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Abstract 

This study examines the control of traffic noise in urban planning, considering the differences in noise impacts at 

various scales. Acoustic simulations and spatial statistics were employed to compare traditional planning variables and 

planning big data for noise analysis. The study investigates noise impact in urban centres and fringes and analyses 

varying effects of a given variable on traffic noise at scales of 300, 600, and 1200 m. Additionally, sound environment 

optimisation strategies are proposed and validated for different scales and areas. The major findings are: (1) planning 

big data had more impact in single-variable models, while traditional variables were more significant in multivariable 

models; (2) the noise impact of most variables varied with the area and scale, for example, at 1200 m, the total building 

perimeter has opposing effects in urban centres and fringes, and the greening rate changes from positive to negative 

with increasing scale; (3) the proposed strategies reduced traffic noise by an average of 4.2, 3.2, and 2.3 dB at scales of 

300, 600, and 1200 m, respectively. These findings provide valuable insights for the optimisation of urban sound 

environments. 
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1. Introduction 

Urban planning and design play a crucial role in multiple environmental fields and are integrally 

connected to factors such as residents' activities, the urban microclimate, and morphological urban patterns 

(Ding et al., 2023; Lei et al., 2021; Luo and He, 2021; Yiannakou and Salata, 2017; Yin et al., 2018). The 

issue of traffic noise ranking as the second-largest global environmental concern (Zhang et al., 2023), 

affecting people’s health and working efficiency (Meng et al., 2021; Swinburn et al., 2015). Consequently, it 

is intricately linked with urban planning and design (Rey Gozalo et al., 2016). As a result, controlling noise 

in urban areas through spatial planning is widely acknowledged as an effective strategy (Barrigon Morillas et 

al., 2018). China's 'Urban Planning Compilation Measures' published in 2005, identified urban planning as a 

crucial public policy instrument for managing spatial resources, specifying that traffic noise, as a detrimental 

spatial factor, should be considered in planning frameworks. Additionally, the 'Technical Policy for the 

Prevention and Control of Ground Traffic Noise Pollution' issued in 2010, accentuates the importance of 

sound regional development planning and transport planning as essential methods for the management and 

mitigation of traffic noise pollution. 

Numerous studies have advanced methods for mitigating traffic noise through urban planning (Hong 

and Jeon, 2017; Tang and Wang, 2007; Yu and Kang, 2017), achieving macro-level control over this 

environmental issue. Concurrently, the concept of smart cities has gained strategic importance in recent years 

(Borsekova et al., 2018). In the United States, an interdisciplinary consortium comprising civic leaders, data 

scientists, and technologists has focused on building “Smart Cities"—urban environments equipped with an 

infrastructure dedicated to the optimised collection and utilisation of data to enhance the quality of life for 

residents (2015). In China's Thirteenth Five-Year Plan, unveiled in 2016, the nation advocated for the 

establishment of a series of new smart cities as demonstration projects. 

The developing field of smart cities has rendered urban planning increasingly nuanced, propelling it into 

a new phase of problem-solving strategies for urban environments. For instance, extant research has 

leveraged data sets from automatic smart card fare collection systems to elucidate a city's spatial structure 

and track its temporal changes (Zhong et al., 2014). Additional studies have employed social media data to 

capture Beijing's urban image (Peng et al., 2020), utilised mobile phone data to investigate urban vibrancy in 

Shenzhen (Tang et al., 2018), and analysed massive GPS trajectory data to understand the traffic patterns of 

cities (Wang et al., 2020). These examples illustrate that big data offers quantitative backing for urban 

planning initiatives. By gathering and analysing the wealth of information embedded in big data, it is possible 

to extract overarching principles of urban planning, thereby effectively steering both planning and design 

strategies. In this context, the collection of big data pertinent to urban planning for the purpose of controlling 

traffic noise emerges as a promising and efficient approach. 

The integration of big data is poised to enhance the precision of traffic noise control. Therefore, noise 

maps generated at various scales—ranging from specific streets and urban areas to entire cities—will possess 

increased applicability. In collaborative efforts, governmental bodies have partnered with researchers to 

undertake multi-scale acoustic mapping studies, thereby facilitating improved noise management across 

nations and regions while identifying viable applications within smart cities. For example, Luca Maria Aiello 

et al. (2016) employed Flicker data to construct soundscape maps for major cities like London and New York, 

annotating the dominant sounds along each road to enable customised auditory experiences for travellers. 

Aletta et al. (2015) offered acoustical guidance for future urban design interventions by creating a 

soundscape map of Brighton's Valley Garden; they marked acoustic features at specific measurement points 

through sound walks and then applied interpolation methods to generate a comprehensive soundscape map 

for the entire area. Additional research utilised Cadna/A noise simulation software to model urban street 

traffic noise, formulate noise maps, and recommend specific strategies such as traffic volume reduction and 

alteration of road surfaces from smooth asphalt to porous materials for noise control (Popescu et al., 2011).  

These case studies underscore the directive utility of acoustic maps across different scales. At the urban 

scale, acoustic maps contribute to the controllability of expansive acoustic environments. Maps generated for 

specific urban areas offer intuitive insights into the acoustic characteristics of those zones, thereby informing 

subsequent planning and design endeavours. Meanwhile, street-scale noise maps furnish detailed guidelines 

for building and road design, focusing on elements like construction materials and facade characteristics. 

Consequently, an examination of the influence of planning variables on traffic noise across these various 
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scales is critically important for the creation of multi-scale traffic noise maps. 

To deepen the understanding of the role of planning big data in noise control and furnish a theoretical 

foundation for noise management at multiple scales with increased precision, this study has been initiated. 

The fundamental objective of this study is to assess the impact and examine the differences between 

traditional planning variables and planning big data on traffic noise levels at varying scales in diverse urban 

areas. The research questions are posited as follows: 

(1) Which type of data, traditional planning variables or planning big data, is more suitable for traffic 

noise analysis at various scales?  

(2) What are the differences in the impacts of a given planning variable on traffic noise between urban 

centres and fringe areas?  

(3) What are the differences between the impacts of a given planning variable on traffic noise at the 

building, semi-block, and block scales? 

These questions guide the current study and aim to resolve critical issues in the realm of urban noise 

management through planning and design. 

2. Literature Review 

Previous studies have extensively examined various types of planning variables affecting noise, such as 

buildings and block morphology, road morphology, landscape morphology, and land-use indicators. For 

example, Montalvao Guedes et al. (2011), Margaritis and Kang (2014) determined that construction density, 

open spaces, green space density, and land-use classes were highly correlated with noise levels. Based on 

previous studies. Hong and Jeon (2017) included water feature indicators as a separate category and assessed 

the impact of water feature components on the soundscape. Certain studies have verified the correlation 

between planning indicators and traffic noise based on four aspects (Ryu et al., 2017; Salomons and Pont, 

2012; Silva et al., 2018; Weber et al., 2014): buildings, roads, landscapes, and land-use categories, including 

indicators of construction height, total built area, road area density, the fraction of industrial area, and sky 

view factor. In this study, these are categorised as traditional planning variables. More recently, the utilisation 

of big data has garnered considerable research attention for planning smart cities. Certain studies explored the 

impact of space syntax variables and point of interest (POI) data on traffic noise. In principle, space syntax 

describes the relationship between space and human society and can be used to quantify urban road network 

structures (Bafna, 2003), whereas POI data reflect urban land functions or land-use classes (Tang et al., 2018). 

