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Abstract 1 

Accurate forecasting of water quality variables in river systems is crucial for 2 

relevant administrators to identify potential water quality degradation issues and take 3 

countermeasures promptly. However, pure data-driven forecasting models are often 4 

insufficient to deal with the highly varying periodicity of water quality in today’s more 5 

complex environment. This study presents a new holistic framework for time-series 6 

forecasting of water quality parameters by combining advanced deep learning 7 

algorithms (i.e., Long Short-Term Memory (LSTM) and Informer) with causal 8 

inference, time-frequency analysis, and uncertainty quantification. The framework was 9 

demonstrated for total nitrogen (TN) forecasting in the largest artificial lakes in Asia 10 

(i.e., the Danjiangkou Reservoir, China) with six-year monitoring data from January 11 

2017 to June 2022. The results showed that the pre-processing techniques based on 12 

causal inference and wavelet decomposition can significantly improve the performance 13 

of deep learning algorithms. Compared to the individual LSTM and Informer models, 14 

wavelet-coupled approaches diminished well the apparent forecasting errors of TN 15 

concentrations, with 24.39%, 32.68%, and 41.26% reduction at most in the average, 16 

standard deviation, and maximum values of the errors, respectively. In addition, a post-17 

processing algorithm based on the Copula function and Bayesian theory was designed 18 

to quantify the uncertainty of predictions. With the help of this algorithm, each 19 

deterministic prediction of our model can correspond to a range of possible outputs. 20 

The 95% forecast confidence interval covered almost all the observations, which proves 21 

a measure of the reliability and robustness of the predictions. This study provides rich 22 
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scientific references for applying advanced data-driven methods in time-series 23 

forecasting tasks and a practical methodological framework for water resources 24 

management and similar projects. 25 

Keywords: causal inference; Copula function; deep learning algorithms; time-series 26 

forecasting; water resources management.27 
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1. Introduction 28 

 With the increasing influence of natural events and human activities, water bodies 29 

are more vulnerable to drastic changes, making monitoring and protecting water 30 

resources particularly critical for the health of humans and the stability of ecosystems 31 

(Nong et al., 2020). Accurate forecasting of time-series data related to water quality 32 

enables relevant agencies and administrators to comprehend the shifting patterns of 33 

water quality parameters and identify potential adverse threats to water bodies (Glibert 34 

et al., 2010). Moreover, time-series data forecasting can also help to optimize 35 

monitoring programs and resource allocation, improving monitoring efficiency and 36 

resource utilization benefits (Li et al., 2018). Therefore, developing and applying 37 

reliable models for time-series forecasting is crucial for effective water resources 38 

management and environmental protection. 39 

 The models widely used for time-series forecasting in water quality management 40 

can be generally separated into process-driven and data-driven models. The process-41 

driven models are based on the physical understanding of hydrological processes and 42 

water resource systems, using mathematical equations to describe variations in 43 

hydrological and water quality processes. Until now, many relevant models have been 44 

built, developed, and applied, such as the Water Quality Analysis Simulation Program 45 

(WASP), the Environmental Fluid Dynamics Code (EFDC), and the River and Stream 46 

Water Quality model (QUAL2K) (Santy et al., 2020). Although process-driven models 47 

can provide the understanding and explanatory power of the intrinsic mechanisms of 48 

the systems, it is still challenging to determine the boundary condition and calibrate the 49 
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time-series data for them. Researchers need rich experience with numerical models and 50 

comprehensive knowledge of the physic-chemical relationships among water systems 51 

(Banerjee et al., 2019). Besides, process-driven models often require detailed 52 

geographic and environmental data and rely on the physical assumptions of the system 53 

(Wellen et al., 2015). All these factors make such complicated models always data-54 

demanding and time-consuming characteristics to develop in practice. 55 

 In recent decades, data-driven models have received more attention due to 56 

increasing measurement data and improving computational efforts of computer 57 

performance. These models do not rely on a detailed understanding of the physical 58 

processes but make predictions by learning patterns and trends in the data (Reichstein 59 

et al., 2019). Unlike process-driven models, data-driven models can efficiently establish 60 

relationships among different variables. Popular algorithms, including Multiple Linear 61 

Regression (MLR), Neural Networks (NN), Support Vector Machine (SVM), and 62 

Random Forests (RF), have been widely used for various tasks and have made reliable 63 

achievements (He et al., 2020, Xia et al., 2020). Regarding time-series forecasting tasks, 64 

deep learning techniques showed remarkable performance due to their adaptability and 65 

generalizability to high-dimensional data sequences. Whether the classical structures 66 

