Efthymiou, Stephanie;
Scala, Marcello;
Nagaraj, Vini;
Ochenkowska, Katarzyna;
Komdeur, Fenne L;
Liang, Robin A;
Abdel-Hamid, Mohamed S;
... McClenaghan, Conor; + view all
(2024)
Novel loss-of-function variants expand ABCC9-related intellectual disability and myopathy syndrome.
Brain
, 147
(5)
pp. 1822-1836.
10.1093/brain/awae010.
Preview |
Text
awae010.pdf Download (1MB) | Preview |
Abstract
Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harboring different homozygous LoF variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability, and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intrauterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 LoF in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 LoF related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.
Type: | Article |
---|---|
Title: | Novel loss-of-function variants expand ABCC9-related intellectual disability and myopathy syndrome |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/brain/awae010 |
Publisher version: | http://dx.doi.org/10.1093/brain/awae010 |
Language: | English |
Additional information: | Copyright © The Author(s) 2024. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | ABCC9, KATP channels, SUR2, neurodevelopmental disorder |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases |
URI: | https://discovery.ucl.ac.uk/id/eprint/10186024 |
Archive Staff Only
View Item |