Dzhambov et al. (2014) proposed that space syntax theory can enhance noise prediction ability, and using 

LimA software, demonstrated that space syntax variables can effectively improve the accuracy of noise 

prediction. Mohareb and Maassarani (2019) further reported that although space syntax variables were 

correlated with the noise level, they varied across functional areas. However, most existing research 

examined the impact of traditional planning variables on noise, and only a few studies have explored the 

correlation between spatial syntax, POI big data, and noise. To date, no research has compared the 

applicability of traditional planning variables and planning big data to analyse traffic noise at different scales. 

Therefore, in our work, their effects on traffic noise are further compared using correlation analyses and 

spatial statistical methods to construct a more accurate noise prediction model in future research. 

Prior research demonstrated that the impact of planning variables on noise varies across the types of 

urban areas. For example, Weber et al. (2014) distinguished that areas with high patch density and the most 

heavily built urban structure types (edge density) were associated with much higher noise exposure levels 

than less dense and less developed areas. Mohareb and Maassarani (2019) determined that the correlation 

between the spatial syntax variables and soundscapes varies across the land-use classes. Only a few studies 

have examined the variations in the impacts of planning variables on traffic noise at various urban areas. To 

address this research gap, the present study partitions the area under examination, as well as the validation 

area, into urban centres and urban fringes based on their urban master plans. The research thus aims to 

explore how planning variables differentially affect traffic noise levels in these distinct urban settings. 

Although several studies have examined the effect of planning variables on traffic noise, only a few 

studies focused on the scale effect (Jackson and Fahrig, 2015). For instance, Margaritis and Kang (2016) 

explored the effectiveness of various urban planning variables at the micro-, meso-, and macroscale grid size 

(250, 500, and 1000 m, respectively) and determined that the features of urban morphology were uniquely 

related to the traffic noise levels at each scale. They proposed that the research scale is a key factor affecting 
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the correlation (Margaritis, 2016). Margaritis and Kang (2017) further studied the various impacts of 

greenspace indicators at the aggregation, urban, and kernel levels. However, only a few multiscale studies 

have been conducted in the field of noise, and the existing literature on multiscale noise research has not 

explored the variations of the impact of the same planning variable on noise at varying scales. This study 

aims to fill this void by evaluating the impact of a given planning variable on traffic noise at three 

scales—300 m, 600 m, and 1200 m. It further proposes planning and design strategies tailored for noise 

control at these scales and assesses the effectiveness of these interventions. 

3. Methodology 

3.1. Research framework 

The research framework of this study is illustrated in Fig. 1. Based on the three research questions, the 

variables were extracted, and various scale grids were set, as detailed in Section 3. Thereafter, the research 

content and the methodology followed to answer these three research questions are discussed in Sections 4.1, 

4.2, and 4.3. Finally, in Section 4.4, we proposed the sound environment optimisation strategies based on the 

analysis and verified the feasibility and generalisation of the strategies. 

 

Fig. 1. Research framework 

3.2. Study area and scale division 

The Annual Report on Prevention and Control of Noise Pollution in China 2022 identified Guangdong 

Province as a key area of focus for environmental supervision, with noise complaints accounting for 

approximately 22.5% of all ecological and environmental grievances. This designation highlights the 

importance of addressing noise control in Guangdong Province. Dongguan City, a newly designated first-tier 

city in the Guangdong Province, plays a pivotal role in integrating ports and urban rail transit in the region. 

Notably, the city faces significant traffic noise challenges due to high traffic volume in the suburbs and 

frequent activities in the urban centre. To investigate these issues, our study specifically selected regions 

within Dongguan City as research targets (Fig. 2a). The research area encompasses the northwest region of 

Dongguan City (Fig. 2b). It also includes central urban areas such as Guancheng, Dongcheng District, 

Nancheng District, and Wanjiang District, as well as urban fringe areas such as the western part of Liaobu 

Town and the southern part of Gaobu (Fig. 2c). These regions are classified as urban centres and urban 

fringes, respectively, according to the Master Plan for the Territorial Space of Dongguan (2022–2035). 

Geographically, the urban centre lies between 113°702′E and 113°825′E longitude and 22°994′N and 
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23°070′N latitude (WGS1984 coordinate system). For the classification of roads within the research area, the 

study adheres to the guidelines set forth in the Technical Standard of Highway Engineering (JTGB01-2019). 

This standard delineates roads into four service levels: first, second, third, and fourth, with designated speeds 

of 120 km/h, 80 km/h, 40 km/h, and 30 km/h respectively. Notably, the first-level roads are considered 

intercity freeways. However, since the scope of this study is confined to the urban territory of Dongguan, 

first-level roads are excluded. Consequently, roads within the research area are categorised into three service 

levels: second, third, and fourth, as shown in Fig. 2c. 

 

Fig. 2. Study area (source of Fig. 2a: Standard Map Service System http://bzdt.ch.mnr.gov.cn/index.html/) 

The grids utilised in this study were adjusted to align with the planning characteristics of grids employed 

in previous research (Margaritis and Kang, 2016; Ryu et al., 2017). According to the Standard for Urban 

Residential Area Planning and Design (GB50180-2018), a basic residential unit should have a scale ranging 

from 150 to 250 m. To capture the influence of planning variables comprehensively and at different scales in 

urban planning and design processes, we selected three grid scales: 300, 600, and 1200 m, representing the 

building, semi-block, and block scales, respectively (Fig. 3). These scales facilitated a more comprehensive 

and differentiated analysis of the planning variables, and supported decision-making across various scales. 

The fishnet command in ArcGIS was employed to establish complete coverage of the study area with grids of 

these three scales. 

 

Fig. 3. Scale division 
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3.3. Selection of planning variables 

This study incorporates planning indicators from previous studies and categorizes them into two types 

(Dzhambov et al., 2014; Hao et al., 2015; Hong and Jeon, 2017; Huang et al., 2021; Lam et al., 2013; 

Margaritis, 2016; Margaritis et al., 2016; Margaritis and Kang, 2014; Margaritis and Kang, 2016; Margaritis 

and Kang, 2017; Margaritis et al., 2020; Margaritis et al., 2018; Mohareb and Maassarani, 2019; Montalvao 

Guedes et al., 2011; Ryu et al., 2017; Salomons and Pont, 2012; Silva et al., 2018; Tang and Wang, 2007; 

Wang and Kang, 2011; Wang et al., 2018; Weber et al., 2014; Yu and Kang, 2017; Zhou et al., 2017): 

traditional planning variables and planning big data. Traditional planning variables encompass urban 

morphology variables that have been demonstrated to be associated with traffic noise in previous research 

(Dzhambov et al., 2014; Hong and Jeon, 2017; Margaritis, 2016; Margaritis et al., 2016; Margaritis and Kang, 

2014; Mohareb and Maassarani, 2019; Montalvao Guedes et al., 2011; Ryu et al., 2017; Salomons and Pont, 

2012; Wang and Kang, 2011; Weber et al., 2014), including building morphology, road morphology, and 

landscape indicators. Planning big data, conversely, refers to data reflecting spatial planning characteristics 

within the framework of smart cities (Wang and Yin, 2023), including spatial syntax variables and POI big 

data. Spatial Design Network Analysis (sDNA) was employed to calculate space syntax variables (Cooper 

and Chiaradia, 2020; Ma, 2020). Based on the concept of the ‘15-min living circle’ (Wu et al., 2021), this 

study selected spatial syntax variables of 1200 m Closeness, 1200 m Betweenness, 8000 m Closeness, and 

8000 m Betweenness, representing road accessibility within a 15-min walk, pass-through probability within a 

15-min walk, road accessibility within a 15-min drive, and pass-through probability within a 15-min drive, 

respectively. Furthermore, specific POI categories closely related to population flow and traffic distribution 

(Alhazzani et al., 2021), namely transportation, financial services, science and education, parking lots, leisure 

facilities, medical services, and accommodation services, were used to represent land-use classes in the urban 

space (Tang et al., 2018). Table 1 provides an overview of the selected planning variables and their meanings.
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Table 1. Selected planning variables. 

