sθ + λ′∂sθ + δθ
)

+ ∂k(w̄
4(AkJ−1/3 − Ik)) + w̄3(A∇Φ−∇Kw̄3) = 0.

Note that formally

(∇Kρ)(x) = −
∫
∇x

ρ(z)

|x− z|
dz =

∫
∇z

ρ(z)

|x− z|
dz = −

∫
∇ρ(z)

|x− z|
dz

= (K∇ρ)(x)
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and so

A∇ψ(x) = (∇φ)(η(x)) = (∇Kρ)(η(x)) = (K∇ρ)(η(x))

= −
∫

∇ρ(y)

|η(x)− y|
dx = −

∫
A∇f(z)J(z)

|η(x)− η(z)|
dz

= −
∫
a∇(fJJ−1)(z)

|η(x)− η(z)|
dz = −

∫
a∇(w̄3J−1)(z)

|η(x)− η(z)|
dz

= −
∫
∇ · (aw̄3J−1)(z)

|η(x)− η(z)|
dz = −

∫
∇ · (Aw̄3)(z)

|η(x)− η(z)|
dz

=
1

λ2
(Kξ∇ · (Aw̄3))(x),

where we denote∇ ·M = ∂iM
i for a matrix M and recall (3.11). We then have

A∇Φ = λ2A∇ψ(x) = Kξ∇ · (Aw̄3).

Hence, we can write the momentum equation as

0 = λ∂2
sθ + λ′∂sθ + δθ + w̄−3∂k(w̄

4(AkJ−1/3 − Ik)) + Kξ∇ · (Aw̄3)−K∇w̄3

= λ∂2
sθ + λ′∂sθ + δθ + P + G,

where we have also made use of (3.12). Note that we can write

G = Kξ(∇ · (Aw̄3)−∇w̄3) + (Kξ −K)∇w̄3

= Kξ((A− I)∇w̄3 − w̄3Ai
mA

l
•∂i∂lθ

m) + (Kξ −K)∇w̄3.

3.1.2 High-order energies and the main theorem

We now introduce high-order weighted Sobolev norm that we will use for our high-
order energy method explained in Section 3.5. Recall the notation in section 1.4 in
Chapter 1. Assuming that (s,y) 7→ θ(s,y) is a sufficiently smooth field, for any
n ∈ N0 we let

Sn(s) :=
∑
|β|+b≤n

(
λ‖Xb

r/∂
β∂sθ‖2

3+b + ‖Xb
r/∂

βθ‖2
3+b + ‖∇Xb

r/∂
βθ‖2

4+b

)
Qn(s) :=

∑
c≤n

(
λ‖∇c∂sθ‖2

3+2c + ‖∇cθ‖2
3+2c + ‖∇c+1θ‖2

4+2c

)
Zn(s) :=

∑
|β|+b=n

λ‖Xb
r/∂

β(A∇× ∂sθ)‖2
4+b + λ‖∇n(A∇× ∂sθ)‖2

4+2n
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We define the total instant energy via

En := Sn +Qn + Zn. (3.13)

We shall run the energy identity using En; Zn controls the curl of the velocity,
while the energies Sn andQn will be used for high-order estimates near the vacuum
boundary and near the origin respectively. In particular, the control afforded by Qn

is stronger near the origin, while Sn is stronger near the boundary. Finally we
define

Sn(s) := sup
τ∈[0,s]

Sn(τ), (3.14)

Qn(s) := sup
τ∈[0,s]

Qn(τ), (3.15)

En(s) := sup
τ∈[0,s]

En(τ), (3.16)

The norms (3.14)–(3.16) will play the role of the “left hand side” in the high-order
energy identities.

Remark 3.1.2. We emphasise that the higher order energiesEn we defined (always

with a subscript n ∈ N0) are different from the total conserved energy E (and Eδ)

defined in (1.7). Where no confusion arises, we will refer to both as “energy”.

In this chapter, we make the following a priori assumption:

A priori assumption: En ≤ ε where ε > 0 is some small constant. (3.17)

We now state our main theorem.

Theorem 3.1.3 (Nonlinear stability of GW stars). Let n ≥ 21. The linearly ex-

panding GW star from Definition 1.2.4 nonlinearly stable. More precisely, there

exists an ε∗ > 0 such that for any initial data (θ(0), ∂sθ(0)) satisfying

En(0) ≤ ε∗, (3.18)

the associated solution s 7→ (θ(s, · ), ∂sθ(s, · )) to (3.7) exists for all s ≥ 0 and is

unique in the class of all data with finite normEn. Moreover, there exists a constant

C > 0 such that

En(s) ≤ Cε∗ for all s ≥ 0.
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Remark 3.1.4. Like in the last chapter (cf. Remark 2.1.9), it is not our goal to

optimise the number n of derivatives in our spaces.

Local-in-time well-posedness. The same process as described in section 2.1.3
for the self-similarly expanding GW star can be use to obtain the equivalent well-
posedness result in the weighted high-order energy space En defined in the current
section for the linearly expanding GW star.

Theorem 3.1.5 (Local well-posedness). Let n ≥ 21. Then for any given initial

data (θ(0), ∂sθ(0)) such that En(0) < ∞, there exist some T > 0 and a unique

solution (θ, ∂sθ) : [0, T ]× BR → R3 × R3 to (3.7) such that En(s) ≤ 2En(0) for

all s ∈ [0, T ].

Theorem 3.1.5 is a starting point for the continuity argument that will culminate
in the proof of Theorem 3.1.3.

3.1.3 Proof strategy

The basic idea behind the global existence in Theorem 3.1.3 is similar to that of
the self-similarly expanding GW case in the last chapter. In fact, it is easier here
than in the last chapter owing to the fact the linearly expanding GW expands at a
faster rate that the self-similarly expanding GW star, and hence there is a stronger
dispersion effect. Therefore, the basic outline and method of the proof is similar to
the last chapter, but it is simpler here.

In particular, we have the exponentially increasing λ(t) factor in the first term
in (3.7), this means we get a λ factor in front of the “velocity” terms in the higher
order energy in (3.13). This gives terms on the velocity level (terms with at least
one time derivatives) an extra decay that in effect made it of secondary importance
on par with the non-linear term and hence negligible in the dynamics.

This in particular renders the effect of gravity in the dynamics to be sec-
ondary: ∫ s

s0

〈Xb
r/∂

βG, ∂sX
b
r/∂

βθ〉3+bdτ . En(s)

∫ s

s0

λ−1/2dτ.

Here En(s)
∫ s
s0
λ−1/2dτ have effect on par with non-linear term E3/2, see Proposi-

tion 3.5.3 and Theorem 3.5.4.

These also means we do not need a precise coercivity result like in the self-
similarly expanding GW case for L in the last chapter. Hence in particular we do
not need the fluid to be irrotational in this case. Instead it is sufficient to just do a
vorticity estimate (section 3.4) to estimate the curl, similar to what is done in [21].
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Note also that linear motion is secondary (bounded) in a linearly expanding coor-
dinate. So a non-zero momentum in the initial data, which in theory should make
the overall GW star to travel at constant speed in the direction of the momentum,
is automatically encapsulated by the linear expanding coordinate about a linearly
expanding GW star centred at the origin.

Many terms that appeared on the primary “linear level” in self-similarly ex-
panding case of the last chapter now thus appear in the linearly expanding case in
the secondary “non-linear” level. This also means that we do not need higher time
derivatives in our higher order energy in (3.13), and also do not need the sophisti-
cated triple induction scheme on the higher order energies that we have to do in the
last chapter.

3.2 Pressure estimates

In this section we will estimate the non-linear part of the pressure term Xb
r/∂

βP and
∂γP (3.7).

Recall from (3.8) that P := w̄−3∂k(w̄
4(AkJ−1/3 − Ik)). In the next two lem-

mas, we will compute the commutators between the operator Xb
r/∂

β (and ∂γ) and
the weighted derivative w̄−3∂k(w̄

4·). Lemmas 3.2.1 are necessary to control all
the non-“top-order” contributions coming from Xb

r/∂
βP and ∂γP by our energy

norms.

The use of radial derivatives naturally changes the weighting structure, which
is one of the key observations that makes the high-order energy argument possible
and goes back to [33]. And for Cartesian derivatives, we need two powers of weight
for every derivatives, which gives a weaker control than those given by the radial
and tangential derivatives.

Lemma 3.2.1. For any tensor field T ki sufficiently smooth, we have

Xr

(
w̄−c∂k(w̄

1+cT ki )
)

= w̄−(1+c)∂k(w̄
2+cXrT

k
i )

+ (1 + c)(T ki Xr∂kw̄) + (∂kw̄)/∂kjT
j
i − w̄∂kT ki

/∂j
(
w̄−c∂k(w̄

1+cT ki )
)

= w̄−c∂k(w̄
1+c/∂jT

k
i )

− εjkl((1 + c)(∂lw̄)T ki + w̄∂lT
k
i ))

∂j
(
w̄−c∂k(w̄

1+cT ki )
)

= w̄−(2+c)∂k(w̄
3+c∂jT

k
i )

+ (1 + c)(T ki ∂j∂kw̄) + (∂jw̄)∂kT
k
i − 2(∂jT

k
i )∂kw̄

Xd
r /∂

β
(
w̄−3∂k(w̄

4T ki )
)

= w̄−(3+d)∂k(w̄
4+dXd

r /∂
βT ki )
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+

 ∑
d′≤d

|β′|≤|β|−1

+
∑

d′≤d−1
|β′|≤|β|+1

 〈CωXd′

r /∂
β′T 〉

+

 ∑
d′≤d−1
|β′|≤|β|−1

+
∑

d′≤d−2
|β′|≤|β|

 〈CXd′

r /∂
β′∇T 〉

+

 ∑
d′≤d

|β′|≤|β|−1

+
∑

d′≤d−1
|β′|≤|β|

 〈Cw̄Xd′

r /∂
β′∇T 〉 (3.19)

∂γ
(
w̄−3∂k(w̄

4T ki )
)

= w̄−(3+2|γ|)∂k(w̄
4+2|γ|∂γT ki )

+
∑

|γ′|≤|γ|−1

(
〈Cω∂γ′T 〉+ 〈Cω∂γ′∇T 〉

)
for any c ≥ 0 and i = 1, 2, 3, where ω denotes some derivatives of w̄. Here we

used notations defined in Definition 1.4.2.

Proof. Proofs for all but the last equation are the same as Lemma 2.5.2. For the
last equation we have

∂j
(
w̄−c∂k(w̄

1+cT ki )
)

= ∂j
(
(1 + c)T ki ∂kw̄ + w̄∂kT

k
i

)
= (1 + c)

(
(∂jT

k
i )∂kw̄ + T ki ∂j∂kw̄

)
+ (∂jw̄)∂kT

k
i + w̄∂j∂kT

k
i

= w̄−(2+c)∂k(w̄
3+c∂jT

k
i ) + (1 + c)(T ki ∂j∂kw̄) + (∂jw̄)∂kT

k
i − 2(∂jT

k
i )∂kw̄

where we used commutation relations from Lemma A.1.2. The final two formulas
can be proven by induction.

The next lemma deals with the terms we get when we apply Xb
r/∂

β or ∂γ to
AJ−1/3 − I .

Lemma 3.2.2. Let

T := AJ−1/3 − I. (3.20)

Recall notations defined in Definition 1.4.2. For |γ| > 0, we have

∂•T = TT [∂•∇θ], (3.21)

Xd
r /∂

βT = TT [Xb
r/∂

β∇θ] + TR:β,d (3.22)
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∂γT = TT [∂γ∇θ] + TR:γ. (3.23)

where

TT [M ]k := −J−1/3

(
Ak
mA

l +
1

3
AkAl

m

)
Mm

l , k = 1, 2, 3 (3.24)

TR:β,d := J−1/3

d+|β|∑
c=2

∑
∑c
i=1(di,βi)=(d,β)
|di|+|βi|>0

〈C〉〈A〉1+c

c∏
i=1

〈Xdi
r /∂

βi∇θ〉 (3.25)

TR:γ := J−1/3

|γ|∑
c=2

∑
∑c
i=1 γi=γ
|γi|>0

〈C〉〈A〉1+c

c∏
i=1

〈∂γi∇θ〉. (3.26)

Proof. Applying Lemma A.1.1 we get that

∂•(A
kJ−1/3 − Ik) = −J−1/3Ak

mA
l∂∂lθ

m − 1

3
J−1/3AkAl

m∂•∂lθ
m

= −J−1/3

(
Ak
mA

l +
1

3
AkAl

m

)
∂•∂lθ

m.

Hence ∂•T k = TT [∂•∇θ]k. By repeated application of this we get the next two
formulas.

We have from (3.7)

Xb
r/∂

βP = Xb
r/∂

β
(
w̄−3∂k(w̄

4T k)
)

Let

Pdθ := w̄−3−d∂k(w̄
4+dTT [∇θ]k)

= −w̄−(3+d)∂k

(
w̄4+d

(
Ak
mA

l +
1

3
AkAl

m

)
∂lθ

m

)
(3.27)

Let Pd,L be the linear part of Pd, i.e.

Pd,Lθ := −w̄−(3+d)∂k

(
w̄4+d

(
IkmI

l +
1

3
IkI lm

)
∂lθ

m

)
= − 1

3w̄3+d
∇(w̄4+d∇ · θ)− 1

w̄3+d
∂k(w̄

4+d∇θk) (3.28)

In doing energy estimates, terms like 〈Xb
r/∂

βP, ∂sX
b
r/∂

βθ〉 will arise. Using the
lemmas in this subsection, we will next show that P here can be reduced to Pd,L

modulo remainder terms that can be estimated.
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To that end we will first derive the following identity.

Lemma 3.2.3. For any vector field θ1,θ2 sufficiently smooth we have

〈Pdθ1,θ2〉3+d

=

∫ (
(A∂mθ1) · (A∂mθ2) +

1

3
(divAθ1)(divAθ2) (3.29)

− 1

2
[curlAθ1]mj [curlAθ2]mj

)
J−1/3w̄4+ddx (3.30)

〈Pd,Lθ1,θ2〉3+d

=

∫ (
(∂mθ1) · (∂mθ2) +

1

3
(div θ1)(div θ2)− 1

2
[curlθ1]mj [curlθ2]mj

)
w̄4+ddx

(3.31)

Proof. Same as Lemma 2.5.4 (except here w̄ is the linearly expanding GW star
profile rather than the self-similarly expanding one).

Using this lemma, we will estimate the difference between “Pb” and
“Pb,L”.

Proposition 3.2.4. Let n ≥ 20. Let |β| + b ≤ n and |γ| ≤ n. For any θ that

satisfies our a priori assumption (3.17) we have∣∣∣∣∫ s

s0

〈PbX
b
r/∂

βθ, ∂sX
b
r/∂

βθ〉3+bdτ −
1

2
〈Pb,LX

b
r/∂

βθ, Xb
r/∂

βθ〉3+b

∣∣s
s0

∣∣∣∣ . En(s)3/2∣∣∣∣∫ s

s0

〈P2|γ|∂
γθ, ∂s∂

γθ〉3+2|γ|dτ −
1

2
〈P2|γ|,L∂

γθ, ∂γθ〉3+2|γ|
∣∣s
s0

∣∣∣∣ . En(s)3/2

Proof. By Lemma 3.2.3

〈PbX
b
r/∂

βθ, ∂sX
b
r/∂

βθ〉3+b

=

∫ (
(A∂mX

b
r/∂

βθ) · (A∂m∂sXb
r/∂

βθ) +
1

3
(divAX

b
r/∂

βθ)(divA∂sX
b
r/∂

βθ)

− 1

2
[curlAX

b
r/∂

βθ]mj [curlA∂sX
b
r/∂

βθ]mj

)
J−1/3w̄4+bdx

=

∫ (
(A∂mX

b
r/∂

βθ) · ∂s(A∂mXb
r/∂

βθ) +
1

3
(divAX

b
r/∂

βθ)∂s(divAX
b
r/∂

βθ)

− 1

2
[curlAX

b
r/∂

βθ]mj ∂s[curlAX
b
r/∂

βθ]mj

)
J−1/3w̄4+bdx + R[λ−1/2E3/2

n ]

=
1

2
∂s

∫ (
|A∂mXb

r/∂
βθ|2 +

1

3
| divAX

b
r/∂

βθ|2 − 1

2
|[curlAX

b
r/∂

βθ]|2
)
J−1/3w̄4+bdx

+ R[λ−1/2E3/2
n ]
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=
1

2
∂s

∫ (
|∂mXb

r/∂
βθ|2 +

1

3
| divXb

r/∂
βθ|2 − 1

2
|[curlXb

r/∂
βθ]|2

)
w̄4+bdx

+ ∂sR[E3/2
n ] + R[λ−1/2E3/2

n ]

=
1

2
∂s〈Pb,LX

b
r/∂

βθ, Xb
r/∂

βθ〉3+b + ∂sR[E3/2
n ] + R[λ−1/2E3/2

n ]

where we recall notation R[?] introduced in Definition 1.4.2. Since
∫∞

0
λ1/2ds <

∞, integrating in time we get the first equation. Proof for the second formula is
similar.

