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A B S T R A C T   

Artificial intelligence (AI) is a revolutionary technology that is finding wide application across numerous sectors. 
Large language models (LLMs) are an emerging subset technology of AI and have been developed to commu
nicate using human languages. At their core, LLMs are trained with vast amounts of information extracted from 
the internet, including text and images. Their ability to create human-like, expert text in almost any subject 
means they are increasingly being used as an aid to presentation, particularly in scientific writing. However, we 
wondered whether LLMs could go further, generating original scientific research and preparing the results for 
publication. We tasked GPT-4, an LLM, to write an original pharmaceutics manuscript, on a topic that is itself 
novel. It was able to conceive a research hypothesis, define an experimental protocol, produce photo-realistic 
images of 3D printed tablets, generate believable analytical data from a range of instruments and write a 
convincing publication-ready manuscript with evidence of critical interpretation. The model achieved all this is 
less than 1 h. Moreover, the generated data were multi-modal in nature, including thermal analyses, vibrational 
spectroscopy and dissolution testing, demonstrating multi-disciplinary expertise in the LLM. One area in which 
the model failed, however, was in referencing to the literature. Since the generated experimental results 
appeared believable though, we suggest that LLMs could certainly play a role in scientific research but with 
human input, interpretation and data validation. We discuss the potential benefits and current bottlenecks for 
realising this ambition here.   

1. Introduction 

Artificial intelligence (AI) is a ground-breaking technology that is 
driving advancements in both technology and society in many fields 
(Briganti and Le Moine, 2020; Palagi and Fischer, 2018; Wang et al., 
2022b; Wang et al., 2023b). Its primary goal is to mimic human intel
ligence and, as a result, to carry out human tasks (Xu et al., 2021), but at 
a much faster pace than humans can achieve. This capability can solve 
challenges like workforce shortages and eliminates the need to expose 
humans to hazardous situations (Gao et al., 2021). In the drug discovery 
process, AI provides virtual simulations, which can significantly reduce 
the time needed for introducing new molecules to market (Chen et al., 
2018; Das et al., 2021; Popova et al., 2018). This is invaluable given the 
escalating cost of developing products to commercial launch. Conse
quently, the pharmaceutical industry has begun to explore the applica
tions of AI to product development (Elbadawi et al., 2021). 

Machine learning (ML), a branch of AI, is instrumental in increasing 
the efficiency of complex processes, such as forecasting three dimen
sional (3D) printing capabilities (Elbadawi et al., 2020,2024), predicting 

drug-food interactions (Gavins et al., 2022; Kim et al., 2022), and 
modelling long-acting injectables (Bannigan et al., 2023). Another AI 
subset, machine vision (MV), is being used for tasks such as real-time 
monitoring of the disintegration of oral films, and is a key element in 
the application of process analytical technology (PAT) to tablet coating 
(Ficzere et al., 2022; Galata et al., 2021; O’Reilly et al., 2021; Rodrigues 
et al., 2021). Additionally, AI is helping the development of robotics by 
mimicking human movements effectively (Langer et al., 2019; von 
Erlach et al., 2020). 

A less commonly used subset of AI, in pharmaceutics at least, is 
natural language processing (NLP), which aims to replicate human 
conversation, enhancing machine-human communication (Holler and 
Levinson, 2019; Trenfield et al., 2022). This allows enhanced access to 
machines and digital content, making the technology more accessible. 
Historically, interacting with machines primarily required coding, a skill 
not widely held. This barrier hindered researchers eager to harness the 
power of AI for solving pharmaceutical challenges. However, after years 
in development, a breakthrough in NLP was made by the development of 
large language models (LLMs), which has made NLP available to the 
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masses. These models, with access to a vast number of data, deliver on- 
demand intelligent responses to questions posed by human users (Aga
thokleous et al., 2023; De Angelis et al., 2023). This is in stark contrast to 
the time needed for manual retrieval of information by sifting through 
published work. With the overwhelming surge in scientific publications, 
manually locating specific information has become an arduous task. For 
instance, answering a seemingly simple question like “how many types 
of 3D printing technologies exist?” can be challenging given the expanse 
and breadth of the pharmaceutical literature. This has left an unmet 
need in the 21st century for a more efficient means of extracting relevant 
information (Trewartha et al., 2022). Faster information retrieval in 
theory should result in faster discoveries and developments. 