Types  Subtypes Parameter Formula Definition 

Traditional 

Planning 

Variables 

Building 

BD 
BD = .  

ABA is the base area of a building in one cell. AC is the area of a single cell. 

Building density 

VR 

VR =  = .  

ABA is the base area of a building in one cell. NS is the number of storeys of the 

building. GFA is the total building areas in a cell. AC is the area of a single cell. 

Volume ratio 

BP_SUM BP_SUM = . PBA is the base perimeter of a building in the cell. Total building perimeters 

BP_AVG 

BP_AVG =  = .  

PBA is the base perimeter of a building in the cell. n is the number of the buildings. 

BP_SUM is the total building perimeter in the cell. 

Average perimeter of buildings 

BA BA = . ABA is the base area of a building in one cell. Building area 

BS 
BS = . NS is the number of storeys of a building. n is the number of the 

buildings. 

Building storey 

GFA GFA = .  

ABA is the base area of a building in one cell. NS is the number of storeys of the 

building. 

Gross floor area 

Road 

RL 
RL = . L is the length of a road in the cell. nr is the number of the roads. 

Road length 

NUM_IN NUM_IN = . NIN is the number of the intersections in one cell. The number of intersections 

Landscape 

GR 
GR = . AG is the area of a green space in urban in one cell. AC is the area of a 

single cell. 

Greening rate (urban) 

Planning 

Big Data 

Space 

Syntax 

Variables 

NQPDA1200 
.  

P (y) is the proportion of link y within the radius of R, d (x,y) is the shortest 

topological distance from link x to link y; Rx is the set of links in the network 

Closeness (R = 1200 m)- the road 

accessibility of walking for 15 min. 
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Euclidean radius R from link x; NQPDA (x) is the integration of the road network 

within searching radius of R (Ma, 2020); R = 1200 m 

TPBtA1200 

 

 
OD (y,z,x) is the shortest topological distance through link x between link y and z 

within searching radius of R; P (z) is the proportion of link z within the radius of 

R; Links (y) is the number of links in radius of R from each link y; Ry is the set of 

links in the network Euclidean radius R from link y; N is the set of links in the 

global spatial system; TPBtA (x) is the betweenness of the road network within the 

searching radius of R (Ma, 2020); R = 1200 m 

Betweenness (R = 1200 m)- the 

probability of a road being passed 

through within the area range of 

walking for 15 min. 

NQPDA8000 R = 8000 m. Others same as ‘NQPDA1200’ Closeness (R = 8000 m)- the road 

accessibility of driving for 15 min. 

TPBtA8000 R = 8000 m. Others same as ‘TPBtA1200’ Betweenness (R = 8000 m)- the 

probability of a road being passed 

through within the area range of 

driving for 15 min. 

POIs 

NUM_T NUM_T = . NT is the number of transportation POIs in the cell. The number of traffic POIs 

NUM_F NUM_F = . NF is the number of financial service POIs in the cell. The number of finance POIs 

NUM_SE NUM_SE = . NSE is the number of scientific and educational POIs in the 

cell. 

The number of education POIs 

NUM_P NUM_P = . NP is the number of parking lot POIs in the cell. The number of parking POIs 

NUM_L NUM_L = . NL is the number of leisure and entertainment POIs in the cell. The number of leisure POIs 

NUM_M NUM_M = . NM is the number of medical service POIs in the cell. The number of medical POIs 

NUM_A NUM_A = . NA is the number of accommodation service POIs in the cell. The number of accommodation POIs 
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3.4. Extraction of variables 

The process of extracting the independent and dependent variables is illustrated in Fig. 4. 

 
Fig. 4. Extraction process of independent and dependent variables 

In this study, the noise database was established using the noise simulation software 

Computer-Aided Noise Abatement (Cadna/A), as Cadna/A simulations exhibit high accuracy 

(Suarez and Barros, 2014). The floating-car GPS open data from the Dongguan demonstration 

area were utilised to calculate traffic flow and simulate noise. The dataset comprises 24-h 

information for 3 d, including vehicle ID, signal time, longitude, latitude, speed, and direction. 

According to the Law of the People's Republic of China on Prevention and Control of 

Environmental Noise Pollution (2021), the ‘daytime’ is defined as the period between 6:00 and 

22:00. Based on a previous study (Levinson, 2022), which emphasised the need to establish 
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relationships between traffic flow, traffic density, and traffic velocity, the equation for calculating 

equivalent hourly flow was employed. 

F = kv = vn/L (/h). 

F denotes the equivalent hourly flow; v represents the vehicle speed (km/h); k denotes the density 

of vehicles per kilometre; n represents the number of vehicles on the road; and L indicates the 

road length.  

To estimate average daytime traffic on the roads, the number of vehicles passing through each 

road was collated at nine discrete daytime intervals (6 a.m. to 10 p.m. every two hours) across a 

span of three days (n). Because vehicle speeds are subject to fluctuation, this study relied on road 

service level speeds (v) as specified in the Technical Standard of Highway Engineering 

(JTGB01-2019) for computational purposes. Specifically, second-level roads have a designated 

speed of 80 km/h, third-level roads 40 km/h, and fourth-level roads 30 km/h (Fig. 2c). Existing 

literature supports the use of these road service level speeds as adequate predictors of noise 

impact (Su et al., 2022). However, the correlation between road speed and traffic volume also 

necessitates empirical verification (Su et al., 2022). To this end, this study calculated the average 

vehicle speed within the database, found to be 16.1 km/h, and employed this value to corroborate 

the accuracy of the vehicle count (n) passing through each road within a designated time frame. 

The road lengths (L) were calculated using the ArcGIS software. Consequently, the average 

daytime traffic flow for each road was calculated and input as a parameter into Cadna/A. 

In terms of setting parameters in Cadna/A, the road width, car speed, and vehicle model 

proportion must be defined (Popescu et al., 2011). In order to acquire statistics for the proportion 

of vehicle models, random samples of 10 road sections for each road level within the study area 

were subjected to a three-day vehicular survey. This survey was conducted at the nine specified 

daytime intervals previously mentioned. The road width and car speed were determined based on 

the Technical Standard of Highway Engineering (JTGB01-2019). Second-level roads had a width 

of 7.5 m and a car speed of 80 km/h, third-level roads had a width of 7 m and a car speed of 40 

km/h, and fourth-level roads had a width of 6.5 m and a car speed of 30 km/h (Fig. 2c). In the 

model, the building height was consistently calculated as 2.8 m per story, following the 

Residential Design Specification (GB50096-2011). Additionally, the heights of 30 trees along a 

typical urban road and in a city park in the study area were measured, with average heights of 3 

and 10 m for street and park trees, respectively. These heights were assigned to the landscape 

layer of Cadna/A. Subsequently, the defined parameters were inputted to Cadna/A to simulate the 

plane traffic noise in the study area, with a simulation accuracy of 50 m and a noise simulation 

height of 1.5 m (Meng et al., 2020). The noise dataset was spatially joined with grids of 300, 600, 

and 1200 m to calculate the average noise value and obtain the sound pressure level of daytime 

traffic noise (SPL) (Kothari et al., 2016). 

