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In neurology, OCT has become an important method to determine in integrity of visual 

pathway. One example is MS, with OCT studies for over 10 years. As more studies have 

been published describing the association of SD-OCT measurements with brain atrophy 

and with reductions in visual function test scores, the use of OCT as a structural outcome 

measure in clinical trials of MS therapies is more widely adopted(1). With collaborations of 

neuro-ophthalmologists and MS specialists, the use of multiple OCT devices has created 

challenges for synergizing sites for trials. Often, clinical trials will use one or both 

of the two most common SD-OCT platforms (Cirrus HD-OCT or Spectralis); however, 

individual pRNFL and GCIPL thickness measurements are not interchangeable between 

these devices(2–5) unless consistent segmentation algorithms are used or the sample 

size is large enough to overcome systematic differences. SD-OCT measurements have 

high levels of reproducibility and low degrees of variability within each of the SD-OCT 

platforms for healthy controls(6) and in MS participants(7, 8) across multi-center studies(9). 

Measurements from the Cirrus and Spectralis SD-OCT devices are often pooled together 

despite differences in software algorithms, hardware/optical components and segmentation 

areas(3, 10).

Equations that convert pRNFL and GCIPL measurement between the two most widely 

used SD-OCT devices will be useful for clinical trials, clinical practice and for 

observational studies. Such an equation will provide a method to relate measurements 

obtained by Spectralis and Cirrus SD-OCT platforms and to more accurately pool data. 

Previous investigations have estimated conversion equations for pRNFL thickness in 

healthy volunteers and in participants with glaucoma(3, 11). The relation between GCIPL 

measurements for the Cirrus vs. Spectralis OCT platforms has not been investigated.

Normative data is important to provide a basis to compare to retinal degeneration seen 

in MS. The availability of normative data for spectral-domain (SD-) optical coherence 

tomography (OCT) measurements is currently limited by the lack of a large world-wide 

representative sample of normative data across age groups. Current normative values are 

based on the following: 1) healthy control comparison groups from published studies that 

may be subject to selection bias and are not stratified by age, sex, or race; 2) normative 

values provided in the OCT device software by the manufacturers, whose analyses were 

based on small sample sizes (fewer than 300 subjects in the Cirrus HD-OCT normative 

cohort), did not include macular scans (Spectralis normative cohort), and also do not account 

for the potential effects of sex, race, or ethnicity.

A number of recent studies demonstrate meaningful variability in SD-OCT measurements 

by age, sex and race, suggesting that these current value models are potentially problematic 

(12, 13). Thinner peripapillary retinal nerve fiber layer thickness (pRNFL) measurements 

were associated with older age and Caucasian race in a study using one of the first versions 

of OCT technology (time-domain) (14). A study of people with multiple sclerosis (MS) by 
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Kimbrough et al. (ref) showed that African Americans (AA) had higher baseline pRNFL 

thicknesses in the healthy control group compared to non- AA individuals. However, there 

were no differences in GCIPL values at baseline between AA participants and non-AA 

individuals in the healthy control group(15). This study had a small sample size (n=14 AA 

healthy controls). Another study with 31 AAs and 61 Caucasians found higher pRNFL 

values in the AA group, with no differences in GCIPL thickness between groups(16). Larger 

international studies that evaluate the effects of age, sex, and race/ethnicity on SD-OCT 

pRNFL and GCIPL measurements in healthy controls are needed to provide normative 

values that represent various ages, sex, and demographic subgroups.

The purpose of this investigation was to develop a conversion equation for pRNFL and 

GCIPL thicknesses to improve comparability of these measurements derived from the Cirrus 

HD-OCT and Spectralis OCT devices in healthy controls. We also sought examine the effect 

of age, sex, and race/ethnicity on OCT measurements in a large international cohort of 

healthy control participants.

Methods:

Study Cohort:

OCT and high-contrast visual acuity measurements were collected for 546 healthy controls. 

