# A new framework for water quality forecasting coupling causal inference, time-frequency analysis, and uncertainty quantification

Chi Zhang <sup>a</sup>, Xizhi Nong <sup>a, b, c, \*</sup>, Kourosh Behzadian <sup>d, e</sup>, Luiza C. Campos <sup>d</sup>, Lihua Chen <sup>b</sup>,

Dongguo Shao <sup>a, \*</sup>

<sup>a</sup> State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

<sup>b</sup> College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

<sup>c</sup> The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute,

Nanjing 210029, China

<sup>d</sup> Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic

Engineering, University College London, London WC1E 6BT, United Kingdom

<sup>e</sup> School of Computing and Engineering, University of West London, London W5 5RF, United Kindom

\* Corresponding author: Dr. Xizhi Nong; Professor Dongguo Shao E-mail addresses: <u>nongxizhi@gxu.edu.cn</u>, <u>dongguoshao@163.com</u>

#### 1 Abstract

Accurate forecasting of water quality variables in river systems is crucial for 2 3 relevant administrators to identify potential water quality degradation issues and take 4 countermeasures promptly. However, pure data-driven forecasting models are often 5 insufficient to deal with the highly varying periodicity of water quality in today's more 6 complex environment. This study presents a new holistic framework for time-series 7 forecasting of water quality parameters by combining advanced deep learning algorithms (i.e., Long Short-Term Memory (LSTM) and Informer) with causal 8 9 inference, time-frequency analysis, and uncertainty quantification. The framework was 10 demonstrated for total nitrogen (TN) forecasting in the largest artificial lakes in Asia 11 (i.e., the Danjiangkou Reservoir, China) with six-year monitoring data from January 12 2017 to June 2022. The results showed that the pre-processing techniques based on 13 causal inference and wavelet decomposition can significantly improve the performance 14 of deep learning algorithms. Compared to the individual LSTM and Informer models, 15 wavelet-coupled approaches diminished well the apparent forecasting errors of TN 16 concentrations, with 24.39%, 32.68%, and 41.26% reduction at most in the average, 17 standard deviation, and maximum values of the errors, respectively. In addition, a post-18 processing algorithm based on the Copula function and Bayesian theory was designed to quantify the uncertainty of predictions. With the help of this algorithm, each 19 20 deterministic prediction of our model can correspond to a range of possible outputs. The 95% forecast confidence interval covered almost all the observations, which proves 21 22 a measure of the reliability and robustness of the predictions. This study provides rich

| 23 | scientific references for applying advanced data-driven methods in time-series     |
|----|------------------------------------------------------------------------------------|
| 24 | forecasting tasks and a practical methodological framework for water resources     |
| 25 | management and similar projects.                                                   |
| 26 | Keywords: causal inference; Copula function; deep learning algorithms; time-series |

27 forecasting; water resources management.

#### 28 **1. Introduction**

With the increasing influence of natural events and human activities, water bodies 29 30 are more vulnerable to drastic changes, making monitoring and protecting water 31 resources particularly critical for the health of humans and the stability of ecosystems 32 (Nong et al., 2020). Accurate forecasting of time-series data related to water quality 33 enables relevant agencies and administrators to comprehend the shifting patterns of 34 water quality parameters and identify potential adverse threats to water bodies (Glibert et al., 2010). Moreover, time-series data forecasting can also help to optimize 35 36 monitoring programs and resource allocation, improving monitoring efficiency and 37 resource utilization benefits (Li et al., 2018). Therefore, developing and applying 38 reliable models for time-series forecasting is crucial for effective water resources 39 management and environmental protection.

40 The models widely used for time-series forecasting in water quality management 41 can be generally separated into process-driven and data-driven models. The process-42 driven models are based on the physical understanding of hydrological processes and 43 water resource systems, using mathematical equations to describe variations in 44 hydrological and water quality processes. Until now, many relevant models have been 45 built, developed, and applied, such as the Water Quality Analysis Simulation Program (WASP), the Environmental Fluid Dynamics Code (EFDC), and the River and Stream 46 47 Water Quality model (QUAL2K) (Santy et al., 2020). Although process-driven models can provide the understanding and explanatory power of the intrinsic mechanisms of 48 49 the systems, it is still challenging to determine the boundary condition and calibrate the

time-series data for them. Researchers need rich experience with numerical models and comprehensive knowledge of the physic-chemical relationships among water systems (<u>Banerjee et al., 2019</u>). Besides, process-driven models often require detailed geographic and environmental data and rely on the physical assumptions of the system (<u>Wellen et al., 2015</u>). All these factors make such complicated models always datademanding and time-consuming characteristics to develop in practice.

56 In recent decades, data-driven models have received more attention due to increasing measurement data and improving computational efforts of computer 57 58 performance. These models do not rely on a detailed understanding of the physical 59 processes but make predictions by learning patterns and trends in the data (Reichstein 60 et al., 2019). Unlike process-driven models, data-driven models can efficiently establish 61 relationships among different variables. Popular algorithms, including Multiple Linear Regression (MLR), Neural Networks (NN), Support Vector Machine (SVM), and 62 63 Random Forests (RF), have been widely used for various tasks and have made reliable 64 achievements (He et al., 2020, Xia et al., 2020). Regarding time-series forecasting tasks, deep learning techniques showed remarkable performance due to their adaptability and 65 66 generalizability to high-dimensional data sequences. Whether the classical structures 67 (e.g., LSTM) or the novel structures (e.g., Informer) leverage the power to capture both 68 short-term and long-term dependencies in data, making them suitable for complex time-69 series forecasting. As an advanced recurrent network, LSTM has unique memory units 70 and gating mechanisms that enable it to capture long-term dependencies and patterns 71 in data while avoiding the "gradient exploding" problems in the traditional recurrent

72 network (Sit et al., 2019). The application of LSTM in water quality management has 73 been very mature and fruitful. Informer is another advanced deep-learning approach for 74 time-series forecasting tasks. By incorporating self-attention mechanisms and encoderdecoder structure, Informer can effectively model temporal and spatial dependencies in 75 76 data (Cai et al., 2023). It has demonstrated ability in various domains, such as financial 77 forecasting and energy load prediction (Huang and Jiang, 2022). However, under 78 today's conditions of more detailed requirements and a more complex environment, 79 pure data-driven approaches may often be insufficient (Xiao et al., 2017). A predictive 80 framework integrating multiple and suitable methods is needed. For instance, 81 appropriate data pre-processing techniques are beneficial for harnessing the advantages 82 of the models. In the study on the prediction framework of dissolved oxygen, (Nong et 83 al., 2023) pointed out that feature selection methods can significantly improve the 84 accuracy and robustness of the prediction model. To capture seasonal information in 85 the hydro-climate time series, two types of seasonal LSTM were proposed to simulate the runoff-sediment process (Nourani and Behfar, 2021), showing that the 86 87 outperformance of seasonal LSTM compared to the individual one in both daily and 88 monthly scales.

Furthermore, relying solely on deterministic predictions may be inadequate for practical water resources management, given the inherent presence of uncertainty. Many researchers have proposed various methods to cope with uncertainty to enhance the ability of predictive models, such as sensitivity analysis or confidence intervals (Hamed et al., 2016, Salimi and Hammad, 2020). In the study of biogas generation,

94 some researchers applied sensitivity analysis to identify the significant factors influencing the biogas, so as to understand and reduce the uncertainty of prediction 95 96 (Offie et al., 2023). To evaluate the performance of the conceptual basin model, the sensitivity analysis was conducted to determine the uncertain parameters (Tibangayuka 97 98 et al., 2022). Probabilistic forecasting models with confidence intervals are also one of 99 the common approaches to quantifying the uncertainty of predictions. It can provide a 100 probability distribution for each prediction output instead of just a single deterministic value. For instance, based on a multivariate Bayesian uncertainty processor, (Zhou, 101 102 2020) developed a post-processing technique for probabilistic forecasting conditional 103 on point forecasts. Aiming at describing the uncertainty of precipitation forecasts, some 104 studies proposed a new model coupling fuzzy probability and Bayesian theory, which 105 improved the generalization ability of the baseline prediction (Cai et al., 2019). These researchers have quantified the uncertainty well and achieved good results in practice. 106 107 Decision-makers can better assess the risk and develop strategies by considering uncertainty. 108

Considering the above gaps and factors, this study developed a predictive framework for time-series tasks based on deep learning approaches coupling various advanced data-processing techniques. The objectives of this study are (1) to explore the applicability of the two state-of-the-art deep learning approaches (i.e., LSTM and Informer) for forecasting of water quality parameters in river systems, (2) to demonstrate the effectiveness of coupling advanced pre-processing techniques, i.e., the causal inference and wavelet decomposition, in improving the performance of forecasting models, (3) to develop a reliable post-processing algorithm for uncertainty quantification of predictions, as a measure for robustness analysis of water quality forecasting. The data matrices comprised of 11 parameters at three stations in the largest artificial lake of Asia (i.e., the Danjiangkou Reservoir in China), were taken as the study cases. The proposed hybrid time-series forecasting framework could also serve as a cost-effective and reliable water quality forecasting tool for water management in the future.

123

#### 124 **2. Methodology**

This study developed a hybrid time-series forecasting framework integrating deep learning approach, causal inference, wavelet decomposition, and Copula function. Of which, causal inference and wavelet decomposition were used as pre-processing tools for time-series data. The LSTM and Informer algorithms were chosen as the models to make predictions, and the Copula function was applied as post-processing technique for uncertainty quantification of outputs. The detailed theoretical introduction of the methodology involved in the framework was shown in **Fig. 1**.

132

#### < Fig. 1>

133 2.1 Causal inference method

This research used the Peter and Clark Momentary Conditional Independence (PCMCI) to identify the causal relationships between variables and conduct feature selection for deep learning models based on the above information. The PCMCI was proposed by (Runge et al., 2015) to assess causal links for a set of temporal lags ( $\tau$ ). 138 Compared to traditional causal inference methods, the significant advancement of 139 PCMCI is its incorporation of time-varying and autocorrelated relationships. Potential 140 time-dependent system  $X_t^j$  for variable *j* at time *t* can be calculated as in eq. (1):

$$X_t^j = f_j(\mathcal{P}(X_t^j), \eta_t^j), \tag{1}$$

141 where  $f_j$  represents the potential nonlinear functional dependency and  $\eta_t^j$  is mutually 142 independent dynamical noise;  $\mathcal{P}(X_t^j) \subset X_t^- = (X_{t-1}, X_{t-2}, \dots, X_{t-\tau})$  represents the 143 causal parents of variable  $X_t^j$  among the past of all variables. The PCMCI consists of 144 a two-step algorithm as follows:

145 (1)  $PC_1$  condition selection:  $PC_1$  is a Markov set discovery algorithm based on the PC-stable algorithm (Colombo and Maathuis, 2014), and this method is used to select 146 relevant conditions  $\mathcal{P}(X_t^j)$  for all time-series variables. Specifically, the preliminary 147 parents  $\hat{\mathcal{P}}(X_t^j) = (\mathbf{X}_{t-1}, \mathbf{X}_{t-2}, \dots, \mathbf{X}_{t-\tau_{max}})$  are firstly initialised for each variable  $X_t^j$ . 148 In the first iteration (p = 0), unconditional independence tests are conducted, and  $X_{t-\tau}^{i}$ 149 is removed from  $\hat{\mathcal{P}}(X_t^j)$  if the null hypothesis  $X_{t-\tau}^i \perp X_t^j$  cannot be rejected at a 150 significance level  $\alpha_{PC}$ . In each next iteration, conditional independence tests  $(X_{t-\tau}^i \perp$ 151  $X_t^j | S$ , where S is the strongest parents in  $\hat{\mathcal{P}}(X_t^j) \setminus \{X_{t-\tau}^i\}$ , are conducted, and all 152 independent parents are removed from  $\hat{\mathcal{P}}(X_t^j)$ . If no more conditions can be tested, the 153 algorithm will reach convergence. 154

155 (2) Momentary conditional independence (MCI) test: This step addresses false-156 positive control for the cases where the time series exhibit high interdependence. More 157 precisely, the link  $X_{t-\tau}^i \to X_t^j$  is established if and only if  $X_{t-\tau}^i$  and  $X_t^j$  are not 158 independent under the condition of  $\hat{\mathcal{P}}(X_t^j) \setminus X_{t-\tau}^i, \hat{\mathcal{P}}_{pX}(X_{t-\tau}^i)$ , where  $\hat{\mathcal{P}}_{pX}(X_{t-\tau}^i) \subseteq$ 

| 159 | $\hat{\mathcal{P}}(X_{t-\tau}^i)$ represents the <i>pX</i> strongest parents based on the sorting in the first step. The |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 160 | MCI test identifies the co-drivers, indirect relationships, and autocorrelation by all                                   |
| 161 | selected lagged parents together with contemporaneous pairs. In addition, the                                            |
| 162 | significance of each link can be determined based on the p values of the MCI test.                                       |
| 163 | More details about PCMCI can be seen in ( <u>Runge et al., 2019b</u> ). All the calculations                             |
| 164 | about PCMCI in this study were performed with the help of the Python package                                             |
| 165 | Tigramite ( <u>https://github.com/jakobrunge/tigramite/</u> ).                                                           |
| 166 |                                                                                                                          |
| 167 | 2.2 The development of Wavelet-LSTM and Wavelet-Informer models                                                          |

168 2.2.1 The deep learning algorithms

169 This study applied two popular time-series deep learning algorithms, i.e., the 170 LSTM and Informer. The forms, structures, and characteristics of the algorithms are 171 shown as follows.