And finally we will estimate the difference between “P” and “Pb”.

Proposition 3.2.5. Let n ≥ 20 and |β| + b ≤ n. Suppose θ satisfies our a priori

assumption (3.17). Then we have∣∣∣∣∫ s

s0

〈Xb
r/∂

βP−PbX
b
r/∂

βθ, ∂sX
b
r/∂

βθ〉3+bdτ
∣∣∣∣ . ∫ s

s0

λ−
1
2Endτ∣∣∣∣∫ s

s0

〈∂γP−P2|γ|∂
γθ, ∂s∂

γθ〉3+2|γ|dτ
∣∣∣∣ . ∫ s

s0

λ−
1
2Endτ.

Proof. By Lemma 3.2.1 we need to estimate the following.∣∣∣∣∣∣∣∣
∫ s

s0

∫
BR

 ∑
b′≤b

|β′|≤|β|−1

+
∑
b′≤b−1
|β′|≤|β|+1

 〈CωXb′

r /∂
β′T 〉〈∂sXb

r/∂
βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ s

s0

∫
BR

 ∑
b′≤b−1
|β′|≤|β|−1

+
∑
b′≤b−2
|β′|≤|β|

 〈CXb′

r /∂
β′∇T 〉〈∂sXb

r/∂
βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ s

s0

∫
BR

 ∑
b′≤b

|β′|≤|β|−1

+
∑
b′≤b−1
|β′|≤|β|

 〈Cw̄Xb′

r /∂
β′∇T 〉〈∂sXb

r/∂
βθ〉w̄3+bdxdτ

∣∣∣∣∣∣∣∣
.
∫ s

s0

λ−
1
2Endτ

where the λ−1/2 factor comes from estimating ‖∂sXb
r/∂

βθ‖3+b . λ−1/2E
1/2
n . The

terms with T can be estimated noting the structure given in Lemma 3.2.2. This
proves the first formula. The proof for the second formula is similar.
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Chapter 3. Nonradial stability of linearly expanding Goldreich-Weber stars

3.3 Gravity estimates

In this subsection we will estimate the gravity term Xb
r/∂

βG and ∂γG (3.7) and
show that it can be bounded by En.

Since the gravity term is a non-local term, we need to estimate convolution-
like operator. However, rather than the convolution kernel |x − z|−1 we actually
need to estimate |ξ(x) − ξ(z)|−1. The next two lemmas tell us how to reduce the
latter to the former, which will allows us to estimate using the Young’s convolution
inequality.

Lemma 3.3.1. Let ξ be as in (3.6). For any x,y ∈ BR we have

|x− z| ≤ ‖A‖L∞(BR)|ξ(x)− ξ(z)|

|/∂βxξ(x)− /∂βz ξ(z)| ≤ ‖∇/∂βξ‖L∞(BR)|x− z|

Proof. Same as Lemma 2.5.7.

Lemma 3.3.2. Let ξ and θ be as in (3.6), and θ satisfies our a priori assumption

(3.17). Let n ≥ 21 and |β| ≤ n.

i. When |β| > n/2 we have∣∣∣∣(/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)∣∣∣∣ . 1

|x− z|2
∑

n/2<|γ|≤n

|/∂γxξ(x)− /∂γzξ(z)|

ii. When |β| ≤ n/2 we have∣∣∣∣∂i,z(/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)∣∣∣∣ . 1

|x− z|2

Proof. These follows from Lemma 3.3.1, the embedding theorems A.3.7 and
A.3.8, the a priori bounds En . 1 (3.17), and the following.

(/∂x + /∂z)
β

(
1

|ξ(x)− ξ(z)|

)
=

|β|∑
m=1

∑
∑m
i=1(βi+β

′
i)=β

|βi|>0

(−1)m(2m)!

m!2m
1

|ξ(x)− ξ(z)|1+2m

m∏
i=1

(/∂βix ξ(x)− /∂βiz ξ(z)) · (/∂β
′
i

x ξ(x)− /∂β
′
i

z ξ(z)).
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3.3. Gravity estimates

Since we cannot commute extra weights into the non-local gravity term, the
radial derivatives which eat up weight need to be estimated differently in a way
that would negate the non-local integral and allow extra weights to be used. Using
methods from [22], the following two lemmas provide the way to do this. More
precisely, the radial derivative can be estimated with curl, divergence and tangential
derivatives. And this is useful because the curl and divergence of the gravity term
consist only of local or non-linear terms, which we can estimate.

Lemma 3.3.3. For any vector field G̃ ∈ H1
loc

|XrG̃|2 . |r∇ · G̃|2 + |r∇× G̃|2 +
3∑

k=1

|/∂kG̃|2.

Proof. Same as Lemma 2.5.9.

The corresponding version for Cartesian derivatives is as follows.

Lemma 3.3.4. Let k ≥ 0. For any vector field G̃ ∈ H1
loc,

‖∇G̃‖2
k+2 . ‖∇ · G̃‖2

k+2 + ‖∇ × G̃‖2
k+2 + ‖G̃‖2

k

Proof. Same as Lemma 2.6.2.

The div and curl of the gravity term can be written as the following form that
will allow us to estimate them later.

Lemma 3.3.5. Let G be as in (3.9). We have

∇ ·G = (I −A)∇ ·G + (I −A)∇ · ∇Kw̄3 + 4πw̄3(J−1 − 1)

∇×G = (I −A)∇×G + (I −A)∇×∇Kw̄3.

Proof. Same as Lemma 2.5.10 (except here w̄ is the linearly expanding GW star
profile rather than the self-similarly expanding one).

We next derive helpful identities for the operators Kξ − K. We first note
that

(Kξ −K)g(x) = −
∫
R3

K1(x, z)g(z)dz, (3.32)

where

K1(x, z) : =
1

|ξ(x)− ξ(z)|
− 1

|x− z|
, (3.33)
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Chapter 3. Nonradial stability of linearly expanding Goldreich-Weber stars

In the following lemma, we write K1 explicitly in terms of θ, which will play a
role in our energy estimates. In particular, we see that θ appears at least linearly in
K1.

Lemma 3.3.6. We have

K1(x, z) = −(x− z) · (θ(x)− θ(z))

|x− z|3
− 1

2

|θ(x)− θ(z)|2

|x− z|3

+
3

4|x− z|

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)2

$ 1
2

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)
, (3.34)

where

$q(y) :=

∫ 1

0

1− z
(1 + yz)q+2

dz, y > −1, q ∈ R. (3.35)

Proof. Same as Lemma 2.2.3.

We collect a few more easy statements in the next lemma.

Lemma 3.3.7. (i) For any K : BR × BR → R sufficiently nice and g ∈ H1
0 (BR)

we have

/∂i,x

∫
BR

K(x, z)g(z)dz =

∫
BR

(g(z)(/∂i,x + /∂i,z)K(x, z) +K(x, z)/∂i,zg(z)) dz

(ii) For any θ : BR → R3 sufficiently smooth and x,y ∈ BR we have

|∂as/∂βθ(x)− ∂as/∂βθ(z)| ≤ ‖∇∂as/∂βθ‖L∞(BR)|x− z| (3.36)

|/∂βx− /∂βz| ≤ |x− z| (3.37)

Proof. Same as Lemma 2.3.3.

Lemma 3.3.8. Let n ≥ 20 and |β| ≤ n. We have

|(/∂x + /∂z)
βK1(x, z)| . 1

|x− z|2
∑
β′≤β

|/∂β′θ(x)− /∂β′θ(z)|

where we recall K1 (3.33).
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Proof. From Lemma 3.3.6,

K1(x, z) = −(x− z) · (θ(x)− θ(z))

|x− z|3
− 1

2

|θ(x)− θ(z)|2

|x− z|3

+
3

4|x− z|

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)2

$ 1
2

(
2

(x− z) · (θ(x)− θ(z))

|x− z|2
+
|θ(x)− θ(z)|2

|x− z|2

)
︸ ︷︷ ︸

:=y(x,z)

Note that |y(x, z)| . ‖∇θ‖L∞ . Our a priori assumption (3.17) together with the
embedding theorems A.3.7 and A.3.8 mean that ‖∇θ‖L∞ is bounded by a small
constant. So we can assume |y(x, z)| ≤ 1/2. Then from the definition of $q (3.35)
we can see that

$
(k)
1
2

(y(x, z)) . 1 for any k ≥ 0.

Now using part (ii) of Lemma 3.3.7, chain and product rule for derivatives and
the embedding theorems A.3.7 and A.3.8, we can see that ∂as (/∂x + /∂z)

βK1(x, z)

satisfies the stated bounds.

Finally we can prove the main results of this subsection.

Proposition 3.3.9 (Gravity estimates). Let n ≥ 21 and suppose θ satisfies our a

priori assumption (3.17). Then we have

‖Xb
r/∂

βG‖2
3+b . En when |β|+ b ≤ n,

‖w̄b/2Xb
r/∂

βG‖2
L∞(R3) . En when |β|+ b ≤ n/2,

‖∇cG‖2
3+2c . En when c ≤ n,

‖w̄c/2∇cG‖2
L∞(R3) . En when c ≤ n/2.

Proof. By definition

G = Kξ∇ · (Aw̄3)−K∇w̄3 = −
∫
R3

∂k(A
kw̄3)

|ξ(x)− ξ(z)|
dz +

∫
R3

∇w̄3

|x− z|
dz

= −
∫
R3

∂k((A
k − Ik)w̄3)

|ξ(x)− ξ(z)|
dz−

∫
R3

K1(x, z)∇w̄3dz

By Lemma 3.3.7 we have

/∂βG(x) = −/∂β
(∫

R3

∂k((A
k − Ik)w̄3)

|ξ(x)− ξ(z)|
dz +

∫
R3

K1(x, z)∇w̄3dz
)
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= −
∫
R3

∑
β1+β2=β

(/∂x + /∂z)
β1

(
1

|ξ(x)− ξ(z)|

)
/∂β2
z ∂k((A

k − Ik)w̄3)(z)dz

−
∫
R3

∑
β1+β2=β

(/∂x + /∂z)
β1K1(x, z)(/∂β2

z ∇w̄3)(z)dz

= −
∫
R3

∑
β1+β2=β
|β1|>n/2

(/∂x + /∂z)
β1

(
1

|ξ(x)− ξ(z)|

)
/∂β2
z ∂k((A

k − Ik)w̄3)(z)dz

−
∫
R3

∑
β1+β2=β
|β1|≤n/2

(/∂x + /∂z)
β1

(
1

|ξ(x)− ξ(z)|

)
/∂β2
z ∂k((A

k − Ik)w̄3)(z)dz

−
∫
R3

∑
β1+β2=β

(/∂x + /∂z)
β1K1(x, z)(/∂β2

z ∇w̄3)(z)dz

= −
∫
R3

∑
β1+β2=β
|β1|>n/2

(/∂x + /∂z)
β1

(
1

|ξ(x)− ξ(z)|

)
/∂β2
z ∂k((A

k − Ik)w̄3)(z)dz

+

∫
R3

∑
β1+β2≤β
|β1|≤n/2

〈∇z〉(/∂x + /∂z)
β1

(
1

|ξ(x)− ξ(z)|

)
(〈/∂β2

z (A− I)〉w̄3)(z)dz

−
∫
R3

∑
β1+β2=β

(/∂x + /∂z)
β1K1(x, z)(/∂β2

z ∇w̄3)(z)dz

Now using Lemma 3.3.2 and 3.3.8, we get

|∂as/∂βG(x)| .
∫
R3

E
1/2
n

|x− z|2
∑

n/2<|γ|≤n

|/∂γxξ(x)− /∂γzξ(z)|w̄2dz

+

∫
R3

∑
β2≤β

1

|x− z|2
(〈/∂β2

z (A− I)〉w̄3)(z)dz

+

∫
R3

∑
β1+β2=β

∑
β′≤β1

|/∂β′θ(x)− /∂β′θ(z)|
|x− z|2

(/∂β2
z ∇w̄3)(z)dz

Now using Young’s convolution inequality we get

‖/∂βG(x)‖L2(R3) . E1/2
n .

Hence ‖/∂βG‖2
3 . En. From the above proof, with small modification, we can

further see that

‖/∂βG(x)‖L∞(R3) . E1/2
n when |β| ≤ n/2
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Now we deal with the case b > 0. Let

Wn =
∑
|β|+b≤n

‖Xb
r/∂

βG‖2
3+b

Wn,d =
∑
|β|+b≤n
b≤d

‖Xb
r/∂

βG‖2
3+b

Vn =
∑
|β|+b≤n

sup
R3

(
w̄b|Xb

r/∂
βG|2

)
Vn,d =

∑
|β|+b≤n
b≤d

sup
R3

(
w̄b|Xb

r/∂
βG|2

)
.

For |β|+ b ≤ n/2, using the above lemmas 3.3.3 and 3.3.5 we have

w̄b|Xb
r/∂

βG|2

. w̄b|r∇ ·Xb−1
r /∂βG|2 + w̄b|r∇×Xb−1

r /∂βG|2 +
3∑

k=1

w̄b|Xb−1
r /∂k/∂

βG|2

. w̄b|rXb−1
r /∂β∇ ·G|2 + w̄b|rXb−1

r /∂β∇×G|2 + Vb+|β|−1 + Vb+|β|,b−1

. w̄b|rXb−1
r /∂β((I −A)∇ ·G)|2 + w̄b|rXb−1

r /∂β((I −A)∇×G)|2

+ En + Vb+|β|−1 + Vb+|β|,b−1

. w̄b|r(I −A)Xb−1
r /∂β∇ ·G|2 + w̄b|r(I −A)Xb−1

r /∂β∇×G|2

+ En + Vb+|β|−1 + Vb+|β|,b−1

. w̄bEn|rXb−1
r /∂β∇G|2 + En + Vb+|β|−1 + Vb+|β|,b−1

So

Vb+|β|,b . EnVb+|β|,b + En + Vb+|β|−1 + Vb+|β|,b−1

By a priori assumption (3.17), we have En � 1, so

Vb+|β|,b . En + Vb+|β|−1 + Vb+|β|,b−1.

We know Vn′,0 . En for all n′ ≤ n/2, so by induction we get Vn′,d . En for all
d ≤ n′ ≤ n/2.

Now for |β|+ b ≤ n, using the above lemmas 3.3.3 and 3.3.5 and results for V
we have

‖Xb
r/∂

βG‖2
3+b
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. ‖r∇ ·Xb−1
r /∂βG‖2

3+b + ‖r∇×Xb−1
r /∂βG‖2

3+b +
3∑

k=1

‖Xb−1
r /∂k/∂

βG‖2
3+b

. ‖rXb−1
r /∂β∇ ·G‖2

3+b + ‖rXb−1
r /∂β∇×G‖2

3+b +Wb+|β|−1 +Wb+|β|,b−1

. ‖rXb−1
r /∂β((1−A)∇ ·G)‖2

3+b + ‖rXb−1
r /∂β((1−A)∇×G)‖2

3+b

+ En +Wb+|β|−1 +Wb+|β|,b−1

. ‖r(1−A)Xb−1
r /∂β∇ ·G‖2

3+b + ‖r(1−A)Xb−1
r /∂β∇×G‖2

3+b

+ En +Wb+|β|−1 +Wb+|β|,b−1

. En‖rXb−1
r /∂β∇G‖2

3+b + En +Wb+|β|−1 +Wb+|β|,b−1

So

Wb+|β|,b . EnWb+|β|,b + En +Wb+|β|−1 +Wb+|β|,b−1

By a priori assumption (3.17), we have En � 1, so

Wb+|β|,b . En +Wb+|β|−1 +Wb+|β|,b−1.

We know Wn,0 . En, so by induction we get Wn,d . En for all d ≤ n.

Let

Yn =
∑
c≤n

‖∇cG‖2
3+2c

By Sobolev embeddings like those used to prove the embedding theorems A.3.7
and A.3.8, we have that

‖w̄c/2∇cG‖2
L∞(R3) . En + Yn when c ≤ n/2.

Now for c ≤ n, using the above lemmas 3.3.4 and 3.3.5 we have

‖∇cG‖2
3+2c

. ‖∇c−1∇ ·G‖2
3+2c + ‖∇c−1∇×G‖2

3+2c + ‖∇c−1G‖2
3+2(c−1)

. ‖∇c−1((1−A)∇ ·G)‖2
3+2c + ‖∇c−1((1−A)∇×G)‖2

3+2c + En + Yc−1

. ‖(1−A)∇c−1∇ ·G‖2
3+2c + ‖(1−A)∇c−1∇×G‖2

3+2c + En(1 + Yn) + Yc−1

. En‖∇c−1∇G‖2
3+2c + En(1 + Yn) + Yc−1
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So

Yc . EnYn + En + Yc−1

By induction on c ≤ n we have

Yn . EnYn + En

By a priori assumption (3.17), we have En � 1, so we get Yn . En.