(e.g., LSTM) or the novel structures (e.g., Informer) leverage the power to capture both 67 

short-term and long-term dependencies in data, making them suitable for complex time-68 

series forecasting. As an advanced recurrent network, LSTM has unique memory units 69 

and gating mechanisms that enable it to capture long-term dependencies and patterns 70 

in data while avoiding the “gradient exploding” problems in the traditional recurrent 71 
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network (Sit et al., 2019). The application of LSTM in water quality management has 72 

been very mature and fruitful. Informer is another advanced deep-learning approach for 73 

time-series forecasting tasks. By incorporating self-attention mechanisms and encoder-74 

decoder structure, Informer can effectively model temporal and spatial dependencies in 75 

data (Cai et al., 2023). It has demonstrated ability in various domains, such as financial 76 

forecasting and energy load prediction (Huang and Jiang, 2022). However, under 77 

today’s conditions of more detailed requirements and a more complex environment, 78 

pure data-driven approaches may often be insufficient (Xiao et al., 2017). A predictive 79 

framework integrating multiple and suitable methods is needed. For instance, 80 

appropriate data pre-processing techniques are beneficial for harnessing the advantages 81 

of the models. In the study on the prediction framework of dissolved oxygen, (Nong et 82 

al., 2023) pointed out that feature selection methods can significantly improve the 83 

accuracy and robustness of the prediction model. To capture seasonal information in 84 

the hydro-climate time series, two types of seasonal LSTM were proposed to simulate 85 

the runoff-sediment process (Nourani and Behfar, 2021), showing that the 86 

outperformance of seasonal LSTM compared to the individual one in both daily and 87 

monthly scales.  88 

Furthermore, relying solely on deterministic predictions may be inadequate for 89 

practical water resources management, given the inherent presence of uncertainty. 90 

Many researchers have proposed various methods to cope with uncertainty to enhance 91 

the ability of predictive models, such as sensitivity analysis or confidence intervals 92 

(Hamed et al., 2016, Salimi and Hammad, 2020). In the study of biogas generation, 93 
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some researchers applied sensitivity analysis to identify the significant factors 94 

influencing the biogas, so as to understand and reduce the uncertainty of prediction 95 

(Offie et al., 2023). To evaluate the performance of the conceptual basin model, the 96 

sensitivity analysis was conducted to determine the uncertain parameters (Tibangayuka 97 

et al., 2022). Probabilistic forecasting models with confidence intervals are also one of 98 

the common approaches to quantifying the uncertainty of predictions. It can provide a 99 

probability distribution for each prediction output instead of just a single deterministic 100 

value. For instance, based on a multivariate Bayesian uncertainty processor, (Zhou, 101 

2020) developed a post-processing technique for probabilistic forecasting conditional 102 

on point forecasts. Aiming at describing the uncertainty of precipitation forecasts, some 103 

studies proposed a new model coupling fuzzy probability and Bayesian theory, which 104 

improved the generalization ability of the baseline prediction (Cai et al., 2019). These 105 

researchers have quantified the uncertainty well and achieved good results in practice. 106 

Decision-makers can better assess the risk and develop strategies by considering 107 

uncertainty. 108 

 Considering the above gaps and factors, this study developed a predictive 109 

framework for time-series tasks based on deep learning approaches coupling various 110 

advanced data-processing techniques. The objectives of this study are (1) to explore the 111 

applicability of the two state-of-the-art deep learning approaches (i.e., LSTM and 112 

Informer) for forecasting of water quality parameters in river systems, (2) to 113 

demonstrate the effectiveness of coupling advanced pre-processing techniques, i.e., the 114 

causal inference and wavelet decomposition, in improving the performance of 115 
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forecasting models, (3) to develop a reliable post-processing algorithm for uncertainty 116 

quantification of predictions, as a measure for robustness analysis of water quality 117 

forecasting. The data matrices comprised of 11 parameters at three stations in the largest 118 

artificial lake of Asia (i.e., the Danjiangkou Reservoir in China), were taken as the study 119 

cases. The proposed hybrid time-series forecasting framework could also serve as a 120 

cost-effective and reliable water quality forecasting tool for water management in the 121 

future. 122 

 123 

2. Methodology  124 

 This study developed a hybrid time-series forecasting framework integrating deep 125 

learning approach, causal inference, wavelet decomposition, and Copula function. Of 126 

which, causal inference and wavelet decomposition were used as pre-processing tools 127 

for time-series data. The LSTM and Informer algorithms were chosen as the models to 128 

make predictions, and the Copula function was applied as post-processing technique 129 

for uncertainty quantification of outputs. The detailed theoretical introduction of the 130 

methodology involved in the framework was shown in Fig. 1.  131 

< Fig. 1> 132 

2.1 Causal inference method 133 

 This research used the Peter and Clark Momentary Conditional Independence 134 

(PCMCI) to identify the causal relationships between variables and conduct feature 135 

selection for deep learning models based on the above information. The PCMCI was 136 

proposed by (Runge et al., 2015) to assess causal links for a set of temporal lags (τ). 137 
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Compared to traditional causal inference methods, the significant advancement of 138 

PCMCI is its incorporation of time-varying and autocorrelated relationships. Potential 139 

time-dependent system 𝑿𝑡
𝑗
 for variable j at time t can be calculated as in eq. (1): 140 