172 2.2.1.1 Long Short-Term Memory network

Long Short-Term Memory is a special-designed recurrent neural network (RNN) 173 174 architecture that has gained significant popularity in deep learning for time-series analysis. It was initially established to mitigate the vanishing gradient problem of 175 standard RNNs and has demonstrated its powerful capability in capturing long-term 176 177 dependencies. In an LSTM network, memory cells are used as a replacement for hidden 178 neurons to connect hidden layers. Each memory cell consists of a cell state (C) and 179 three multiplicative gates: the input gate (i), output gate (o), and forget gate (f) (Fig. 180 S1(a)). The input gate regulates the new information stored in the current cell based on 181 the current input and the previous hidden state. The output gate determines how much 182 information should be transferred from the current memory cell to the next time step. 183 The forget gate controls the retention of information from the previous state and decides 184 whether information should be retained or be discarded. The information flow 185 regulation of the gates within the network and the detailed algorithms are shown in eq. 186 (2) to eq. (7):

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f), \tag{2}$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i), \tag{3}$$

$$\tilde{C}_t = \tanh\left(W_C \cdot [h_{t-1}, x_t] + b_C\right),\tag{4}$$

$$C_t = f_t \times C_{t-1} + i_t \times \tilde{C}_t, \tag{5}$$

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o), \tag{6}$$

$$h_t = o_t \times \tanh(\mathcal{C}_t),\tag{7}$$

187 where  $W_f$ ,  $W_i$ ,  $W_c$ , and  $W_o$  are the weight matrices;  $b_f$ ,  $b_i$ ,  $b_c$ , and  $b_o$  are the 188 bias vectors;  $\sigma$  is the sigmoid function. The LSTM networks can effectively capture 189 the patterns of information over long sequences based on these intricate gating 190 mechanisms, making them particularly suitable for complex time-series forecasting 191 tasks.

192

193 2.2.1.2 Informer network

Informer is an improvement of the Transformer model developed by Google for
language translation (<u>Vaswani et al., 2017</u>). It combined the strengths of both
Transformer networks and convolutional neural networks (CNNs) and was specifically

designed to address the challenges of modelling long-term dependencies. Like other competitive neural sequence transduction models, Informer has a multi-layered encoder-decoder structure (**Fig. S1(b**)). The encoder module consists of a stack of selfattention layers, which enables the model to capture global and local dependencies in the input sequence. Each self-attention layer simultaneously attends to different parts of the input sequence through multi-head ProbSparse self-attention mechanisms, which can be briefly described by **eq. (8)**:

*i*-th query's sparsity measurement: 
$$M(\boldsymbol{q}_i, \boldsymbol{K}) = ln \sum_{j=1}^{L_K} e^{\frac{\boldsymbol{q}_i \boldsymbol{k}_j^{\mathrm{T}}}{\sqrt{d}}} - \frac{1}{L_K} \sum_{j=1}^{L_K} \frac{\boldsymbol{q}_i \boldsymbol{k}_j^{\mathrm{T}}}{\sqrt{d}},$$
 (8)

where  $q_i$  and  $k_j$  represent the *i*-th and *j*-th row in query matrix Q and key matrix K, respectively.  $L_K$  is the size of row for K, d is the input dimension. The first term stands for the Log-Sum-Exp (LSE) of  $q_i$  on all the keys, while the second is their arithmetic mean. The higher  $M(q_i, K)$  that the *i*-th query has, the more important it is for attention.

Based on the calculated measurement, each key could be allowed to only attend tothe *u* dominant queries based on eq. (9):

ProbSparse Self-attention: 
$$\mathcal{A}(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}) = Softmax(\frac{\overline{\boldsymbol{Q}}\boldsymbol{K}^{T}}{\sqrt{d}})\boldsymbol{V},$$
 (9)

211 where  $\overline{Q}$  is the sparse matrix only containing the Top-*u* queries based on  $M(q_i, K)$ , 212 V is the value matrix.

The decoder module of Informer also utilizes self-attention layers but with an additional cross multi-head attention mechanism. The cross multi-head attention mechanism allows the decoder to interact with the encoder's outputs, enabling it to connect the global context and employ the learned representations from the encoder, 217 which further facilitates accurate and context-aware predictions in the decoding process. Residual connections and layer normalization are designed in both encoder and decoder 218 219 modules, which help improve the flow of gradients and stabilize the training process. 220 In addition, a feed-forward neural network and a positional encoding component are 221 also involved in Informer to strengthen its modelling capacity. Therefore, the 222 comprehensive combinations of transformer networks and CNNs within the Informer 223 maintain the model's versatile and powerful forecasting capacity, capturing both short-224 term and long-term patterns. Those unique combinations and the incorporation of ProbSparse self-attention make the Informer a promising approach for various time-225 226 series forecasting tasks.

227

#### 228 2.2.2 Wavelet decomposition

Wavelet decomposition is a powerful mathematical tool in signal theory. It is used 229 230 for decomposing signals into different frequency components for analysis and 231 overcomes the limitations of Fourier transformation in non-stationary time series (Labat, 232 2005). By decomposing the main time series into the time-frequency space, several subseries could be obtained to extract particular time and frequency characteristics 233 234 simultaneously. The sub-series are typically derived from a predefined template called 235 the "mother wavelet", in which these decomposed wavelets are obtained by scaling and 236 translating the mother wavelet. For the calculations, continuous wavelet decomposition 237 (CWD) requires integral operations in continuous time, which may result in 238 computational complexity and memory consumption. In contrast, discrete wavelet

decomposition (DWD) utilizes a fixed-length filter, which has the advantages of high computational efficiency and low memory consumption, making it more adopted in practical applications (Cannas et al., 2006). The discrete wavelet decomposition for series f(t) is organized based on eq. (10) and eq. (11):

DWD coefficients: 
$$W_f(i,j) = \sum_{i,j\in \mathbb{Z}} f(t) \Psi_{i,j}^*(t),$$
 (10)

Wavelet function: 
$$\Psi_{i,j}^{*}(t) = a_0^{-\frac{i}{2}} \Psi(a_0^{-j}t - b_0k), a_0 > 1, b_0 > 0,$$
 (11)

where *i* and *j* are the integers which control the decomposition level and translation, respectively.  $a_0$  and  $b_0$  are the constant scale factor of decomposition and position factor of translation, respectively.  $\Psi(t)$  is the mother wavelet. Then the main series can be decomposed into a low-frequency approximation sub-series ( $A_n$ ) and some highfrequency detail sub-series ( $D_1, D_2, ..., D_n$ ) based on low-pass filter and the high-pass filter.

249

#### 250 2.2.3 Model development

The hybrid Wavelet-LSTM (WLSTM) and Wavelet-Informer (WInformer) were developed by combining LSTM and Informer with the wavelet decomposition, which refers to (Liu et al., 2022). The process is divided to three steps: (1) the wavelet decomposition of the original series of the predictand; (2) the prediction of each subseries using LSTM and Informer individually; and (3) the re-composition of each output series for the final results.

# 257 To appropriately train the deep-learning models within the WLSTM and 258 Winformer structure, our procedure involved two phases: (1) calibration and (2)

259 evaluation. In the calibration phase, the first 70% of original data were used to develop the deep-learning models, while the following 10% were used as a validation set to 260 261 avoid over-fitting. After the calibration phase, the parameters with the model performance within the validation were saved for the evaluation phase, in which the 262 263 trained model performance is tested based on the remaining 20% of the data. The model 264 performances for in-sample and out-of-sample datasets were evaluated in the 265 calibration phase (i.e., the entire establishing data) and the evaluation phase (i.e., the unused data), respectively. 266

In this study, the LSTM and Informer models were implemented in *Python*. The grid-search method was used to tune the hyperparameters of deep-learning algorithms (all the results were listed in **Table S1** and **S2** in Supplementary Materials). As for wavelet decomposition, we selected the Daubechies-4 (db4) as a mother wavelet to decompose the main series into three levels due to its high-efficiency spectral properties (Nourani et al., 2014b). The DWD procedures were performed with the help of **Wavelet Toolbox** in *Matlab*.

274

275 2.3 Uncertainty forecast based on Copula function and Bayesian theory

According to (<u>Challinor et al., 2013</u>), uncertainty refers to the lack of predictive accuracy due to inherent limitations in predictability or a lack of predictive skills. In practice, estimating prediction uncertainty means estimating how predictions are distributed around the observations. In the last step of the prediction framework, we employed the Copula function and Bayesian theory to conduct uncertainty forecasts. The Copula function is a widely used statistical tool for modelling and analyzing dependencies between random variables. The main idea of the Copula function is to treat the marginal distribution of variables and their correlation structure separately, thus providing a flexible way to describe their interrelations. According to the Sklar theory (Sklar, 1959), if the marginal distributions of the bivariate joint distribution *H* are  $F_x$  and  $F_y$ , respectively, there is a Copula function for any x,  $y \in R$  as expressed by eq. (12):

$$H(x, y) = C(F_x(x), F_y(y)),$$
 (12)

Based on this theoretical foundation, the joint distribution of two variables can be constructed in just two steps. Firstly, determining the marginal distributions of the variables, and secondly, selecting the optimal Copula function to depict the dependency structure between the variables accurately. More details about Copula theory can be found in (Größer and Okhrin, 2021).

This study established the joint distribution of predictions and observations based on the Copula function. Then the probabilistic forecasting could be conducted according to Bayesian theory. The process to achieve the uncertainty forecast is described as follows:

297 (1) Fitting the marginal distributions of the *Prediction* X and *Observation* Ybased 298 on the predictions  $X_{cali} = (x_1, x_2, ..., x_n)$  and observations  $Y_{cali} = (y_1, y_2, ..., y_n)$ 299 in the calibration phase. Then, the cumulative probability u of data in different sets 300 can be obtained by probability transformation based on eq. (13):

$$u_{set,1i} = F_{x,set}(x_i) \text{ or } u_{set,2i} = F_{y,set}(y_i),$$
 (13)

Where set = (cali, eval) denotes calibration or evaluation phase; F(·) refers to
the marginal distribution of the corresponding object (*Prediction X* or Observation Y).
(2) Constructing the joint distribution of the *Prediction X* and Observation Y by
using Copula function to connect the cumulative probability u<sub>cali,1i</sub> and u<sub>cali,2i</sub>.
Several types of bivariate Copula function used in this work are presented in Table S3.
(3) Given the probability value p the conditional distribution function of a

$$H_1(u_2|u_1) = \frac{\partial C(u_1, u_2)}{\partial u_1},$$
(14)

The probabilistic forecasting values  $\tilde{y}_j$  in the evaluation phase was calculated based on inverse conditional probability function  $\tilde{u}_{eval,2j} = H_1^{-1}(u_{eval,1j},p)$  and inverse cumulative probability function  $\tilde{y}_j = F_y^{-1}(\tilde{u}_{eval,2j})$ . In other words, if we calculate the probabilistic forecasting values corresponding to the conditional probability of 2.5% and 97.5%, the 95% forecast confidence interval for the deterministic predicted value could be obtained.