3.4 Vorticity estimates

In this section we will estimate the vorticity Zn, ‖∇ × Xb
r/∂

βθ‖4+b and ‖∇ ×
∂γθ‖4+2|γ| which will be needed to control the “curl” part of the pressure term
as seem in Lemma 3.2.3.

By taking curl to the Euler-Poisson equation (3.7) we can essentially get rid
of the pressure and gravity terms, which allows us to estimate the curl sepa-
rately.

Lemma 3.4.1. Let θ be a solution of (3.7) in the sense of Theorem 3.1.5. Then for

any s ≥ s0 ≥ 0 we have

λ(s)
1
2 (A∇× ∂sθ)(s) =

λ(s0)

λ(s)1/2
(A∇× ∂sθ)(s0) + λ(s)−

1
2

∫ s

s0

(∂sA)∇× ∂sθds′

(A∇× θ)(s) = (A∇× θ)(s0) +

∫ s

s0

(∂sA)∇× θ ds′

+

∫ s

s0

λ(s0)

λ(s)
ds′(A∇× ∂sθ)(s0)

+

∫ s

s0

λ(s′)−1

∫ s′

s0

(∂sA)∇× ∂sθds′′ds′.

Proof. Recall (3.4) is

0 = λ∂2
sξ + λ′∂sξ + δξ +

1

w3
∂k(A

kw4J−1/3) + A∇Φ (3.38)

Now note that

1

w3
∂k(A

kw4J−1/3) = w̄−3∂k(w̄
4akJ−4/3) = w̄−3ak∂k(w̄

4J−4/3)

= (w̄J−1/3)−1Ak∂k(w̄
4J−4/3) =

4

3
A∇(w̄3J−1)
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and A∇× ξ = ε•jkA
l
j∂lξk = ε•jkδjk = 0. So taking A∇× to (3.4) we get

0 = λA∇× ∂2
sθ + λ′A∇× ∂sθ

= λ (∂s(A∇× ∂sθ)− (∂sA)∇× ∂sθ) + λ′A∇× ∂sθ

= ∂s(λA∇× ∂sθ)− (∂sA)∇× ∂sθ

So

λ(s)(A∇× ∂sθ)(s) = λ(s0)(A∇× ∂sθ)(s0) +

∫ s

s0

(∂sA)∇× ∂sθds′

So

λ∂s(A∇× θ)(s) = λ(∂sA)∇× θ(s) + λ(s0)(A∇× ∂sθ)(s0)

+

∫ s

s0

(∂sA)∇× ∂sθds′

So

(A∇× θ)(s) = (A∇× θ)(s0) +

∫ s

s0

(∂sA)∇× θ ds′

+

∫ s

s0

λ(s0)

λ(s)
ds′(A∇× ∂sθ)(s0)

+

∫ s

s0

λ(s′)−1

∫ s′

s0

(∂sA)∇× ∂sθds′′ds′.

Proposition 3.4.2. Let θ be a solution of (3.7) in the sense of Theorem 3.1.5. Let

n ≥ 21. Then for any s ≥ s0 ≥ 0, we have

Zn(s) . Zn(s0) +
(s− s0)2

λ(s)
En(s) + λ(s)−1En(s)2.

Proof. Take Xb
r/∂

β (b+ β = n) to the first equation in Lemma 3.4.1 we get

λ(s)
1
2Xb

r/∂
β(A∇× ∂sθ)(s) =

λ(s0)

λ(s)1/2
Xb
r/∂

β(A∇× ∂sθ)(s0)

+ λ(s)−
1
2Xb

r/∂
β

∫ s

s0

(∂sA)∇× ∂sθds′

Since λ is an increasing function (3.2), we have λ(s0)1/2/λ(s)1/2 ≤ q which we can
used to bound the first term on the RHS. And for the other terms we can estimate
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for example∫
BR

∣∣∣∣λ(s)−
1
2

∫ s

s0

(Xb
r/∂

β∂sA)∇× ∂sθ ds′
∣∣∣∣2 w̄4+bdx

≤ λ(s)−1

∫
BR

∣∣∣∣∫ s

s0

(Xb
r/∂

β∂sA)∇× ∂sθ ds′
∣∣∣∣2 w̄4+bdx

. λ(s)−1

∫
BR

∣∣∣∣∫ s

s0

(Xb
r/∂

βA)∇× ∂2
sθ ds′

∣∣∣∣2 w̄4+bdx + λ(s)−1En(s)2

.
(s− s0)2

λ(s)
En(s) + λ(s)−1En(s)2

where we used λ∂2
sθ = −λ′∂sθ − δθ −P−G (3.7).

We can then repeat this process for ∂γ (|γ| = n) in place of Xb
r/∂

β to complete
the proof.

Proposition 3.4.3. Let θ be a solution of (3.7) in the sense of Theorem 3.1.5. Let

n ≥ 21. Then for any s ≥ s0 ≥ 0 and n′ ≤ n, we have∑
b+β≤n′

‖∇ ×Xb
r/∂

βθ(s)‖2
4+b . En(s0) + Sn′−1(s) + En(s)2

+

∫ s

s0

1 + (s′ − s0)2

λ(s′)
ds′ En(s)∑

|γ|≤n

‖∇ × ∂γθ(s)‖2
4+2|γ| . En(s0) + En(s)2 +

∫ s

s0

1 + (s′ − s0)2

λ(s′)
ds′ En(s).

Proof. Take Xb
r/∂

β (b + β = n) to the second equation in Lemma 3.4.1 and then
estimate in a similar way to Lemma 3.4.2. We estimate∥∥∥∥∥

∫ s

s0

λ(s′)−1

∫ s′

s0

? ds′′ds′
∥∥∥∥∥

2

4+b

≤
∫
BR

(∫ s

s0

λ(s′)−1ds′
)∫ s

s0

λ(s′)−1

∣∣∣∣∣
∫ s′

s0

? ds′′
∣∣∣∣∣
2

ds′

 w̄4+bdx

.
∫ s

s0

λ(s′)−1

∫
BR

∣∣∣∣∣
∫ s′

s0

? ds′′
∣∣∣∣∣
2

w̄4+bdxds′

.
∫ s

s0

1 + (s′ − s0)2

λ(s′)
ds′ En(s)

where we used the Cauchy–Schwarz inequality to get the first inequality, and the
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fact that
∫∞

0
λ−1ds′ <∞ for the second inequality (see (3.2)). And∑

b+β≤n

‖[∇×, Xb
r/∂

β]θ(s)‖2
4+b . Sn′−1(s)∑

b+β≤n

‖Xb
r/∂

β((A− I)∇× θ)(s)‖2
4+b . En(s)2.

Then we get the first formula. Proof for the second formula is similar.

3.5 Energy estimates and proof of the main theo-
rem

In this section we finally commute the momentum equation (3.7) and then derive
the high-order energy estimates. Then finally we will prove our main theorem using
the energy estimates.

Theorem 3.5.1 (Energy estimates). Let n ≥ 21. Let θ be a solution of (3.7) in the

sense of Theorem 3.1.5, given on its maximal interval of existence. Then

En(s) . En(s0) + En(s)3/2 + En(s)

∫ s

s0

λ−1/2dτ. (3.39)

for any s ≥ s′ ≥ 0 whenever our a priori assumption (3.17) is satisfied. Here we

recall Definition (3.16) of the total norm En.

Proof. Since En = Sn + Qn + Zn, we need to prove the formula with LHS each of
these three component terms.

We first deal with the Sn part. Let |β|+ b ≤ n. Apply Xb
r/∂

β to the momentum
equation (3.7) to get

λ∂2
sX

b
r/∂

βθ + λ′∂sX
b
r/∂

βθ +Xb
r/∂

β(δθ + P + G) = 0

Taking the 〈·, ·〉3+b-inner with ∂sXb
r/∂

βθ we get

0 =
1

2
λ∂s‖∂sXb

r/∂
βθ‖2

3+b + λ′‖∂sXb
r/∂

βθ‖2
3+b

+ 〈Xb
r/∂

β(δθ + P + G), ∂sX
b
r/∂

βθ〉3+b

=
1

2
∂s
(
λ‖∂sXb

r/∂
βθ‖2

3+b

)
+

1

2
λ′‖∂sXb

r/∂
βθ‖2

3+b

+ 〈Xb
r/∂

β(δθ + P + G), ∂sX
b
r/∂

βθ〉3+b
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Integrate in time we get

0 =
1

2

(
λ‖∂sXb

r/∂
βθ‖2

3+b

)∣∣s
s0

+
1

2

∫ s

s0

λ′‖∂sXb
r/∂

βθ‖2
3+bdτ

+

∫ s

s0

〈Xb
r/∂

β(δθ + P + G), ∂sX
b
r/∂

βθ〉3+bdτ

By Proposition 3.2.5, 3.2.4, 3.3.9 and Lemma 3.2.3 we get

1

2

(
λ‖∂sXb

r/∂
βθ‖2

3+b + ‖∇Xb
r/∂

βθ‖2
4+b +

1

3
‖ divXb

r/∂
βθ‖2

4+b

− 1

2
‖ curlXb

r/∂
βθ‖2

4+b

)∣∣∣∣s
s0

+
1

2

∫ s

s0

λ′‖∂sXb
r/∂

βθ‖2
3dτ

. En(s)3/2 +

∫ s

s0

λ−1/2Endτ

Using Proposition 3.4.3 we get

λ(s)‖∂sXb
r/∂

βθ(s)‖2
3+b + ‖∇Xb

r/∂
βθ(s)‖2

4+b

. En(s0) + En−1(s) + En(s)2 +

∫ s

s0

1 + (s′ − s0)2

λ(s′)
dτ En(s) + En(s)3/2

+

∫ s

s0

λ−1/2Endτ

. En(s0) + En−1(s) + En(s)3/2 + En(s)

∫ s

s0

λ−1/2dτ

where we used (3.2) and (3.17). Add to it

‖Xb
r/∂

βθ(s)‖2
3+b = ‖Xb

r/∂
βθ(s0)‖2

3+b + 2

∫ s

s0

〈Xb
r/∂

βθ(s), ∂sX
b
r/∂

βθ(s)〉3+bdτ

. En(s0) +

∫ s

s0

λ−1/2Endτ,

sum over |β|+ b ≤ n′ ≤ n and we get

Sn′(s) . En(s0) + Sn′−1(s) + En(s)3/2 + En(s)

∫ s

s0

λ−1/2dτ.

Induct on n′ we get

Sn(s) . En(s0) + En(s)3/2 + En(s)

∫ s

s0

λ−1/2dτ.

To prove the Qn part, we repeat the above with ∂γ in place ofXb
r/∂

β , and weight
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3 + 2|γ| instead of weight 3 + b.

Finally the Zn part is given by Proposition 3.4.2 noting that

λ(s)−1En(s)2 +
(s− s0)2

λ(s)
En(s) . En(s)3/2 + En(s)

∫ s

s0

λ−1/2dτ.

where we used (3.2) and (3.17).

To proof our main theorem that the energy En remains bounded, we will use
the bootstrapping scheme in the following lemma and proposition.

Lemma 3.5.2. Suppose E : [0, T ]→ [0,∞] is continuous and

E(t) ≤ C1E(0) + C2E(t)3/2 whenever sup
τ∈[0,t]

E(τ) ≤ C3.

whereC1 ≥ 1. ThenE ≤ 2C1E(0) wheneverE(0) ≤ min{(25C1C
2
2)−1, C3/2C1}.

Proof. Same as Lemma 2.6.6.

Proposition 3.5.3. Suppose E : [0,∞) → [0,∞] are continuous and for all s ≥
s0 ≥ 0 we have

E(s) ≤ C1E(s0) + C2E(s)3/2 + C3F (s0, s)E(s) whenever sup
τ∈[s0,s]

E(τ) ≤ C4

where F : {(s0, s) ∈ [0,∞)× [0,∞) : s ≥ s0} → [0,∞) is a function such that

i. lims0→∞ sups≥s0 F (s0, s) = 0;

ii. limδ′→0 sup|s−s0|≤δ′ F (s0, s) = 0.

Then there exist ε∗ > 0 such that E .C1 E(0) whenever E(0) ≤ ε∗.

Proof. Pick s∞ large enough so that

C3 sup
s≥s∞

F (s∞, s) <
1

2
.

Then by Lemma 3.5.2 there exist ε∞ > 0 such that sups∈[s∞,∞) ≤ 4C1E(s∞)

whenever E(s∞) ≤ ε∞.

Now pick δ′ small enough so that

C3 sup
|s−s0|≤δ′

F (s0, s) <
1

2
.
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Then by Lemma 3.5.2 there exist ε0 > 0 such that sups∈[mδ′,(m+1)δ′] ≤ 4C1E(mδ′)

whenever E(mδ′) ≤ ε0.

Let ε∗ ≤ min{ε0, ε∞}/(4C1)ds∞/δ
′e. Then E(s) ≤ (4C1)ds∞/δ

′e+1E(0) for all
s ≥ 0 whenever E(0) ≤ ε∗.

Theorem 3.5.4. Let n ≥ 21. Let (θ, ∂sθ) be a solution of (3.7) in the sense of

Theorem 3.1.5. Then there exists ε∗ > 0 such that if En(0) ≤ ε∗, then we have

En . En(0).

Proof. By the energy estimates in Theorem 3.5.1 we have

En(s) . En(s0) + En(s)3/2 + En(s)

∫ s

s0

λ−1/2dτ. (3.40)

Applying Proposition 3.5.3 above withE = En and F (s0, s) =
∫ s
s0
λ−1/2dτ (which

satisfies the properties required for the proposition because of (3.2)) we get the
desired result.
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Chapter 4

Linear stability of liquid
Lane-Emden stars

In order to be able to prove linear (in)stability of liquid Lane-Emden stars, we will
need detail information about the Lane–Emden stars. So in the first section of this
chapter, we will establish various qualitative properties of the liquid Lane–Emden
stars, including bounds for its density profile and radius. And using these results,
in second section we will prove Theorem 1.3.4 concerning the linear stability of
Lane-Emden stars, where we will prove the existence and non-existence of unstable
modes using the variational formulation.

4.1 Lane–Emden stars and its properties

4.1.1 Basic properties of Lane–Emden stars

Theorem 4.1.1. Let γ ≥ 1. For every ρ0 > 0, the ODE defining the LE stars

(Definition 1.2.1) admits a unique solution ρ ≥ 0 such that ρ(0) = ρ0. The interval

of existence [0, R) is such that either R =∞ or limr→R ρ(r) = 0.

Proof. This is a know standard result, we included the proof in the appendix for
completeness.

In fact, due to the following decay estimate, we must have limr→R ρ(r) = 0

even if R =∞. This is a elementary decay estimate that we will be using in many
places later on.

Lemma 4.1.2 (Decay estimates). Suppose ρ is a solution to the Lane–Emden ODE
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(Definition 1.2.1) on [0, R) with ρ(0) = ρ0. Then for r ∈ [0, R) we have

ρ(r) ≤


(
ρ
−(2−γ)
0 +

2π

d

2− γ
γ

r2

)− 1
2−γ

when γ 6= 2

exp

(
ln(ρ0)− 2π

d

1

γ
r2

)
when γ = 2

.

Equivalently, we have when γ > 1

w(r) ≤


(
w
−(α−1)
0 +

2π

d

2− γ
γ

r2

)− 1
α−1

when α 6= 1

exp

(
ln(w0)− 2π

d

γ − 1

γ
r2

)
when α = 1

and when γ = 1,

h(r) ≤ − ln

(
e−h0 +

2π

d
r2

)
.

Proof. Case 1, γ > 1 From (1.15) we have

w′(r) = −4π
γ − 1

γ

1

rd−1

∫ r

0

yd−1w(y)αdy

≤ −4π
γ − 1

γ

1

rd−1
w(r)α

∫ r

0

yd−1dy = −4π

d

γ − 1

γ
w(r)αr

where we have the first inequality because w is decreasing. Rearranging and
integrating we get

2π

d

γ − 1

γ
r2 ≤ −

∫ r

0

w′(y)

w(y)α
dy =

∫ w0

w(r)

1

zα
dz

=


1

α− 1

(
1

w(r)α−1
− 1

wα−1
0

)
when α 6= 1

lnw0 − lnw(r) when α = 1

.

Rearranging gives the desired result.

Case 2, γ = 1 From (1.17) we have

h′(r) = −4π
1

rd−1

∫ r

0

yd−1eh(y)dy ≤ −4π
1

rd−1
eh(r)

∫ r

0

yd−1dy = −4π

d
eh(r)r

where we have the first inequality because w is decreasing. Rearranging and
integrating we get

2π

d
r2 ≤ −

∫ r

0

h′(y)e−h(y)dy = e−h(r) − e−h0 .
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So
−h(r) ≥ ln

(
e−h0 +

2π

d
r2

)
.