Participants were ≥18 years of age with no history of ocular or neurological disease; high-

contrast visual acuities were better than 20/40, and refractive error was between −6 and +6 

spherical diopters, inclusive. Participants were part of an 11-site collaboration within the 

IMSVISUAL (International MS Visual System) consortium in the United States, Europe, 

and the Middle East. IMSVISUAL is an international, collaborative group of researchers 

with over 140 members from 40 countries that investigate the visual pathway in MS and 

related demyelinating disorders (www.imsvisual.org)(17). Through concerted collaborative 

efforts, IMSVISUAL has facilitated high-quality, large-scale studies of the visual system 

in MS, including those examining the association of OCT measurements with future MS 

disability(18). IMSVIUSAL has established guidelines for reporting OCT in published 

studies,(19, 20) and previous work from our group that established ideal inter-eye difference 

thresholds for utilizing OCT measurements in the diagnosis of optic nerve lesions,(21) 

have also been determined through a recent IMSVISUAL collaboration. For the present 

study, each site’s institutional review board approved the study procedures. All participants 

provided written informed consent to participate in research studies at the individual sites. 

Data sharing agreements were completed between each study site and New York University 

(NYU) Grossman School of Medicine.

Age at time of visit was self-reported or calculated as the difference between date of birth 

and date of visit. Age was categorized in decades (<30, 30–39, 40–49, 50–59, 60–69, 70+). 

Race/ethnicity data were collected, and participants were self-categorized as Non-Hispanic 

Caucasian, Non-Hispanic African American, Hispanic, Asian or Pacific Islander, Alaskan 

or American Indian or Other. These racial and ethnicity categories are based on the United 

States Census guidelines. However, since very few participants self-identified as Hispanic, 

separating Hispanic Caucasians and Hispanic African Americans was not feasible; therefore, 

Hispanic was defined as its own category.
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Optical Coherence Tomography (OCT).

Either Spectralis SD-OCT (Heidelberg Engineering, Heidelberg, Germany) or Cirrus HD-

OCT (Carl Zeiss Meditec, Dublin, CA), or both, were performed for all participants by a 

trained technologist as part of ongoing MS vision research studies at all sites. Peripapillary 

RNFL (pRNFL) thickness was measured using a 3.4 mm peripapillary ring scan on the 

Spectralis OCT. On the Cirrus OCT, optic nerve head (ONH) Cube 200×200 scans were 

used to measure pRNFL thickness in a 3.4 mm circle centered on the optic disc.

Macular volume scans encompassing a >6 mm area surrounding the fovea were obtained 

using custom scans on the Spectralis OCT and by automated macular volume cube 200×200 

or 512×128 (6×6mm) scans on the Cirrus OCT. Macular GCIPL thickness was measured 

as the sum of the ganglion cell layer plus inner plexiform layer thicknesses and was 

collected for healthy control participants at five of the sites in the IMSVISUAL study. 

GCIPL measurements were obtained using the automated macular volume cube scans with a 

measurement area of a 4×5 mm annulus surrounding the fovea(7) on Cirrus OCT, and from 

the macular volume scan encompassing a 6×6 mm cylinder surrounding the fovea on the 

Spectralis OCT.

Automated segmentation protocols with manual inspection and correction of lines 

delineating retinal layers were used for all scans. Manual review of the OCT images by 

trained technicians and/or clinicians was performed to ensure that all scans met quality 

control standards. The OSCAR-IB criteria for scan quality control(22) were followed for all 

OCT scans. OCT results are reported in this manuscript in concordance with the APOSTEL 

2.0 guidelines(19, 20). Cirrus and Spectralis OCT data were collected on the same day for 

the same participants at one study site (NYU). Repeated Cirrus OCT (2 or more scans with 

the same protocol on the same device) and repeated Spectralis OCT measurements were also 

collected in a subset of participants at the NYU site.

Statistical Analyses:

Conversion Equation—Since two SD-OCT devices were used in these studies (devices 

chosen by study sites based on institutional preference and prior to the inception and 

design of these analyses), a conversion equation was developed using a structural equation 

model (Figure 1). This model accounted for clustering since two eyes were included for 

each subject; the model was based on the 173 participants (346 eyes) for pRNFL and 114 

participants (228 eyes) for GCIPL thicknesses who were scanned on the same day using 

both OCT devices and with repeated measures on one or both devices at one site (NYU). 