At their core, LLMs utilise neural networks trained on billions of 
words and images sourced from the internet, aiming to identify con
nections between them (Thirunavukarasu et al., 2023). During this 
process, the model learns patterns, facts, grammar and even how words 
and ideas relate to each other. Once trained, the model can generate its 
own text, answer questions, or help with tasks by drawing on a large 
pool of learned information, almost like recalling knowledge from a 
gigantic digital brain. In 2020, LLMs, like the generated pre-trained 
transformer (GPT), could execute tasks using minimal instructions 
(Floridi and Chiriatti, 2020). Since then, LLM technology has advanced 
such that they can understand multi-modal data, like sound and visual 
information and its uses now encompasses generating on-demand con
tent such as text and images. Therefore, LLMs are categorised as 
generative AI models, distinguishing them from earlier studies that used 
ML primarily for predicting outcomes. 

LLMs have shown promise in generating new content, especially in 
the medical field, by aiding in automating written tasks. For example, 
Kung et al. (2023) showcased how Chat-GPT can aid in clinical decision- 
making. In academia, some publications have credited LLMs as co- 
authors, highlighting their contribution to scientific literature, and 
most journals now require authors to declare any use of AI. LLMs have 
contributed to writing review articles and even crafting experimental 
procedures (Frye, 2022; Marquez et al., 2023; Norris, 2023; Rahimi 
et al., 2023). In plant science, they have been employed to pose ’key 
questions in plant science’ (Agathokleous et al., 2023). However, to the 
best of our knowledge, LLMs have not yet written a data-driven, original 
research article from inception to publication. In fields like pharma
ceutics, creating an original, hypothesis-driven research article with 
accompanying data and critical interpretation is a resource-intensive 
endeavour requiring expertise, skill, equipment, instrumentation and 
materials. If LLMs can handle such a task, they could revolutionise the 
research landscape. This would not only illustrate their capacity for 
information retrieval but also their potential to produce original con
tent, surpassing tasks like literature review writing. 

To that end, we tested an LLM, GPT-4, setting it the task of writing an 
original data-driven pharmaceutical research paper. We asked it to 
create a research hypothesis, generate the accompanying data to be 
discussed and write a submission-ready manuscript in the authors’ field 
of expertise; 3D printing of medicines. 3D printing is an emerging 
technology in manufacturing medicines and has shown great potential 
for addressing the lack of personalised and precise medicines (Dedeloudi 
et al., 2023; Elbadawi et al., 2023; Englezos et al., 2023). The technology 
remains in its nascent phase, and thus there are relatively few data 
publicly available for training LLMs. We tasked the model with imag
ining how a tablet comprising paracetamol dispersed in PLGA with 
candurin would be fabricated with selective laser sintering (SLS) print
ing. PLGA was selected as the main excipient because its use in phar
maceutical SLA 3D printing has not previously been evaluated (and so 
no literature data were available to the LLM) and it is expensive (so 
evaluating its use with AI potentially saves a lot of research cost). The AI- 
generated manuscript is appended at the end of the manuscript and we 
discuss our experience with GPT-4 in this report. 

2. Experimental procedure 

Prompts (full details of which are appended in the supplementary 
information) were submitted to ChatGPT PLUS using the GPT-4 model 
(Chat-GPT July 20 Version). Text responses from prompts were copied 
and pasted into Word. To generate data, the model was prompted to 
generate representative code for python. The code was then ported to 
python (v3.11.1) and the plots generated were transferred to the 
manuscript. For image production, the application programming inter
face (API) supplied by OpenAI for python was used (openai v.0.27.8). 
Image generation was performed with the DALL-E model, which is a 
generative NLP model. Similar to GPT-4, the model was prompted with 
text and the generated images were copied and pasted into the 
manuscript. 