314

#### **315 3. Case study**

#### 316 3.1 Study area and data collection

The Danjiangkou Reservoir (DJKR) is located at the junction of Hubei and Henan
provinces, China, covering the areas of 32°36′-33°48′ N and 110°59′-111°49′ E (Fig.
2). It serves as a vital drinking water source of the Middle Route of the South-to-North
Water Diversion Project of China (MRSNWDPC) since December 2014, providing
9.5×10<sup>9</sup> m<sup>3</sup> of freshwater water resources through the main canal of the MRSNWDPC

to North China every year. The DJKR currently stands at a height of 176.6 m, maintaining an average impounded level of 170 m and possessing a storage capacity of 29.05 billion m<sup>3</sup>. The reservoir falls within the northern subtropical zone and experiences a subtropical monsoon climate, with the average annual air temperature ranging from 15-16 °C, and the annual precipitation ranging from 800-1,000 mm.

327 In order to effectively monitor and protect the water resources in the DJKR, the Chinese government has undertaken national water quality monitoring programs. The 328 data of this study was obtained from three key national automatic water quality 329 330 monitoring stations, i.e., the Taocha (TC), Qingshan (QS), and Madeng (MD) stations. 331 The TC is located at the starting point of the MRSNWDPC, and the QC and MD are located at the entrance point of the two main tributaries of the DJKR, i.e., Hanjiang 332 333 River and Danjiang River, respectively (Fig. 2). The daily data used in this analysis were collected for seven water quality parameters, including water temperature 334 335 (WT, °C), pH, dissolved oxygen (DO, mg/L), conductivity (Cond, µS /cm), 336 chlorophyll-a (Chl-a, mg/L), total phosphorus (TP, mg/L), and total nitrogen (TN, mg/L) 337 from January 2017 to June 2022. As the potential adverse trend of TN in the Danjiangkou Reservoir is particularly concerning (Liu et al., 2017), TN was considered 338 339 as the main forecasting water quality parameter in this study. Additionally, three atmospheric parameters (i.e., nitrogen dioxide (NO<sub>2</sub>,  $\mu g/m^3$ ), nitrogen monoxide (NO, 340  $\mu g/m^3$ ), and nitric acid (HNO<sub>3</sub>,  $\mu g/m^3$ )) and precipitation (Pre, mm) were collected 341 342 from the Copernicus Atmosphere Monitoring Service (CAMS) global reanalysis monthly averaged fields to establish the predictive framework for TN 343

344 (<u>https://ads.atmosphere.copernicus.eu/</u>). A summary of the statistical characteristics of
345 these parameters are shown in Table 1.

348

349 3.2 Model evaluation

To evaluate the predictive effects of our models, the Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and coefficient of determination  $(R^2)$  were used:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}},$$
(15)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_{i} - y_{i}}{y_{i}} \right| \times 100\%, \tag{16}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (\bar{y} - y_{i})^{2}},$$
(17)

353 where *n* is the number of data points;  $\hat{y}_i$  and  $y_i$  are the *i*-th prediction and 354 observation, respectively;  $\bar{y}$  is the mean of  $y_i$ .

In addition, the Coverage Rate (CR) and Average Relative Interval Length (ARIL)
were used to assess the results of the uncertainty forecast:

$$CR = \frac{\sum_{i=1}^{n} I(\tilde{y}_{lo,i} < y_i < \tilde{y}_{up,i})}{n},\tag{18}$$

$$ARIL = \frac{1}{n} \left( \sum_{i=1}^{n} \frac{\tilde{y}_{up,i} - \tilde{y}_{lo,i}}{y_i} \right), \tag{19}$$

357 where *n* is the number of data points;  $\tilde{y}_{up,i}$  and  $\tilde{y}_{lo,i}$  denote the upper and lower 358 boundary of the forecast confidence interval for the *i*-th prediction, respectively;  $y_i$  is 359 the *i*-th observation;  $I(\cdot)$  is the indicator function.

360

#### 361 **4. Results**

362 4.1 Prediction models with and without causal inference

363 The PCMCI was applied for feature screening in the prediction models, and the 364 causal networks of indicators in different stations are shown in Fig. 3. The parameter 365  $\tau_{max}$  was set as two days, indicating that a parent process earlier than two days would 366 not be considered. For the predictand, the features that significantly impacted TN were investigated according to Table S4. The results revealed a strong autocorrelation of TN 367 368 across all monitoring stations, meaning that the TN concentrations observed two days 369 prior significantly affected the concentrations measured on the current day. Cond had a 370 direct impact on TN in TC and QS stations, while DO had that on TN in TC and MD 371 stations. NO<sub>2</sub> had a one-day delay effect on TN in the TC station and a direct impact on 372 the QS station, respectively. The concentrations of TP showed a two-day delay effect 373 on TN in the TC station. For the QS and MD stations, the Chl-a and WT showed 374 different multi-day delay effects on TN, respectively. Based on the PCMCI, the features 375 for predicting TN in different stations were selected (Table 2).

376

< **Fig. 3**>

377

#### <Table 2>

The performance of the LSTM and Informer models with PCMCI for water quality forecasting was compared with the models without PCMCI as shown in **Fig. 4**. More specifically, the LSTM and Informer models without PCMCI (i.e., NO\_LSTM and NO\_Informer in the figure) involved all parameters from two days ahead to the current day as inputs  $(3 \times 11-1=32 \text{ features})$ . In contrast, PCMCI LSTM and PCMCI Informer

| 383        | involved selected features as inputs. As shown in Fig. 4, the predictions versus                                                                                                                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 384        | observations across all monitoring stations were distributed around a 1:1 slope line in                                                                                                                                                                  |
| 385        | both Pre1 and Pre2 models. All the $R_{Pre1-Pre2}^2$ were higher than 0.85, indicating that                                                                                                                                                              |
| 386        | reducing the number of inputs did not decrease forecasting performance. Furthermore,                                                                                                                                                                     |
| 387        | the model performance when using PCMCI was better than that without PCMCI in both                                                                                                                                                                        |
| 388        | models and three stations (Table 3), with the highest improvement rates of 22.88%,                                                                                                                                                                       |
| 389        | 24.79%, and 11.59% in terms of RMSE, MAPE, and $R^2$ , respectively. These                                                                                                                                                                               |
| 390        | phenomena indicated a practical application of PCMCI for saving the indicator                                                                                                                                                                            |
| 391        | measurement cost and improving the prediction efficiency.                                                                                                                                                                                                |
| 392        | < Fig. 4>                                                                                                                                                                                                                                                |
| 393        | <table 3=""></table>                                                                                                                                                                                                                                     |
| 394        |                                                                                                                                                                                                                                                          |
| 395        | 4.2 Prediction models with and without wavelet decomposition                                                                                                                                                                                             |
| 396        | Based on the results of Section 3.1, our following model simulations all took the                                                                                                                                                                        |
| 397        | features selected by PCMCI as inputs. In this section, the predictive effects of the LSTM                                                                                                                                                                |
| 398        | and the Informer models with or without wavelet decomposition were compared for the                                                                                                                                                                      |
| 399        | single-step prediction task. The WLSTM and the WInformer approaches were                                                                                                                                                                                 |
| 400        | developed and verified on the daily TN dynamics in each station. As shown in Fig. S2                                                                                                                                                                     |
| 401        |                                                                                                                                                                                                                                                          |
|            | to \$4, the TN concentrations in the Danjiangkou Reservoir presented a common                                                                                                                                                                            |
| 402        | fluctuation trend. Although the LSTM and the Informer models successfully captured                                                                                                                                                                       |
| 402<br>403 | to \$4, the TN concentrations in the Danjiangkou Reservoir presented a common<br>fluctuation trend. Although the LSTM and the Informer models successfully captured<br>the overall variations of TN in these non-stationary signal modes, they exhibited |

405 changes occurred from the 290<sup>th</sup> to 350<sup>th</sup> day of TC and from the 90<sup>th</sup> to 180<sup>th</sup> day of 406 QS, causing significant simulation errors to the LSTM and Informer model (**Fig. 5**). 407 Besides, the forecasting performance of the LSTM and the Informer showed a minor 408 difference in the single-step prediction for the full sequence in terms of  $R^2$  statistic 409 (0.8430 vs. 0.8463 in TC, 0.8568 vs. 0.8423 in QS, 0.8511 vs. 0.8120 in MD, 410 respectively).

411 When coupled with the wavelet decomposition, the performance of the WLSTM and WInformer both improved with an increase of 0.17% to 10.37% compared to the 412 original model for the entire sequence in terms of  $R^2$  statistics. The daily original TN 413 414 series (S) were decomposed to an approximation coefficient (A<sub>3</sub>) and three levels of detailed coefficients  $(D_1 - D_3)$ . The A<sub>3</sub> contains the low-frequency components of the 415 416 signal and approximates the signal with reduced detail, while the  $D_1 - D_3$  captures the 417 high-frequency components of the signal at different scales and provides progressively 418 finer details. Compared with the LSTM and the Informer, the apparent simulation errors 419 of TN concentrations were smoothed and diminished by the WLSTM and WInformer. 420 The wavelet decomposition coupled methods presented accurate predictions of the extreme situations, with around 24.39%, 32.68%, and 41.26% reduction at most on the 421 422 average, standard deviation, and maximum of the prediction errors (Table S5). Moreover, further comparison proved the best forecasting performance of the 423 424 WInformer at all the stations over the other three models, as shown in Table 4 and Fig. S5. The highest accuracy of WInformer was reached at the evaluation phase of the MD 425 426 station, shown by its smallest RMSE (0.0472 mg/L), lowest MAPE (2.85%), and

| 427 | highest $R^2$ (0.9400). In addition, the improvement rates of the Winformer model over                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 428 | the other three models in the evaluation stages are 14.83% to 27.38%, 15.37% to                                         |
| 429 | 24.39%, and 5.74% to 9.12% in terms of RMSE, MAPE, and $R^2$ , respectively. All the                                    |
| 430 | results indicated that the developed hybrid WInformer method could reliably                                             |
| 431 | accomplish single-step prediction tasks based on historical data.                                                       |
| 432 | <fig. 5=""></fig.>                                                                                                      |
| 433 | <table 4=""></table>                                                                                                    |
| 434 |                                                                                                                         |
| 435 | 4.3 Uncertainty quantification for prediction                                                                           |
| 436 | The uncertainty forecast is based on the selection of the best forecasting model.                                       |
| 437 | Following the process described in Section 2.4, we first fitted the marginal distributions                              |
| 438 | of observations and predictions of TN in the calibration stages for all sites using Pearson                             |
| 439 | III distribution (Table S6), a popular and important distribution in the field of water                                 |
| 440 | resources. Then, the joint distribution of the observations-predictions pair for each                                   |
| 441 | station was established based on the marginal distributions and the Copula theory                                       |
| 442 | (Table S7). Through the probability transformation of the predictions in the evaluation                                 |
| 443 | stages and calculations based on Eq. (13) and Eq. (14), we can obtain any quantiles of                                  |
| 444 | the probability prediction (uncertainty prediction). In this study, given the significance                              |
| 445 | level $\alpha = 0.05$ , the 2.5 <sup>th</sup> percentile and 97.5 <sup>th</sup> percentile of the posterior conditional |

446 probability distribution were calculated, corresponding to the lower and upper447 boundary of the 95% forecast confidence interval, respectively. Thus, each

448 deterministic prediction result of the WInformer was associated with a corresponding

449 forecast interval, achieving the uncertainty quantification. As shown in Fig. 6, the forecast interval covered almost all the observations at the evaluation phase, indicating 450 451 that the probabilistic forecast is reliable. Besides, CR and ARIL were used to evaluate the results of the probabilistic forecast. The larger the CR, the higher the proportion of 452 453 the observations covered by the forecast interval, while the smaller the ARIL, the 454 narrower the average relative interval width of the forecast interval and the higher the 455 accuracy. Studies have shown that as CR increases, ARIL also increases, meaning these two metrics are often contradictory. For a given confidence level, under the premise of 456 457 ensuring a high coverage rate, the narrower the average relative width of the forecast 458 interval, the better the prediction performance. It can be seen in Fig.6 that CR remained 459 above 90% at all stations, with the highest being 98.71% of the MD station. ARIL 460 remained only around 20% across stations, with the smallest being 18.01% of the TC station. These results indicated that our uncertainty forecast is reliable and can provide 461 more information for water resources management decisions. 462