In particular if ρ0 > 1, then ρ would reach 1 at some r = r∗ < ∞ with
w′(r∗) < 0 (by (1.15)) or h′(r∗) < 0 (by (1.17)). We can cut off the solution at this
point to obtain a state state for fluid stars.

Note that if we consider gas stars, i.e. p = ργ , then whether R = ∞ or not
correspond to whether the star is compactly supported or not.

Following is the so-called Pohozaev integral for the Lane–Emden stars, more
generally considered in [27].

Proposition 4.1.3 (Pohozaev integral). Suppose ρ is a solution to the Lane–Emden

ODE (Definition 1.2.1) on [0, R). Then for r ∈ [0, R) we have

2π

(
2− 2− γ

γ
d

)∫ r

0

ρ(y)γyd−1dy

=
1

2
γ(γ − 1)

(
ρ(r)−(2−γ)ρ′(r)

)2
rd + 4π

γ − 1

γ
ρ(r)γrd

+
1

2
(d− 2)γρ(r)2γ−3ρ′(r)rd−1.

Equivalently, we have for γ > 1,

2π
γ − 1

γ

(
2d

1 + α
− (d− 2)

)∫ r

0

w(y)α+1yd−1dy

=
1

2
w′(r)2rd + 4π

(
γ − 1

γ

)2

w(r)α+1rd +
1

2
(d− 2)w′(r)w(r)rd−1.

and for γ = 1,

−4π

∫ r

0

eh(y)yd−1dy = h′(r)rd−1.

Proof. Case 1, γ > 1 Recall w satisfies the Lane–Emden ODE (Definition 1.2.1)

−4π
γ − 1

γ
w(r)α =

1

rd−1

d
dr

(
rd−1 dw

dr

)
= w′′(r) +

d− 1

r
w′(r).

for r ∈ [0, R). Times this by w and integrating w.r.t. rd−1dr we have

−4π
γ − 1

γ

∫ r

0

wα+1yd−1dy =

∫ r

0

w′′wyd−1dy + (d− 1)

∫ r

0

w′wyd−2dy
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= w′(r)w(r)rd−1 −
∫ r

0

(w′)2yd−1dy (4.1)

On the other hand times by rw′ and integrating w.r.t. rd−1dr we have

− 4π

1 + α

γ − 1

γ

(
w(r)α+1rd − d

∫ r

0

wα+1yd−1dy
)

(4.2)

= −4π
γ − 1

γ

∫ r

0

wαw′yddy

=

∫ r

0

w′′w′yddy + (d− 1)

∫ r

0

(w′)2yd−1dy

=
1

2
w′(r)2rd + (d/2− 1)

∫ r

0

(w′)2yd−1dy (4.3)

where we used∫ r

0

wαw′yddy = w(r)α+1rd −
∫ r

0

(αwαw′yd + dwα+1yd−1)dy.

Using (4.1) to eliminate the
∫

(w′)2yd−1dy term in (4.3) we get the Pohozaev
integral.

Case 2, γ = 1 Integrating the h-equation−4πeh = h′′+(d−1)r−1h′ w.r.t. rd−1dr
we have

−4π

∫ r

0

eh(y)yd−1dy =

∫ r

0

h′′(y)yd−1dy+(d−1)

∫ r

0

h′(y)yd−2dy = h′(r)rd−1.

Theorem 4.1.4 (Support of Lane–Emden stars).

i. Suppose w is a gas star. Then w has compact support if

γ >
2d

d+ 2
or equivalently α <

d+ 2

d− 2

and infinitely support otherwise.

ii. (Explicit solution when γ = 2d
d+2

) When γ = 2d/(d+2) we have explicit steady

state solution

w(r) = A

(
1 +

2π

d2
A

4
d−2 r2

)1−d/2

or equivalently

ρ(r) = C

(
1 +

2π

d2
C

4
d+2 r2

)−1−d/2

.
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4.1. Lane–Emden stars and its properties

And the support of the liquid star is

R =

(
d2

2π
C−

4
d+2 (C

2
d+2 − 1)

) 1
2

.

Proof. Both of these are known standard results (see for example [27] for i.). i. can
be proven from the Pohozaev integral. We included the proof in the appendix for
completeness.

Proposition 4.1.5 (Self-similarity of solutions). Let ρ be a gaseous steady state.

Then ρκ(r) = κρ(κ1−γ/2r) is a gaseous steady state for any κ > 0, and the corre-

sponding liquid star has support R = κ−(1−γ/2)ρ−1(1/κ).

Proof. This is standard result based on scaling argument, we included the proof in
the appendix for completeness.

4.1.2 Singular solutions to the steady state equation

Proposition 4.1.6 (Singular star). When 2(d−1)−dγ ≥ 0, the following solve the

Lane–Emden ODE (Definition 1.2.1) on (0,∞)

ρ(r) =

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) 1
2−γ

r−
2

2−γ .

And this is the only solution of the form ρ(r) = Ara.

Proof. First we consider the γ > 1 case. Consider w(r) = Ara. Substitute into the
Lane–Emden ODE (Definition 1.2.1)

w′′ + (d− 1)r−1w′ = −4π
γ − 1

γ
wα

we get

Aa(a− 1)ra−2 + A(d− 1)ara−2 = −4π
γ − 1

γ
Aαraα

For this to have the possibility of holding, we need

aα = a− 2 ⇐⇒ a = − 2

α− 1
= − 1

β
= −2

γ − 1

2− γ
.
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Then the equation becomes

−2
γ − 1

2− γ
−γ

2− γ
+−2(d− 1)

γ − 1

2− γ
= −4π

γ − 1

γ
Aα−1

⇐⇒ −γ2 + (d− 1)(2− γ)γ = 2π(2− γ)2A2β

So we need

A =

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) 1
2β

We also need

−dγ2 + 2(d− 1)γ ≥ 0 ⇐⇒ 2(d− 1)− dγ ≥ 0.

For the γ = 1 case, substituting ρ(r) = Ara in the Lane–Emden ODE (Defini-
tion 1.2.1)

0 = ∆(ln ρ) + 4πρ =
ρ′′

ρ
− (ρ′)2

ρ2
+ (d− 1)

1

r

ρ′

ρ
+ 4πρ

we get
0 = (a(a− 1)− a2 + (d− 1)a)r−2 + 4πAra.

So we need a = −2 and 6− 4− 2(d− 1) + 4πA = 0.

4.1.3 Dynamical system formulation of the steady state equa-
tion

In order to prove our main (in)stability theorem for liquid stars, we will need a pre-
cise estimate for the radius of the liquid star, and due to the self-similar scaling of
steady state solutions, this means we need to understand the precise tail behaviour
of gaseous stars. And to do that we reformulate the Lane–Emden stars as a solu-
tions to a dynamical system, and utilise methods of dynamical system analogous
to that in [24].

Let
m(r) = 4π

∫ r

0

yd−1ρ(y)dy.
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4.1. Lane–Emden stars and its properties

When γ > 1, the steady state equation (1.15) is

dw
dr

= −γ − 1

γ

m(r)

rd−1
where w = ργ−1

When γ = 1, the steady state equation (1.17) is

dh
dr

= −m(r)

rd−1
where h = ln ρ.

Let

u1(r) = r
2

2−γ ρ(r)

u2(r) = r
2

2−γ−dm(r)

The steady state equation for γ > 1 is then

du1

dr
= r

2
2−γαwα−1 dw

dr
+

2

2− γ
r

2
2−γ−1ρ = −1

γ
r−1u2−γ

1 u2 +
2

2− γ
r−1u1

du2

dr
= 4πr

2
2−γ−1ρ−

(
d− 2

2− γ

)
r

2
2−γ−d−1m = 4πr−1u1 −

(
d− 2

2− γ

)
r−1u2

And the steady state equation for γ = 1 is

du1

dr
= −r3−dρm+ 2rρ = −r−1u1u2 + 2r−1u1

du2

dr
= 4πrρ− (d− 2)r1−dm = 4πr−1u1 − (d− 2)r−1u2

Now let vj(τ) = uj(e
τ ), i.e. the change of variable τ = ln r, then we obtain the

planar autonomous dynamical system

dv1

dτ
= −1

γ
v2−γ

1 v2 +
2

2− γ
v1

dv2

dτ
= 4πv1 −

(
d− 2

2− γ

)
v2

or equivalently

dv
dτ

= F(v) where F(v) =

 −
1

γ
v2−γ

1 v2 +
2

2− γ
v1

4πv1 −
(
d− 2

2− γ

)
v2

 .

Note that F ∈ C∞((0,∞)× R) ∩ C([0,∞)× R).
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The following two propositions established bounds for ρ, u1, u2, which will be
needed later on when we apply results from dynamical systems to prove the tail
behaviour of ρ.

Proposition 4.1.7. Suppose γ < 2. Then

ρ(r) ≤
(

2π

d

2− γ
γ

)− 1
2−γ

r−
2

2−γ

m(r) ≤ 4π

(
d− 2

2− γ

)−1(
2π

d

2− γ
γ

)− 1
2−γ

rd−
2

2−γ

Proof. The first inequality follows from the decay estimates. Then we have

m(r) = 4π

∫ r

0

yd−1ρ(y)dy

≤ 4π

(
2π

d

2− γ
γ

)− 1
2−γ
∫ r

0

yd−1− 2
2−γ dy

= 4π

(
d− 2

2− γ

)−1(
2π

d

2− γ
γ

)− 1
2−γ

rd−
2

2−γ .

Proposition 4.1.8. We have

u1(r) ∼ r
2

2−γ ρ(0) as r → 0

u2(r) ∼ r
2

2−γ ρ(0)
4π

d
as r → 0

Proof. We have

u1(r)

r
2

2−γ ρ(0)
=
ρ(r)

ρ(0)
→ 1 as r → 0

u2(r)

r
2

2−γ ρ(0)4π
d

=
d

ρ(0)
r−d

∫ r

0

yd−1ρ(y)dy =
d

ρ(0)
r−d

∫ r

0

yd−1(ρ(0) + o(1))dy

=
d

ρ(0)

(
ρ(0)

d
+ r−do(rd)

)
→ 1 as r → 0.
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Steady states of the dynamical system

In order to apply results from dynamical systems to our case, we need to know the
steady states of the dynamical system. The following lemma detailed the steady
states of the dynamical system and their property.

Lemma 4.1.9. Let 2(d− 1)− dγ > 0. The dynamical system

dv
dτ

= F(v) where F(v) =

 −
1

γ
v2−γ

1 v2 +
2

2− γ
v1

4πv1 −
(
d− 2

2− γ

)
v2


has two steady states

v = 0 and

v = v∗ :=


(

1

2π

γ

2− γ

(
d− 2

2− γ

)) 1
2−γ

2γ

2− γ

(
1

2π

γ

2− γ

(
d− 2

2− γ

)) γ−1
2−γ



=


(

1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) 1
2−γ

2γ

2− γ

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) γ−1
2−γ

 .

Moreover, if γ < 2d
d+2

, then v∗ is (exponentially) stable.

Proof. It can be checked directly that F(v) = 0 iff v = 0 or v = v∗. Note that F
is differentiable at v∗, but not at 0 (unless γ = 1). On (0,∞)× R we have

∇F(v) =

−
2− γ
γ

v1−γ
1 v2 +

2

2− γ
−1

γ
v2−γ

1

4π −
(
d− 2

2− γ

)


So

∇F(v∗) =


2

2− γ
− 2 − 1

2π

−dγ + 2(d− 1)

(2− γ)2

4π −
(
d− 2

2− γ

)
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The eigenvalues of∇F(v∗) are

λ =
2

2− γ
− 1− d

2
± 1

2

√
(d− 2)2 − 8

−dγ + 2(d− 1)

(2− γ)2
.

So assuming

d+ 2 >
4

2− γ
⇐⇒ γ <

2d

d+ 2

the system at v∗ is (exponentially) stable provided

0 > Re

(
2

2− γ
− 1− d

2
+

1

2

√
(d− 2)2 − 8

−dγ + 2(d− 1)

(2− γ)2

)

⇐⇒
(
d+ 2− 4

2− γ

)2

> (d− 2)2 − 8
−dγ + 2(d− 1)

(2− γ)2

⇐⇒ 8d >
8

(2− γ)2
(dγ − 2(d− 1)− 2)

⇐⇒ d(2− γ)2 > dγ − 2(d− 1)− 2

⇐⇒ d(2− γ)((2− γ) + 1) > 0

⇐⇒ d(2− γ)(3− γ) > 0

which is true.

4.1.4 Tail behaviour for gaseous star

The following result gives detailed estimate for the tail behaviour for gaseous stars,
and hence the boundary behaviour of liquid stars, that is crucial to prove our main
(in)stability result in the next section.

Theorem 4.1.10. Suppose γ < 2d/(d+ 2). Then the gas star tends asymptotically

to the singular star as r →∞. More precisely, there exist c > 0 such that∣∣∣∣∣r 2
2−γ ρ(r)−

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) 1
2−γ
∣∣∣∣∣ = |u1(r)− v∗1| . r−c∣∣∣∣∣r 2

2−γ−dm(r)− 2γ

2− γ

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) γ−1
2−γ
∣∣∣∣∣ = |u2(r)− v∗2| . r−c

Proof. We will work with the dynamical system formulation formulated in the
previous section. From Proposition 4.1.7 and the non-negativity of ρ and m we
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have

0 < v1 ≤
(

2π

d

2− γ
γ

)− 1
2−γ

0 < v2 ≤ 4π

(
d− 2

2− γ

)−1(
2π

d

2− γ
γ

)− 1
2−γ

We will show that there exist ε′ > 0 and T ∈ R such that v1(τ) ≥ ε′ for all τ ≥ T .
By Proposition 4.1.8 we have v1(τ) ∼ e2τ/(2−γ)ρ(0) as τ → −∞. So for ε > 0

small enough, we can find τ1 ∈ R such that v1(τ1) = ε and v1(τ1 + δ) > ε for small
δ > 0. If v1(τ) > ε for all τ > τ1 then we are done. Otherwise there exist a least
τ2 > τ1 such that v1(τ2) = ε. Since F1(ε, v2(τ1)) > 0, from the expression of F1

we see that F1(ε, y) > 0 for all y ∈ [0, v2(τ1)]. So we must have v2(τ2) > v2(τ1).
We must have F1(ε, v2(τ2)) ≤ 0. We claim that there exist τ3 ≥ τ2 such that
F1(v(τ3)) = 0. Suppose no such point exist, then F1(v(τ)) < 0 for all τ ≥ τ2, in
other words

1

γ
v1(τ)2−γv2(τ) >

2

2− γ
v1(τ) for all τ ≥ τ2. (4.4)

We will show that this is impossible. Using (4.4) we have for all τ ≥ τ2

F2(v(τ)) = 4πv1(τ)−
(
d− 2

2− γ

)
v2(τ) < 4πε−

(
d− 2

2− γ

)
εγ−1 2γ

2− γ
.

By choosing ε small enough, we can make F2(v(τ)) less than a fix strictly negative
number for all τ ≥ τ2. This means v2(τ)→ 0 as τ →∞.

i. When γ = 1, (4.4) gives v2(τ) > 2 for all τ ≥ τ2. This is a contradiction.

ii. When γ > 1, (4.4) gives

(
2− γ

2γ
v2(τ)

) 1
γ−1

> v1(τ) for all τ ≥ τ2.

So for all τ ≥ τ2 we have

dv2

dτ
= 4πv1 −

(
d− 2

2− γ

)
v2

< 4π

(
2− γ

2γ
v2

) 1
γ−1

−
(
d− 2

2− γ

)
v2

∼ −
(
d− 2

2− γ

)
v2 as v2 → 0.
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So we must have

|v1(τ)| → 0 as τ →∞

|v2(τ)| = O(e−(d− 2
2−γ )τ ) as τ →∞.

In other words we have

|u1(r)| → 0 as r →∞

|u2(r)| = O(r−(d− 2
2−γ )) as r →∞.

The Pohozaev integral gives

2π
γ − 1

γ

(
2− 2− γ

γ
d

)∫ r

0

ρ(y)γyd−1dy

≥ 1

2
(d− 2)w′(r)w(r)rd−1

= −1

2

γ − 1

γ
(d− 2)u1(r)γ−1u2(r)rd−

2
2−γ−2 γ−1

2−γ

→ 0 as r →∞

but the LHS of the equation becomes more and more negative as r →∞. This
is a contradiction

Therefore we have τ3 ≥ τ2 such that F1(v(τ3)) = 0 and F2(v(τ3)) < 0. From the
expression for F we see that F1(v1(τ3), x) ≥ 0 for all x ∈ [0, v2(τ3)]. Let τ0 ≤ τ1

be the point such that v1(τ0) = v1(τ3). Since F1(v(τ0)) > 0 and F1(v(τ3)) = 0, we
see from the expression of F that we must have v2(τ3) > v2(τ0). Hence for τ > τ3,
v(τ) stays in the region bounded by the arc v([v0, v3]) and the line {(v1(τ3), x) :

x ∈ [v2(τ0), v2(τ3)]}. Hence T = τ3 works.