𝑋𝑡
𝑗
= 𝑓𝑗(𝒫(𝑋𝑡

𝑗
), 𝜂𝑡

𝑗
), (1) 

where 𝑓𝑗 represents the potential nonlinear functional dependency and 𝜂𝑡
𝑗
 is mutually 141 

independent dynamical noise; 𝒫(𝑋𝑡
𝑗
) ⊂ 𝑿𝑡

− = (𝑿𝑡−1, 𝑿𝑡−2, …𝑿𝑡−𝜏)  represents the 142 

causal parents of variable 𝑋𝑡
𝑗
 among the past of all variables. The PCMCI consists of 143 

a two-step algorithm as follows: 144 

(1) PC1 condition selection: PC1 is a Markov set discovery algorithm based on the 145 

PC-stable algorithm (Colombo and Maathuis, 2014), and this method is used to select 146 

relevant conditions 𝒫(𝑋𝑡
𝑗
) for all time-series variables. Specifically, the preliminary 147 

parents 𝒫̂(𝑋𝑡
𝑗
) = (𝐗𝑡−1, 𝐗𝑡−2, … , 𝐗𝑡−𝜏𝑚𝑎𝑥

) are firstly initialised for each variable 𝑋𝑡
𝑗
. 148 

In the first iteration (p = 0), unconditional independence tests are conducted, and 𝑋𝑡−𝜏
𝑖  149 

is removed from 𝒫̂(𝑋𝑡
𝑗
)  if the null hypothesis 𝑋𝑡−𝜏

𝑖 ⫫ 𝑋𝑡
𝑗
  cannot be rejected at a 150 

significance level 𝛼𝑃𝐶. In each next iteration, conditional independence tests (𝑋𝑡−𝜏
𝑖 ⫫151 

𝑋𝑡
𝑗
|𝑆 , where 𝑆  is the strongest parents in 𝒫̂(𝑋𝑡

𝑗
)\{𝑋𝑡−𝜏

𝑖 } ), are conducted, and all 152 

independent parents are removed from 𝒫̂(𝑋𝑡
𝑗
). If no more conditions can be tested, the 153 

algorithm will reach convergence. 154 

(2) Momentary conditional independence (MCI) test: This step addresses false-155 

positive control for the cases where the time series exhibit high interdependence. More 156 

precisely, the link 𝑋𝑡−𝜏
𝑖 → 𝑋𝑡

𝑗
  is established if and only if 𝑋𝑡−𝜏

𝑖   and 𝑋𝑡
𝑗
  are not 157 

independent under the condition of 𝒫̂(𝑋𝑡
𝑗
)\𝑋𝑡−𝜏

𝑖 , 𝒫̂𝑝𝑋(𝑋𝑡−𝜏
𝑖 ) , where 𝒫̂𝑝𝑋(𝑋𝑡−𝜏

𝑖 ) ⊆158 
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𝒫̂(𝑋𝑡−𝜏
𝑖 ) represents the 𝑝𝑋 strongest parents based on the sorting in the first step. The 159 

MCI test identifies the co-drivers, indirect relationships, and autocorrelation by all 160 

selected lagged parents together with contemporaneous pairs. In addition, the 161 

significance of each link can be determined based on the p values of the MCI test. 162 

 More details about PCMCI can be seen in (Runge et al., 2019b). All the calculations 163 

about PCMCI in this study were performed with the help of the Python package 164 

Tigramite (https://github.com/jakobrunge/tigramite/). 165 

 166 

2.2 The development of Wavelet-LSTM and Wavelet-Informer models 167 

2.2.1 The deep learning algorithms 168 

 This study applied two popular time-series deep learning algorithms, i.e., the 169 

LSTM and Informer. The forms, structures, and characteristics of the algorithms are 170 

shown as follows. 171 

2.2.1.1 Long Short-Term Memory network 172 

 Long Short-Term Memory is a special-designed recurrent neural network (RNN) 173 

architecture that has gained significant popularity in deep learning for time-series 174 

analysis. It was initially established to mitigate the vanishing gradient problem of 175 

standard RNNs and has demonstrated its powerful capability in capturing long-term 176 

dependencies. In an LSTM network, memory cells are used as a replacement for hidden 177 

neurons to connect hidden layers. Each memory cell consists of a cell state (C) and 178 

three multiplicative gates: the input gate (i), output gate (o), and forget gate (f) (Fig. 179 

S1(a)). The input gate regulates the new information stored in the current cell based on 180 

https://github.com/jakobrunge/tigramite/
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the current input and the previous hidden state. The output gate determines how much 181 

information should be transferred from the current memory cell to the next time step. 182 

The forget gate controls the retention of information from the previous state and decides 183 

whether information should be retained or be discarded. The information flow 184 

regulation of the gates within the network and the detailed algorithms are shown in eq. 185 

(2) to eq. (7): 186 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (3) 

𝐶̃𝑡 = tanh⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶), (4) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡, (5) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (6) 

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡), (7) 

where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , and 𝑊𝑜  are the weight matrices; 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , and 𝑏𝑜  are the 187 

bias vectors; 𝜎 is the sigmoid function. The LSTM networks can effectively capture 188 

the patterns of information over long sequences based on these intricate gating 189 

mechanisms, making them particularly suitable for complex time-series forecasting 190 

tasks. 191 

 192 

2.2.1.2 Informer network 193 

Informer is an improvement of the Transformer model developed by Google for 194 

language translation (Vaswani et al., 2017). It combined the strengths of both 195 