The maximum likelihood with missing values (MLMV) method was used; this assumes 

joint normality of all variables and that missing values are missing at random and allows 

observations with missing values to be included in the model. Structural equation modeling 

(SEM), similar to a regression equation, provides the intercept and beta coefficient to 

convert between devices; however, the SEM also considers unmeasured error in the devices, 

and is, therefore, more accurate than using regression modeling alone(23).

Path (or regression) coefficients are a measure of association between the two devices and 

capture related changes between the two devices. The path coefficients were constrained to 
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1 and the intercepts were constrained to 0 for the Cirrus device, allowing Cirrus to be the 

reference device compared to Spectralis. The path coefficients for Spectralis measurements 

were constrained to be equal since they are inherent to the device and assumed not to vary 

between measures, as were the intercepts. The conversion equation was validated using 

leave-one-out cross validation (LOOCV) on an independent dataset of participants who had 

measurements on both devices on the same day, but did not have repeated measures on either 

device and therefore were not included in the SEM developing the conversion equation. 

The equation was validated in both healthy controls and people with MS separately. The 

independent dataset of healthy controls included 95 eyes for pRNFL and 22 eyes for GCIPL. 

The independent dataset of people with MS included 37 eyes for pRNFL and 6 eyes 

for GCIPL (which may be too small to validate results for GCIPL in people with MS). 

Intra-operator reproducibility for each device was evaluated by the intraclass correlation 

coefficient (ICC) and coefficient of variation (CV).

Once the conversion equation was developed, data were pooled together to increase sample 

size for further analysis since some sites used Cirrus OCT only and some sites used 

only Spectralis OCT measurements. Values from Cirrus device were used when those 

data were available, and values from Spectralis device were converted based on the 

conversion equation developed. This method was used to reduce systematic bias from having 

measurements from different devices with different image acquisition and segmentation 

algorithms; this also increases sample size and power of the study by allowing for pooling of 

data from the two OCT devices.

Normative data analysis—Inter-eye pRNFL and GCIPL differences were calculated 

by subtracting right eye from left eye values and using the absolute value of the 

difference. Descriptive statistics report continuous variables as means and standard error 

(SE) and categorical variables as frequency and percentages. Means and standard errors 

were calculated using linear mixed effects model, which account for clustering since 

two eyes were used for each participant. The effects of age, sex, and race/ethnicity on 

pRNFL and GCIPL thickness were evaluated using generalized estimating equation (GEE) 

regression models accounting for within-subject, inter-eye correlations since both eyes of 

each participant were included in the model. Bland-Altman plots were created using Stata 

16.0 to compare OCT thickness values between devices.

Changepoint analyses to determine inflection points where pRNFL and GCIPL thicknesses 

change with respect to their degrees decline were performed with the ‘segmented’ package 

in R and confirmed in Python. Changepoint analysis with one inflection point evaluates the 

differences in slope before and after the inflection point at multiple points to determine the 

point where the slopes have the greatest difference. Age was also dichotomized based on 

results of changepoint analyses as a secondary analysis to look for differences in progression 

before and after the change point. Missing race data (11.5%) and GCIPL data (25.6%) 

were imputed using the MICE command in Stata 16.0 with 100 multiple imputations as 

a sensitivity analysis. Additional sensitivity analyses examining associations of SD-OCT 

measures with age, race/ethnicity and sex were performed for data from each OCT device to 

ensure that trends seen were not affected by pooling of the data. Analyses were performed 

using Stata 16.0, R and Python software.
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Results:

Study Cohort

Data from healthy control participants (n=546) from 9 sites in the IMSVISUAL consortium 

were included in this study. Six healthy controls in the cohort were excluded for not having 

age information available, resulting in a final pooled cohort size of 540 healthy controls. 