463

### <**Fig. 6**>

464

# 465 **5. Discussion**

466 5.1 Model improvement brought by causal inference and wavelet decomposition

467 Selecting the most relevant and informative features from all available features can
468 improve data-driven models' predictive performance and explanatory power
469 (Masmoudi et al., 2020). Driven by the need to establish more efficient, interpretable,
470 and reliable models, causal inference was integrated into the forecasting framework in

471 this study. It has advantages in enhancing forecasting accuracy, boosting computational efficiency, and providing insights into mechanisms Specifically, the causal inference 472 473 can identify direct causal relationships between the features and the target variable while excluding indirect relationships caused by the presence of confounding variables; 474 475 this facilitates the construction of more interpretable and reliable models (Pearl and Mackenzie, 2018), and has recently gained significant popularity across various fields 476 (Kretschmer et al., 2018, Krich et al., 2022). As one of the advanced causal inference 477 methods, the core technique of PCMCI is to infer causal relationships by evaluating 478 479 conditional independences of variables, which do not need to rely on traditional path 480 analysis of causality models or causal hypotheses. Because of this, this method can 481 handle the linear relationship and capture the nonlinear causality to better adapt to the 482 complexity and dynamics of the actual data (Runge et al., 2019a). In addition, highdimensional and strongly autocorrelated data can be efficiently processed, and the lag-483 484 dependent temporal relationships can be found based on the PCMCI, which makes it 485 very applicable for dealing with time-series-related problems (Krich et al., 2020). This 486 study selected indicators with specific time lags as the input features based on PCMCI. 487 It can be seen from the screening results (Table 2) that PCMCI not only selects the 488 index set that meets the physical mechanism but also significantly reduces the dimensionality of the input data (from 32 features of the model without PCMCI to 5/6 489 490 features of the model with PCMCI). It has been verified that the complexity of the 491 model increases with increasing input, potentially leading to the problem of low 492 efficiency and overfitting (Wang et al., 2023). Our results have presented consistent

493 conclusions: the models with selected features all showed better forecasting
494 performance. These phenomena indicate a valuable application of PCMCI for saving
495 indicator measurement costs and improving prediction efficiency.

Wavelet decomposition was also used to enhance the model in this study. 496 497 Compared to the individual deep learning model, the forecasting performance of TN by 498 the wavelet-coupled approaches was improved at all stations, with a maximum decrease 499 of 24.75% and 23.25% in terms of RMSE and MAPE, respectively (Fig. 5). In the 500 hybrid structures, the wavelet decomposition played a crucial role as an effective pre-501 processing tool. It extracted cyclic signals using dyadic decompositions, from which 502 the extracted sub-series could exhibit distinct multi-timescale characteristics of the 503 original series quasi-periodically and periodically (Nourani et al., 2014a). This feature 504 greatly facilitated the utilization of deep learning algorithmic advantages in handling 505 time series tasks. Furthermore, the wavelet-coupled approaches were also remarkably 506 effective in simulating peak values with TN dynamics (Fig. 5 and Table S5). Generally, 507 it is quite difficult for data-driven models to accurately predict extreme situations, as 508 they often treat extreme points as outliers before their normal prediction process (Song 509 et al., 2021). However, by incorporating the robust resistance and smoothing capability 510 of wavelet decomposition, the wavelet-coupled approaches effectively reduce the inclusion of extreme components in the input sub-series. The likelihood of models 511 512 detecting original outliers is then reduced, while the fitting accuracy for welltransformed mutations is increased (Du et al., 2018). Danjiangkou reservoir basin has 513 514 multiple and complex sources of pollution, resulting in sharp changes in TN dynamics 515 (<u>Zhang et al., 2023</u>). The accurate forecasting performance for mutations is absolutely
516 useful for water quality management.

517

518 5.2 Necessity and potential of uncertainty prediction

519 In the past, it was common in most practical engineering management to make 520 decisions based on the deterministic forecast values obtained from models. However, 521 due to the inherent limitations and uncertainties present in real-world phenomena and data, the predictions made by the models are also uncertain (Krzysztofowicz, 1999). 522 523 According to statistical decision theory, when making decisions without considering 524 the uncertainty of the predictions, the value of the model forecasts in the decision-525 making process may not be non-negative in terms of expectation (Berger, 2013). In 526 other words, the value of the model forecasts can remain positive only when the 527 uncertainty of the predictions is considered in decision-making. The decision maker is 528 responsible for deciding upon a reasonable water resources management course of 529 action based on the forecaster, relying solely on a single-point estimate of the predictand 530 may be insufficient (Kelly and Krzysztofowicz, 2000, Yang, 2020). Therefore, quantifying the uncertainty associated with the predictions regarding probability 531 532 distribution and confidence level is necessary.

In this study, the Copula function was used to establish the joint distribution of observations and deterministic predictions to quantify the distribution of errors. Copula function is a statistical tool used to establish the structure of correlations between random variables (Dai et al., 2020). This approach can help us to better understand and 537 model the dependencies between variables and provide more accurate results in 538 uncertainty assessment, simulations, and predictions. It was widely used in finance, 539 climatology, and risk management in the early years and has recently gained popularity in water resources (Sahoo et al., 2020, Zhi et al., 2022). The study of (Liu et al., 2018) 540 analysed the effect of compound floods in Texas, USA, based on the Copula function 541 542 with precipitation, surface runoff, El Nino-Southern Oscillation (ENSO) states, and 543 rising temperatures as underlying conditions. Aiming at the potential abnormal algal proliferation in the MRSNWDPC, some scholars modelled dependency structures of 544 545 water quality and hydrodynamic factors and conducted risk analysis based on Copula 546 theory (Zhang et al., 2021). In addition, a Copula-based Bayesian network method was 547 proposed and proved to be a powerful decision-support tool for the water quality 548 management of Yuqiao Reservoir (Yu and Zhang, 2021). These studies reveal the power 549 and flexibility of the Copula function, and the structure of Copula can well characterize 550 the relationship between the variables. With the help of the Copula function and 551 Bayesian theory, each deterministic prediction of our model can correspond to a range 552 of possible outputs. The results also showed that the forecast interval covered almost 553 all the observations, indicating that our method is reliable (Fig. 6). This range of 554 possibilities reflects the inherent randomness and variability in the underlying processes and model establishment, which provides a measure of the reliability and robustness of 555 556 the predictions. Such information is valuable in practical engineering management. By considering uncertainty, decision-makers can evaluate the level of uncertainty 557 558 associated with different scenarios and adjust their strategies accordingly.

559

560 5.3 Contributions, challenges, and future work

561 Data-driven methods are being increasingly appreciated in the context of detailed real-world observations (Zhong et al., 2021). Various deep learning algorithms have 562 563 been widely applied in time-series prediction research (Deng et al., 2021, Harris and 564 Graham, 2017). This study involves two popular time-series deep learning algorithms, i.e., the LSTM and Informer. LSTM is known for its excellent long-term dependency 565 modelling ability to capture temporal relationships in sequence data efficiently (Zheng 566 567 et al., 2021). It has demonstrated capacity in the field of water resources. In contrast, as 568 a newly proposed algorithm, the application of the Informer in this field is relatively 569 limited. As an improvement of the Transformer, Informer is a model based on the self-570 attention mechanism that can effectively utilize the temporal and spatial correlation information within time-series data (Gong et al., 2022). In the study on short-term 571 irrigation water use forecasting, (Zou et al., 2022) demonstrated the superiority of 572 573 Informer over the other five data-driven methods. Based on long-term monitoring data 574 and Informer, some researchers developed an effective prediction framework for water quality management (Yao et al., 2022). Our results also showed the best forecast 575 576 performance of WInformer at all stations (Fig. S5), indicating the great potential of Informer in water quality prediction. These experiments enrich the application of 577 578 Informer in the field of water resources. Besides, various advanced methods such as 579 PCMCI, wavelet decomposition, and Copula function were used to improve the 580 performance of deep learning algorithms in this research. We aimed to provide a more

accurate and reliable framework to analyse and predict complex time-series data,providing strong support for applications in related fields and tasks.

583 There remains a substantial scope for future exploration and investigation in this domain. First, due to the funding constraints, the resolution of data monitoring in this 584 585 study is only on a daily scale. Water resources management sometimes requires to be 586 conducted on an hourly scale, so it is crucial to continue studying related models in the 587 future. Second, although we selected the index set that meets the physical mechanism based on PCMCI, more detailed studies on the mechanism of water quality variation 588 589 are still of concern. Considering that the DJKR will continue to operate for many years, 590 specific research on models driven by physical-mathematical equations will be carried 591 out in the future. Third, designing individual or ensemble deep learning models for 592 multi-steps time-series prediction tasks has been an emerging area in recent years. 593 Based on the sing-step forecasting framework we established, the results of multi-step 594 ahead forecasting using alternative approaches, such as recursive- or batch- pattern 595 model sets would be reported in our future work, aiming to develop more accurate and 596 robust long-term forecasting models.

597

### 598 **6.** Conclusions

In this study, we developed a hybrid time-series forecasting framework integrating deep learning approach, causal inference, wavelet decomposition, and Copula function, which was used for TN prediction of the Danjiangkou Reservoir of China. The main conclusions are as follows: (1) PCMCI is a powerful feature selection method based on causal inference. It can
not only select the index set that meets the physical mechanism, but also significantly
reduce the dimensionality of the input data. Our results demonstrated its ability to save
indicator measurement costs and improve prediction efficiency.

607 (2) Compared to the individual models, the apparent forecasting errors of TN
608 concentrations were well smoothed and diminished by the wavelet-coupled approaches,
609 with 24.39%, 32.68%, and 41.26% reduction at most on the average, standard deviation,
610 and maximum of the prediction errors. Furthermore, WInformer showed the best
611 performance in all the experiments, indicating this new structure's valuable potential in
612 water quality management.

(3) With the combinations of the Copula function and Bayesian theory, each deterministic prediction of our model can correspond to a range of possible outputs, which measure the reliability and robustness of the predictions. By considering uncertainty, decision-makers can evaluate the uncertainty associated with different scenarios and adjust their strategies accordingly.

This study provides insights for applying advanced data-driven methods in timeseries forecasting tasks and a practical methodological framework for water resources management and similar projects. In future research, long-term series monitoring data, various mechanism models, and more in-situ/ computational experiments are still needed to be conducted.

623

### 624 **Declaration of Interest Statement**

31

625 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this 626 627 paper.

628

#### 629 Acknowledgments

630 This research was funded by the National Natural Science Foundation of China (No. U21A20156), the Specific Research Project of Guangxi for Research Bases and 631 Talents (No.AD22035185), the visiting scholars' fund at the WRHES (No.2021NSG02), 632 633 the Belt and Road Special Foundation of the National Key Laboratory of Water Disaster 634 Prevention (2022nkms06). Thanks are due to the reviewers and editors for their careful 635 work and thoughtful suggestions which substantially improve the article, and we would 636 also need to acknowledge the Water Source of the Middle-Route of the South-to-North Water Diversion Project of China Corporation Limited that supported the data 637 638 collection.