3. Results and discussion 

GPT-4′s ability to write an original manuscript, including within the 
text data, plots and images, was nothing short of remarkable. In less than 
one hour, the AI platform was able to generate the results of a study and 
prepare a manuscript for publication. In other words, the entire contents 
of the manuscript presented below were generated de novo by AI. While 
it may not be surprising that GPT-4 could generate the words to describe 
the data, the fact that it could generate data to support a research hy
pothesis is a key, and somewhat unexpected, finding. 

Typically, users interact with GPT-4 through text, but our study has 
shown that LLMs can go further, and convert text into data, figures and 
images, all of which are common means of data representation in 
manuscripts. We chose to prompt the LLM with a drug and polymer 
combination (paracetamol with PLGA and a colourant dye, candurin) 
which had not been previously reported in the literature; hence, it was 
not possible for the LLM to simply retrieve data from the internet. It had 
to create data and images de novo. 

Different types of data, including spectroscopic, optical and x-ray 
micro-computed tomography (XRMCT), were created and they looked 
compelling. Additionally, the model provided a critical commentary of 
the data. For example, it produced sensible glass transition and melting 
temperatures for PLGA and a melting temperature for paracetamol, and 
knew how these would manifest in a differential scanning calorimetry 
(DSC) thermogram (Table 1) (Lanao et al., 2013). Similarly, it produced 
prototypical degradation plots for these components and was able to 
simulate their thermal gravimetric analysis (TGA) curves (Awad et al., 
2019; Giri and Maniruzzaman, 2022; Shi et al., 2018; Zhang et al., 
2023). For human researchers, this level of knowledge retrieval would 

Table 1 
Features of the simulated TGA and DSC compared to real-world examples.  

Characterisation 
technique 

Material Feature Reference 

TGA PLGA Degradation onset 
~300 ◦C, and 
complete degradation 
by 350 ◦C 

(Jose et al., 2009) 

Paracetamol Degradation onset 
~250 ◦C and complete 
degradation by 300 ◦C 

(de Oliveira et al., 
2017; Goyanes 
et al., 2015) 

Candurin Thermally stable until 
500 ◦C, with minor 
weight loss 

(Zhang et al., 
2023)  

DSC PLGA Tg at ~60 ◦C and Tm ~ 
140 ◦C 

(Walejewska et al., 
2020) 

Paracetamol Tm ~ 170 ◦C (Khaled et al., 
2018b) 

Candurin No thermal events 
between 25 and 
250 ◦C. 

(Madžarević et al., 
2021)  
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require an exhaustive period of literature surveying, for each compo
nent, and matching that with experimental data. 

The simulated Fourier-transformed infrared (FTIR) spectra were 
particularly good. FTIR data typically require multi-variate analysis to 
interpret and is not a trivial task. Here, AI was able to work through it 
logically. First, it recalled the chemical structure of, for example, para
cetamol. Thereafter, it postulated potential vibration bands based on the 
chemical structure of the material and how they would manifest them
selves in an FTIR plot. As a result, the simulated FTIR plots were 
indistinguishable from real FTIR plots (Table 2). For XRD, GPT-4 was 
able to classify the materials as either crystalline, semi-crystalline or 
amorphous and was able to produce intensity peaks for each material 
(Table 2). 

While the ability of the model to generate data was good, its ability to 
demonstrate critical thinking was even more impressive. For instance, it 
postulated an effect of laser scanning speed on the mechanical and 
dissolution properties of the printlets, even though there is no template 
or previous precedence for this in the literature. It also showed a rela
tionship between laser speed and printlet porosity, and used this to 
explain differences in mechanical properties and dissolution profiles. 
Interestingly, its ability to analyse critically how paracetamol might 
become amorphous during SLS printing, and how this might alter DSC, 
FTIR and X-ray diffraction (XRD) data, demonstrate a fundamental un
derstanding of both material and pharmaceutical sciences. 