So {v(τ) : τ ≥ T} lies in a compact set within the region v1 > ε/2 where F is
C1. This means its ω-limit set is non-empty, compact and connected by a standard
result in dynamical systems. By the Poincaré-Bendixson theorem, the ω-limit set
must be either

(a) {v∗};

(b) a periodic orbit;

(c) homoclinic obits connecting v∗.

But by Bendixson-Dulac theorem, there is no periodic orbits in (0,∞)×(0,∞)
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since on this region

∇ ·
(

1

v2−γ
1

F(v)

)
= 2

γ − 1

2− γ
v
−(2−γ)
1 −

(
d− 2

2− γ

)
v
−(2−γ)
1

= −
(
d− 2γ

2− γ

)
v
−(2−γ)
1 < 0

where we note that

d >
2γ

2− γ
⇐⇒ γ <

2d

d+ 2
.

Since v∗ is (exponentially) stable, the ω-limit set cannot have homoclinic orbits
connecting v∗ either. So the ω-limit set of v must be {v∗}. So v(τ)→ v∗ as τ →
∞. Since the fixed point v∗ is exponentially stable, we have ‖v(τ) − v∗‖ . e−cτ

for some c > 0. Converting to the variable r gives us the desired result.

Corollary 4.1.11. Suppose γ < 2d/(d + 2). Let ρ be a gaseous steady state and

ρκ(r) = κρ(κ1−γ/2r). Then there exist c > 0 such that∣∣∣∣∣r 2
2−γ ρκ(r)−

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) 1
2−γ
∣∣∣∣∣ =

∣∣∣r 2
2−γ ρκ(r)− v∗1

∣∣∣
. (κ1−γ/2r)−c∣∣∣∣∣r 2

2−γ−dmκ(r)−
2γ

2− γ

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) γ−1
2−γ
∣∣∣∣∣ =

∣∣∣r 2
2−γ−dmκ(r)− v∗2

∣∣∣
. (κ1−γ/2r)−c

Proof. Using the last theorem we have∣∣∣r 2
2−γ ρκ(r)− v∗1

∣∣∣ =
∣∣∣(κ1−γ/2r)

2
2−γ ρ(κ1−γ/2r)− v∗1

∣∣∣ . (κ1−γ/2r)−c.

We have

mκ(r) = 4π

∫ r

0

yd−1ρκ(y)dy = 4πκ1−(d−1)(1−γ/2)

∫ r

0

(κ1−γ/2y)d−1ρ(κ1−γ/2y)dy

= 4πκ1−d(1−γ/2)

∫ κ1−γ/2r

0

zd−1ρ(z)dz = κ1−d(1−γ/2)m(κ1−γ/2r)

So using the last theorem we have∣∣∣r 2
2−γ−dmκ(r)− v∗2

∣∣∣ =
∣∣∣(κ1−γ/2r)

2
2−γ−dm(κ1−γ/2r)− v∗2

∣∣∣ . (κ1−γ/2r)−c.
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Corollary 4.1.12. Suppose γ < 2d/(d + 2). Let ρ be a gaseous steady state and

ρκ(r) = κρ(κ1−γ/2r). Then the liquid star ρκ has radius

Rκ → R∞ := (v∗1)1−γ/2 =

(
1

2π

−dγ2 + 2(d− 1)γ

(2− γ)2

) 1
2

as κ→∞.

Proof. From the last theorem, we have∣∣∣∣∣ρ−1

(
1

κ

) 2
2−γ 1

κ
− v∗1

∣∣∣∣∣ . ρ−1

(
1

κ

)−c
→ 0 as κ→∞.

So we have

Rκ = κ−(1−γ/2)ρ−1(1/κ) =

(
ρ−1

(
1

κ

) 2
2−γ 1

κ

)1−γ/2

→ (v∗1)1−γ/2 as κ→∞.

4.2 Linear stability for radially symmetric perturba-
tions

4.2.1 Equations with spherical symmetry

Assuming spherical symmetry, so that u(r, t) = u(r, t)r̂, the continuity equation
∂tρ+∇ · (ρu) = 0 becomes

0 = ∂tρ+∇ · (ρu) = ∂tρ+ ρu∇ · r̂ + r̂ · ∇(ρu)

= ∂tρ+ (d− 1)ρu
1

r
+ r̂ · ∂r(ρu)∇r

= ∂tρ+ (d− 1)ρu
1

r
+ ∂r(ρu) = Dtρ+ ρ

(
(d− 1)u

1

r
+ ∂ru

)
= Dtρ+ ρ

∂r(r
d−1u)

rd−1
. (4.5)

The momentum equation (1.1) reads

0 = ρ
Du

Dt
+∇p+ ρ∇φ = ρ(∂tur̂ + (ur̂ · ∇)(ur̂)) + (∂rp)r̂ + ρ(∂rφ)r̂

= ρ(∂tur̂ + u∂r(ur̂)) + (∂rp)r̂ + ρ(∂rφ)r̂
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4.2. Linear stability for radially symmetric perturbations

= (ρ(∂tu+ u∂ru+ ∂rφ) + ∂rp) r̂

So the momentum equation is

Dtu+ ∂rφ+
1

ρ
∂rp = ∂tu+ u∂ru+ ∂rφ+

1

ρ
∂rp = 0.

The Poisson equation reads

4πρ = ∆φ = ∇ · ((∂rφ)r̂) = (∂rφ)
d− 1

r
+ ∂2

rφ =
1

rd−1
∂r(r

d−1∂rφ)).

We can put this into the momentum equation to get

∂tu+ u∂ru+
4π

rd−1

∫ r

0

sd−1ρ(s)ds+
1

ρ
∂rp = 0. (4.6)

4.2.2 Equations in Lagrangian coordinates

Let η(y, t) be the (radial) location of the fluid particle that was at η0(y) at time 0. η
is given by

∂tη = u ◦ η with η(y, 0) = η0(y)

where u ◦ η(y, t) = u(η(y, t), t). The spacial domain is then fixed for all time as
[0, R] := η−1

0 ({r : rr̂ ∈ Ω0}). We then have the Lagrangian variables

v = u ◦ η (Lagrangian velocity)

f = ρ ◦ η (Lagrangian density)

ψ = φ ◦ η (Lagrangian potential)

We have for any h,

∂y(h ◦ η) = ((∂rh) ◦ η)∂yη and so (∂rh) ◦ η = (∂yη)−1∂y(h ◦ η).

∂t(h ◦ η) = (∂th) ◦ η + ((∂rh) ◦ η)∂tη = (Dth) ◦ η.

Let

J =
ηd−1

yd−1
∂yη =

1

dyd−1
∂y(η

d).

Then

∂tJ =
1

dyd−1
∂y(dη

d−1∂tη) =
1

yd−1

(
(d− 1)ηd−2v∂yη + ηd−1∂yv

)
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=
1

yd−1

(
(d− 1)ηd−2v∂yη + ηd−1((∂ru) ◦ η)∂yη

)
= (d− 1)J

v

η
+ J((∂ru) ◦ η) = J

(
∂r(r

d−1u)

rd−1

)
◦ η

So the continuity equation (4.5) in Lagrangian is

0 = ∂tf + f
∂tJ

J
and so ∂t ln(fJ) = 0 and so fJ = f0J0.

The Poisson equation is

4πf =
1

ηd−1∂yη
∂y

(
ηd−1

∂yη
∂yψ

)
.

And so

1

∂yη
∂yψ =

4π

dηd−1

∫ y

0

f(s)∂yη
d(s)ds =

4π

ηd−1

∫ y

0

sd−1(f0J0)(s)ds.

And the momentum equation (4.6) is

0 = ∂tv +
1

∂yη
∂yψ +

1

f∂yη
∂yf

γ

= ∂2
t η +

4π

ηd−1

∫ y

0

sd−1(f0J0)(s)ds+
1

f0J0

ηd−1

yd−1
∂y

(
f0J0

dyd−1

∂yηd

)γ

4.2.3 The eigenvalue problem for the linear stability of steady
states

Let ρ̄ be a Lane–Emden steady state solution. Before formulating the stability
problem, we must first make the use of the labelling gauge freedom and fix the
choice of f0J0 for the general perturbation to be exactly identical to the background
enthalpy ρ̄, or equivalently (ρ0 ◦ η0)(η0/y)d−1η′0 = ρ̄ on the initial domain [0, R].
By a result of Dacorogna-Moser [10] and similarly to [20, 21] there exists a choice
of an initial bijective map η0 : [0, R] → supp ρ0 so that this holds true. Then our
equation becomes

∂2
t η +

4π

ηd−1

∫ y

0

sd−1ρ̄(s)ds+
1

ρ̄

ηd−1

yd−1
∂y

(
ρ̄
dyd−1

∂yηd

)γ
= 0. (4.7)

Since ρ̄ is a steady state solution, we have

4π

yd−1

∫ y

0

sd−1ρ̄(s)ds+
1

ρ̄
∂yρ̄

γ = 0.
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4.2. Linear stability for radially symmetric perturbations

To study linear stability, we linearised the equation about the steady state as
follows.

Proposition 4.2.1 (Linearised momentum equation for perturbation). Let η(y, t) =

y correspond to the steady state solution ρ = ρ̄. Consider a perturbation of this

given by η(y, t) = y(1 + ζ(y, t)). Then the perturbation variable ζ(y, t) satisfies,

to first order,

y∂2
t ζ +

2(d− 1)

ρ̄
ζ∂yρ̄

γ − γ 1

ρ̄
∂y (ρ̄γ(dζ + y∂yζ)) = 0

dζ(R, t) +R∂yζ(R, t) = 0.

Furthermore, if ζ(y, t) = eλtχ(y), then χ satisfies

−γ∂y(ρ̄γyd+1∂yχ) + (2(d− 1)− dγ)ydχ∂yρ̄
γ︸ ︷︷ ︸

:=Lχ

= −λ2yd+1ρ̄χ (4.8)

dχ(R) +R∂yχ(R) = 0. (4.9)

Proof. We have η(y, t) = y(1 + ζ(y, t)), so

∂yη = 1 + ζ + y∂yζ.

Assuming ζ and ∂yζ is small, we have

ηd−1 = yd−1(1 + (d− 1)ζ + o(ζ))

η−(d−1) = y−(d−1)(1− (d− 1)ζ + o(ζ))

∂yη
d = dηd−1∂yη = dyd−1(1 + (d− 1)ζ + o(ζ))(1 + ζ + y∂yζ)

= dyd−1(1 + dζ + y∂yζ + o(|ζ|+ |∂yζ|))

(∂yη
d)−γ = (dyd−1)−γ (1− γ(dζ + y∂yζ) + o(|ζ|+ |∂yζ|))

So the momentum equation (4.7) is

0 = y∂2
t ζ +

4π

yd−1
(1− (d− 1)ζ)

∫ y

0

sd−1ρ̄(s)ds

+
1

ρ̄
(1 + (d− 1)ζ)∂y (ρ̄γ(1− γ(dζ + y∂yζ))) + o(|ζ|+ |∂yζ|).

Discarding non-linear terms and simplify we get the linearised momentum equation

0 = y∂2
t ζ +

2(d− 1)

ρ̄
ζ∂yρ̄

γ − γ 1

ρ̄
∂y (ρ̄γ(dζ + y∂yζ)) .
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For solutions of the form ζ(y, t) = eλtχ(y), we have that χ satisfies

0 = λ2yρ̄χ+ 2(d− 1)χ∂yρ̄
γ − γ∂y (ργ(dχ+ y∂yχ))

= λ2yρ̄χ+ (2(d− 1)− dγ)χ∂yρ̄
γ − γy(∂yχ)∂yρ

γ − γργ∂y(dχ+ y∂yχ)

= λ2yρ̄χ+ (2(d− 1)− dγ)χ∂yρ̄
γ − γ

yd
∂y(ρ̄

γyd+1∂yχ)

So we want to solve a Sturm-Liouville type equation

λ2yd+1ρ̄χ = γ∂y(ρ̄
γyd+1∂yχ)− (2(d− 1)− dγ)ydχ∂yρ̄

γ =: −Lχ

Since fJ = f0J0 = ρ̄ and f(R) = ρ̄(R) = 1, we have J(R) = 1. Now

J =
ηd−1

yd−1
∂yη = (1 + ζ)d−1∂y(y(1 + ζ)) = (1 + ζ)d−1(1 + ζ + y∂yζ)

= 1 + dζ + y∂yζ + o(|ζ|+ |∂yζ|).

Discarding the non-linear terms and evaluating at R we get a Robin type boundary
condition dζ(R) +R∂yζ(R) = 0. In terms of χ this condition reads

dχ(R) +R∂yχ(R) = 0.

In this chapter, we say the system is linearly unstable to mean that the linearised
equation admits an growing mode solution of the form ζ(y, t) = eλtχ(y) with
λ > 0. Otherwise we call the system linearly stable.

Given χ1, χ2 ∈ C2([0, R]) satisfying the boundary condition (4.9), under the
usual L2 inner product, we have using integration by parts

〈Lχ1, χ2〉 =

∫ R

0

γρ̄γyd+1(∂yχ1)(∂yχ2) + (2(d− 1)− dγ)ydχ1χ2∂yρ̄
γdy

− γρ̄(R)γRd+1χ2(R)∂yχ1(R)

= −
∫ R

0

χ1γ∂y(ρ̄
γyd+1∂yχ2)− (2(d− 1)− dγ)ydχ1χ2∂yρ̄

γdy

− γρ̄(R)γRd+1(χ2(R)∂yχ1(R)− χ1(R)∂yχ2(R))

= 〈χ1, Lχ2〉

So L is symmetric under C2([0, R]) functions satisfying the (4.9). Note that in
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4.2. Linear stability for radially symmetric perturbations

particular

〈Lχ, χ〉 =

∫ R

0

γρ̄γyd+1(∂yχ)2 + (2(d− 1)− dγ)ydχ2∂yρ̄
γdy + dγRdχ(R)2.

(4.10)

Define the bilinear form

Q[χ1, χ2] =

∫ R

0

γρ̄γyd+1(∂yχ1)(∂yχ2) + (2(d− 1)− dγ)ydχ1χ2∂yρ̄
γdy

+ dγRdχ1(R)χ2(R).

Note that this equation is well defined for spherically symmetric functions in
H1(BR(Rd+2)), where we consider y the radial variable, because 1) the trace theo-
rem for Sobolev space which meant that χ(R) is well defined; and 2) the fact that
∂yρ̄

γ ∼ y which means the the integral was weighted by ∼ yd+1.

We want to solve Lχ = −λ2yd+1ρ̄χ on [0, R] with the boundary condition
dχ(R) + R∂yχ(R) = 0. If there exist a negative eigenvalue µ = −λ2 < 0, the we
found a growing mode of the original linearised problem, so the system is unstable.
So we want to find the smallest eigenvalue µ. The following lemma help to make
a criterion for finding µ in terms of the quadratic form Q.

Lemma 4.2.2. Let H1
r (BR(Rd+2)) denote the subspace of spherically symmetric

functions in H1(BR(Rd+2)). We consider functions in H1
r (BR(Rd+2)) to be func-

tions of one variable defined by radial distance y ∈ [0, R]. In this space we have

inf
‖χ‖

yd+1ρ̄
=1
〈Lχ, χ〉L2([0,R]) =: µ∗ = inf{µ : ∃χ 6= 0 s.t. Lχ = µyd+1ρ̄χ}

where ‖χ‖2
w = 〈χ,wχ〉L2([0,R]). Moreover, the infimum is attained by some χ∗ ∈

H1
r (Rd+2) which is an eigenfunction of L with eigenvalue µ∗.

Proof. It is clear that

µ∗ = inf
‖χ‖

yd+1ρ̄
=1
〈Lχ, χ〉 ≤ inf{µ : ∃χ 6= 0 s.t. Lχ = µyd+1ρ̄χ}.

To prove equality, it suffice then to prove that µ∗ is an eigenvalue of L.

Pick χn with ‖χn‖yd+1ρ̄ = 1 such that 〈Lχn, χn〉 → inf‖χ‖
yd+1ρ̄

=1〈Lχ, χ〉.
Since ∫ R

0

ydχ2
n∂yρ̄

γdy ∼ ‖χn‖yd+1ρ̄ = 1,
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Chapter 4. Linear stability of liquid Lane-Emden stars

and the first and last term in (4.10) are positive, inf‖χ‖
yd+1ρ̄

=1〈Lχ, χ〉 is finite. Now

‖∂yχn‖2
L2(BR(Rd+2)) .

∫ R

0

γρ̄γyd+1(∂yχn)2dy + dγRdχn(R)2

= 〈Lχn, χn〉 − (2(d− 1)− dγ)

∫ R

0

ydχ2∂yρ̄
γdy

. |〈Lχn, χn〉|+ ‖χn‖yd+1ρ̄.

And obviously
‖χn‖L2(BR(Rd+2)) . ‖χn‖yd+1ρ̄.