639

642

#### References 640

Banerjee, A., Chakrabarty, M., Rakshit, N., Bhowmick, A.R. and Ray, S. (2019) 641

- Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. 643 644 Ecological Indicators 100, 99-117.
- Berger, J.O. (2013) Statistical decision theory and Bayesian analysis, Springer Science 645

& Business Media. 646

32

| 647 | Cai, C., Wang, J. and Li, Z. (2019) Assessment and modelling of uncertainty in  |
|-----|---------------------------------------------------------------------------------|
| 648 | precipitation forecasts from TIGGE using fuzzy probability and Bayesian theory. |
| 649 | Journal of Hydrology 577.                                                       |

- 650 Cai, K., Zhang, X., Zhang, M., Ge, Q., Li, S., Qiao, B. and Liu, Y. (2023) Improving
- air pollutant prediction in Henan Province, China, by enhancing the concentration
- prediction accuracy using autocorrelation errors and an Informer deep learningmodel. Sustainable Environment Research 33(1).
- 654 Cannas, B., Fanni, A., See, L. and Sias, G. (2006) Data preprocessing for river flow
- forecasting using neural networks: Wavelet transforms and data partitioning.
  Physics and Chemistry of the Earth 31(18), 1164-1171.
- Challinor, A.J., Smith, M.S. and Thornton, P. (2013) Use of agro-climate ensembles for
  quantifying uncertainty and informing adaptation. Agricultural and Forest
  Meteorology 170, 2-7.
- 660 Colombo, D. and Maathuis, M.H. (2014) Order-Independent Constraint-Based Causal
- 661 Structure Learning. Journal of Machine Learning Research 15, 3741-3782.
- Dai, M., Huang, S., Huang, Q., Leng, G., Guo, Y., Wang, L., Fang, W., Li, P. and Zheng,
- K. (2020) Assessing agricultural drought risk and its dynamic evolution
  characteristics. Agricultural Water Management 231.
- 665 Deng, T., Chau, K.-W. and Duan, H.-F. (2021) Machine learning based marine water
- quality prediction for coastal hydro-environment management. Journal ofEnvironmental Management 284.
- 668 Du, Z., Qin, M., Zhang, F. and Liu, R. (2018) Multistep-ahead forecasting of

- 669 chlorophyll a using a wavelet nonlinear autoregressive network. Knowledge-
- 670 Based Systems 160, 61-70.
- 671 Glibert, P.M., Allen, J.I., Bouwman, A.F., Brown, C.W., Flynn, K.J., Lewitus, A.J. and
- 672 Madden, C.J. (2010) Modeling of HABs and eutrophication Status, advances,
- 673 challenges. Journal of Marine Systems 83(3-4), 262-275.
- Gong, M., Zhao, Y., Sun, J., Han, C., Sun, G. and Yan, B. (2022) Load forecasting of
  district heating system based on Informer. Energy 253.
- 676 Größer, J. and Okhrin, O. (2021) Copulae: An overview and recent developments.
- 677 WIREs Computational Statistics 14(3).
- Hamed, M.G., Alligier, R. and Gianazza, D. (2016) High Confidence Intervals Applied
- to Aircraft Altitude Prediction. Ieee Transactions on Intelligent Transportation
  Systems 17(9), 2515-2527.
- 681 Harris, T.D. and Graham, J.L. (2017) Predicting cyanobacterial abundance, microcystin,
- and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake
- and Reservoir Management 33(1), 32-48.
- He, J., Chen, Y., Wu, J., Stow, D.A. and Christakos, G. (2020) Space-time chlorophylla retrieval in optically complex waters that accounts for remote sensing and
- modeling uncertainties and improves remote estimation accuracy. Water Research171.
- Huang, X. and Jiang, A. (2022) Wind Power Generation Forecast Based on Multi-Step
  Informer Network. Energies 15(18).
- 690 Kelly, K.S. and Krzysztofowicz, R. (2000) Precipitation uncertainty processor for

- 691 probabilistic river stage forecasting. Water Resources Research 36(9), 2643-2653.
- 692 Kretschmer, M., Cohen, J., Matthias, V., Runge, J. and Coumou, D. (2018) The different
- 693 stratospheric influence on cold-extremes in Eurasia and North America. Npj694 Climate and Atmospheric Science 1.
- Krich, C., Mahecha, M.D., Migliavacca, M., De Kauwe, M.G., Griebel, A., Runge, J.
- and Miralles, D.G. (2022) Decoupling between ecosystem photosynthesis and
  transpiration: a last resort against overheating. Environmental Research Letters
  17(4).
- 699 Krich, C., Runge, J., Miralles, D.G., Migliavacca, M., Perez-Priego, O., El-Madany, T.,
- Carrara, A. and Mahecha, M.D. (2020) Estimating causal networks in biosphereatmosphere interaction with the PCMCI approach. Biogeosciences 17(4), 10331061.
- Krzysztofowicz, R. (1999) Bayesian theory of probabilistic forecasting via
  deterministic hydrologic model. Water Resources Research 35(9), 2739-2750.
- Labat, D. (2005) Recent advances in wavelet analyses: Part I. A review of concepts.
  Journal of Hydrology 314(1-4), 275-288.
- 707 Li, S., Chen, X., Singh, V.P. and He, Y. (2018) Assumption-Simulation-Feedback-
- Adjustment (ASFA) Framework for Real-Time Correction of Water Resources
  Allocation: a Case Study of Longgang River Basin in Southern China. Water
  Resources Management 32(12), 3871-3886.
- Liu, L., Peng, W., Wu, L., Liu, L. and Iop (2017) Water Quality Assessment of
  Danjiangkou Reservoir and its Tributaries in China, Thailand.

- Liu, M., He, J., Huang, Y., Tang, T., Hu, J. and Xiao, X. (2022) Algal bloom forecasting
  with time-frequency analysis: A hybrid deep learning approach. Water Research
  219.
- 716 Liu, Z., Cheng, L., Hao, Z., Li, J., Thorstensen, A. and Gao, H. (2018) A Framework
- for Exploring Joint Effects of Conditional Factors on Compound Floods. Water
  Resources Research 54(4), 2681-2696.
- Masmoudi, S., Elghazel, H., Taieb, D., Yazar, O. and Kallel, A. (2020) A machinelearning framework for predicting multiple air pollutants' concentrations via multi-
- target regression and feature selection. Science of the Total Environment 715.
- Nong, X., Lai, C., Chen, L., Shao, D., Zhang, C. and Liang, J. (2023) Prediction
  modelling framework comparative analysis of dissolved oxygen concentration
  variations using support vector regression coupled with multiple feature
  engineering and optimization methods: A case study in China. Ecological
  Indicators 146.
- Nong, X., Shao, D., Zhong, H. and Liang, J. (2020) Evaluation of water quality in the
  South-to-North Water Diversion Project of China using the water quality index
  (WQI) method. Water Res 178, 115781.
- Nourani, V., Baghanam, A.H., Adamowski, J. and Kisi, O. (2014a) Applications of
  hybrid wavelet-Artificial Intelligence models in hydrology: A review. Journal of
  Hydrology 514, 358-377.
- Nourani, V. and Behfar, N. (2021) Multi-station runoff-sediment modeling using
  seasonal LSTM models. Journal of Hydrology 601.

| 735 | Nourani, V., Hosseini Baghanam, A., Adamowski, J. and Kisi, O. (2014b) Applications     |
|-----|-----------------------------------------------------------------------------------------|
| 736 | of hybrid wavelet-Artificial Intelligence models in hydrology: A review. Journal        |
| 737 | of Hydrology 514, 358-377.                                                              |
| 738 | Offie, I., Piadeh, F., Behzadian, K., Campos, L.C. and Yaman, R. (2023) Development     |
| 739 | of an artificial intelligence-based framework for biogas generation from a micro        |
| 740 | anaerobic digestion plant. Waste Management 158, 66-75.                                 |
| 741 | Pearl, J. and Mackenzie, D. (2018) The book of why: the new science of cause and        |
| 742 | effect, Basic books.                                                                    |
| 743 | Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N. and |
| 744 | Prabhat (2019) Deep learning and process understanding for data-driven Earth            |

745 system science. Nature 566(7743), 195-204.

- 746 Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour,
- 747 C., Kretschmer, M., Mahecha, M.D., Munoz-Mari, J., van Nes, E.H., Peters, J.,
- 748 Quax, R., Reichstein, M., Scheffer, M., Schoelkopf, B., Spirtes, P., Sugihara, G.,
- 749 Sun, J., Zhang, K. and Zscheischler, J. (2019a) Inferring causation from time series

750 in Earth system sciences. Nature Communications 10.

- 751 Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. and Sejdinovic, D. (2019b)
- 752 Detecting and quantifying causal associations in large nonlinear time series753 datasets. Science Advances 5(11).
- 754 Runge, J., Petoukhov, V., Donges, J.F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman,
- D., Marwan, N., Paluš, M. and Kurths, J. (2015) Identifying causal gateways and
- 756 mediators in complex spatio-temporal systems. Nature Communications 6(1),

757 8502.

- Sahoo, B.B., Jha, R., Singh, A. and Kumar, D. (2020) Bivariate low flow return period
  analysis in the Mahanadi River basin, India using copula. International Journal of
  River Basin Management 18(1), 107-116.
- Salimi, S. and Hammad, A. (2020) Sensitivity analysis of probabilistic occupancy
  prediction model using big data. Building and Environment 172.
- 763 Santy, S., Mujumdar, P. and Bala, G. (2020) Potential Impacts of Climate and Land Use
- 764 Change on the Water Quality of Ganga River around the Industrialized Kanpur765 Region. Scientific Reports 10(1).
- 766 Sit, M.A., Koylu, C. and Demir, I. (2019) Identifying disaster-related tweets and their
- semantic, spatial and temporal context using deep learning, natural language
  processing and spatial analysis: a case study of Hurricane Irma. International
  Journal of Digital Earth 12(11), 1205-1229.
- 770 Sklar, M. (1959) Fonctions de répartition à n dimensions et leurs marges, pp. 229-231.
- 771 Song, C., Yao, L., Hua, C. and Ni, Q. (2021) A novel hybrid model for water quality
- prediction based on synchrosqueezed wavelet transform technique and improvedlong short-term memory. Journal of Hydrology 603.
- Tibangayuka, N., Mulungu, D.M.M. and Izdori, F. (2022) Performance evaluation,
- sensitivity, and uncertainty analysis of HBV model in Wami Ruvu basin, Tanzania.
- Journal of Hydrology: Regional Studies 44, 101266.
- 777 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.
- and Polosukhin, I. (2017) Attention Is All You Need, Long Beach, CA.

- Wang, Q., Yue, C., Li, X., Liao, P. and Li, X. (2023) Enhancing robustness of monthly
- streamflow forecasting model using embedded-feature selection algorithm basedon improved gray wolf optimizer. Journal of Hydrology 617.
- 782 Wellen, C., Kamran-Disfani, A.-R. and Arhonditsis, G.B. (2015) Evaluation of the
- 783 Current State of Distributed Watershed Nutrient Water Quality Modeling.
- 784Environmental Science & Technology 49(6), 3278-3290.
- Xia, R., Wang, G., Zhang, Y., Yang, P., Yang, Z., Ding, S., Jia, X., Yang, C., Liu, C., Ma,
- 786 S., Lin, J., Wang, X., Hou, X., Zhang, K., Gao, X., Duan, P. and Qian, C. (2020)
- 787 River algal blooms are well predicted by antecedent environmental conditions.788 Water Research 185.
- Xiao, X., He, J., Huang, H., Miller, T.R., Christakos, G., Reichwaldt, E.S., Ghadouani,
- A., Lin, S., Xu, X. and Shi, J. (2017) A novel single-parameter approach for
  forecasting algal blooms. Water Research 108, 222-231.
- Yang, D. (2020) Reconciling solar forecasts: Probabilistic forecast reconciliation in a
  nonparametric framework. Solar Energy 210, 49-58.
- Yao, S., Zhang, Y., Wang, P., Xu, Z., Wang, Y. and Zhang, Y. (2022) Long-Term Water
  Quality Prediction Using Integrated Water Quality Indices and Advanced Deep
- Learning Models: A Case Study of Chaohu Lake, China, 2019-2022. Applied
  Sciences-Basel 12(22).
- Yu, R. and Zhang, C. (2021) Early warning of water quality degradation: A copula-
- based Bayesian network model for highly efficient water quality risk assessment.
- 300 Journal of Environmental Management 292.

- Zhang, C., Nong, X., Shao, D. and Chen, L. (2023) An integrated risk assessment
  framework using information theory-based coupling methods for basin-scale
  water quality management: A case study in the Danjiangkou Reservoir Basin,
  China. Science of the Total Environment 884.
- 805 Zhang, C., Nong, X., Shao, D., Zhong, H., Shang, Y. and Liang, J. (2021) Multivariate
- 806 water environmental risk analysis in long-distance water supply project: A case
  807 study in China. Ecological Indicators 125.
- 808 Zheng, L., Wang, H., Liu, C., Zhang, S., Ding, A., Xie, E., Li, J. and Wang, S. (2021)
- 809 Prediction of harmful algal blooms in large water bodies using the combined
  810 EFDC and LSTM models. Journal of Environmental Management 295.
- 811 Zhi, B., Wang, X. and Xu, F. (2022) Managing inventory financing in a volatile market:
- A novel data-driven copula model. Transportation Research Part E-Logistics and
  Transportation Review 165.
- 814 Zhong, S., Zhang, K., Bagheri, M., Burken, J.G., Gu, A., Li, B., Ma, X., Marrone, B.L.,
- 815 Ren, Z.J., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Wong, B.M., Xiao, X.,
- 816 Yu, X., Zhu, J.-J. and Zhang, H. (2021) Machine Learning: New Ideas and Tools
- 817 in Environmental Science and Engineering. Environmental Science & Technology
- 818 55(19), 12741-12754.
- Zhou, Y. (2020) Real-time probabilistic forecasting of river water quality under data
  missing situation: Deep learning plus post-processing techniques. Journal of
  Hydrology 589.
- 822 Zou, L., Zha, Y., Diao, Y., Tang, C., Gu, W. and Shao, D. (2022) Coupling the Causal

- 823 Inference and Informer Networks for Short-term Forecasting in Irrigation Water
- Usage. Water Resources Management 37(1), 427-449.