We also used AI’s text-to-image feature to generate images of the 
printlets. While the main object (i.e. the printlet) was perfectly captured, 
the model can be seen to struggle with the surrounding content. In 
particular, the ruler hash marks can be seen to be abnormal. Minor 
abnormalities in photographic images like this are a key indicator that 
they are not real, and this may be an important tool in determining 
whether images are real or artificial. 

The model was also tasked with generating X-ray Micro Computed 
Tomography (XRMCT) images. Here, the images showed printlets with a 
similar morphology to previous work (Fina et al., 2017), although im
provements would be needed to make these images appear more 
realistic. 

Finally, the ability of the model to write was also striking. Commu
nicating the results of a study is a critical aspect of scientific research, 
and a lot of information can be embedded in text that cannot be 
otherwise communicated. In addition to the results section, GPT-4 was 
able to generate a methodology section, including within it some very 
detailed experimental protocols, similar to those noted by Marquez 
et al., (2023). The ability to create such detailed work plans may help 
guide researchers who are new to a particular discipline or technique, 

especially in today’s cross-disciplinary environment. The model was also 
able to rationalise the need for the study and provided some background 
information in the Introduction. 

There were two areas where the model showed any deficiencies. One 
was a lack of keywords, and the other was in referencing literature. 
Indeed, no references were cited and it is not clear why the model was 
unable to accomplish this. It may be that the model seeks data from the 
internet, assuming all information is not attributable to specific authors, 
and does not scan individual research papers, in the way that a human 
researcher would. Of course, many of the data the model generated were 
created de novo, and so could not be cited, but the lack of citations in the 
introduction section is a clear weakness, although this may be used as 
the basis of a method for identifying text that has been generated with 
AI. 

Overall though, by showing an ability to write an original research 
article, AI has achieved a significant breakthrough in simulating human 
intelligence. The results of this study suggest that LLMs have the po
tential to transform pharmaceutical research radically, despite their 
infancy. The authors have been interested in using AI to automate as
pects of the pharmaceutical research pipeline in the interest of accel
erating discoveries and developments and doing so in an 
environmentally sustainable manner (Abdalla et al., 2023; McCoubrey 
et al., 2022; Wang et al., 2023a) and we have been successful in 
modelling and automating many aspects of the research pipeline. 
However, we have always needed the laborious steps of data collection 
and pre-processing of information to feed into an AI model. Here, in 
contrast, no data collection or data pre-processing was needed; The LLM 
generated everything de novo, which allowed completion of its task at a 
fast pace. 

We have not yet experimentally validated the outcomes of the model, 
by printing and characterising PLGA/paracetamol tablets but what has 
been achieved within this study builds on our previous work. For 
example, AI’s ability to simulate FTIR data from simple text prompts is 
unprecedented and opens up new avenues of sustainable simulations 
and the prospect of simulating the entire research pipeline appears 
feasible. Further ‘stress tests’ are needed to see how LLMs can cope with 
human inter- and intra-variability, which are known to cause variability 
in data and has been an attributor of data irreproducibility. Indeed, 
other sources of variations, such as ambient temperature and humidity 
variation, should be factored in by LLM when generating simulated data, 
and it will be interesting to see how the platform can adapt to these 
unpredictable scenarios, as well as being integrated into Internet of 
Things (IoT) framework (Olvera and Monaghan, 2021; Raijada et al., 
2021). 