Transformer networks and convolutional neural networks (CNNs) and was specifically 196 
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designed to address the challenges of modelling long-term dependencies. Like other 197 

competitive neural sequence transduction models, Informer has a multi-layered 198 

encoder-decoder structure (Fig. S1(b)). The encoder module consists of a stack of self-199 

attention layers, which enables the model to capture global and local dependencies in 200 

the input sequence. Each self-attention layer simultaneously attends to different parts 201 

of the input sequence through multi-head ProbSparse self-attention mechanisms, which 202 

can be briefly described by eq. (8): 203 

i-th query’s sparsity measurement: 𝑀(𝒒𝑖, 𝑲) = 𝑙𝑛∑ 𝑒
𝒒𝑖𝒌𝑗

T

√𝑑
𝐿𝐾
𝑗=1 −

1

𝐿𝐾
∑

𝒒𝑖𝒌𝑗
T

√𝑑

𝐿𝐾
𝑗=1 , (8) 

where 𝒒𝑖 and 𝒌𝑗 represent the i-th and j-th row in query matrix Q and key matrix K, 204 

respectively. 𝐿𝐾 is the size of row for K, d is the input dimension. The first term stands 205 

for the Log-Sum-Exp (LSE) of 𝒒𝑖 on all the keys, while the second is their arithmetic 206 

mean. The higher 𝑀(𝒒𝑖 , 𝑲)  that the i-th query has, the more important it is for 207 

attention. 208 

 Based on the calculated measurement, each key could be allowed to only attend to 209 

the u dominant queries based on eq. (9): 210 

ProbSparse Self-attention: 𝒜(𝑸,𝑲, 𝑽) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑸̅𝑲𝑇

√𝑑
)𝑽, (9) 

where 𝑸̅ is the sparse matrix only containing the Top-u queries based on 𝑀(𝒒𝑖, 𝑲), 211 

𝑽 is the value matrix. 212 

The decoder module of Informer also utilizes self-attention layers but with an 213 

additional cross multi-head attention mechanism. The cross multi-head attention 214 

mechanism allows the decoder to interact with the encoder's outputs, enabling it to 215 

connect the global context and employ the learned representations from the encoder, 216 
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which further facilitates accurate and context-aware predictions in the decoding process. 217 

Residual connections and layer normalization are designed in both encoder and decoder 218 

modules, which help improve the flow of gradients and stabilize the training process. 219 

In addition, a feed-forward neural network and a positional encoding component are 220 

also involved in Informer to strengthen its modelling capacity. Therefore, the 221 

comprehensive combinations of transformer networks and CNNs within the Informer 222 

maintain the model's versatile and powerful forecasting capacity, capturing both short-223 

term and long-term patterns. Those unique combinations and the incorporation of 224 

ProbSparse self-attention make the Informer a promising approach for various time-225 

series forecasting tasks. 226 

 227 

2.2.2 Wavelet decomposition 228 

 Wavelet decomposition is a powerful mathematical tool in signal theory. It is used 229 

for decomposing signals into different frequency components for analysis and 230 

overcomes the limitations of Fourier transformation in non-stationary time series (Labat, 231 

2005). By decomposing the main time series into the time-frequency space, several sub-232 

series could be obtained to extract particular time and frequency characteristics 233 

simultaneously. The sub-series are typically derived from a predefined template called 234 

the “mother wavelet”, in which these decomposed wavelets are obtained by scaling and 235 

translating the mother wavelet. For the calculations, continuous wavelet decomposition 236 

(CWD) requires integral operations in continuous time, which may result in 237 

computational complexity and memory consumption. In contrast, discrete wavelet 238 
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decomposition (DWD) utilizes a fixed-length filter, which has the advantages of high 239 

computational efficiency and low memory consumption, making it more adopted in 240 

practical applications (Cannas et al., 2006). The discrete wavelet decomposition for 241 

series 𝑓(𝑡) is organized based on eq. (10) and eq. (11): 242 

DWD coefficients: 𝑊𝑓(𝑖, 𝑗) = ∑ 𝑓(𝑡)Ψ𝑖,𝑗
∗ (𝑡)𝑖,𝑗∈𝑍 , (10) 

Wavelet function: 𝛹𝑖,𝑗
∗ (𝑡) = 𝑎0

−
𝑖

2𝛹(𝑎0
−𝑗
𝑡 − 𝑏0𝑘), 𝑎0 > 1, 𝑏0 > 0, (11) 

where i and j are the integers which control the decomposition level and translation, 243 

respectively. 𝑎0 and 𝑏0 are the constant scale factor of decomposition and position 244 

factor of translation, respectively. 𝛹(𝑡) is the mother wavelet. Then the main series 245 

can be decomposed into a low-frequency approximation sub-series (An) and some high-246 

frequency detail sub-series (D1, D2, …, Dn) based on low-pass filter and the high-pass 247 