The cohort had a fairly equal distribution of women and men (54% male), was primarily 

Caucasian (76%), and had a wide distribution of ages from ranging from 18–87, with a mean 

(SD) of 39.3 (14.6) years. Demographics of these participants and are shown in Table 1. 

Distribution of racial groups by country is shown in Supplementary Table 1. The non-US 

cohorts were comprised almost exclusively by Caucasians, reflecting the demographics of 

those countries.

Conversion Equation

At the single site (NYU) used for development of the conversion equation and OCT 

reproducibility results, PRNFL measurements were performed on both Cirrus and Spectralis 

devices on 346 healthy control eyes and GCIPL measurements were performed on 228 

healthy control eyes on both Cirrus and Spectralis devices. Number of eyes with repeated 

scans on each device are shown in Figure 2. Eyes with poor quality scans or ocular 

pathology were excluded. Both Cirrus and Spectralis platforms had excellent reproducibility 

for both pRNFL and GCIPL measurements (ICC ranging from 0.995–0.998), although the 

sample size for GCIPL on the Spectralis machine was small. Reproducibility results for this 

cohort are shown in Table 2. Bland-Altman plots showing agreement between devices for 

pRNFL and GCIPL Thicknesses are shown in Figure 3.

A conversion equation for pRNFL thickness between Cirrus and Spectralis SD-OCT was 

developed based upon 346 healthy control eyes that were scanned on both OCT devices on 

the same day, with repeated measures on at least on device, at a single site (NYU) using 

structural equation modeling. The conversion equation performed well when tested on an 

independent dataset for both healthy controls (n=95 eyes, R2 = 0.85, LOOCV) and people 

with MS (n=37 eyes, R2 = 0.91, LOOCV). The conversion equation for pRNFL is as follows 

(* symbol indicates multiplication):

[Cirrus = − 5.0 + 1.0∗Spectralis global pRMFL value ]

[Spectralis = 5.0 + 1.0∗Cirrus global pRNFL value ]

The standard error for the equation was 0.02 and the overall SEM model had R2=0.994. The 

95% confidence interval (CI) for the beta coefficient was (0.96, 1.05), and for the intercept 

was (0.95, 9.00).

Similarly, for GCIPL, the conversion equation was developed on 228 healthy control eyes 

scanned consecutively on each device on the same day. The equation performed well in 

an independent dataset of healthy controls (n=22 eyes, R2 = 0.933, LOOCV) and people 

Kenney et al. Page 8

J Neuroophthalmol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with MS (n=6 eyes, R2 = 0.948, LOOCV), although the sample size may be too small 

to validate results. The conversion equation for GCIPL is as follows (* symbol indicates 

multiplication):

[cirrus = − 4.5 + 0.9∗spectralis global GCIPL value ]

[Spectralis = 5.0 + 1.1∗Cirrus global GCIPL value ]

The standard error for the equation was 0.02 and the overall SEM model had R2=0.996. The 

95% confidence interval (CI) for the beta coefficient was (0.83, 0.93) and for the intercept 

was (−8.35, −0.58).

An example of utilizing the equation and the predictive error of the 95% CI would be if we 

used a value of 100 microns for Spectralis GCIPL. Using the conversion equation, Cirrus 

would equal 85.5 microns. If we consider the lowest extreme of the 95% CI (−8.35 intercept 

and 0.83 beta coefficient) and the highest (−0.58 intercept and 0.93 beta coefficient), we 

would have Cirrus = 74.65 or Cirrus = 92.2 microns. This would be a difference of 10.8% or 

6.7% respectively from the predicted value of 85.5 microns using the equation.

Normative Data

Data from the whole cohort (n=540 healthy controls) showed a mean pRNFL thickness 

of 93.8 (SD 9.9) microns and a mean GCIPL thickness of 84.6 (SD 6.7) microns. Mean 

pRNFL and GCIPL thicknesses were consistent over decades 18–29, 30–39, and 40–49, and 

then showed a statistically significant decline for each subsequent decade (Table 1, Figure 

4). Similar results were seen for each device individually before pooling data together. 