825

# **Figure Captions**

Fig. 1. The framework of the proposed coupling predictive methods in this study.

Fig. 2. The location of the Danjiangkou Reservoir and three automatic water quality monitoring stations.

**Fig. 3.** Causal networks of all parameters in the three stations (Note: Based on the PCMCI method, the strength of causality is given by the link colour and the time lags are shown in the centre of each arrow).

**Fig. 4.** Comparisons of the predictive model performances with and without PCMCI in different stations.

**Fig. 5.** Observation and prediction series of TN using different models in three stations for one step ahead (Note: the inner plots represent the relative error (%)).

**Fig. 6.** Observations, predictions of the WInformer, and the 95% confidence interval for the TN of different stations in the evaluation stages (TC, QS, and MD are the names of stations; CR: Coverage Rate; ARIL: Average Relative Interval Length).

42



Fig. 1. The framework of the proposed coupling predictive methods in this study.



Fig. 2. The location of the Danjiangkou Reservoir and three automatic water quality monitoring

stations (i.e., Taocha, Qingshan, and Madeng).



**Fig. 3.** Causal networks of all parameters in the three stations (Note: Based on the PCMCI method, the strength of causality is given by the link colour and the time lags are shown in the centre of each arrow).

















Fig. 4. Comparisons of the predictive model performances with and without PCMCI in different stations.



(c)

(e)



Fig. 5. Observation and prediction series of TN using different models in three stations for one step ahead (Note: the inner plots represent the relative error (%)).



**Fig. 6.** Observations, predictions of the WInformer, and the 95% confidence interval for the TN of different stations in the evaluation stages (TC, QS, and MD are the names of stations; CR: Coverage Rate; ARIL: Average Relative Interval Length).

#### Table 1

Summary of all indicators in the three automatic monitoring stations from 2017 to 2022 (Avg.:

Average; S.D.: Standard deviation).

#### Table 2

The selected features for different stations.

#### Table 3

Comparisons of the prediction models with and without causal inference in the evaluation stages.

#### Table 4

The forecasting performance of WInformer comparing to the other three models.

| Douomatana          | Taocha (TC)       |        |       | Qingshan (QS)     |       |       | Madeng (MD)       |        |       |
|---------------------|-------------------|--------|-------|-------------------|-------|-------|-------------------|--------|-------|
| Parameters -        | Avg. $\pm$ S.D.   | Max    | Min   | Avg. $\pm$ S.D.   | Max   | Min   | Avg. ± S.D.       | Max    | Min   |
| WT (°C)             | $18.4\pm6.9$      | 32.7   | 5.9   | $18.0\pm6.6$      | 33    | 6.3   | $18.7\pm6.6$      | 32.5   | 4.9   |
| pH                  | $8.08\pm0.35$     | 9.10   | 6.50  | $8.15\pm0.33$     | 9.30  | 6.50  | $8.12\pm0.32$     | 9.10   | 6.00  |
| DO (mg/L)           | $9.70 \pm 1.30$   | 12.70  | 6.10  | $9.90 \pm 1.30$   | 16.20 | 7.10  | $9.60 \pm 1.30$   | 16.20  | 6.59  |
| Cond (µS/cm)        | $272.6\pm46.6$    | 550.8  | 175.0 | $256.7\pm28.4$    | 346.4 | 142.9 | $284.8\pm60.5$    | 1071.0 | 109.4 |
| Chl-a (µg/L)        | $2.36\pm3.19$     | 98.50  | 0.20  | $2.41 \pm 1.88$   | 19.10 | 0.27  | $2.63 \pm 1.89$   | 16.40  | 0.20  |
| TP (mg/L)           | $0.013\pm0.004$   | 0.041  | 0.002 | $0.017\pm0.010$   | 0.269 | 0.004 | $0.014\pm0.005$   | 0.051  | 0.001 |
| Pre (mm)            | $6.9\pm28.1$      | 561.5  | 0     | $4.0\pm20.5$      | 361.0 | 0     | $7.3\pm28.4$      | 346.7  | 0     |
| $HNO_3 (\mu g/m^3)$ | $6.76 \pm 4.68$   | 43.02  | 0.02  | $4.96 \pm 4.01$   | 39.16 | 0.04  | $6.76 \pm 4.67$   | 43.02  | 0.02  |
| NO ( $\mu g/m^3$ )  | $30.04\pm24.37$   | 129.43 | 0.27  | $11.30 \pm 11.30$ | 59.28 | 0.07  | $30.03 \pm 24.37$ | 129.43 | 0.27  |
| $NO_2 (\mu g/m^3)$  | $41.80 \pm 13.06$ | 173.16 | 13.95 | $27.93 \pm 9.58$  | 85.49 | 7.91  | $41.80 \pm 13.06$ | 173.16 | 13.95 |
| TN (mg/L)           | $1.17\pm0.18$     | 1.81   | 0.69  | $1.20\pm0.18$     | 1.98  | 0.82  | $1.19\pm0.21$     | 2.45   | 0.42  |

Summary of all indicators in the three automatic monitoring stations from 2017 to 2022 (Avg.: Average; S.D.: Standard deviation).

| Station       | Selected features                                                      |
|---------------|------------------------------------------------------------------------|
| Taocha (TC)   | TN(t-1), TN(t-2), DO(t), Cond(t), TP(t-2), NO <sub>2</sub> (t-1)       |
| Qingshan (QS) | TN(t-1), TN(t-2), Cond(t), Chl-a(t-2), Chl-a(t-1), NO <sub>2</sub> (t) |
| Madeng (MD)   | TN(t-1), TN(t-2), WT(t), DO(t), WT(t-1)                                |

| Station | Model       | RMSE   | MAPE  | R <sup>2</sup> |
|---------|-------------|--------|-------|----------------|
| TC      | NO_LSTM     | 0.0716 | 4.06% | 0.7912         |
|         | LSTM        | 0.0711 | 4.06% | 0.8029         |
|         | NO_Informer | 0.0924 | 5.31% | 0.7268         |
|         | Informer    | 0.0713 | 4.12% | 0.8110         |
| QS      | NO_LSTM     | 0.0800 | 4.71% | 0.8077         |
|         | LSTM        | 0.0759 | 4.46% | 0.8126         |
|         | NO_Informer | 0.0811 | 4.71% | 0.7810         |
|         | Informer    | 0.0764 | 4.47% | 0.8078         |
| MD      | NO_LSTM     | 0.0642 | 3.71% | 0.8858         |
|         | LSTM        | 0.0618 | 3.44% | 0.8890         |
|         | NO_Informer | 0.0824 | 5.01% | 0.8326         |
|         | Informer    | 0.0649 | 3.77% | 0.8758         |

Comparisons of the prediction models with and without causal inference in the evaluation stages.

|             | Calib            | oration | Evaluation       |                       |                  |             |                  |        |          |
|-------------|------------------|---------|------------------|-----------------------|------------------|-------------|------------------|--------|----------|
| RMSE (mg/L) |                  | MAPE    |                  | <b>R</b> <sup>2</sup> |                  | RMSE (mg/L) |                  | MAPE   |          |
| 0.0576      |                  | 3.55%   |                  | 0.8783                |                  | 0.0581      |                  | 3.30 % |          |
| 0.0690      | (+\Delta16.53\%) | 4.08%   | (+Δ12.81%)       | 0.8234                | (+\Delta 6.66%)  | 0.0713      | (+Δ18.49%)       | 4.12%  | (+Δ19.85 |
| 0.0684      | (+\Delta15.70%)  | 4.07%   | (+Δ12.79%)       | 0.8274                | (+\Delta 6.15%)  | 0.0692      | (+\Delta16.08\%) | 3.90%  | (+Δ15.37 |
| 0.0715      | (+\Delta19.47\%) | 4.33%   | (+Δ18.00%)       | 0.8208                | (+\Delta 7.00%)  | 0.0711      | (+\Delta18.29\%) | 4.06%  | (+Δ18.65 |
| 0.0594      |                  | 3.35%   |                  | 0.8848                |                  | 0.0641      |                  | 3.68%  |          |
| 0.0694      | (+∆14.47%)       | 3.92%   | (+\Delta14.56\%) | 0.8433                | (+Δ4.91%)        | 0.0764      | (+\Delta16.11\%) | 4.47%  | (+Δ17.55 |
| 0.0648      | (+\Delta 8.38%)  | 3.73%   | (+Δ10.30%)       | 0.8627                | (+\Delta 2.56\%) | 0.0753      | (+\Delta14.83%)  | 4.42%  | (+Δ16.71 |
| 0.0656      | (+\Delta 9.39\%) | 3.82%   | (+Δ12.32%)       | 0.8607                | (+\Delta 2.80%)  | 0.0759      | (+\Delta15.50%)  | 4.46%  | (+∆17.43 |
| 0.0712      |                  | 3.95%   |                  | 0.8842                |                  | 0.0472      |                  | 2.85%  |          |
| 0.0943      | (+Δ24.51%)       | 5.12%   | (+\Delta 22.85%) | 0.7928                | (+Δ11.54%)       | 0.0649      | (+Δ27.38%)       | 3.77%  | (+Δ24.39 |
| 0.0824      | (+\Delta13.56%)  | 4.41%   | (+\Delta10.32\%) | 0.8419                | (+\Delta 5.02\%) | 0.0624      | (+\Delta24.46%)  | 3.48%  | (+Δ18.21 |
| 0.0832      | (+\Delta14.40%)  | 4.46%   | (+\Delta11.44%)  | 0.8387                | (+\Delta 5.43%)  | 0.0618      | (+\Delta23.70%)  | 3.44%  | (+∆17.17 |

The forecasting performance of WInformer comparing to the other three models.

Note: The values in parentheses represent the improvement rates of the WInformer model over the

other three models in terms of the corresponding metrics.

# **Supplementary Materials**

# A new framework for water quality forecasting coupling causal inference, time-frequency analysis, and uncertainty quantification

Chi Zhang <sup>a</sup>, Xizhi Nong <sup>a, b, c, \*</sup>, Kourosh Behzadian <sup>d, e</sup>, Luiza C. Campos <sup>d</sup>, Lihua Chen <sup>b</sup>,

Dongguo Shao <sup>a, \*</sup>

<sup>a</sup> State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

<sup>b</sup> College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

<sup>c</sup> The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China

<sup>d</sup> Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom

<sup>e</sup> School of Computing and Engineering, University of West London, London W5 5RF, United Kindom

\* Corresponding author: Dr. Xizhi Nong; Professor Dongguo Shao

E-mail addresses: nongxizhi@gxu.edu.cn, dongguoshao@163.com

| Station | Series | num_layers | num_neurons | Epoch | batch_size | dropout_rate |
|---------|--------|------------|-------------|-------|------------|--------------|
| TC      | S_NO   | 1          | 128         | 80    | 64         | 0.1          |
|         | S      | 1          | 32          | 60    | 32         | 0.2          |
|         | $A_3$  | 1          | 32          | 40    | 32         | 0.2          |
|         | $D_1$  | 1          | 32          | 80    | 16         | 0.5          |
|         | $D_2$  | 1          | 256         | 100   | 16         | 0.4          |
|         | $D_3$  | 1          | 256         | 80    | 64         | 0.4          |
| QS      | S_NO   | 1          | 256         | 80    | 64         | 0.3          |
|         | S      | 1          | 32          | 80    | 64         | 0.3          |
|         | $A_3$  | 1          | 32          | 80    | 64         | 0.1          |
|         | $D_1$  | 1          | 32          | 100   | 16         | 0.4          |
|         | $D_2$  | 1          | 256         | 80    | 128        | 0.1          |
|         | $D_3$  | 1          | 256         | 100   | 64         | 0.1          |
| MD      | S_NO   | 1          | 64          | 40    | 64         | 0.4          |
|         | S      | 1          | 256         | 80    | 128        | 0.4          |
|         | $A_3$  | 1          | 128         | 100   | 128        | 0.1          |
|         | $D_1$  | 1          | 128         | 100   | 128        | 0.2          |
|         | $D_2$  | 1          | 128         | 60    | 32         | 0.5          |
|         | $D_3$  | 1          | 128         | 60    | 64         | 0.5          |