To extract the independent planning variables, the data of building, road, landscape, and POI 

were obtained from OpenStreetMap (OSM) and imported into ArcGIS. The elements were 

transformed into geometric shapes, with road network intersections extracted using the Network 

Analyst toolbox and Network Dataset method (Margaritis and Kang, 2016). The traditional 

planning variables were calculated by spatially joining the building, road, landscapes, and 

intersection layers with fishnets, utilising ArcGIS to calculate the polygon areas, polyline lengths, 

and point numbers in each grid. This process yielded the values for building area (BA), building 

density (BS), total building floor area (BP_SUM), average building floor area (BP_AVG), road 

length (RL), number of road intersections (NUM_IN), and total landscape area per cell. Additional 

traditional planning variables such as building density (BD), visibility ratio (VR), gross floor area 

(GFA), and green ratio (GR) were calculated using the formulae listed in Table 1. To plan the big 
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data, the Closeness and Betweenness values were calculated for the road layer. Subsequently, the 

road and POI layers were spatially joined with fishnets to calculate the average space syntax 

variable values and the number of POIs in each category within each cell (Kothari et al., 2016). 

Thus, the dependent variables of the daytime traffic noise level, as well as the independent 

planning variables, were extracted. 

3.5. Statistical analysis 

Numerous studies have confirmed that traffic noise is spatially heterogeneous and influenced 

by geographical location (Torija et al., 2011). To explore the influence of planning variables on 

traffic noise levels, this study employed spatial statistical methods, such as factor detection and 

geographically weighted regression (GWR) (Wang et al., 2016), as well as conducted Pearson 

correlation analysis and independent sample t-test. Pearson's correlation analysis was used to test 

the numerical correlation between the planning variables and traffic noise. The factor detector 

tested the influence weight of the planning variables on traffic noise spatial heterogeneity using the 

GD package in R language for analysis (Song et al., 2020). GWR studied the influence of multiple 

independent variables on traffic noise levels using a regression model, and all variables were 

standardised using SPSS in advance. The GTWR plug-in was used for the GWR experiment with 

the bandwidth parameter AICc and the kernel FIXED (Huang et al., 2010). The GWR results were 

calculated for three scales of 300 m, 600 m, and 1200 m. An independent sample t-test was used to 

verify whether the influence of planning variables on traffic noise levels exhibited significant 

differences across the urban regions. 

4. Results and Discussion 

4.1. Applicability analysis of traditional planning variables and planning big data at different 

scales 

4.1.1. Correlation analysis of planning variables and traffic noise 

This study analysed the applicability of planning variables from three perspectives. First, 

Pearson correlation analysis was conducted to examine the correlation between the planning 

variables and traffic noise, and the results depicted the similarity of their numerical trends. The 

results of the Pearson correlation analysis between the planning variables and the SPL are 

illustrated in Fig. 5.  

 
(a) 300 m 
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(b) 600 m 

 

(c) 1200 m 

** represents p < 0.01 

* represents p < 0.05 

Fig. 5. Results of Pearson correlation analysis 

As depicted in Fig. 5, all planning big data exhibited a significant correlation with the SPL at 

each scale. Regarding the traditional planning variables, at the 300 m scale, BD and BA did not 

exhibit any correlation with SPL. At the 600 m scale, BP_SUM and RL demonstrated no 

correlation with SPL. At the 1200 m scale, RL was not correlated with SPL. Therefore, the 

correlation between planning big data and the SPL displayed greater significance than the 

traditional planning variables.  

At the 300 m scale depicted in Fig. 5a, the correlation coefficient between NQPDA8000 and 

SPL was 0.58. This suggests that greater vehicular accessibility is associated with increased levels 
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of traffic noise. The correlation coefficient for GR was –0.18, indicating that an increase in urban 

greening can lead to a reduction in urban traffic noise, which aligns with the findings of previous 

studies (Margaritis et al., 2016). At this scale, the absolute value range of correlation coefficients 

between traditional planning variables and SPL was 0.0026–0.44, while for planning big data and 

SPL, it was 0.061–0.58. This indicates that at the 300 m scale, the correlation between planning 

big data and SPL was higher than that of traditional planning variables. For the 600 m scale, as 

illustrated in Fig. 5b, GR continued to exhibit a negative correlation with SPL, with a correlation 

coefficient of 0.22. The highest correlation was still observed between NQPDA8000 and SPL, 

reaching a coefficient of 0.54. At this scale, the absolute value range of correlation coefficients 

between traditional planning variables and SPL was 0.0017–0.49, while for planning big data and 

SPL, it was 0.11–0.54. Thus, at the 600 m scale, the correlation between planning big data and 

SPL remained higher than that between the traditional planning variables. Examining the 1200 m 

scale in Fig. 5c, SPL exhibited a significant negative correlation with GR, with a correlation 

coefficient of 0.23. However, SPL displayed a significant positive correlation with other planning 

variables. At this scale, the absolute value of correlation coefficients between traditional planning 

variables and SPL ranged from 0.0040–0.48, whereas for planning big data and SPL, it spanned 

within 0.30–0.58. These results indicate that at the 1200 m scale, the correlation between planning 

big data and SPL remains higher than that of traditional planning variables. Interestingly, the 

correlation between BP_SUM and SPL demonstrated a significant negative correlation at the 300 

m scale, no significant correlation at the 600 m scale, and a significant positive correlation at the 

1200 m scale. Previous studies confirmed that as the complete aspect ratio (CAR)
*
 of buildings in 

an area increases, the sound level at L60 decreased before increasing slightly (Hao et al., 2015). 

This phenomenon observed in the present study can be explained as follows: at the 300 m scale, 

BP_SUM is within a small range of values, and as the CAR increases, it exhibits a negative 

correlation with the SPL. As the scale increased, BP_SUM in the grid cell increased, and CAR 

became positively correlated with SPL. At the 600 m scale, BP_SUM displayed no correlation 

with SPL, lying within the transitional range from negative to positive correlation. 

4.1.2. Analysis of the influence weight of planning variables on the spatial heterogeneity of 

traffic noise 

The influence weight of traditional planning variables and planning big data variables on the 

spatial heterogeneity of traffic noise was examined using the spatial statistical method of the 

Factor Detector. This analysis determined the moderate similarity between the spatial distributions 

of planning variables and traffic noise. The results of the Factor Detector are presented in Fig. 6. 

Upon comparing Figs. 6a and 6b, it is evident that planning big data displays a considerably 

greater influence on the spatial heterogeneity of the SPL than traditional planning variables. In Fig. 

6a, among the traditional planning variables, VR demonstrated a significant influence on the 

spatial heterogeneity of SPL at the 600 m scale, BP_SUM at the 300 m scale, BP_AVG only at 300 

m, BA at both 300 and 600 m scales, and RL at 300 m. However, as depicted in Fig. 6b, the 

planning big data variables demonstrated considerable influence on the spatial heterogeneity of 

SPL. Specifically, NQPDA1200 was significant at 300 m, TPBtA1200 at both 300 and 600 m 

scales, NQPDA8000 at 300 and 600 m, TPBtA8000 at 300 m and 600 m, NUM_T on traffic noise 

heterogeneity at 300 and 600 m, NUM_F at 300 and 600 m, NUM_SE at the 600 m scale, NUM_P 

at both 300 and 600 m scales, NUM_L at both 300 m and 600 m, NUM_M at 300 and 600 m, and 

NUM_A at 300 and 600 m in relation to traffic noise heterogeneity.  