filter. 248 

 249 

2.2.3 Model development 250 

 The hybrid Wavelet-LSTM (WLSTM) and Wavelet-Informer (WInformer) were 251 

developed by combining LSTM and Informer with the wavelet decomposition, which 252 

refers to (Liu et al., 2022). The process is divided to three steps: (1) the wavelet 253 

decomposition of the original series of the predictand; (2) the prediction of each sub-254 

series using LSTM and Informer individually; and (3) the re-composition of each output 255 

series for the final results. 256 

 To appropriately train the deep-learning models within the WLSTM and 257 

Winformer structure, our procedure involved two phases: (1) calibration and (2) 258 
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evaluation. In the calibration phase, the first 70% of original data were used to develop 259 

the deep-learning models, while the following 10% were used as a validation set to 260 

avoid over-fitting. After the calibration phase, the parameters with the model 261 

performance within the validation were saved for the evaluation phase, in which the 262 

trained model performance is tested based on the remaining 20% of the data. The model 263 

performances for in-sample and out-of-sample datasets were evaluated in the 264 

calibration phase (i.e., the entire establishing data) and the evaluation phase (i.e., the 265 

unused data), respectively. 266 

 In this study, the LSTM and Informer models were implemented in Python. The 267 

grid-search method was used to tune the hyperparameters of deep-learning algorithms 268 

(all the results were listed in Table S1 and S2 in Supplementary Materials). As for 269 

wavelet decomposition, we selected the Daubechies-4 (db4) as a mother wavelet to 270 

decompose the main series into three levels due to its high-efficiency spectral properties 271 

(Nourani et al., 2014b). The DWD procedures were performed with the help of Wavelet 272 

Toolbox in Matlab. 273 

 274 

2.3 Uncertainty forecast based on Copula function and Bayesian theory 275 

 According to (Challinor et al., 2013), uncertainty refers to the lack of predictive 276 

accuracy due to inherent limitations in predictability or a lack of predictive skills. In 277 

practice, estimating prediction uncertainty means estimating how predictions are 278 

distributed around the observations. In the last step of the prediction framework, we 279 

employed the Copula function and Bayesian theory to conduct uncertainty forecasts. 280 
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The Copula function is a widely used statistical tool for modelling and analyzing 281 

dependencies between random variables. The main idea of the Copula function is to 282 

treat the marginal distribution of variables and their correlation structure separately, 283 

thus providing a flexible way to describe their interrelations. According to the Sklar 284 

theory (Sklar, 1959), if the marginal distributions of the bivariate joint distribution H 285 

are 𝐹𝑥 and 𝐹𝑦, respectively, there is a Copula function for any x，y ∈ R as expressed 286 

by eq. (12): 287 

𝐻(𝑥, 𝑦) = 𝐶(𝐹𝑥(𝑥), 𝐹𝑦(𝑦)), (12) 

Based on this theoretical foundation, the joint distribution of two variables can be 288 

constructed in just two steps. Firstly, determining the marginal distributions of the 289 

variables, and secondly, selecting the optimal Copula function to depict the dependency 290 

structure between the variables accurately. More details about Copula theory can be 291 

found in (Größer and Okhrin, 2021).  292 

This study established the joint distribution of predictions and observations based 293 

on the Copula function. Then the probabilistic forecasting could be conducted 294 

according to Bayesian theory. The process to achieve the uncertainty forecast is 295 

described as follows: 296 

(1) Fitting the marginal distributions of the Prediction 𝑿 and Observation Y based 297 

on the predictions 𝑿𝒄𝒂𝒍𝒊 = (𝑥1, 𝑥2, … , 𝑥𝑛)  and observations 𝒀𝒄𝒂𝒍𝒊 = (𝑦1, 𝑦2, … , 𝑦𝑛) 298 

in the calibration phase. Then, the cumulative probability 𝑢 of data in different sets 299 

can be obtained by probability transformation based on eq. (13): 300 

𝑢𝑠𝑒𝑡,1𝑖 = 𝐹𝑥,𝑠𝑒𝑡(𝑥𝑖)⁡𝑜𝑟⁡𝑢𝑠𝑒𝑡,2𝑖 = 𝐹𝑦,𝑠𝑒𝑡(𝑦𝑖), (13) 
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Where 𝑠𝑒𝑡 = (𝑐𝑎𝑙𝑖, 𝑒𝑣𝑎𝑙) denotes calibration or evaluation phase;⁡𝐹(∙) refers to 301 

the marginal distribution of the corresponding object (Prediction 𝑿 or Observation Y). 302 

 (2) Constructing the joint distribution of the Prediction 𝑿 and Observation Y by 303 

using Copula function to connect the cumulative probability 𝑢𝑐𝑎𝑙𝑖,1𝑖  and 𝑢𝑐𝑎𝑙𝑖,2𝑖 . 304 

Several types of bivariate Copula function used in this work are presented in Table S3. 305 

 (3) Given the probability value 𝑝  the conditional distribution function of a 306 

bivariate Copula by eq. (14): 307 

𝐻1(𝑢2|𝑢1) =
𝜕𝐶(𝑢1,𝑢2)

𝜕𝑢1
, (14) 