Its ability to write a manuscript on a research topic that itself is 
emerging was incredible. Relative to other pharmaceutical research 
topics, there is limited information surrounding SLS printing of medi
cines (Charoo et al., 2020). It is anticipated that as the knowledge of SLS 
develops, so too will AI’s prowess of the topic. SLS printing of PLGA was 
selected because it has not been published nor documented and is of 
personal interest to the authors. Additionally, PLGA is expensive and so 
conducting experimental research with it requires significant funding. 
This work suggests that LLMs could be used to predict the outcomes of 
using expensive materials in research, and the results could be used to 
select which materials are used for real studies. In hindsight, PLGA was 
an ideal polymer for this study due to the copious amount of information 
available on its use and because of its applications in many material and 
healthcare sectors (Wang et al., 2022a). This is in contrast to some 
pharmaceutical polymers for which there are a lack of published data 
because they are almost exclusively used in pharmaceutical research and 
their chemical structures have not been disclosed by their manufac
turers. It would be interesting to see how AI would simulate data based 
on these materials. 

Data remains the main issue in using AI in pharmaceutics. All AI 
systems look to published data to draw relationships between chemical 
structure, physicochemical properties and behaviour in formulated 

Table 2 
Features of the simulated FTIR and XRD compared to real-world examples.  

Characterisation 
technique 

Material Feature Reference 

FTIR PLGA Characteristic single peak 
at 1750 cm− 1 and multiple 
peaks between 1550 and 
850 cm− 1 

(Dou et al., 
2021; Wei 
et al., 2022) 

Paracetamol Characteristic band 
~3200 cm− 1 and multiple 
peaks between 1600 and 
500 cm− 1 

(Khaled et al., 
2018a) 

Candurin Characteristic peak 
~1000 cm− 1 

(Zhang et al., 
2023)  

XRD PLGA Semi-crystalline; few 
peaks 

(Jeong et al., 
2023) 

Paracetamol Crystalline; multiple peaks (Khaled et al., 
2018a; Prasad 
et al., 2019) 

Candurin Crystalline; few peaks (Davis et al., 
2020)  
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medicines. Without open source data an AI system cannot develop re
lationships which it can use to predict outcomes. On the other hand, 
because the use of AI to generate scientific data is a new paradigm, most 
of the data in the literature have been generated by experimental 
research and any relationships between materials is real. If AI-generated 
data begin to populate the internet, then there will be an increasing 
proportion of data that are not real, and there is a risk that AI models 
start to predict non-sensical outcomes (this is already an issue being seen 
in the field of art, for instance). It may be the case that technologies such 
as blockchain can circumvent this issue (Trenfield et al., 2022), but the 
authors strongly suggest that all published data generated with AI are 
marked as such, so that they are not incorporated into future predictions 
by AI models. We also note that regulations will indeed be needed. For 
one, models should be closely monitored to ensure that they are trained 
with high quality, unbiased data, and they should be robust to adver
sarial attacks (Chen et al., 2023; Kaviani et al., 2022). There has been 
concern regarding LLMs ‘hallucinating’ responses, whereby they 
generate fictitious information (Brodnik et al., 2023). However, this is 
being actively addressed and once achieved, it is anticipated that it will 
result in more accurate experimental simulations. 

The ability of LLMs to generate different data of multiple types 
clearly demonstrates multi-disciplinary expertise beyond the pharma
ceutical sciences. Future work will seek to stretch its use to new data 
modalities and to evaluate the extent of its multi-disciplinary expertise. 
In addition, while communicating with AI via human languages makes it 
more widely accessible than communicating with it via coding, it will be 
interesting to see if it can be made even more accessible, for example by 
ensuring any AI platform will be economically viable and not hidden 
behind a paywall (Liebrenz et al., 2023). 

4. Conclusion 

We have demonstrated how GPT-4, an LLM, can simulate completion 
of a research project on a topic that is itself novel. It was able to conceive 
a research hypothesis, define an experimental protocol, produce photo- 
realistic images of the printlets, generate believable analytical data from 
a range of instruments and write a convincing publication-ready 
manuscript with evidence of critical interpretation. The model ach
ieved all this is less than 1 h. While caution must be exercised in the 
value placed on the research outcomes, we have nonetheless shown the 
potential power of AI in accelerating research. If the data generated this 
way are representative of reality, then AI could be used to save time and 
cost as well as limit the environmental impact of research. 
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