 

                                                        
* CAR = AC/AT= (AW + Ar + AG)/AT, AC is the combined surface area of the buildings and exposed ground, AW is the wall surface 

area, Ar is the roof area, AG is the area of exposed ground, and AT is the total plan area of the region of interest. 
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(a) Influence weight of traditional planning variables on spatial heterogeneity of SPL 

 
(b) Influence weight of planning big data on spatial heterogeneity of SPL 

Fig. 6. Results of Factor Detector 

4.1.3. Analysis of the influence degree of planning variables on traffic noise 
Finally, GWR was employed to analyse the degree of influence of multiple planning variables 

on traffic noise. Table 2 presents the GWR models established at three scales: 300 m, 600 m, and 

1200 m, providing an overview of the overall fit of the models. 

Table 2. Overall fitting situation of GWR model. 

 300 m 600 m 1200 m 

R² 76.02% 73.16% 74.58% 

Adjusted R² 75.70% 71.77% 69.05% 

AICc 2498.32  758.71  231.07  

Residual 

Squares 

341.96 98.78 24.40 

Independent 

variables in 

BD, BP_SUM, BP_AVG, BS, 

GFA, RL, NUM_IN, GR, 

BP_SUM, BP_AVG, BS, GFA, 

RL, NUM_IN, GR, 

BD, BP_SUM, BP_AVG, 

BS, RL, NUM_IN, GR, 
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the models NQPDA1200, TPBtA1200, 

NQPDA8000, TPBtA8000, 

NUM_T, NUM_F, NUM_SE, 

NUM_P, NUM_L, NUM_M, 

NUM_A 

NQPDA1200, TPBtA1200, 

NQPDA8000, TPBtA8000, 

NUM_T, NUM_F, NUM_SE, 

NUM_P, NUM_L, NUM_M, 

NUM_A 

NQPDA1200, 

TPBtA1200, 

NQPDA8000, 

TPBtA8000, NUM_T, 

NUM_F, NUM_SE, 

NUM_P, NUM_L, 

NUM_M, NUM_A 

Independent 

variables 

excluded 

due to 

collinearity 

VR VR VR 

BA BA BA 

 BD BD 

  GFA 

 

As illustrated in Table 2, several variables were excluded from the three regression models 

owing to collinearity. In the 300 m scale model, VR and BA were excluded, while in the 600 m 

scale model, VR, BA, and BD were excluded. Similarly, in the 1200 m scale model, VR, BA, BD, 

and GFA were excluded. The determination coefficients (R
2
) of the regression models at the three 

scales were 76.02, 73.16, and 74.58%, respectively. Furthermore, the AICc decreased from 300 to 

1200 m, indicating an improved model performance and a more concise parameter setting. Within 

the GWR models, each planning variable was assigned a regression coefficient in every grid cell at 

the 300, 600, and 1200 m scales. Figure 7 depicts the maximum, minimum, and average 

coefficients of each planning variable at each scale. 

 

 
(a) 300 m 
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(b) 600 m 

 
(c) 1200 m 

Fig. 7. GWR coefficients of each planning variable at the scale of 300, 600, and 1200 m. 

As depicted in Fig. 7a, at the 300 m scale, the average coefficients of each planning variable 

were similar, indicating a comparable influence on the SPL. Traditional planning variables 

exhibited an average impact ranging from 0.03 to 0.45, while planning big data variables ranged 

from 0.01 to 0.42. This suggests that planning big data had a slightly smaller average impact on 

SPL; however, NQPDA8000 posed a notable impact, represented by a regression coefficient of 

0.42, second only to that of BP_SUM. In Figure 7a, the spike in the maximum GR coefficient 

indicates that, within the 300 m scale grid, GR has a substantial, positive influence on traffic noise 

in specific urban sectors. The urban area has a high building density and height, low coverage of 

second-level and third-level roads, and a high degree of greening rate. High building density, high 

building heights, and narrow roads can form "urban canyons" (Schiff et al., 2010), trapping and 

amplifying traffic noise. Progressing to Fig. 7b, at the 600 m scale, traditional planning variables 

forced an average impact on SPL ranging from 0.03 to 0.36. Among the planning big data 
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variables, NQPDA8000 had the greatest impact on big data, with a regression coefficient of 0.53. 

The remaining planning big data variables exhibited an average impact ranging from 0.0004 to 

0.17, which was lower than that of the traditional planning variables, except for NQPDA8000. 

Finally, in Fig. 7c, at the 1200 m scale, traditional planning variables displayed an average impact 

on SPL ranging from 0.09 to 0.34. Similarly, NQPDA8000 provided the greatest impact on big 

data planning variables, with a regression coefficient of 0.71. The remaining planning big data 

variables posed an average impact ranging from 0.004 to 0.30, which was typically lower than that 

of the traditional planning variables, except for NQPDA8000. 

Therefore, except for NQPDA8000, the average impact of planning big data on traffic noise 

in the regression model was generally lower than that of the traditional planning variables. The 

average impact of NQPDA8000 increased with scale, weakening the impact of other planning big 

data variables. Conversely, the impact of the traditional planning variables was less affected and 

remained more stable. 

4.2. The difference in the impact of planning variables on traffic noise level in different 

urban areas 

To explore the performance of planning variables in different urban areas and analyse the 

differences, this study employed an independent sample t-test to discuss the statistical differences 

in the impact of planning variables on traffic noise in urban centres and fringes. Four 

representative planning indicators were selected at each scale based on the results of Fig. 7 and 

the following selection criteria: (1) variables with the greatest impact, (2) variables with a large 

impact, and the GWR coefficients of the variables were positive and negative. Therefore, GR, RL, 

NQPDA8000, and BD were selected at 300 m; GR, GFA, NQPDA8000, and NUM_L at 600 m; 

NUM_IN, BP_SUM, NQPDA8000, and TPBtA1200 at 1200 m. All coefficient samples were 

imported into SPSS for the t-test to explore significant differences between the urban centre and 

fringe. The results are presented in Table 3. 

Table 3. Results of independent sample t-test for each planning variable at the scale of 300, 600, 1200 m. 

 
t-value df Sig. 

300 

m 

BD
**

 4.157 1424.000 0.000 

GR
**

 8.511 585.927 0.000 

RL
**

 –16.330 179.645 0.000 

NQPDA8000
**

 9.849 1424.000 0.000 

600 

m 

GFA –1.903 366.000 0.058 

GR –1.791 366.000 0.074 

NQPDA8000
*
 2.382 57.354 0.021 

NUM_L
**

 –7.208 41.868 0.000 

1200 

m 

BP_SUM
**

 –3.936 17.493 0.001 

NUM_IN
**

 –3.849 94.000 0.000 

TPBtA1200
**

 2.714 94.000 0.008 

NQPDA8000
**

 –4.388 66.046 0.000 

** represents p < 0.01 

* represents p < 0.05 

As indicated in Table 3, the BD, GR, RL, and NQPDA8000 displayed significant variations 

in the impact on SPL between the urban centre and fringe at the 300 m scale, with p < 0.01. At the 

600 m scale, NQPDA8000 and NUM_L exhibited significant differences, whereas GFA and GR 

manifested no significant differences. At the 1200 m scale, NUM_IN, BP_SUM, NQPDA8000, 

and TPBtA1200 all exhibited significant differences. Therefore, the majority of the key planning 

variables displayed significant differences in their impact on traffic noise between the urban 

centre and the fringe. 