Hyperparameter selections of the LSTM for different data series in the three stations in this study.

| Station | Series | n_heads | e_layers | d_layers | seq_len | label_len | pred_len | epoch | batch_size | dropout_rate |
|---------|--------|---------|----------|----------|---------|-----------|----------|-------|------------|--------------|
| TC      | S_NO   | 8       | 3        | 1        | 30      | 14        | 1        | 20    | 16         | 0.05         |
|         | S      | 8       | 2        | 1        | 14      | 7         | 1        | 20    | 16         | 0.05         |
|         | $A_3$  | 4       | 3        | 1        | 30      | 7         | 1        | 20    | 16         | 0.05         |
|         | $D_1$  | 4       | 3        | 1        | 7       | 3         | 1        | 20    | 16         | 0.05         |
|         | $D_2$  | 4       | 3        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | $D_3$  | 4       | 3        | 1        | 7       | 3         | 1        | 20    | 16         | 0.05         |
| QS      | S_NO   | 8       | 3        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | S      | 8       | 3        | 1        | 7       | 3         | 1        | 20    | 16         | 0.05         |
|         | $A_3$  | 8       | 3        | 1        | 7       | 3         | 1        | 20    | 32         | 0.05         |
|         | $D_1$  | 8       | 3        | 1        | 14      | 7         | 1        | 20    | 16         | 0.05         |
|         | $D_2$  | 8       | 2        | 1        | 7       | 3         | 1        | 20    | 16         | 0.05         |
|         | $D_3$  | 4       | 2        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
| MD      | S_NO   | 8       | 3        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | S      | 8       | 2        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | $A_3$  | 8       | 2        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | $D_1$  | 8       | 2        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | $D_2$  | 4       | 2        | 1        | 14      | 3         | 1        | 20    | 16         | 0.05         |
|         | $D_3$  | 4       | 2        | 1        | 7       | 3         | 1        | 20    | 16         | 0.05         |

Hyperparameter selections of the Informer for different data series in the three stations in this study.

The selected bivariate copula functions and their mathematical expressions in this study.

| Copula functions | Abbreviation | Mathematical expressions                                                                                                                                                                                                                                        | Parameters                                                                     |
|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Gaussian         | Ν            | $\int_{-\infty}^{\phi^{-1}(u)} \int_{-\infty}^{\phi^{-1}(v)} \frac{1}{2\pi\sqrt{1-\theta^2}} exp\left(\frac{2\theta xy - x^2 - y^2}{2(1-\theta^2)}\right) dxdy$                                                                                                 | $	heta \in \begin{bmatrix} -1, 1 \end{bmatrix}$                                |
| Student-t        | t            | $\int_{-\infty}^{t_{\theta_2}^{-1}(u)} z \int_{-\infty}^{t_{\theta_2}^{-1}(v)} \frac{\Gamma(\frac{\theta_2+2}{2})}{\Gamma(\frac{\theta_2}{2})\pi\theta_2\sqrt{1-{\theta_1}^2}} \left(1+\frac{x^2+y^2-2\theta_1xy}{\theta_2}\right)^{\frac{\theta_2+2}{2}} dxdy$ | $	heta_1 \in \begin{bmatrix} -1, & 1 \end{bmatrix} \& 	heta_2 \in (0, \infty)$ |
| Gumbel           | G            | $exp\left\{-\left[(-\ln u)^{\theta}+(-\ln v)^{\theta}\right]^{1/\theta}\right\}$                                                                                                                                                                                | $	heta\in \left[1, \ \infty ight)$                                             |
| Clayton          | С            | $\left(u^{-	heta}+v^{-	heta}-1 ight)^{-1/	heta}$                                                                                                                                                                                                                | $	heta\inig(0,\\inftyig)$                                                      |
| Frank            | F            | $-\frac{1}{\theta}ln\left[1+\frac{(e^{-\theta u}-1)(e^{-\theta v}-1)}{e^{-\theta}-1}\right]$                                                                                                                                                                    | $\theta \in \mathbb{R} \setminus \{0\}$                                        |

Numerical results for PCMCI with parents, corresponding lags, and dependency coefficients (link strength) in this study.

|          |                  |     |         |            |          |                  | MD  |         |            |          |                  |     |         |            |
|----------|------------------|-----|---------|------------|----------|------------------|-----|---------|------------|----------|------------------|-----|---------|------------|
| Variable | Parents          | Lag | p-value | Dep. Coef. | Variable | Parents          | Lag | p-value | Dep. Coef. | Variable | Parents          | Lag | p-value | Dep. Coef. |
| TN       | TN               | -1  | 0.0000  | 0.594      | TN       | TN               | -1  | 0.0000  | 0.522      | TN       | TN               | -1  | 0.0000  | 0.591      |
|          | TN               | -2  | 0.0001  | 0.089      |          | TN               | -2  | 0.0000  | 0.194      |          | TN               | -2  | 0.0000  | 0.100      |
|          | DO               | 0   | 0.0016  | -0.071     |          | Cond             | 0   | 0.0033  | 0.066      |          | WT               | 0   | 0.0243  | 0.051      |
|          | Cond             | 0   | 0.0233  | 0.051      |          | Chl-a            | -2  | 0.0045  | 0.064      |          | DO               | 0   | 0.0379  | 0.047      |
|          | TP               | -2  | 0.0264  | -0.050     |          | Chl-a            | -1  | 0.0110  | -0.057     |          | WT               | -1  | 0.0494  | -0.044     |
|          | $NO_2$           | -1  | 0.0378  | -0.047     |          | $NO_2$           | 0   | 0.0399  | -0.046     | WT       | WT               | -1  | 0.0000  | 0.632      |
| WT       | WT               | -1  | 0.0000  | 0.661      | WT       | WT               | -1  | 0.0000  | 0.644      |          | Pre              | 0   | 0.0000  | -0.133     |
|          | Cond             | 0   | 0.0000  | 0.223      |          | Cond             | 0   | 0.0000  | 0.207      |          | DO               | 0   | 0.0000  | -0.128     |
|          | Pre              | 0   | 0.0000  | -0.177     |          | pH               | 0   | 0.0007  | 0.077      |          | HNO <sub>3</sub> | 0   | 0.0000  | 0.098      |
|          | DO               | 0   | 0.0000  | -0.158     |          | WT               | -2  | 0.0012  | 0.073      |          | Cond             | 0   | 0.0000  | 0.093      |
|          | HNO <sub>3</sub> | 0   | 0.0000  | 0.103      |          | Pre              | 0   | 0.0015  | -0.072     |          | WT               | -2  | 0.0001  | 0.091      |
|          | NO               | -1  | 0.0000  | 0.097      |          | HNO <sub>3</sub> | 0   | 0.0031  | 0.067      |          | NO               | -1  | 0.0001  | 0.087      |
|          | pН               | 0   | 0.0015  | 0.072      |          | Chl-a            | 0   | 0.0126  | 0.056      |          | TP               | -1  | 0.0081  | -0.060     |
|          | DO               | -1  | 0.0187  | -0.053     |          | $NO_2$           | 0   | 0.0154  | -0.055     |          | TN               | -2  | 0.0090  | -0.059     |
|          | NO               | 0   | 0.0383  | 0.047      |          | NO               | -1  | 0.0191  | 0.053      |          | TN               | 0   | 0.0243  | 0.051      |
| pН       | pH               | -1  | 0.0000  | 0.616      |          | pН               | -1  | 0.0381  | 0.047      |          | NO               | 0   | 0.0283  | 0.050      |
|          | DO               | 0   | 0.0001  | 0.089      |          | Chl-a            | -2  | 0.0409  | 0.046      |          | HNO <sub>3</sub> | -2  | 0.0364  | -0.047     |
|          | Pre              | 0   | 0.0002  | -0.083     | pH       | pH               | -1  | 0.0000  | 0.529      | pH       | pH               | -1  | 0.0000  | 0.504      |
|          | WT               | 0   | 0.0015  | 0.072      |          | pН               | -2  | 0.0000  | 0.133      |          | pН               | -2  | 0.0000  | 0.116      |
|          | Cond             | -1  | 0.0371  | 0.047      |          | DO               | 0   | 0.0000  | 0.096      |          | DO               | 0   | 0.0000  | 0.098      |

| DO    | DO               | -1 | 0.0000 | 0.602  |       | WT               | 0  | 0.0007 | 0.077  |       | WT               | -1 | 0.0002 | 0.084  |
|-------|------------------|----|--------|--------|-------|------------------|----|--------|--------|-------|------------------|----|--------|--------|
|       | WT               | 0  | 0.0000 | -0.158 |       | Chl-a            | 0  | 0.0016 | 0.071  |       | $NO_2$           | -1 | 0.0003 | -0.082 |
|       | Cond             | 0  | 0.0000 | -0.124 |       | $NO_2$           | 0  | 0.0230 | -0.051 |       | Chl-a            | 0  | 0.0278 | 0.050  |
|       | pН               | 0  | 0.0001 | 0.089  |       | WT               | -1 | 0.0336 | 0.048  |       | Cond             | -1 | 0.0386 | 0.047  |
|       | Chl-a            | -1 | 0.0002 | 0.085  | DO    | DO               | -1 | 0.0000 | 0.484  | DO    | DO               | -1 | 0.0000 | 0.618  |
|       | DO               | -2 | 0.0012 | 0.073  |       | Chl-a            | 0  | 0.0000 | 0.183  |       | WT               | 0  | 0.0000 | -0.128 |
|       | TN               | 0  | 0.0016 | -0.071 |       | DO               | -2 | 0.0000 | 0.173  |       | pН               | 0  | 0.0000 | 0.098  |
|       | TP               | 0  | 0.0068 | 0.061  |       | pН               | 0  | 0.0000 | 0.096  |       | Chl-a            | 0  | 0.0002 | 0.084  |
|       | Chl-a            | 0  | 0.0091 | 0.059  |       | Chl-a            | -1 | 0.0000 | 0.093  |       | TP               | 0  | 0.0008 | 0.075  |
|       | HNO <sub>3</sub> | -1 | 0.0109 | 0.057  |       | Cond             | -1 | 0.0001 | 0.086  |       | HNO <sub>3</sub> | -1 | 0.0065 | 0.061  |
|       | $NO_2$           | -2 | 0.0417 | 0.046  |       | WT               | -1 | 0.0052 | 0.063  |       | NO               | -1 | 0.0187 | -0.053 |
| Cond  | Cond             | -1 | 0.0000 | 0.656  |       | HNO <sub>3</sub> | -1 | 0.0328 | 0.048  |       | TN               | 0  | 0.0379 | 0.047  |
|       | WT               | 0  | 0.0000 | 0.223  |       | WT               | -2 | 0.0381 | 0.047  | Cond  | Cond             | -1 | 0.0000 | 0.641  |
|       | DO               | 0  | 0.0000 | -0.124 | Cond  | Cond             | -1 | 0.0000 | 0.528  |       | Cond             | -2 | 0.0000 | -0.141 |
|       | Pre              | 0  | 0.0007 | -0.077 |       | WT               | 0  | 0.0000 | 0.207  |       | WT               | 0  | 0.0000 | 0.093  |
|       | NO               | -1 | 0.0080 | 0.060  |       | Cond             | -2 | 0.0000 | 0.122  |       | pН               | -1 | 0.0186 | -0.053 |
|       | HNO <sub>3</sub> | 0  | 0.0115 | 0.057  |       | TN               | 0  | 0.0033 | 0.066  |       | TN               | -1 | 0.0381 | 0.047  |
|       | TN               | 0  | 0.0233 | 0.051  | Chl-a | Chl-a            | -1 | 0.0000 | 0.647  |       | TN               | -2 | 0.0414 | -0.046 |
| Chl-a | Chl-a            | -1 | 0.0000 | 0.614  |       | DO               | 0  | 0.0000 | 0.183  | Chl-a | Chl-a            | -1 | 0.0000 | 0.613  |
|       | Chl-a            | -2 | 0.0000 | -0.352 |       | pН               | 0  | 0.0016 | 0.071  |       | DO               | 0  | 0.0002 | 0.084  |
|       | DO               | 0  | 0.0091 | 0.059  |       | WT               | 0  | 0.0126 | 0.056  |       | Chl-a            | -2 | 0.0015 | -0.072 |
| TP    | TP               | -1 | 0.0000 | 0.466  |       | Pre              | -1 | 0.0227 | -0.051 |       | TN               | -2 | 0.0031 | -0.067 |
|       | TP               | -2 | 0.0000 | 0.187  |       | pН               | -1 | 0.0314 | 0.049  |       | pН               | 0  | 0.0278 | 0.050  |
|       | DO               | 0  | 0.0068 | 0.061  | TP    | TP               | -1 | 0.0000 | 0.673  |       | Cond             | -1 | 0.0408 | 0.046  |
|       | Chl-a            | -2 | 0.0229 | 0.051  |       | TP               | -2 | 0.0000 | -0.280 |       | $NO_2$           | -2 | 0.0415 | 0.046  |
| Pre   | Pre              | -1 | 0.0000 | 0.202  |       | Pre              | -1 | 0.0000 | 0.141  | TP    | TP               | -1 | 0.0000 | 0.509  |