Hence χn is bounded in H1(BR(Rd+2)). Wlog, picking an appropriate
subsequence, we can assume χn converge weakly to some χ∗. By the
Rellich-Kondrachov theorem, χn → χ in L2(BR(Rd+2)). It follows that
‖χ∗‖yd+1ρ̄ = 1 By the lower semi-continuity of weak convergence, we have
lim inf ‖χn‖H1(BR(Rd+2)) ≥ ‖χ∗‖. Since ‖χn‖L2(BR(Rd+2)) → ‖χ∗‖L2(BR(Rd+2)),
we must have

lim inf ‖∂yχn‖2
L2(BR(Rd+2)) ≥ ‖∂yχ∗‖

2
L2(BR(Rd+2)).

Since ‖ · ‖yd+1ρ̄ is an (equivalent) norm for L2(BR(Rd+2)), we have

lim inf

∫ R

0

γρ̄γyd+1(∂yχn)2dy ≥
∫ R

0

γρ̄γyd+1(∂yχ∗)
2dy.

Since the trace operator T is continuous and linear, we also have Tχn ⇀ Tχ∗ and
so by the lower semi-continuity of weak convergence, lim inf χn(R)2 ≥ χ∗(R)2.
It follows that 〈Lχ∗, χ∗〉 ≤ inf‖χ‖

yd+1ρ̄
=1〈Lχ, χ〉, and that means we must have

equality and the infimum is attained.

For any f we must have

0 =
d
dε

(
Q[χ∗ + εf, χ∗ + εf ]

〈χ∗ + εf, χ∗ + εf〉yd+1ρ̄

)∣∣∣∣
ε=0

=
d
dε

(
Q[χ∗, χ∗] + 2εQ[χ∗, f ] + ε2Q[f, f ]

〈χ∗, χ∗〉yd+1ρ̄ + 2ε〈χ∗, f〉yd+1ρ̄ + ε2〈f, f〉yd+1ρ̄

)∣∣∣∣
ε=0

=
2Q[χ∗, f ]

〈χ∗, χ∗〉yd+1ρ̄

−
2Q[χ∗, χ∗]〈χ∗, f〉yd+1ρ̄

〈χ∗, χ∗〉2yd+1ρ̄

and so Q[χ∗, f ] = µ∗〈χ∗, f〉yd+1ρ̄. Hence χ∗ is a weak solution to Lχ = µ∗χ.
By elliptic regularity, χ∗ is smooth on (0, R], and so the weak solution is in fact
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4.2. Linear stability for radially symmetric perturbations

a classical solution. Therefore χ∗ is in fact an eigenfunction of L with eigenvalue
µ∗.

From this we get the linear stability criterion in terms of whether the quadratic
form Q is non-negative definite.

Proposition 4.2.3. If 〈Lχ, χ〉 ≥ 0 for all χ, then the corresponding liquid Lane-

Emden star is linearly stable under radial perturbations. And if there exist χ such

that 〈Lχ, χ〉 < 0, then it must be linearly unstable.

Proof. If there exist χ such that 〈Lχ, χ〉 < 0, then by the previous lemma there
exist −µ < 0 and χ∗ such that Lχ∗ = −µyd+1ρ̄χ∗. This, by the last proposition,
means the linearised momentum equation admits a solution of the form ζ(y, t) =

e
√
µtχ∗(y). This grows exponentially in time, and hence the corresponding liquid

Lane-Emden star is linearly unstable. Conversely, if 〈Lχ, χ〉 ≥ 0 for all χ, then no
such growing solutions exist and hence the corresponding liquid Lane-Emden star
is linearly stable under radial perturbations.

4.2.4 (In)stability results

We will now prove our main Theorem 1.3.4 on the (in)stability results for liquid
Lane–Emden stars. This will be split into three theorems below, that together will
established Theorem 1.3.4.

Theorem 4.2.4. The liquid Lane–Emden stars is, against radial perturbations, lin-

early stable when γ ≥ 2(d− 1)/d.

Proof. Since ∂yρ̄γ < 0, if 2(d− 1)− dγ ≤ 0, then it is clear from equation (4.10)
that 〈Lχ, χ〉 > 0 for all χ 6= 0, hence the system must be stable.

When γ < 2(d − 1)/d, the proof of linear stability for stars of small rela-
tive central density require Poincaré-Hardy-type inequalities in the following two
lemmas and proposition.

Lemma 4.2.5. Let v ∈ C1([a, b]), then∫ b

a

|v(z)|2dz .a,b |v(a)|2 +

∫ b

a

|v′(z)|2dz∫ b

a

|v(z)|2dz .a,b |v(b)|2 +

∫ b

a

|v′(z)|2dz.
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Proof. We will prove the second statement, the first is proven in the same way. By
the fundamental theorem of calculus

v(z) = v(b)−
∫ b

z

v′(y)dy.

Using the fact that |x + y|2 ≤ |x|2 + 2|x||y| + |y|2 ≤ 2|x|2 + 2|y|2 and Hölder’s
inequality we have

|v(z)|2 ≤ 2|v(b)|2 + 2

∣∣∣∣∫ b

z

v′(y)dy
∣∣∣∣2 ≤ 2|v(b)|2 + 2(b− z)2

∫ b

z

|v′(y)|2dy.

So ∫ b

a

|v(z)|2dz ≤
∫ b

a

(
2|v(b)|2 + 2(b− a)2

∫ b

z

|v′(y)|2dy
)

dz

≤ 2(b− a)|v(b)|2 + 2(b− a)3

∫ b

a

|v′(y)|2dy.

Lemma 4.2.6. Let a ≥ 2 and 0 < b < c < ∞. Then for any v ∈ C1([0, c]) we

have ∫ b

0

za|v(z)|2dz .a,b,c

∫ c

0

za|v′(z)|2dz +

∫ c

b

za|v(z)|2dz.

Proof. Let φ ∈ C∞([0,∞)) be a decreasing function such that φ(z) = 1 for z ≤ b

and φ(z) = 0 for z ≥ c. First note that integration by parts tells us that∫ c

0

za−1φv(φv)′dz = −
∫ c

0

(a− 1)za−2(φv)2 + za−1(φv)′φv dz.

Using the lemma above, we have∫ b

0

za|φv|2dz =

∫ b

0

∣∣za/2φv∣∣2 dz .c

∫ c

0

∣∣(za/2φv)′
∣∣2 dz

≤ a2

4

∫ c

0

za−2|φv|2dz + a

∫ c

0

za−1φv(φv)′dz +

∫ c

0

za|(φv)′|2dz

≤ 1

4
(a2 − 2a(a− 1))

∫ c

0

za−2|φv|2dz +

∫ c

0

za|(φv)′|2dz

= −1

4
a(a− 2)

∫ c

0

za−2|φv|2dz +

∫ c

0

za|(φv)′|2dz

≤
∫ c

0

za|(φv)′|2dz
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Using the fact that |x+ y|2 ≤ |x|2 + 2|x||y|+ |y|2 ≤ 2|x|2 + 2|y|2 we have∫ b

0

za|v|2dz ≤
∫ b

0

za|φv|2dz .c

∫ c

0

za|(φv)′|2dz =

∫ c

0

za|φ′v + φv′|2dz

≤ 2

∫ c

0

za(|φ′v|2 + |φv′|2)dz

≤ 2‖φ′‖2
∞

∫ c

b

za|v|2dz + 2

∫ c

0

za|v′|2dz.

Proposition 4.2.7. Let a ≥ 2. We have∫ 1

0

za|v(z)|2dz .a

∫ 1

0

za|v′(z)|2dz + |v(1)|2 for all v ∈ C1([0, 1]).

Proof. Using the first of the above two lemmas we have∫ 1

1
2

za|v(z)|2dz ≤
∫ 1

1
2

|v(z)|2dz . |v(1)|2 +

∫ 1

1
2

|v′(y)|2dy

≤ |v(1)|2 + 2a
∫ 1

0

za|v′(z)|2dz

And using the second of the above two lemmas we have

∫ 1
2

0

za|v(z)|2dz .a

∫ 1

0

za|v′(z)|2dz +

∫ 1

1
2

za|v(z)|2dz

but the rightmost term we have already estimated in the right form. Hence we are
done.

With this Poincaré-Hardy-type inequality, we can prove linear stability for stars
of small relative central density (see Definition 1.3.3) when γ < 2(d− 1)/d.

Theorem 4.2.8. Suppose γ < 2(d − 1)/d. There exist ε > 0 such that the liquid

Lane–Emden stars are linearly stable against radial perturbations whenever ρ̄(0)−
1 < ε (i.e. small relative central density, Definition 1.3.3).

Proof. Let z = y/R. Let χ̃(z) = χ(Rz) and ρ̃(z) = ρ̄(Rz). Then (4.10) becomes

〈Lχ, χ〉 =

∫ 1

0

(
γρ̃(z)γ(Rz)d+1 1

R2
∂zχ̃(z)2

+ (2(d− 1)− dγ)(Rz)dχ̃(z)2 1

R
∂zρ̃

γ(z)R

)
dz + dγRdχ̃(1)2
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= Rd

∫ 1

0

(
γρ̃γzd+1(∂zχ̃)2 + (2(d− 1)− dγ)zdχ̃2∂zρ̃

γ
)

dz +Rddγχ̃(1)2.

We know from our derivation of the existence of steady states that

dρ̄γ−1

dy
= −4π

γ − 1

γ

1

yd−1

∫ y

0

rd−1ρ̄(r)dr

≥ −4πρ̄(0)
γ − 1

γ

1

yd−1

∫ y

0

rd−1dr = −4πρ̄(0)
γ − 1

γ

1

d
y

So

∂yρ̄
γ = γρ̄γ−1∂yγ̄ =

γ

γ − 1
ρ̄∂yρ̄

γ−1 ≥ −4π

d
ρ̄(0)2y

∂zρ̃
γ ≥ −R4π

d
ρ̄(0)2(Rz) = −4π

d
ρ̄(0)2R2z.

So when 2(d− 1)− dγ ≥ 0 we have

〈Lχ, χ〉 ≥ Rd

∫ 1

0

(
γzd+1(∂zχ̃)2 − 4π

d
ρ̄(0)2R2(2(d− 1)− dγ)zd+1χ̃2

)
dz

+Rddγχ̃(1)2.

From the decay estimates we have for the steady states we see that R → 0 as
ρ̄(0) ↘ 1. So the above proposition tells us that for small enough relative central
density ρ̄(0)− 1, we have

4π

d
ρ̄(0)2R2(2(d− 1)− dγ)

∫ 1

0

zd+1χ̃2dz < γ

∫ 1

0

zd+1(∂zχ̃)2dz + dγχ̃(1)2

for any χ̃. It follows that we have stability.

Finally, it remains to prove linear instability for stars of large central density
when γ < 2(d− 1)/d.

Theorem 4.2.9. Suppose γ < 2(d− 1)/d and d < 10. There exist C > 0 such that

the liquid Lane–Emden stars are linearly unstable whenever ρ̄(0) > C (i.e. large

central density).

Proof. We deal with three sub-cases individually.

Case 1: γ > 2d/(d+ 2) We saw that the family of gaseous steady states are self-
similar, so that the family is given by ρ̄κ(y) = κρ̄∗(κ

1−γ/2y) where ρ̄∗ is a
steady state. The corresponding liquid star has R = κ−(1−γ/2)ρ̄−1

∗ (1/κ). So

162



4.2. Linear stability for radially symmetric perturbations

ρ̃κ(z) = κρ̄∗(ρ̄
−1
∗ (1/κ)z). With this, (4.10) reads

〈Lκχ, χ〉 = Rdκγ
∫ 1

0

γρ̄∗(ρ̄
−1
∗ (1/κ)z)γzd+1(∂zχ̃)2

+ (2(d− 1)− dγ)ρ̄−1
∗ (1/κ)zdχ̃2(ρ̄γ∗)

′(ρ̄−1
∗ (1/κ)z)dz

+Rddγχ̃(1)2

When γ > 2d/(d + 2), the gaseous steady state ρ̄∗ has compact support.
Then ρ̄−1

∗ (1/κ)→ ρ̄−1
∗ (0) =: R∗ as κ→∞. So∫ 1

0

zd∂zρ̃
γ
κdz = κγ ρ̄−1

∗ (1/κ)

∫ 1

0

zd(ρ̄γ∗)
′(ρ̄−1
∗ (1/κ)z)dz︸ ︷︷ ︸

→R∗
∫ 1
0 z

d(ρ̄γ∗)′(R∗z)dz as κ→∞

by dominated convergence where the integrand is dominated by zd‖(ρ̄γ∗)′‖∞.
So

〈Lκ1, 1〉

= Rd(2(d− 1)− dγ)κγ ρ̄−1
∗ (1/κ)

∫ 1

0

zdχ̃2(ρ̄γ∗)
′(ρ̄−1
∗ (1/κ)z)dz +Rddγ

→ −∞ as κ→∞.

Hence we have instability for large central density.

Case 2: γ = 2d/(d+ 2) From the explicit formula, we have

ργκ(y) = κ
2d
d+2

(
1 +

2π

d2
κ

4
d+2y2

)−d
=

(
κ−

2
d+2 +

2π

d2
κ

2
d+2y2

)−d
∂yρ

γ
κ(y) = −4π

d
κ

2
d+2y

(
κ−

2
d+2 +

2π

d2
κ

2
d+2y2

)−d−1

and
Rκ =

d√
2π
κ−

2
d+2

(
κ

2
d+2 − 1

) 1
2
.

Let χκ(y) = κ
d
d+2χ(κ

1
d+2y). From (4.10) we have

〈Lκχκ, χκ〉

=

∫ Rκ

0

γρ̄γκy
d+1(∂yχκ)

2 + (2(d− 1)− dγ)ydχ2
κ∂yρ̄

γ
κdy + dγRd

κχκ(Rκ)
2

= κ

∫ Rκ

0

2d

d+ 2

(
κ−

2
d+2 +

2π

d2
κ

2
d+2y2

)−d
yd+1χ′(κ

1
d+2y)2dy
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− κ4π

d

(
2(d− 1)− 2d2

d+ 2

)
∫ Rκ

0

yd+1

(
κ−

2
d+2 +

2π

d2
κ

2
d+2y2

)−d−1

χ(κ
1
d+2y)2dy

+ dγκ
d
d+2Rd

κχ(κ
1
d+2Rκ)

2

=
2d

d+ 2

∫ κ
1
d+2Rκ

0

(
κ−

2
d+2 +

2π

d2
z2

)−d
zd+1χ′(z)2dz

− 8π

d

d− 2

d+ 2

∫ κ
1
d+2Rκ

0

(
κ−

2
d+2 +

2π

d2
z2

)−d−1

zd+1χ(z)2dz

+
2d2

d+ 2
κ

d
d+2Rd

κχ(κ
1
d+2Rκ)

2

→ 2d

d+ 2

(
d2

2π

)d ∫ d√
2π

0

z−d+1χ′(z)2dz

− 8π

d

d− 2

d+ 2

(
d2

2π

)d+1 ∫ d√
2π

0

z−d−1χ(z)2dz

+
2d2

d+ 2

(
d2

2π

) d
2

χ

(
d√
2π

)2

as κ→∞

Let χ(z) = 1, then we see that 〈Lκχκ, χκ〉 → −∞ as κ → ∞. Hence we
have instability.

Case 3: γ < 2d/(d+ 2) From (4.10) we have

〈Lκχ, χ〉

=

∫ Rκ

0

γρ̄γκy
d+1(∂yχ)2 + (2(d− 1)− dγ)ydχ2∂yρ̄

γ
κdy + dγRd

κχ(Rκ)
2

=

∫ Rκ

0

γρ̄γκy
d+1(∂yχ)2 − (2(d− 1)− dγ)yχ2m̄κρ̄κdy + dγRd

κχ(Rκ)
2.

Fix δ > 0, and suppose χ is constant on [0, ε]. Then we have

〈Lκχ, χ〉

≤
∫ Rκ

ε

γρ̄γκy
d+1(∂yχ)2 − (2(d− 1)− dγ)yχ2m̄κρ̄κdy + dγRd

κχ(Rκ)
2

→
∫ R∞

ε

γ(v∗1)γyd+1− 2γ
2−γ (∂yχ)2 − (2(d− 1)− dγ)yd+1− 4

2−γχ2v∗2v
∗
1dy

+ dγRd
∞χ(R∞)2

= γ(v∗1)γ
∫ R∞

ε

yd+1− 2γ
2−γ (∂yχ)2 − 2

(
d− 2

2− γ

)
yd−

2+γ
2−γχ2dy
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+ dγRd
∞χ(R∞)2

as κ→∞. Let χ(y) = ε−a ∧ y−a. Then

γ(v∗1)γ
∫ R∞

ε

yd+1− 2γ
2−γ (∂yχ)2 − 2

(
d− 2

2− γ

)
yd−

2+γ
2−γχ2dy + dγRd

∞χ(R∞)2

= γ(v∗1)γ
(
a2 − 2

(
d− 2

2− γ

))∫ R∞

ε

yd−
2+γ
2−γ−2ady + dγRd−2a

∞

Let a = 1
2
(d− 2γ

2−γ ) so that d− 2+γ
2−γ − 2a = −1. By choosing ε small enough

we can make the integral large enough in magnitude. So if we have instability
if (

a2 − 2

(
d− 2

2− γ

))
< 0.