In the GWR model, each planning variable yielded a regression coefficient for each grid cell. 

As depicted in Fig. 8, the coefficients are grouped by equal intervals and highlight the positive 
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and negative boundaries. The number of samples in each group was counted, and their 

proportions in the urban centre and fringe were calculated to analyse the differences. The vertical 

axis quantitatively represents the proportions of different coefficient ranges of one independent 

variable in the urban centre or fringe (PC/PF), and the horizontal axis represents the range of 

coefficient values (CR). 

 

(a) 300 m 

 

(b) 600 m 
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(c) 1200 m 

Fig. 8. Proportion of the impact of each planning variable on traffic noise level in urban centre and fringe areas. 

As displayed in Fig. 8a, at a scale of 300 m, the impact of BD on SPL in the urban centre 

mainly ranged from 0.01 to 0.17, accounting for 35.28% of the urban centre area. In 81.8% of the 

urban centre area, BD and SPL were positively correlated, indicating that in most of the urban 

centres, an increase in building density led to an increase in traffic noise level, which contradicted 

the previous research conclusion that ‘building density and traffic noise are negatively correlated’ 

(Montalvao Guedes et al., 2011; Ryu et al., 2017; Salomons and Pont, 2012; Weber et al., 2014). 

This could be attributed to the complex influencing factors of SPL in the urban centre: as 

illustrated in Fig. 5a, at the scale of 300 m, BD was significantly positively correlated with 

NQPDA8000 and significantly negatively correlated with GR, with Pearson coefficients of 0.22 

and 0.35 respectively, indicating that places with high building density tended to have high car 

accessibility and low greening rate, which weakened the impact of BD on SPL. In the urban fringe, 

the impact of BD on SPL had the largest proportion in three coefficient ranges, which were 

0.01–0.17, 0.56–0.67, and 0.21 to 0.08, respectively. Overall, the impact of BD in the urban 

centre was greater than that in the urban fringe, and previous studies have demonstrated that in 

places with high building density, the correlation between building density and noise is stronger 

(Weber et al., 2014), which is similar to the results of previous studies. The impact of GR on SPL 

was concentrated in the range of 0.93 to 0.00, accounting for 56.51% of the urban centre area, 

which was similar to the previous research conclusion that increasing the greening rate can 

effectively reduce traffic noise levels (Margaritis et al., 2016). In the urban fringe area, the impact 

of GR on SPL was negatively correlated in 91.19% of the areas, with a coefficient range from 

0.93 to 0.00, which was much higher than 56.51% in the urban centre area. This may be due to 

the complex functional division in urban centres, higher population density, and frequent daily-life 

activities that weakened the inhibitory effect of the green ratio on the traffic noise level. 

Supporting this notion, research by Margaritis and Kang (2017) indicates that an increase in urban 

green spaces can effectively control traffic noise levels in urban fringe areas. Previous studies 

reported that the length of primary roads in urban areas is positively correlated with traffic noise 

(Margaritis and Kang, 2016). In this study, RL was negatively correlated with SPL in 60.85% of 

the urban centre area and positively correlated with SPL in 84.60% of the urban fringe area. This 

may be attributed to traffic control in the urban centre area, where the road network was dense. In 

general, a longer road creates more complex routing behaviour, which increases the probability of 

random behaviour and traffic control, thereby reducing traffic noise. The urban fringe contained 



Jiaxun Song, Qi Meng, Jian Kang, Da Yang & Mengmeng Li. Sustainable Cities and Society            [ DOI:10.1016/j.scs.2023.105006] 

Sustainable Cities and Society, Volume 100, 2024, 105006                                   page20 

mostly unobstructed primary and secondary roads, and the road network was relatively simple than 

that in urban centres, with low vehicle density and less random behaviour, resulting in longer roads 

with higher traffic volume and traffic noise. NQPDA8000 was positively correlated with SPL in 

96.31% of urban centres and 66.78% of urban fringes, which was lower than the proportion in 

urban centres, indicating that car accessibility had a greater impact on traffic noise in urban centres. 

This may be due to the difference in road network complexity between urban centres and urban 

fringes, where the activities in the urban fringe were mainly transportation-oriented, and many 

areas had strong car accessibility, which exhibited similarity and generality across multiple 

locations in the urban fringe, thereby rendering the impact of car accessibility on traffic noise in 

urban fringes weaker than in urban centres. 

As portrayed in Fig. 8b, at a scale of 600 m, GR posed a predominant impact on SPL in urban 

centres, ranging from 0.93 to 0.00 and accounting for 86.37% of the urban centre area. 

Conversely, in the urban fringe, a negative correlation was observed between GR and SPL in 

76.28% of the areas. Within urban centres, the GFA and SPL were positively correlated, 

accounting for 62.12% of the urban centre area, whereas in the urban fringe, such a positive 

correlation was present in 69.7% of the areas. Contrary to previous studies that failed to identify a 

significant correlation between traffic noise and gross floor area (Hong and Jeon, 2017), this study 

yielded different conclusions for two reasons. First, the previous study employed a smaller scale of 

150 m × 150 m, whereas this study utilised a larger scale of 600 m × 600 m, as indicated by the 

GWR results, thereby strengthening the impact of GFA on SPL with scale expansion. 

Consequently, a positive correlation between the GFA and SPL was observed herein. Second, Fig. 

8b depicted areas where the impact of GFA was not statistically significant (p > 0.05 in t-test), 

situated at the boundary between positive and negative impacts of GFA. Thus, the previous study 

presumably focused on these specific areas, resulting in insignificant effects. In all areas, 

NQPDA8000 exerted a positive impact on SPL. The regression coefficient for NUM_L in urban 

centres primarily fluctuated in the neighbourhood of 0, indicating a minimal impact on SPL. 

Conversely, in the urban fringe, the impact of NUM_L on SPL ranged from 0.15 to 0.34, 

encompassing 57.87% of the urban fringe area. Evidently, the influence of NUM_L on traffic noise 

levels was more pronounced in the urban fringe than urban centres, attributable to the lesser 

activity and fewer complex factors affecting traffic noise in the fringe areas.  

As illustrated in Fig. 8c, NUM_IN exhibited a positive correlation with SPL in all areas at a 

scale of 1200 m, indicating that an increase in NUM_IN in either the urban centres or urban 

fringes increased the SPL. This finding aligns with previous research, which concluded that local 

road intersections contribute to elevated traffic noise levels (Margaritis and Kang, 2016). 