The probabilistic forecasting values 𝑦̃𝑗  in the evaluation phase was calculated 308 

based on inverse conditional probability function 𝑢̃𝑒𝑣𝑎𝑙,2𝑗 = 𝐻1
−1(𝑢𝑒𝑣𝑎𝑙,1𝑗, 𝑝)  and 309 

inverse cumulative probability function 𝑦̃𝑗 = 𝐹𝑦
−1(𝑢̃𝑒𝑣𝑎𝑙,2𝑗) . In other words, if we 310 

calculate the probabilistic forecasting values corresponding to the conditional 311 

probability of 2.5% and 97.5%, the 95% forecast confidence interval for the 312 

deterministic predicted value could be obtained. 313 

 314 

3. Case study 315 

3.1 Study area and data collection 316 

 The Danjiangkou Reservoir (DJKR) is located at the junction of Hubei and Henan 317 

provinces, China, covering the areas of 32°36′-33°48′ N and 110°59′-111°49′ E (Fig. 318 

2). It serves as a vital drinking water source of the Middle Route of the South-to-North 319 

Water Diversion Project of China (MRSNWDPC) since December 2014, providing 320 

9.5×109 m3 of freshwater water resources through the main canal of the MRSNWDPC 321 
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to North China every year. The DJKR currently stands at a height of 176.6 m, 322 

maintaining an average impounded level of 170 m and possessing a storage capacity of 323 

29.05 billion m3. The reservoir falls within the northern subtropical zone and 324 

experiences a subtropical monsoon climate, with the average annual air temperature 325 

ranging from 15-16 ℃, and the annual precipitation ranging from 800-1,000 mm. 326 

In order to effectively monitor and protect the water resources in the DJKR, the 327 

Chinese government has undertaken national water quality monitoring programs. The 328 

data of this study was obtained from three key national automatic water quality 329 

monitoring stations, i.e., the Taocha (TC), Qingshan (QS), and Madeng (MD) stations. 330 

The TC is located at the starting point of the MRSNWDPC, and the QC and MD are 331 

located at the entrance point of the two main tributaries of the DJKR, i.e., Hanjiang 332 

River and Danjiang River, respectively (Fig. 2). The daily data used in this analysis 333 

were collected for seven water quality parameters, including water temperature 334 

(WT, ℃), pH, dissolved oxygen (DO, mg/L), conductivity (Cond, μS /cm), 335 

chlorophyll-a (Chl-a, mg/L), total phosphorus (TP, mg/L), and total nitrogen (TN, mg/L) 336 

from January 2017 to June 2022. As the potential adverse trend of TN in the 337 

Danjiangkou Reservoir is particularly concerning (Liu et al., 2017), TN was considered 338 

as the main forecasting water quality parameter in this study. Additionally, three 339 

atmospheric parameters (i.e., nitrogen dioxide (NO2, μg/m3), nitrogen monoxide (NO, 340 

μ g/m3), and nitric acid (HNO3
-
 , μ g/m3)) and precipitation (Pre, mm) were collected 341 

from the Copernicus Atmosphere Monitoring Service (CAMS) global reanalysis 342 

monthly averaged fields to establish the predictive framework for TN 343 
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(https://ads.atmosphere.copernicus.eu/). A summary of the statistical characteristics of 344 

these parameters are shown in Table 1. 345 

<Fig. 2> 346 

<Table 1> 347 

 348 

3.2 Model evaluation 349 

 To evaluate the predictive effects of our models, the Root Mean Squared Error 350 

(RMSE), Mean Absolute Percentage Error (MAPE), and coefficient of determination 351 

(R2) were used: 352 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
, (15) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦̂𝑖−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100%, (16) 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦̅−𝑦𝑖)
2𝑛

𝑖=1

, (17) 

where 𝑛  is the number of data points; 𝑦̂𝑖  and 𝑦𝑖  are the i-th prediction and 353 

observation, respectively; 𝑦̅ is the mean of 𝑦𝑖. 354 

 In addition, the Coverage Rate (CR) and Average Relative Interval Length (ARIL) 355 

were used to assess the results of the uncertainty forecast: 356 

𝐶𝑅 =
∑ 𝐼𝑛
𝑖=1 (𝑦̃𝑙𝑜,𝑖<𝑦𝑖<𝑦̃𝑢𝑝,𝑖)

𝑛
, (18) 

𝐴𝑅𝐼𝐿 = ⁡
1

𝑛
(∑

𝑦̃𝑢𝑝,𝑖−𝑦̃𝑙𝑜,𝑖

𝑦𝑖

𝑛
𝑖=1 ), (19) 

where 𝑛  is the number of data points; 𝑦̃𝑢𝑝,𝑖  and 𝑦̃𝑙𝑜,𝑖  denote the upper and lower 357 

boundary of the forecast confidence interval for the i-th prediction, respectively; 𝑦𝑖 is 358 

the i-th observation; 𝐼(∙) is the indicator function. 359 

 360 

https://ads.atmosphere.copernicus.eu/
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4. Results 361 