Device-specific normative values are shown in Supplementary Tables 2 and 3. Changepoint 

analyses showed a transition point at age 40 years for pRNFL and 37 years for GCIPL 

thicknesses (Figure 4). Age overall was associated with pRNFL decline at a rate of −1.31 

microns per decade and a GCIPL decline at a rate of 1.05 microns per decade (p<0.001, 

statistical test). When considering age as a dichotomous variable (above or below age 40 

years) based on changepoint analysis results, pRNFL decline was not associated with age 

below 40 years. However, there was an associated decline of 2.4 microns per decade above 

the age of 40 years (p<0.001, GEE models adjusting for sex, race, and country). Similarly, 

GCIPL had a faster decline above the age of 40 years (1.4 microns per decade, p=0.002, 

GEE models adjusting for sex, race, and country), and had no associated decline below age 

40 years.

There were small differences in pRNFL thickness based on sex, with females having 

slightly higher thickness (by an average of 2.6 microns, p=0.003, GEE models adjusting 

for age, race/ethnicity, and country). There was no association between GCIPL thickness 

and sex. Likewise, there were no associations between race/ethnicity and pRNFL or GCIPL 

thicknesses (Table 1). Sensitivity analyses imputing missing race (n=63, 11.5%) and GCIPL 

thickness (n=140, 25.6%) showed similar results. Likewise, analyses separating SD-OCT 
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measures by device showed similar trends, suggesting that pooling of the data with the 

conversion equation did not potentially bias the results.

Discussion:

Results of this investigation demonstrate that a conversion factor is necessary when using 

two different SD-OCT devices clinically or in research studies. This study is unique 

since it pools together SD-OCT data on a large international multicenter study using a 

conversion factor. Furthermore, normative values for SD-OCT devices are presented in 

our investigations using a large diverse, multicenter, international cohort. We observed a 

decline in SD-OCT-measured pRNFL thickness after age 40 years and saw slightly thicker 

pRNFL values in females. SD-OCT has emerged as an important tool for detecting optic 

neuropathies and in capturing axonal and neuronal degeneration in MS. It is important to be 

able to compare SD-OCT measurements across different OCT platforms both clinically and 

in research studies. It is also critical to understand normative SD-OCT values based on age 

and sex.

The equation for conversion between Cirrus (C) and Spectralis (S) devices for pRNFL 

thickness (C = −5.05 + S) correlates well with the actual differences seen between the 

means of the groups (5 microns); its simplicity could make the equation highly useful 

for clinical practice and for observational research studies and clinical trials. The beta 

coefficient between the two devices was 1.0, suggesting the measurements are on the same 

scale, yet differing by 5 microns, with Spectralis being higher. While an equation for GCIPL 

was also developed, the small sample size of participants who had GCIPL measurements 

repeated on the Spectralis device was much smaller (33 eyes) than for pRNFL and the 

results may be underpowered. These findings, coupled with the variability in measurement 

area (median 14 (IQR 12.5–15.3) and segmentation algorithms, suggests this equation will 

need to be tested further to determine if it is generalizable to other studies. Importantly, our 

findings emphasize the need for a correction factor when comparing OCT measurements 

across platforms. To overcome variability between devices for GCIPL measures, a consistent 

segmentation algorithm could be used on both devices in lieu of a correction factor. 

However, pRNFL measurement is fairly standardized; the conversion equation may be 

useful in clinical trials, clinical practice, and other observational research studies.

In a previous study by Pierro et al, the pRNFL conversion factor between Cirrus and 

Spectralis was found to be Cirrus = 2.969 + 0.942*Heidelberg Spectralis. This is similar 

to our equation when considering numbers close to the mean for healthy controls. Both 

equations show Cirrus has a lower measurement than Spectralis at this scale. For example, a 

Spectralis measurement of 100 would equal a Cirrus measurement of 97.2 in Pierro’s study, 

and 95.0 in our study. Our study had a much higher sample size (346 eyes vs 38 eyes), so 

our calculations may be more accurate.