We have

(d/2− a) (2− γ) = γ ⇐⇒ γ =
d− 2a

1 + d/2− a

So the above condition is

0 > a2 − 2 (d− (1 + d/2− a)) = a2 − 2a− (d− 2)

By definition a ≤ 1
2
(d− 2), so it suffice to have

a2 − 2a− (d− 2) ≤ a2 − 4a < 0

a2 − 4a is negative when a ∈ (0, 4). Hence we are done if 1
2
(d− 2) < 4, or

equivalently d < 10.

This completes the proof of Theorem 1.3.4.
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Appendix A

Goldreich-Weber stars appendix

A.1 Differentiation and commutation properties

Here we first collect some standard results on how derivatives interact with J and
A, which can be found for example in [33]. After that we state various derivative
commutators frequently used in the article.

Lemma A.1.1. Recall notations defined in Definition 1.4.2. We have

Ai
j − I ij = −Ai

k∂jθ
k

∂•J= JAl
m∂•∂lθ

m

∂•A
i
j = −Ai

mA
l
j∂•∂lθ

m

Proof. Since A= (∇ξ)−1, we have

I ij = Ai
k∂jξ

k = Ai
k(I

k
j + ∂jθ

k).

It can be proven that if U : t 7→ U(t) is a differentiable map of invertible square
matrices, then

i.
d detU

dt
= det(U)ρ̃

(
U−1 dU

dt

)
;

ii.
dU−1

dt
= −U−1 dA

dt
U−1.

Using i. we get ∂•J = JAki ∂•∂kη
i, and using ii. we get ∂•Aij = −Aik(∂•∂lηk)Alj .

Converting to Aand Jby tracing the definition and keeping track of the factors of
λ, we get the stated formulas.

We commonly use various commutation properties between the Cartesian, ra-
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dial, angular derivatives, and their Lagrangian counterparts.

Lemma A.1.2 (Commutation relations). We have the following commutation rela-

tions

[Xr,∇] = −∇

[Xr,x] = x

[/∂i, ∂j] = −εijk∂k
[/∂i, x

j] = −εijkxk

[Xr,K] = 2K

[/∂i,K] = 0

[∂s,A∂j] = −(A∂j∂sθ
m)A∂m

[∇,A∂j] = −(A∂j∇θm)A∂m

[Xr,A∂j] = −(Al
jXr∂lθ

m)A∂m −A∂j

[/∂i,A∂j] = −(Al
j/∂i∂lθ

m)A∂m − εiklAk
j ∂l

[Xr, /∂i] = 0

[/∂i, /∂i′ ] = −/∂ii′ .

Proof. We have

[Xr, ∂j] = xi∂i∂j − ∂jxi∂i = −∂j
[Xr, x

j] = xi∂ix
j − xjxi∂i = xj

[/∂i, ∂j] = εilkx
l∂k∂j − εilk∂jxl∂k = −εijk∂k

[/∂i, x
j] = εilkx

l∂kx
j − εilkxjxl∂k = εiljx

l

[∂s,A∂j] = ∂sA
i
j∂i −Ai

j∂i∂s = −Ai
mA

l
j(∂l∂sθ

m)∂i

[∂i,A∂j] = ∂iA
k
j ∂k −Ak

j ∂k∂i = −Ak
mA

l
j(∂l∂iθ

m)∂k

[Xr,A∂j] = Xr(A
k
j ∂k)−Ak

j ∂kXr = −(Ak
mA

l
jXr∂lθ

m)∂k + Ak
jXr∂k −Ak

j ∂kXr

= −(Ak
mA

l
jXr∂lθ

m)∂k −Ak
j ∂k

[/∂i,A∂j] = /∂i(A
k
j ∂k)−Ak

j ∂k/∂i = −(Ak
mA

l
j/∂i∂lθ

m)∂k + Ak
j /∂i∂k −Ak

j ∂k/∂i

= −(Al
j/∂i∂lθ

m)A∂m − εiklAk
j ∂l

[Xr, /∂i] = εijkx
l∂l(x

j∂k)− εijkxj∂k(xl∂l)

= εijk
(
δjl x

l∂k + xlxj∂l∂k − δlkxj∂l − xjxl∂k∂l
)

= εijk
(
xj∂k − xj∂k

)
= 0

[/∂i, /∂i′ ] = εijkεi′j′k′
(
xj∂k(x

j′∂k′)− xj
′
∂k′(x

j∂k)
)
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= εijkεi′j′k′
(
δj
′

k x
j∂k′ − δjk′x

j′∂k

)
= εijkεi′kk′x

j∂k′ − εik′kεi′j′k′xj
′
∂k = εkijεkk′i′x

j∂k′ − εk′kiεk′i′j′xj
′
∂k

= (δik′δji′ − δii′δjk′)xj∂k′ − (δki′δij′ − δkj′δii′)xj
′
∂k

= xi
′
∂i − xi∂i′ = −/∂ii′

K(x · ∇g)(y) = −
∫

x · ∇g(x)

|y − x|
dx =

∫ (
g(x)∇ · x
|y − x|

+ g(x)x · ∇x
1

|y − x|

)
dx

=

∫ (
3g(x)

|y − x|
+ g(x)x · y − x

|y − x|3

)
dx

=

∫ (
2g(x)

|y − x|
+ g(x)y · y − x

|y − x|3

)
dx

= −2Kg + y · ∇Kg

K(/∂ig)(y) = −
∫
εijkx

j∂kg(x)

|y − x|
dx =

∫
g(x)εijkx

j y
k − xk

|y − x|3
dx

=

∫
g(x)εijkx

j yk

|y − x|3
dx =

∫
g(x)εijky

j −xk

|y − x|3
dx

=

∫
g(x)εijky

j y
k − xk

|y − x|3
dx = (/∂iKg)(y).

A.2 Spherical harmonics

Spherical harmonics has a real as well as complex version. For the definition and
basic properties of the complex version, see [29]. The relation between complex
spherical harmonics Y m

l : S2 → C and real spherical harmonics Ylm : S2 → R
are

Y m
l =


1√
2
(Yl,−m − iYlm) m < 0

Yl0 m = 0

(−1)m√
2

(Ylm + iYl,−m) m > 0

We also have the relation (Y m
l )∗ = (−1)mY −ml . The zeroth and first order real

spherical harmonics are given by

Y0,0(x) =
1√
4π
, Y1,−1(x) =

√
3

4π

x2

|x|
,

Y1,0(x) =

√
3

4π

x3

|x|
, Y1,1(x) =

√
3

4π

x1

|x|
.
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The spherical harmonics satisfy the following orthonormal conditions∫
S2

YlmYl′m′dS = δll′δmm′ =

∫
S2

Y m
m (Y m′

l′ )∗dS

and they form a basis for L2(S2) [1] so that, in particular, any function g ∈ L2(S2)

has a spherical harmonics expansion

g =
∞∑
l=0

l∑
m=−l

glmYlm, glm ∈ R

that converge in L2(S2). More generally, a function g ∈ L2(BR) has a spherical
harmonics expansion in L2(BR),

g =
∞∑
l=0

l∑
m=−l

glm(r)Ylm, glm : [0, R]→ R. (A.1)

Indeed, since L2(BR) = L2([0, R];L2(S2), r2) = L2([0, R];L2(∂Br)), or in other
words ∫

BR

| · | dx =

∫ R

0

∫
∂Br

| · | dSdr,

g|∂Br must be in L2(∂Br) for almost every r ∈ [0, R]. So a spherical harmonics
expansion exist for almost every r. Now∥∥∥∥∥g −

N∑
l=0

l∑
m=−l

glmYlm

∥∥∥∥∥
2

L2(BR)

=

∫ R

0

∥∥∥∥∥g −
N∑
l=0

l∑
m=−l

glmYlm

∥∥∥∥∥
2

L2(∂Br)

dr

→ 0 as N →∞

by dominated convergence theorem (where the dominating function is
4‖g‖2

L2(∂Br)
). Hence (A.1) converge in L2(BR). Similarly, functions in

L2(BR, w̄
−2) and L2(R3) have a spherical harmonics expansion.

The following lemma allows us to expand gravitational potentials in spherical
harmonics.

Lemma A.2.1. For x,y ∈ R3 we have

1

|x− y|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Ylm(y)Ylm(x)

and this expression converge uniformly for (x,y) in any compact set in {(r, r′) ∈
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R6 : |r| 6= |r′|}.

Proof. From [29] we have

1

|x− y|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Y m
l (y)∗Y m

l (x)

One derivation of this formula is as follows. Assume r′ = |r′| < |r| = r, otherwise
swap r′ and r. By the law of cosines,

1

|r− r′|
=

1√
r2 + (r′)2 − 2rr′ cos γ

=
1

r
√

1 + h2 − 2h cos γ
with h :=

r′

r
.

We find here the generating function of the Legendre polynomials P`(cos γ):

1√
1 + h2 − 2h cos γ

=
∞∑
`=0

h`P`(cos γ). (A.2)

Use of the spherical harmonic addition theorem

P`(cos γ) =
4π

2`+ 1

∑̀
m=−`

(−1)mY −m` (θ, ϕ)Y m
` (θ′, ϕ′)

gives our first formula. Since |P`(cos γ)| ≤ 1 for all `, the power series in (A.2) has
radius of convergence 1, and uniform convergence for any compact set in B1. By
Identity theorem for analytic functions, the equality of (A.2) holds for h < 1. We
thus conclude that the expansion for |r− r′|−1 converge uniformly on any compact
set in {(r, r′) ∈ R6 : |r| 6= |r′|}. Moreover, in real spherical harmonics,

1

|x− y|

= 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Y m
l (y)∗Y m

l (x)

= 4π
∞∑
l=0

l∑
m=−l

(−1)m

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Y −ml (y)Y m

l (x)

= 4π
∞∑
l=0

l∑
m=1

1

2

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
(Yl,m(y)− iYl,−m(y))(Ylm(x) + iYl,−m(x))

+ 4π
∞∑
l=0

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Yl0(y)Yl0(x)
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+ 4π
∞∑
l=0

−1∑
m=−l

1

2

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
(Yl,−m(y) + iYlm(y))(Yl,−m(x)− iYlm(x))

= 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

min{|x|, |y|}l

max{|x|, |y|}l+1
Ylm(y)Ylm(x)

There also exist a vectorial version of spherical harmonics which allow the
expansion of L2 vector fields, details can be found in [2, 14].

A.3 Hardy-Poincaré inequality and embeddings

Here we will state and prove a version of the Hardy-Poincaré inequality and the
embedding theorems, which are important for our analysis.

DenoteBR = BR(Rm) the ball of radiusR in Rm, and L2(BR, w) the L2 space
on BR weighted by w. Denote d∂BR the distance function to ∂BR.

Theorem A.3.1 (Hardy-Poincaré inequality). Let R > 0 and k ≥ 0. For any

θ ∈ H1
loc(BR(Rm)) we have

‖θ − θB(m−1)R/m
‖L2(BR,d

k
∂BR

) . ‖∇θ‖L2(BR,d
k+2
∂BR

), (A.3)

where θBr denotes the average of θ on Br.

Proof. Using only the standard Poincaré inequality and elementary methods, we
will provide here a proof for the case k > 0. However, in this thesis we also used
the case k = 0. A slightly different version of the case k = 0 was first proven in [3]
which makes use of the Hardy inequality. A proof of the k = 0 case for the version
here (and a more general form) can be found in [12] by Drelichman and Durán, the
proof of which (with very slight modification) will work for the k = 0 as well as
the k > 0 case.

It suffice to show this for θ ∈ C1(B̄R) since C1(B̄R) is dense in the
type of Sobolev spaces we are considering [35]. In particular we can assume
lim|x|→R θ(x)d∂BR(x)(k+1)/2 = 0 for integration by parts later.

Let w be a smooth function on BR such that d∂BR . w . d∂BR and w = d∂BR
on BR \B(m−1)R/m. Let G = θwk/2. Then∫

BR

|∇θ|2wk+2dx =

∫
BR

|∇(w−k/2G)|2wk+2dx
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=

∫
BR

|w−k/2∇G− k

2
Gw−k/2−1∇w|2wk+2dx

=

∫
BR

|w∇G− k

2
G∇w|2dx

=

∫
BR

(
w2|∇G|2 − k(G∇G)(w∇w) +

k2

4
|∇w|2G2

)
dx

=

∫
BR

(
w2|∇G|2 − k

4
(∇w2)(∇G2) +

k2

4
|∇w|2G2

)
dx

=

∫
BR

(
w2|∇G|2 +

k

4

(
∆w2 + k|∇w|2

)
G2

)
dx

On BR \B(m−1)R/m we have

k(∆w2 + k|∇w|2) =
k

rn−1

d
dr

(
rn−1 d(R− r)2

dr

)
+ k2

(
d(R− r)

dr

)2

=
k

rn−1

d
dr
(
rn−1(−2R + 2r)

)
+ k2

= k

(
−2(n− 1)

R

r
+ 2n

)
+ k2

≥

k2 k ≥ 0

k2 + 2k k ≤ 0

which is strictly positive when k ∈ R \ [−2, 0]. So we have

k2 + min{0, 2k}
4

∫
BR

θ2wkdx

=
k2 + min{0, 2k}

4

∫
BR

G2dx

≤
∫
BR

|∇θ|2wk+2dx +
k

4
(k + ‖∆w2‖∞ + k‖∇w‖∞)

∫
B(m−1)R/m

G2dx

.
∫
BR

|∇θ|2wk+2dx +

∫
B(m−1)R/m

θ2dx

.
∫
BR

|∇θ|2wk+2dx +

(∫
B(m−1)R/m

θdx

)2

+

∫
B(m−1)R/m

|∇θ|2dx

.
∫
BR

|∇θ|2wk+2dx +

(∫
B(m−1)R/m

θdx

)2

where we used the Poincaré inequality on B(m−1)R/m. Replacing θ with θ −
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θB(m−1)R/m
(valid when k > −1) we see that∫

BR

(θ − θB(m−1)R/m
)2wkdx .

∫
BR

|∇θ|2wk+2dx.

An immediate corollary of the Hardy-Poincaré inequality is the follow-
ing.

Corollary A.3.2. Let k, l ≥ 0. We have

‖θ‖k . ‖θ‖l + ‖∇θ‖k+2 (A.4)

Proof. We have

‖θ‖k ≤ ‖θ − θB(m−1)R/m
‖k + ‖θB(m−1)R/m

‖k . θB(m−1)R/m
‖1‖k + ‖∇θ‖k+2

≤ ‖θ‖L2(B(m−1)R/m)‖1‖L2(B(m−1)R/m)‖1‖k + ‖∇θ‖k+2

. ‖θ‖l + ‖∇θ‖k+2.

Using this corollary we will next derive the embedding theorems. We will
show that terms with less than n/2 the derivatives can be estimated in the L∞ norm
by En or En+Z2

n, which is relevant for the energy estimates. For this we will need
the following lemmas.

Lemma A.3.3. We have

n∑
c=0

‖∇n−cXb
r/∂

βθ‖2
max{3+b+n−2c,0} .

n∑
c=0

‖∇cXb
r/∂

βθ‖2
3+b+c

‖w̄bb/2cXb
r/∂

βθ(s)‖2
Hn .

4+2n∑
c=0

‖∇cXb
r/∂

βθ‖2
3+b+c

‖w̄bb/2c∇Xb
r/∂

βθ(s)‖2
Hn .

6+2n∑
c=1

‖∇cXb
r/∂

βθ‖2
3+b+c

Proof. The first formula follows from repeated application of the above Corollary
A.3.2. The formulas after follows from the first with n replaced by 4 + 2n and
6 + 2n respectively.
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Lemma A.3.4. We have

‖w̄bb/2cXb
r/∂

βθ(s)‖2
L∞ .

8∑
c=0

‖∇cXb
r/∂

βθ‖2
3+b+c

.
∑

b′+|β′|≤8+b+|β|

‖Xb′

r /∂
β′θ‖2

3+b′ +
∑

c≤8+b+|β|

‖∇cθ‖2
3+2c

‖w̄bb/2c∇Xb
r/∂

βθ(s)‖2
L∞ .

10∑
c=1

‖∇cXb
r/∂

βθ‖2
3+b+c

.
∑

b′+|β′|≤10+b+|β|

‖Xb′

r /∂
β′θ‖2

3+b′ +
∑

c≤10+b+|β|

‖∇cθ‖2
3+2c

Proof. This follows from Lemma A.3.3 and the embedding H2 ↪→ L∞.