Additionally, the coefficient of NUM_IN predominantly ranged between 0.13–0.32 in urban 

centres and 0.40–0.52 in urban fringes. This suggests that the impact of NUM_IN on SPL is 

significantly greater in the urban fringes than in urban centres. The complex influencing factors 

present in urban centres potentially mitigate the effect of NUM_IN. Therefore, the impact of 

NUM_IN on SPL is much greater in the urban fringe than in the urban centre. Within the urban 

centres, approximately 64.71% of the areas exhibited a negative impact of BP_SUM on SPL, 

whereas in the urban fringes, 81.77% of the areas displayed a positive correlation between 

BP_SUM and SPL. This indicates that the impact of BP_SUM on SPL was predominantly 

negative in urban centres and predominantly positive in urban fringes. These findings contradict 

previous research conducted by Margaritis and Kang (2016), who reported that a larger building 

total perimeter corresponded to higher levels of traffic noise in the urban centre and fringe areas of 

Sheffield, UK. The disparity in findings may be attributed to variations in urban design across 

different countries. NQPDA8000 exhibited a positive impact on SPL in all areas, with a more 

concentrated effect observed on the urban fringe. This may be attributed to the relatively 

simplified influencing factors present in the urban fringe. Conversely, TPBtA1200 displayed a 

negative correlation with SPL in all areas, with the degree of impact ranging from 0.49 to 0.07 

in urban centres and concentrated within the 0.49 to 0.41 range in the urban fringe. The negative 

correlation of TPBtA1200 is driven by different factors in urban centres and fringe areas. In urban 

centres, factors such as traffic control contribute to the imposition of restrictions on traffic noise in 
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areas with a high pedestrian passing probability, resulting in varying regression coefficients. Thus, 

the higher the pedestrian passing probability in the urban centre, the lower the traffic noise, leading 

to more diverse degrees of impact. Conversely, the urban fringe was predominantly characterised 

by highways and vehicular traffic. Areas with a high pedestrian passing probability tend to be 

situated further away from highways. Consequently, in the urban fringe, a higher pedestrian 

passing probability corresponds to lower traffic noise levels, resulting in a more concentrated 

impact degree. 

4.3. The difference of planning variables’ impact on traffic noise level at different scales 

To investigate the impact of each planning variable on traffic noise at different scales, the 

coefficient values of each independent variable in the GWR model at different scales were 

statistically analysed. Fig. 9 depicts the variation in the impact of each planning variable on traffic 

noise in the regression model at different scales. 

 
Fig. 9. Variations in the impact of planning variables on traffic noise level with scale 

In Fig. 9, the average impact of BP_SUM on SPL increased gradually with an increase in 

scale. The average impact of the GFA was greater at the scale of 600 m than at the scale of 300 m, 

and the average impact was positive at the scale of 600 m, with a coefficient of 0.09, whereas the 

average impact was negative at the scale of 300 m, with a coefficient of 0.08. The impact of BS 

on the SPL exhibited a marginal decrease followed by an increase with an increase in scale. The 

average coefficient of RL decreased gradually with an increase in scale; all were negatively 

correlated, and the degree of negative correlation increased gradually. Although NUM_IN initially 

increased, it later decreased. The regression coefficients of GR decreased with an increase in scale, 

being 0.14, 0.04, and 0.26, respectively, at scales of 300, 600, and 1200 m, and the impact 



Jiaxun Song, Qi Meng, Jian Kang, Da Yang & Mengmeng Li. Sustainable Cities and Society            [ DOI:10.1016/j.scs.2023.105006] 

Sustainable Cities and Society, Volume 100, 2024, 105006                                   page22 

degree initially weakened before increasing. This finding differed from that stated in previous 

research, where Margaritis and Kang (2017) reported that the correlation between green space 

indicators and noise decreased gradually from micro- to macroscopic levels. This disparity may 

arise from the fact that previous studies explored the variation of single variables with scale, while 

in this paper's regression model, GR is affected by other independent variables at different scales, 

thus altering the variation pattern. The average coefficient of TPBtA1200 decreased with the scale 

and was negatively correlated with the SPL. Moreover, NQPDA8000 positively impacted the SPL 

and increased with scale. The coefficients of NQPDA1200 and TPBtA8000 did not vary 

significantly at the different scales. The coefficients of the POI variables were generally 

approximate to zero and varied marginally at various scales. 

4.4. Urban sound environment optimisation strategies and simulation verification from a 

planning perspective 

This study proposed urban design strategies for general sound environment optimisations at 

different scales based on the average regression coefficient of each independent variable in the 

GWR model in Section 4.1.3. At the 300 m scale, the building total perimeter (BP_SUM) was 

increased, and car accessibility was reduced (NQPDA8000). At the 600 m scale, car accessibility 

(NQPDA8000) was reduced, the building total perimeter (BP_SUM) was increased, and the 

number of intersections (NUM_IN) was reduced. At the 1200 m scale, car accessibility 

(NQPDA8000) and the average building perimeter (BP_AVG) decreased, the road length (RL) of 

carriageways and the greening rate (GR) increased, and the number of intersections (NUM_IN) 

was reduced. 

Additionally, based on the results of Section 4.2 and the local coefficients of the GWR model, 

we proposed refined design strategies for urban centres and fringes at different scales. For urban 

centres at the 300 m scale, it is recommended to reduce the building density (BD) and increase 

greening (GR) in the original building locations and other areas. Furthermore, increasing the road 

length (RL) of main roads and reducing car accessibility (NQPDA8000) is advised. At the 600 m 

scale, it is suggested to decrease gross floor area (GFA), enhance greening (GR) in vacant areas, 

reduce car accessibility (NQPDA8000), and increase the number of leisure POIs (NUM_L). 

Finally, the strategies proposed for the 1200 m scale involved reducing the number of road 

intersections (NUM_IN) and car accessibility (NQPDA8000), as well as increasing the pedestrian 

road probability (TPBtA1200) and building total perimeter (BP_SUM). For urban fringes at a 300 

m scale, the building density (BD) was reduced, and urban greening (GR) was increased. In 

addition, car accessibility (NQPDA8000) was increased, and the carriageways (RL) were 

shortened. At the 600 m scale, the gross floor area (GFA) reduced, urban greening (GR) increased, 

car accessibility (NQPDA8000) diminished, and leisure POI number (NUM_L) decreased. At the 

1200 m scale, the intersection number (NUM_IN) and car accessibility (NQPDA8000) increased 

the pedestrian road probability (TPBtA1200) and reduced the total building perimeter (BP_SUM). 

To verify the feasibility and applicability of the aforementioned strategies, this study 

considered Shanghai, China as an example. The urban sound environment before and after 

optimisation is simulated using the noise simulation software Cadna/A, and fitting and comparison 

analyses are conducted using SPSS. The Hongkou District of Shanghai serves as the verification 

object for general design strategies at different scales. For the strategies in urban centres and 

fringes, the Huangpu District of Shanghai's urban centre and Songjiang District of its urban fringe 

were selected as the verification objects in accordance with the provisions of Shanghai Urban 

Master Plan (2017–2035). Verification areas of 300 m × 300 m, 600 m × 600 m, and 1200 m × 

1200 m were randomly selected within the verification objects, urban planning was redesigned 

according to the aforementioned strategies in these areas, and the optimisations effects were 

verified. The verification results are presented in Table 4. 
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Table 4. Simulation verification of urban sound environment optimisation strategies from the perspective of 

planning. 