In this large, multi-center international study, there were differences by sex only for pRNFL 

thickness; these were not observed for GCIPL thickness. A large population-based study 

in Germany of 7,868 Caucasian healthy control participants also found the pRNFL to 

be thicker in females (with variations depending on scanning distance from the optic 
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nerve and by quadrants), by 1 micron, while GCIPL was not evaluated(24). The Cirrus 

OCT Normative Database Study Group evaluated age and race differences for GCIPL on 

Cirrus OCT in 282 healthy controls participants and found no difference between males 

and females after adjusting for axial length; they also found no differences by race after 

adjusting for age, axial length and pRNFL thickness. These results are similar to those of the 

present study(25).

There were no differences between by race or ethnicity for either pRNFL or GCIPL 

measurements in our study cohort. Other reports have shown differences in retinal layer 

thicknesses between racial groups in both healthy control participants and in people with 

MS(15). A recent study of 31 African American (AA) and 61 Caucasian American (CA) 

healthy controls showed AAs had higher pRNFL thicknesses than CAs (p=0.042). There 

were no differences in GCIPL thicknesses in that study(16). Another study found that Asians 

had greater thicknesses for average pRNFL(26). The Cirrus OCT Normative Database Study 

Group found thinner pRNFL values in Europeans compared to Hispanics and Asians(25). 

The sample sizes for racial/ethnic groups in our study may have been too small to detect 

a difference. The potential differences in pRNFL or GCIPL measurements will need to be 

examined further and in larger cohorts.

Overall pRNFL and GCIPL thickness for the whole cohort are comparable to other 

studies(27, 28). A decline in pRNFL and GCIPL thickness, with a faster rate of thinning 

beyond age 40 years, was seen in our present study cohort. Other studies have shown 

declines in retinal thickness over-time in aging populations. A study of disease-free controls 

and MS participants found an average decline of 0.49 microns in pRNFL thickness over 

3 years in the healthy control cohort; this is equivalent to a decline of 1.63 microns per 

decade(28). This study did not account for a faster decline after the age of 40 years, but 

results are similar to the overall decline found in our study of 1.31 microns per year. A 

study of normative values in an Asian Indian population showed a similar rate for decline 

in global pRNFL thickness (1.57 microns per decade)(29). Peripapillary RNFL thinning has 

been associated with brain atrophy in cognitively normal older adults,(30, 31) and, thus, may 

be a normal characteristic of aging.

Limitations of this study include that since this is not a population-based study, further 

evaluation of our conversion equations will be helpful to confirm generalizability. The 

equations developed in this study are applicable only to the Cirrus HD-OCT or Spectralis 

device and not interchangeable with other devices. Methods used in the analysis can be 

applied to develop equations across other OCT devices.

Another limitation includes some missing data for race/ethnicity and for GCIPL thickness. 

A sensitivity analysis, imputing race/ethnicity and GCIPL thickness, was performed and 

produced similar results; therefore, it is less likely this missing data created biases in the 

analysis. Race/ethnicity were self-reported for this study which can introduce some error. 

Furthermore, race and ethnicity are defined differently in the United States compared to 

other international sites. As such, race/ethnicity data collected from outside of the U.S. was 

translated as best as possible to the U.S. categories, which may introduce some measurement 
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error. However, this error is expected to be small and not likely to bias the data, particularly 

since almost all of the non-US participants were classified as Caucasian.

Lastly, there is limited clinical evaluations in the healthy control participants; these 

participants have self-reported that they have no known ophthalmological or neurological 

diseases. No formal ophthalmic assessment or measurement of intraocular pressure (IOP) 

was performed in most participants. One subset of the healthy control participants at 

NYU (n=74) did undergo clinical evaluation. Another subset of participants (n=139) 

completed vision-specific quality of life questionnaires (25-Item National Eye Institute 