A.3.1 Embedding theorems for self-similarly expanding GW
stars

Using Lemmas A.3.3 and A.3.4 we can derive the Embedding theorems for self-
similarly expanding GW stars, relevant for Chapter 2.

Theorem A.3.5 (Near boundary embedding theorem). We have∑
a+|β|+b≤n

‖w̄bb/2c∂asXb
r/∂

βθ(s)‖2
L∞

.
∑

a+|β|+b≤8+n

‖∂asXb
r/∂

βθ‖2
3+b +

∑
a+c≤8+n

‖∂as∇cθ‖2
3+2c

. En+8 + Z2
n+8∑

a+|β|+b≤n
a>0

‖w̄bb/2c∂asXb
r/∂

βθ(s)‖2
L∞

.
∑

a+|β|+b≤8+n
a>0

‖∂asXb
r/∂

βθ‖2
3+b +

∑
a+c≤8+n
a>0

‖∂as∇cθ‖2
3+2c

. En+8∑
a+|β|+b≤n

‖w̄bb/2c∇∂asXb
r/∂

βθ(s)‖2
L∞

.
∑

a+|β|+b≤10+n

‖∂asXb
r/∂

βθ‖2
3+b +

∑
a+c≤10+n

‖∂as∇cθ‖2
3+2c

. En+10 + Z2
n+10∑

a+|β|+b≤n
a>0

‖w̄bb/2c∇∂asXb
r/∂

βθ(s)‖2
L∞
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.
∑

a+|β|+b≤10+n
a>0

‖∂asXb
r/∂

βθ‖2
3+b +

∑
a+c≤10+n

a>0

‖∂as∇cθ‖2
3+2c

. En+10

Proof. The proof is a direct consequence of Lemma A.3.4.

Theorem A.3.6 (Near origin embedding theorem). We have∑
a+c≤n+1

‖w̄c∂as∇cθ(s)‖2
L∞ . En+10 + Z2

n+10

Proof. Similar to above A.3.5.

A.3.2 Embedding theorems for linearly expanding GW
stars

Using Lemmas A.3.3 and A.3.4 we can derive the Embedding theorems for linearly
expanding GW stars, relevant for Chapter 3.

Theorem A.3.7 (Near boundary embedding theorem). We have∑
|β|+b≤n

‖w̄bb/2cXb
r/∂

βθ(s)‖2
L∞ .

∑
|β|+b≤8+n

‖Xb
r/∂

βθ‖2
3+b +

∑
c≤8+n

‖∇cθ‖2
3+2c

. En+8∑
|β|+b≤n

‖w̄bb/2c∂sXb
r/∂

βθ(s)‖2
L∞ .

∑
|β|+b≤8+n

‖∂sXb
r/∂

βθ‖2
3+b +

∑
c≤8+n

‖∂s∇cθ‖2
3+2c

. λ−1En+8∑
|β|+b≤n

‖w̄bb/2c∇Xb
r/∂

βθ(s)‖2
L∞ .

∑
|β|+b≤10+n

‖Xb
r/∂

βθ‖2
3+b +

∑
c≤10+n

‖∇cθ‖2
3+2c

. En+10

Proof. The proof is a direct consequence of Lemma A.3.4.

Theorem A.3.8 (Near origin embedding theorem). We have∑
c≤n+1

‖w̄c∇cθ(s)‖2
L∞ . En+10∑

c≤n

‖w̄c∂s∇cθ(s)‖2
L∞ . λ−1En+10

Proof. Similar to above A.3.7.
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Lane-Emden stars appendix

B.1 Standard results for gaseous stars

Lemma B.1.1. Let x, y ∈ [a, b] where 0 < a < b.

i. If α ∈ [0, 1], then |xα − yα| ≤ αaα−1|x− y|.

ii. If α ∈ [1,∞), then |xα − yα| ≤ αbα−1|x− y|.

Proof. This follows from the mean value inequality apply to the function f(x) =

xα. In case i, |f ′(x)| is bounded by αaα−1 on [a, b]. In case ii, |f ′(x)| is bounded
by αbα−1 on [a, b].

Lemma B.1.2. Let x, y ∈ R, then

|ex − ey| ≤ max{ex, yy}|x− y|.

Proof. This follows from the mean value inequality apply to the function f(x) =

ex, noting that |f ′(x)| is bounded by max{ex, yy} on [x, y].

Theorem B.1.3. For every ρ0 > 0, the Lane–Emden ODE (Definition 1.2.1) admits

a unique solution ρ ≥ 0 such that ρ(0) = ρ0. The interval of existence [0, R) is

such that either R =∞ or limr→R ρ(r) = 0.

Proof. When γ > 1: (1.15) is equivalent to

w(r) = w0 − 4π
γ − 1

γ

∫ r

0

1

zd−1

∫ z

0

yd−1w(y)αdydz := T (w)(r).

Assume w0 > ε > 0, we claim that for small enough δ > 0, T maps
C([0, δ], [ε, w0]) to itself. Note that for r ∈ [0, δ] and w ∈ C([0, δ], [ε, w0])
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we have

0 ≤ 4π
γ − 1

γ

∫ r

0

1

zd−1

∫ z

0

yd−1w(y)αdydz

≤ 4π
γ − 1

γ
w0

∫ r

0

1

zd−1

∫ z

0

yd−1dydz = 4π
γ − 1

γ
w0

∫ r

0

1

zd−1

1

d
zddz

=
2π

d

γ − 1

γ
w0δ

2

Choosing δ small enough we can make this smaller than w0 − ε. It follows
that T (w) ∈ C([0, δ], [ε, w0]). Now for u, v ∈ C([0, δ], [ε, w0]) we have using
the first lemma

‖T (u)−T (v)‖C([0,δ])

≤ 4π
γ − 1

γ
sup
r∈[0,δ]

∣∣∣∣∫ r

0

1

zd−1

∫ z

0

yd−1(u(y)α − v(y)α)dydz
∣∣∣∣

≤ 2π

d

γ − 1

γ
δ2 max{αεα−1, αwα−1

0 }‖u− v‖C([0,δ])

By shrinking δ > 0 further, we can make T a contraction map. Hence a
unique fixed point for T exist. It follows that our equation has a unique
solution in a small interval [0, δ]. For r0 > 0, we claim that as long as
w(r0) > 0, we can extend the solution beyond r0. Indeed, our equation

1

rd−1

d
dr

(
rd−1 dw

dr

)
= −4π

γ − 1

γ
wα

is equivalent to

w(r)

= wr0 +

∫ r

r0

1

zd−1

(
rd−1

0 w′r0 − 4π
γ − 1

γ

∫ z

r0

yd−1w(y)αdy
)

dz

= wr0 +
rd−1

0 w′r0
d− 2

(
1

rd−2
0

− 1

rd−2

)
− 4π

γ − 1

γ

∫ r

r0

1

zd−1

∫ z

r0

yd−1w(y)αdydz

:= H(w)(r)

Fix ε > 0 such that ε < wr0 . A similar computation as above show that for
small enough δ > 0, T maps C(B̄δ(r0), [ε, w0]) to itself. Furthermore,

‖H(u)−H(v)‖C(B̄δ(r0))
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≤ 4π
γ − 1

γ
sup
r∈[0,δ]

∣∣∣∣∫ r

r0

1

zd−1

∫ z

r0

yd−1(u(y)α − v(y)α)dydz
∣∣∣∣

≤ 4π
γ − 1

γ
δ2

(
r0 + δ

r0 − δ

)d−1

max{αεα−1, αwα−1
0 }‖u− v‖C(B̄δ(r0))

By shrinking δ > 0 further, we can make H a contraction map. Hence a
unique fixed point for H exist. It follows that our equation has a unique
solution on small interval B̄δ(r0). The overlapping bit with the previous
solution agrees, so we have extended our solution.

It follows that a solution our equation exist on a maximal interval [0, R) such
that either R =∞ or limr→R w(r) = 0, noting that w is a deceasing function
because w′ is always non-positive as can be seen from (1.15).

When γ = 1: This time we consider the (1.16) and (1.17). Using the second
lemma instead of the first, the same proof of existence carries over, with-
out having to cap h at 0. It follows that our equation exist on a maximal
interval [0, R) such that either R =∞ or limr→R h(r) = −∞.

Theorem B.1.4. Suppose w is a gas star. Then w has compact support if

γ >
2d

d+ 2
or equivalently α <

d+ 2

d− 2

and infinitely support otherwise.

Proof. When γ = 1, (1.17) gives

h′(r) ≥ −4π
1

rd−1
eh0

∫ r

0

yd−1dy = −4π

d
eh0r.

So
h(r) ≥ h0 −

4π

d
eh0

∫ r

0

ydy = h0 −
2π

d
eh0r2.

So the gaseous star cannot have compact support.

We will prove the γ > 1 case in three steps:

Step 1 If the gaseous solution w has compact support, then the Pohozaev integral
gives

2π
γ − 1

γ

(
2d

1 + α
− (d− 2)

)∫ R

0

wα+1yd−1dy =
1

2
w′(R)2Rd > 0
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This means w cannot have compact support if

2d

1 + α
≤ d− 2 ⇐⇒ α ≥ d+ 2

d− 2
⇐⇒ γ ≤ d− 2

d+ 2
+ 1 =

2d

d+ 2
.

Step 2 Now suppose the condition in the proposition hold but w has infinite sup-
port. Fix some ε > 0. From (1.15) we have

w′(r) ≤ − 1

rd−1
4π
γ − 1

γ

∫ ε

0

yd−1w(y)αdy︸ ︷︷ ︸
:=mε

for r ≥ ε.

So
w(r) = −

∫ ∞
r

w′(y)dy ≥ mε

∫ ∞
r

1

yd−1
dy =

mε

d− 2

1

rd−2
.

Combining this and the decay estimate for w we get

2π

d

γ − 1

γ

≤


1

α− 1

(
1

w(r)α−1
− 1

wα−1
0

)(
d− 2

mε

) 2
d−2

w(r)
2
d−2 when α 6= 1

(lnw0 − lnw(r))

(
d− 2

mε

) 2
d−2

w(r)
2
d−2 when α = 1

.

If

2

d− 2
− (α− 1) > 0 or equivently (α− 1)(d− 2) < 2,

then the RHS tends to 0 as r → ∞ but not the LHS, this is a contradiction.
So R < ∞. So we know there exist compactly supported gas solutions at
least when (α− 1)(d− 2) < 2.

Step 3 Last step, we prove compact support for when (α − 1)(d− 2) < 2. So we
can assume now

(α− 1)(d− 2) ≥ 2 ⇐⇒ d ≥ 2α

α− 1
.

In particular α > 1. Note that by the decay estimate we must have

w(r)α−1rσ → 0 as r →∞ for any σ ∈ [0, 2).
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The decay estimate also gives us

w(r) ≤
(
w
−(α−1)
0 + (α− 1)

2π

d

γ − 1

γ
r2

)− 1
α−1

≤
(

(α− 1)
2π

d

γ − 1

γ

)− 1
α−1

r−
2

α−1 .

Now using (∗), we can bound w′ as follows

0 ≥ w′(r) = −4π
γ − 1

γ

1

rd−1

∫ r

0

yd−1w(y)αdy

& − 1

rd−1

(
wα0 +

∫ r

1

yd−1− 2α
α−1 dy

)

&

−
C + rd−

2α
α−1

rd−1

−C + ln r

rd−1

&


−r−(d−1) − r1− 2α

α−1 when d 6= 2α

α− 1

−r−(d−1) − r−(d−1) ln r when d =
2α

α− 1

where C is some constant. Recall we assume in this step

d ≥ 2α

α− 1
⇐⇒ d− 1 ≥ 2α

α− 1
− 1.

So the estimate means that

w′(r)rσ → 0 as r →∞ for any σ ∈
[
0,

2α

α− 1
− 1

)
.

Using these estimates, we see that w′(r)2rd → 0 as r →∞ if

4α

α− 1
− 2 > d ⇐⇒ 4α− 2α + 2 > dα− d ⇐⇒ α <

d+ 2

d− 2
.

Also w(r)α+1rd → 0 as r →∞ if

2
α + 1

α− 1
> d ⇐⇒ 2α + 2 > dα− d ⇐⇒ α <

d+ 2

d− 2
.

And finally, w′(r)w(r)rd−1 → 0 as r →∞ if

2α

α− 1
− 1 +

2

α− 1
> d− 1 ⇐⇒ 2

α + 1

α− 1
> d ⇐⇒ α <

d+ 2

d− 2
.

181



Appendix B. Lane-Emden stars appendix

Since we assumed w has infinite support, the Pohozaev integral holds for
r ∈ [0,∞). Taking limit r →∞ in the Pohozaev integral then gives

2π
γ − 1

γ

(
2d

1 + α
− (d− 2)

)∫ ∞
0

wα+1yd−1dy = 0.

But the LHS must be strictly positive, this is a contraction. Hence w must be
compactly supported.

Proposition B.1.5. When γ = 2d/(d + 2) we have explicit Lane–Emden steady

state solution

w(r) = A

(
1 +

2π

d2
A

4
d−2 r2

)1−d/2

or equivalently

ρ(r) = C

(
1 +

2π

d2
C

4
d+2 r2

)−1−d/2

.

And the support of the liquid star is

R =

(
d2

2π
C−

4
d+2 (C

2
d+2 − 1)

) 1
2

.

Proof. Consider

w(r) = A(1 +Brb)a

w′(r) = ABabrb−1(1 +Brb)a−1

w′′(r) = ABab(b− 1)rb−2(1 +Brb)a−1 + AB2ab2(a− 1)r2(b−1)(1 +Brb)a−2

Substitute into the Lane–Emden ODE (Definition 1.2.1)

w′′ + (d− 1)r−1w′ = −4π
γ − 1

γ
wα

we get

−4π
γ − 1

γ
Aα(1 +Brb)αa

= ABab(b− 1 + d− 1)rb−2(1 +Brb)a−1 + AB2ab2(a− 1)r2(b−1)(1 +Brb)a−2

= ABab(1 +Brb)a−2(
(b− 1 + d− 1)rb−2 +B(b(a− 1) + (b− 1 + d− 1))r2(b−1)

)
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For this to have the possibility to hold, we need b = 2 and a = 1 − d/2. Then the
equation becomes

−4π
γ − 1

γ
Aα(1 +Br2)α(1−d/2) = ABd(2− d)(1 +Br2)−(1+d/2)

For this to have the possibility to hold, we need

1

γ − 1
= α = −2 + d

2− d
=
d+ 2

d− 2
⇐⇒ γ =

d− 2

d+ 2
+ 1 =

2d

d+ 2
.

And then we also need

−4π
d− 2

2d
A

d+2
d−2 = ABd(2− d) ⇐⇒ 2πA

4
d−2 = Bd2

⇐⇒ B =
2π

d2
A

4
d−2 .

So when γ = 2d/(d+ 2) we have explicit steady state solution

w(r) = A

(
1 +

2π

d2
A

4
d−2 r2

)1−d/2

or equivalently

ρ(r) = C

(
1 +

2π

d2
C

4
d+2 r2

)−1−d/2

.

The support R of the liquid star is then given by

1 = C

(
1 +

2π

d2
C

4
d+2R2

)−1−d/2

⇐⇒ 1 +
2π

d2
C

4
d+2R2 = C

2
d+2

⇐⇒ R =

(
d2

2π
C−

4
d+2 (C

2
d+2 − 1)

) 1
2

.

Proposition B.1.6 (Self-similarity of solutions). Let ρ be a gaseous steady state.

Then ρκ(r) = κρ(κ1−γ/2r) is a gaseous steady state for any κ > 0, and the corre-

sponding liquid star has support R = κ−(1−γ/2)ρ−1(1/κ).

Proof. First we deal with the γ > 1 case. Recall the Lane–Emden ODE (Definition
1.2.1)

w′′(r) + (d− 1)r−1w′(r) = −4π
γ − 1

γ
w(r)α.
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Let v(r) = κw(κβr). Then v′(r) = κβ+1w′(κβr) and v′′(r) = κ2β+1w′′(κβr). So

v′′(r) + (d− 1)r−1v′(r) = κ2β+1w′′(κβr) + (d− 1)(κβr)−1κ2β+1w′(κβr)

= −κ2β+14π
γ − 1

γ
w(κβr)α = −κ2β+1−α4π

γ − 1

γ
v(r)α

So if we choose
β =

1

2
(α− 1) =

1

2

2− γ
γ − 1

,

then v is again a solution to the Lane–Emden ODE (Definition 1.2.1). Converting
back to ρ gives the desired result.

For γ = 1, it is clear by substitution that ρκ(r) = κρ(
√
κr) is a solution to the

Lane–Emden ODE (Definition 1.2.1)

0 = ∆(ln ρ) + 4πρ =
ρ′′

ρ
− (ρ′)2

ρ2
+ (d− 1)

1

r

ρ′

ρ
+ 4πρ.
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[23] Hadžić, M., Jang, J., Lam, K.M., Nonradial stability of self-similarly expand-
ing Goldreich-Weber stars. Preprint, arXiv:2212.11420
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