|   | WT               | 0  | 0.0000 | -0.177 |           | DO               | -2 | 0.0001 | 0.092  |                  | TP               | -2 | 0.0000 | 0.129  |
|---|------------------|----|--------|--------|-----------|------------------|----|--------|--------|------------------|------------------|----|--------|--------|
|   | HNO <sub>3</sub> | 0  | 0.0000 | -0.119 | Pre       | Pre              | -1 | 0.0000 | 0.275  |                  | DO               | 0  | 0.0008 | 0.075  |
|   | NO               | -1 | 0.0000 | -0.105 |           | HNO <sub>3</sub> | 0  | 0.0002 | -0.083 |                  | $NO_2$           | -1 | 0.0152 | -0.055 |
|   | pН               | 0  | 0.0002 | -0.083 |           | TP               | -1 | 0.0006 | -0.077 | Pre              | Pre              | -1 | 0.0000 | 0.278  |
|   | NO               | 0  | 0.0005 | -0.079 |           | WT               | 0  | 0.0015 | -0.072 |                  | WT               | 0  | 0.0000 | -0.133 |
|   | Cond             | 0  | 0.0007 | -0.077 |           | NO               | 0  | 0.0042 | -0.065 |                  | HNO <sub>3</sub> | 0  | 0.0000 | -0.119 |
|   | WT               | -2 | 0.0183 | -0.053 |           | NO               | -1 | 0.0063 | -0.062 |                  | NO               | -1 | 0.0001 | -0.101 |
|   | $NO_2$           | 0  | 0.0459 | 0.045  |           | WT               | -1 | 0.0093 | -0.059 |                  | NO               | 0  | 0.0002 | -0.085 |
| 3 | HNO <sub>3</sub> | -1 | 0.0000 | 0.355  |           | Cond             | -1 | 0.0238 | -0.051 |                  | $NO_2$           | 0  | 0.0039 | 0.065  |
|   | NO               | -1 | 0.0000 | 0.262  |           | Cond             | -2 | 0.0434 | 0.046  |                  | WT               | -1 | 0.0055 | -0.063 |
|   | NO               | 0  | 0.0000 | -0.220 | $HNO_3^-$ | HNO <sub>3</sub> | -1 | 0.0000 | 0.334  |                  | Pre              | -2 | 0.0336 | 0.048  |
|   | Pre              | 0  | 0.0000 | -0.119 |           | NO               | 0  | 0.0000 | -0.187 | HNO <sub>3</sub> | HNO <sub>3</sub> | -1 | 0.0000 | 0.353  |
|   | $NO_2$           | -1 | 0.0000 | 0.109  |           | NO               | -1 | 0.0000 | 0.182  |                  | NO               | -1 | 0.0000 | 0.262  |
|   | WT               | 0  | 0.0000 | 0.103  |           | $NO_2$           | -1 | 0.0000 | 0.117  |                  | NO               | 0  | 0.0000 | -0.214 |
|   | WT               | -1 | 0.0007 | 0.076  |           | WT               | -1 | 0.0002 | 0.085  |                  | Pre              | 0  | 0.0000 | -0.119 |
|   | Cond             | 0  | 0.0115 | 0.057  |           | Pre              | 0  | 0.0002 | -0.083 |                  | $NO_2$           | -1 | 0.0000 | 0.115  |
|   | Pre              | -1 | 0.0480 | -0.045 |           | WT               | 0  | 0.0031 | 0.067  |                  | WT               | -1 | 0.0000 | 0.099  |
|   | NO               | -1 | 0.0000 | 0.459  | NO        | NO               | -1 | 0.0000 | 0.445  |                  | WT               | 0  | 0.0000 | 0.098  |
|   | HNO <sub>3</sub> | 0  | 0.0000 | -0.220 |           | HNO <sub>3</sub> | 0  | 0.0000 | -0.187 | NO               | NO               | -1 | 0.0000 | 0.460  |
|   | HNO <sub>3</sub> | -1 | 0.0000 | -0.142 |           | HNO <sub>3</sub> | -1 | 0.0000 | -0.130 |                  | HNO <sub>3</sub> | 0  | 0.0000 | -0.214 |
|   | $NO_2$           | 0  | 0.0000 | 0.124  |           | NO               | -2 | 0.0000 | -0.095 |                  | HNO <sub>3</sub> | -1 | 0.0000 | -0.135 |
|   | Pre              | 0  | 0.0005 | -0.079 |           | TN               | -1 | 0.0041 | 0.065  |                  | $NO_2$           | 0  | 0.0000 | 0.120  |
|   | WT               | -1 | 0.0042 | -0.065 |           | Pre              | 0  | 0.0042 | -0.065 |                  | Pre              | 0  | 0.0002 | -0.085 |
|   | NO               | -2 | 0.0162 | -0.054 |           | $NO_2$           | -1 | 0.0055 | 0.063  |                  | WT               | -1 | 0.0046 | -0.064 |
|   | WT               | 0  | 0.0383 | 0.047  |           | $NO_2$           | -2 | 0.0286 | 0.050  |                  | NO               | -2 | 0.0103 | -0.058 |
|   | $NO_2$           | -1 | 0.0000 | 0.365  | $NO_2$    | $NO_2$           | -1 | 0.0000 | 0.409  |                  | WT               | 0  | 0.0283 | 0.050  |

HNO<sub>3</sub>

NO

 $NO_2$ 

| NO     | -1 | 0.0000 | 0.353  | NO | -1 | 0.0000 | 0.206  |        | DO     | -2 | 0.0446 | 0.045  |
|--------|----|--------|--------|----|----|--------|--------|--------|--------|----|--------|--------|
| NO     | 0  | 0.0000 | 0.124  | WT | -1 | 0.0036 | -0.066 | $NO_2$ | $NO_2$ | -1 | 0.0000 | 0.357  |
| $NO_2$ | -2 | 0.0002 | 0.083  | WT | 0  | 0.0154 | -0.055 |        | NO     | -1 | 0.0000 | 0.356  |
| NO     | -2 | 0.0202 | -0.053 | pН | 0  | 0.0230 | -0.051 |        | NO     | 0  | 0.0000 | 0.120  |
| Pre    | 0  | 0.0459 | 0.045  | TN | 0  | 0.0399 | -0.046 |        | TP     | -2 | 0.0001 | 0.087  |
|        |    |        |        |    |    |        |        |        | $NO_2$ | -2 | 0.0013 | 0.073  |
|        |    |        |        |    |    |        |        |        | Pre    | 0  | 0.0039 | 0.065  |
|        |    |        |        |    |    |        |        |        | NO     | -2 | 0.0192 | -0.053 |

Statistic characteristics of prediction errors (%) for different models in this study (Avg.: average,

| Station | Madal     | C    | alibration |       | Evaluation |      |       |  |  |
|---------|-----------|------|------------|-------|------------|------|-------|--|--|
| Station | wiodei —  | Avg. | S.D.       | Max   | Avg.       | S.D. | Max   |  |  |
| TC      | LSTM      | 4.33 | 5.15       | 53.31 | 4.06       | 3.98 | 33.16 |  |  |
|         | Informer  | 4.08 | 4.90       | 45.26 | 4.12       | 3.72 | 27.81 |  |  |
|         | WLSTM     | 4.07 | 4.94       | 51.89 | 3.90       | 3.80 | 30.51 |  |  |
|         | Winformer | 3.55 | 4.02       | 29.23 | 3.30       | 3.05 | 24.57 |  |  |
| QS      | LSTM      | 3.82 | 4.27       | 47.62 | 4.46       | 4.38 | 42.37 |  |  |
|         | Informer  | 3.92 | 4.56       | 48.99 | 4.47       | 4.44 | 42.06 |  |  |
|         | WLSTM     | 3.73 | 4.30       | 48.39 | 4.42       | 4.45 | 43.03 |  |  |
|         | Winformer | 3.35 | 3.92       | 48.38 | 3.68       | 3.60 | 30.43 |  |  |
| MD      | LSTM      | 4.46 | 5.83       | 65.13 | 3.44       | 4.01 | 58.99 |  |  |
|         | Informer  | 5.12 | 6.42       | 74.60 | 3.77       | 4.22 | 62.99 |  |  |
|         | WLSTM     | 4.41 | 5.74       | 63.54 | 3.48       | 4.00 | 58.35 |  |  |
|         | Winformer | 3.95 | 4.85       | 67.80 | 2.85       | 2.84 | 37.01 |  |  |

S.D.: Standard deviation).

| Station | Set      | $\overline{\mathbf{x}}$ | Cv   | Cs   | α     | 1/ <i>β</i> | a <sub>0</sub> |
|---------|----------|-------------------------|------|------|-------|-------------|----------------|
| TC      | Cali-Obs | 1.13                    | 0.14 | 0.35 | 32.65 | 0.028       | 0.226          |
|         | Cali-Pre | 1.14                    | 0.13 | 0.27 | 54.87 | 0.020       | 0.042          |
| QS      | Cali-Obs | 1.18                    | 0.15 | 1.3  | 2.37  | 0.115       | 0.908          |
|         | Cali-Pre | 1.18                    | 0.14 | 1.2  | 2.78  | 0.099       | 0.905          |
| MD      | Cali-Obs | 1.17                    | 0.17 | 1.4  | 2.04  | 0.139       | 0.886          |
|         | Cali-Pre | 1.18                    | 0.16 | 1.1  | 3.31  | 0.104       | 0.837          |

Fitting results of the marginal distribution of TN for different data sets in this study.

Note:  $\bar{\mathbf{x}}$ : Mean; Cs: Coefficient of Skewness; Cv: Coefficient of Variation. The parameters of Pearson III distribution are  $\alpha$ ,  $\beta$  and  $a_0$ , respectively.

$$\alpha = \frac{4}{C_s^2} \quad \beta = \frac{2}{\bar{x}C_sC_v} \quad a_0 = \bar{x} - \frac{2C_v\bar{x}}{C_s}$$

| Station | family | Par.1 | Par.2 | tau    | AIC       | BIC       |
|---------|--------|-------|-------|--------|-----------|-----------|
| TC      | t      | 0.944 | 3.127 | 0.7851 | -3526.544 | -3515.815 |
| QS      | Gumbel | 4.024 |       | 0.7515 | -3338.221 | -3332.856 |
| MD      | Gumbel | 4.329 |       | 0.7690 | -3599.480 | -3594.116 |

Fitting results of the Copula function for TN observations-predictions pair in different stations.





Fig. S1. Structures of the LSTM (a) and Informer (b) models.



Fig. S2. Wavelet decomposition of the TN dynamics in the TC station (S: original series), using the db4 mother wavelet with approximation sub-series (A<sub>3</sub>) and three levels of detailed sub-series (D<sub>1</sub> - D<sub>3</sub>).



Fig. S3. Wavelet decomposition of the TN dynamics in the QS station (S: original series), using the db4 mother wavelet with approximation sub-series (A<sub>3</sub>) and three levels of detailed sub-series (D<sub>1</sub> - D<sub>3</sub>).



Fig. S4. Wavelet decomposition of the TN dynamics in the MD station (S: original series), using the db4 mother wavelet with approximation sub-series  $(A_3)$  and three levels of detailed sub-series  $(D_1 - D_3)$ .



Fig. S5. Improvement rates of the WInformer model over other models in the evaluation stages for TN predictions (Note: Improvement rate =

 $\frac{|\text{Criterion (Winformer)-Criterion (another model)}|}{\text{Criterion (another model)}} \times 100\%$