4.1 Prediction models with and without causal inference 362 

 The PCMCI was applied for feature screening in the prediction models, and the 363 

causal networks of indicators in different stations are shown in Fig. 3. The parameter 364 

𝜏𝑚𝑎𝑥 was set as two days, indicating that a parent process earlier than two days would 365 

not be considered. For the predictand, the features that significantly impacted TN were 366 

investigated according to Table S4. The results revealed a strong autocorrelation of TN 367 

across all monitoring stations, meaning that the TN concentrations observed two days 368 

prior significantly affected the concentrations measured on the current day. Cond had a 369 

direct impact on TN in TC and QS stations, while DO had that on TN in TC and MD 370 

stations. NO2 had a one-day delay effect on TN in the TC station and a direct impact on 371 

the QS station, respectively. The concentrations of TP showed a two-day delay effect 372 

on TN in the TC station. For the QS and MD stations, the Chl-a and WT showed 373 

different multi-day delay effects on TN, respectively. Based on the PCMCI, the features 374 

for predicting TN in different stations were selected (Table 2). 375 

< Fig. 3> 376 

<Table 2> 377 

 The performance of the LSTM and Informer models with PCMCI for water quality 378 

forecasting was compared with the models without PCMCI as shown in Fig. 4. More 379 

specifically, the LSTM and Informer models without PCMCI (i.e., NO_LSTM and 380 

NO_Informer in the figure) involved all parameters from two days ahead to the current 381 

day as inputs (3×11-1=32 features). In contrast, PCMCI_LSTM and PCMCI_Informer 382 
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involved selected features as inputs. As shown in Fig. 4, the predictions versus 383 

observations across all monitoring stations were distributed around a 1:1 slope line in 384 

both Pre1 and Pre2 models. All the 𝑅𝑃𝑟𝑒1−𝑃𝑟𝑒2
2  were higher than 0.85, indicating that 385 

reducing the number of inputs did not decrease forecasting performance. Furthermore, 386 

the model performance when using PCMCI was better than that without PCMCI in both 387 

models and three stations (Table 3), with the highest improvement rates of 22.88%, 388 

24.79%, and 11.59% in terms of RMSE, MAPE, and R2 , respectively. These 389 

phenomena indicated a practical application of PCMCI for saving the indicator 390 

measurement cost and improving the prediction efficiency. 391 

< Fig. 4> 392 

<Table 3> 393 

 394 

4.2 Prediction models with and without wavelet decomposition 395 

 Based on the results of Section 3.1, our following model simulations all took the 396 

features selected by PCMCI as inputs. In this section, the predictive effects of the LSTM 397 

and the Informer models with or without wavelet decomposition were compared for the 398 

single-step prediction task. The WLSTM and the WInformer approaches were 399 

developed and verified on the daily TN dynamics in each station. As shown in Fig. S2 400 

to S4, the TN concentrations in the Danjiangkou Reservoir presented a common 401 

fluctuation trend. Although the LSTM and the Informer models successfully captured 402 

the overall variations of TN in these non-stationary signal modes, they exhibited 403 

unsatisfactory performance at some local mutation points. For instance, several sharp 404 
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changes occurred from the 290th to 350th day of TC and from the 90th to 180th day of 405 

QS, causing significant simulation errors to the LSTM and Informer model (Fig. 5). 406 

Besides, the forecasting performance of the LSTM and the Informer showed a minor 407 

difference in the single-step prediction for the full sequence in terms of 𝑅2 statistic 408 

(0.8430 vs. 0.8463 in TC, 0.8568 vs. 0.8423 in QS, 0.8511 vs. 0.8120 in MD, 409 

respectively). 410 

 When coupled with the wavelet decomposition, the performance of the WLSTM 411 

and WInformer both improved with an increase of 0.17% to 10.37% compared to the 412 

original model for the entire sequence in terms of 𝑅2 statistics. The daily original TN 413 

series (S) were decomposed to an approximation coefficient (A3) and three levels of 414 

detailed coefficients (D1 - D3). The A3 contains the low-frequency components of the 415 

signal and approximates the signal with reduced detail, while the D1 - D3 captures the 416 

high-frequency components of the signal at different scales and provides progressively 417 

finer details. Compared with the LSTM and the Informer, the apparent simulation errors 418 

of TN concentrations were smoothed and diminished by the WLSTM and WInformer. 419 

The wavelet decomposition coupled methods presented accurate predictions of the 420 

extreme situations, with around 24.39%, 32.68%, and 41.26% reduction at most on the 421 

average, standard deviation, and maximum of the prediction errors (Table S5). 422 

Moreover, further comparison proved the best forecasting performance of the 423 

WInformer at all the stations over the other three models, as shown in Table 4 and Fig. 424 

S5. The highest accuracy of WInformer was reached at the evaluation phase of the MD 425 

station, shown by its smallest RMSE (0.0472 mg/L), lowest MAPE (2.85%), and 426 
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highest 𝑅2 (0.9400). In addition, the improvement rates of the Winformer model over 427 

the other three models in the evaluation stages are 14.83% to 27.38%, 15.37% to 428 