   
Verification 

area 

Before 

optimisation 

After 

optimisation 

Fitting curves before 

and after optimisation 

Legend   

 

 

 

 

General 

sound 

environmen

t 

optimisation 

strategies 

 300 m 

 
  

 

 600 m 

 
  

 

 1200 m 

 
  

 

Sound 

environmen

t 

optimisation 

strategies in 

urban centre 

and urban 

fringe 

Urb

an 

cent

re 

300 m 

   

 

600 m 

 
  

 

1200 m 

 

  

 



Jiaxun Song, Qi Meng, Jian Kang, Da Yang & Mengmeng Li. Sustainable Cities and Society            [ DOI:10.1016/j.scs.2023.105006] 

Sustainable Cities and Society, Volume 100, 2024, 105006                                   page24 

Urb

an 

frin

ge 

300 m 

 
  

 

600 m 

   

 

1200 m 

 
  

 
 

The fitting curves of the scatter plots before and after optimisation demonstrated that the 

proposed methods effectively reduced the traffic noise in the verification area. Furthermore, we 

evaluated percentage of noise reduction and noise reduction value based on the noise data before 

and after optimisation. The Cadna/A simulation employs a grid-based approach to approximate 

the noise level distribution across the entire area by calculating the average sound pressure level 

for each grid cell. The average values of the grid sound levels before and after optimization are 

calculated, and the difference is calculated to obtain noise reduction value, indicating the range of 

noise reduction. Percentage of noise reduction is the proportion of the grid cells with reduced 

noise after optimization, indicating the degree to which the optimization strategy can improve the 

regional noise. For general design strategies, at the 300 m scale, there was a 79.0% reduction in 

traffic noise with an average reduction of 4.2 dB. At the 600 m scale, a 57.7% reduction in traffic 

noise was observed, with an average reduction of 3.2 dB. At the 1200 m scale, a 62.1% reduction 

in the traffic noise was achieved, with an average reduction of 2.3 dB. Regarding design strategies 

by area, in urban centres at the 300 m scale, there was a 77.1% reduction in traffic noise with an 

average reduction of 1.9 dB. At the 600 m scale, an 87.9% reduction in traffic noise was recorded, 

with an average reduction of 1.6 dB. At the 1200 m scale, a 65.1% reduction in the traffic noise 

was observed, with an average reduction of 4.0 dB. In urban fringes at the 300 m scale, a 51.4% 

reduction in traffic noise was achieved, with an average reduction of 0.9 dB. At the 600 m scale, 

an 81.5% reduction in traffic noise was attained, with an average reduction of 1.7 dB. At the 1200 

m scale, a 95.0% reduction in the traffic noise was observed, with an average reduction of 3.7 dB.  

The noise reduction values for the general design strategies ranged from 2.3 to 4.3 dB, 

whereas the values for area-specific design strategies were between 1.6 and 4.0 dB for urban 

centres and between 0.9 and 3.7 dB for urban fringes. These results can be interpreted in the 

context of psychoacoustic phenomena. According to the classic psychoacoustic experiment 

known as "just noticeable difference (jnd)," the smallest perceivable change in sound level is 

dependent upon both the intensity and frequency of the sound (Long, 2014). Prior research 

indicates that the frequency of traffic noise predominantly falls within the 500 Hz to 2500 Hz 

range (Wang et al., 2019). Given that the traffic noise levels obtained from simulations in this 

study ranged approximately between 30 and 70 dB, the minimum sound level variation 
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perceptible to humans is estimated to be between 0.33 and 1.2 dB (Long, 2014). Consequently, 

the sound level reductions achieved through the implementation of these strategies are perceptible 

to human observers. 

Moreover, extant research suggests that sustained noise reduction measures contribute to 

various health benefits, including a lowered incidence of hypertension and coronary heart disease 

(Swinburn et al., 2015). Additionally, such measures have been shown to enhance memory 

accuracy, thereby potentially improving work efficiency (Meng et al., 2021). Thus, the observed 

noise reductions not only have immediate perceptual implications but also offer long-term 

benefits in terms of both health and cognitive performance. 

4.5. Limitations and prospects of the study 

This study is subject to several limitations. Owing to the absence of high-spatial-resolution 

acoustic datasets, a software simulation method was employed to generate the acoustic data. 

Although Cadna/A is known for its high simulation accuracy, there may still exist slight errors in 

the actual sound pressure level. Moreover, the study area was limited in scope, and the research 

scale was restricted to only three scale sizes: 300, 600, and 1200 m. This limitation was primarily 

driven by considerations of workload and sample size. To gain a more comprehensive 

understanding of the influence of planning variables on traffic noise levels with relation to scale 

difference, future studies should encompass larger research areas and incorporate additional spatial 

scales. Furthermore, this study focuses on urban morphological variables, neglecting the potential 

impact of geodemographic factors on traffic noise. Previous studies have highlighted the relevance 

of variables such as population density and car availability ratio in determining noise levels 

(Margaritis and Kang, 2016; Ryu et al., 2017; Salomons and Pont, 2012). Hence, subsequent 

research could benefit from exploring the effects of these geodemographic factors on traffic noise 

across various urban areas and scales, thereby facilitating the development of more precise noise 

prediction models. Finally, this study verified the feasibility of utilising urban big data analysis for 

traffic noise and establishes the foundation for a machine-learning-based noise-prediction model 

that utilises urban big data as input. 

5. Conclusions 

In the context of smart cities, this study assessed the impact of planning variables on traffic 

noise levels at different scales using spatial statistics and other methods. The applicability of 

traditional planning variables and big data was compared for analysing traffic noise at various 

scales. Furthermore, this study examined the variations in the impact of planning variables on 

traffic noise across urban and fringe areas and the quantified the variations in their impact at these 

scales. The major conclusions of this study are stated as follows:  

(1) The correlation between planning big data and traffic noise levels was stronger than that 

between traditional planning variables and traffic noise levels. Planning big data significantly 

affected the spatial heterogeneity of traffic noise levels. However, among the multi-parameter 

contributions, except for Closeness at 8000 m (car accessibility), the impact of other planning big 

data on traffic noise was observed to be less than that of the traditional planning variables.  

(2) In urban centres and fringes, the impact of most key planning variables on traffic noise 

exhibited significant differences at the statistical level. For example, at a 300 m scale, the greening 

rate was negatively correlated with traffic noise in 91.19% of the range in urban fringes and only 

56.51% in urban centres. Building density had a greater impact on traffic noise levels in urban 

centres than in urban fringes at the 300 m scale. At the 1200 m scale, the building total perimeter 

was mainly negatively correlated with traffic noise in urban centres and was positively correlated 

in urban fringes. The number of intersections posed a greater impact on traffic noise in urban 

fringes than in urban centres at the 1200 m scale. 

(3) The average impact of the planning variables on the traffic noise level varied at different 

scales. For example, the average regression coefficient of the greening rate shifted from positive to 

negative upon increasing the scale and became negatively correlated with the traffic noise level at 

the 600 m scale. Closeness at 8000 m was positively correlated with the traffic noise level at all 

three scales, and its influence increased with scale, indicating that car accessibility played a more 
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decisive role in traffic noise levels at larger scales. 

(4) This study proposed sound environment optimisation strategies for urban areas at various 

scales. The simulations verified that these strategies could reduce traffic noise by more than 50% 

in the study area, with certain strategies achieving an optimisation effect of more than 90%, 

thereby indicating adequate optimisation. 

This study provided strategic support for noise control in urban design and guidance for the 

sound environment prediction of future unbuilt urban spaces. In addition, this study verified the 

applicability of planning big data for traffic noise analysis and provided support for future research 

on the optimisation of the sound environment in smart cities. Future studies should include larger 

research areas and diverse spatial scales to more comprehensively understand the influence of 

planning variables on traffic noise levels with scale alterations. Further research could focus on 

establishing a machine-learning noise prediction model using urban big data as input. 
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