Visual Functioning Questionnaire [NEI-VFQ-25]). The scores for these questionnaires were 

in a range that is consistent with self-reported healthy control status. We, therefore, would 

not expect a significant amount of bias to be introduced from self-reporting. Ocular axial 

length has been associated with reduced retinal thickness(32) and with sex,(25) but axial 

length was not measured in this study. However, in a study that was used to develop 

the Cirrus normative database, refractive error and axial length explained less than 2% 

of variability for the model(33). While it is possible that axial length could explain 

variations in sex differences, not having this measurement in the model is not likely to 

add significant degrees of bias. Since participants with high-contrast visual acuities worse 

than 20/40 Snellen equivalent were excluded, and participants self-reported no history of 

neurological or ophthalmological disease, our control cohort may be healthier than the 

general population. Results when evaluating a typical aging population, including those with 

other ocular pathologies including diabetes, high myopia, and macular degeneration, may 

show varied data for pRNFL and GCIPL thickness.

The evolution of SD-OCT presents a unique opportunity to evaluate for optic nerve 

degeneration in people with MS. Measurements from different devices are not necessarily 

interchangeable due to differences in segmentation algorithms and acquisition protocols 

that introduce systematic biases between devices. This may complicate our ability to track 

disease progression over time if different devices are used. However, a conversion equation 

or correction factor, as developed in the present investigation, can allow for pooling of 

data acquired on different devices for research studies. This can also facilitate comparisons 

of results from different OCT devices. The equations will be helpful, for example, if a 

patient was scanned clinically on one OCT device, and then scanned on a different device 

subsequently at the next follow-up visit. The availability of normative data by age decade 

facilitates the evaluation of normal SD-OCT thickness values and age-specific normative 

data by decade should be considered when assessing for retinal thinning. Rates of decline 

over time in cohorts of healthy controls may help to determine if an MS patient, by 

comparison, has an abnormal rate of retinal thinning. Results from the present study will 

increase the utility of OCT as a diagnostic tool for optic nerve degeneration in MS in 

particular, and for other neuro-ophthalmologic disorders in general.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: SEM model.
The path diagram illustrates the structural equation model (SEM) that describes the 

relationship of the repeated pRNFL measurements for each SD-OCT device with the 

unknown true global pRNFL thickness values. Cirrus is set as the reference value for 

comparison to Spectralis.
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Figure 2. Flow chart of scans used in reproducibility and SEM analyses.
The number of eyes (people) who were scanned for each individual measure on each device 

repeated twice on the same day is depicted in line A. These scans were used to determine 

reproducibility results shown in Table 2. Line B shows the number of eyes (people) who 

were used in the SEM model. These people had at least one measure on both devices, and 

repeated measures on at least one device.
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Figure 3. Bland-Altman Plots.
A) Bland-Altman plot for pRNFL thickness showing agreement between devices. The y-

axis shows the difference in measurement between Cirrus pRNFL and Spectralis pRNFL 

thickness. The x-axis shows the pRNFL thickness. B) Bland-Altman plot for GCIPL 

thickness.
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Figure 4. 
Boxplot for pRNFL thickness by age (A) and GCIPL thickness by age (B). Scatterplot with 

changepoint analysis for pRNFL (C) and GCIPL (D).
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Table 2.

Reproducibility of OCT measurements for healthy control cohort at single site (NYU) with repeated measures

Cirrus pRNFL Spectralis pRNFL Cirrus GCIPL Spectralis GCIPL

Number with repeated measures, eyes (people) 206 (112) 310 (166) 203 (111) 33 (19)

Difference Between Repeated Measures, microns, 
median (IQR/range)

1 (0–2 (0–8) 1 (0–2 (0–6) 0 (0–1 (0–6) 0.4 (0.2–0.7) 0.0–2.7)

ICC (repeated measures) 0.998 0.996 0.995 0.997

CoV (repeated Measures) 2.07% 1.48% 1.24% 1.16%

Difference between devices, microns, median (IQR/
range)

5 (3–7) (0–17)* 14 (12.5–15.3) (5.0–18.6)**

*
n=439 eyes (224) people had at least one pRNFL measurements on both Spectralis and Cirrus devices.

**
n=216 eyes (109) people had at least one GCIPL measurements on both Spectralis and Cirrus devices.
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