24.39%, and 5.74% to 9.12% in terms of RMSE, MAPE, and 𝑅2, respectively. All the 429 

results indicated that the developed hybrid WInformer method could reliably 430 

accomplish single-step prediction tasks based on historical data. 431 

<Fig. 5> 432 

<Table 4> 433 

 434 

4.3 Uncertainty quantification for prediction 435 

 The uncertainty forecast is based on the selection of the best forecasting model. 436 

Following the process described in Section 2.4, we first fitted the marginal distributions 437 

of observations and predictions of TN in the calibration stages for all sites using Pearson 438 

Ⅲ distribution (Table S6), a popular and important distribution in the field of water 439 

resources. Then, the joint distribution of the observations-predictions pair for each 440 

station was established based on the marginal distributions and the Copula theory 441 

(Table S7). Through the probability transformation of the predictions in the evaluation 442 

stages and calculations based on Eq. (13) and Eq. (14), we can obtain any quantiles of 443 

the probability prediction (uncertainty prediction). In this study, given the significance 444 

level 𝛼 = 0.05, the 2.5th percentile and 97.5th percentile of the posterior conditional 445 

probability distribution were calculated, corresponding to the lower and upper 446 

boundary of the 95% forecast confidence interval, respectively. Thus, each 447 

deterministic prediction result of the WInformer was associated with a corresponding 448 
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forecast interval, achieving the uncertainty quantification. As shown in Fig. 6, the 449 

forecast interval covered almost all the observations at the evaluation phase, indicating 450 

that the probabilistic forecast is reliable. Besides, CR and ARIL were used to evaluate 451 

the results of the probabilistic forecast. The larger the CR, the higher the proportion of 452 

the observations covered by the forecast interval, while the smaller the ARIL, the 453 

narrower the average relative interval width of the forecast interval and the higher the 454 

accuracy. Studies have shown that as CR increases, ARIL also increases, meaning these 455 

two metrics are often contradictory. For a given confidence level, under the premise of 456 

ensuring a high coverage rate, the narrower the average relative width of the forecast 457 

interval, the better the prediction performance. It can be seen in Fig.6 that CR remained 458 

above 90% at all stations, with the highest being 98.71% of the MD station. ARIL 459 

remained only around 20% across stations, with the smallest being 18.01% of the TC 460 

station. These results indicated that our uncertainty forecast is reliable and can provide 461 

more information for water resources management decisions. 462 

<Fig. 6> 463 

 464 

5. Discussion 465 

5.1 Model improvement brought by causal inference and wavelet decomposition 466 

 Selecting the most relevant and informative features from all available features can 467 

improve data-driven models' predictive performance and explanatory power 468 

(Masmoudi et al., 2020). Driven by the need to establish more efficient, interpretable, 469 

and reliable models, causal inference was integrated into the forecasting framework in 470 
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this study. It has advantages in enhancing forecasting accuracy, boosting computational 471 

efficiency, and providing insights into mechanisms Specifically, the causal inference 472 

can identify direct causal relationships between the features and the target variable 473 

while excluding indirect relationships caused by the presence of confounding variables; 474 

this facilitates the construction of more interpretable and reliable models (Pearl and 475 

Mackenzie, 2018), and has recently gained significant popularity across various fields 476 

(Kretschmer et al., 2018, Krich et al., 2022). As one of the advanced causal inference 477 

methods, the core technique of PCMCI is to infer causal relationships by evaluating 478 

conditional independences of variables, which do not need to rely on traditional path 479 

analysis of causality models or causal hypotheses. Because of this, this method can 480 

handle the linear relationship and capture the nonlinear causality to better adapt to the 481 

complexity and dynamics of the actual data (Runge et al., 2019a). In addition, high-482 

dimensional and strongly autocorrelated data can be efficiently processed, and the lag-483 

dependent temporal relationships can be found based on the PCMCI, which makes it 484 

very applicable for dealing with time-series-related problems (Krich et al., 2020). This 485 

study selected indicators with specific time lags as the input features based on PCMCI. 486 

It can be seen from the screening results (Table 2) that PCMCI not only selects the 487 

index set that meets the physical mechanism but also significantly reduces the 488 

dimensionality of the input data (from 32 features of the model without PCMCI to 5/6 489 

features of the model with PCMCI). It has been verified that the complexity of the 490 

model increases with increasing input, potentially leading to the problem of low 491 

efficiency and overfitting (Wang et al., 2023). Our results have presented consistent 492 
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conclusions: the models with selected features all showed better forecasting 493 

performance. These phenomena indicate a valuable application of PCMCI for saving 494 

indicator measurement costs and improving prediction efficiency. 495 

 Wavelet decomposition was also used to enhance the model in this study. 496 

Compared to the individual deep learning model, the forecasting performance of TN by 497 

the wavelet-coupled approaches was improved at all stations, with a maximum decrease 498 

of 24.75% and 23.25% in terms of RMSE and MAPE, respectively (Fig. 5). In the 499 

hybrid structures, the wavelet decomposition played a crucial role as an effective pre-500 

processing tool. It extracted cyclic signals using dyadic decompositions, from which 501 

the extracted sub-series could exhibit distinct multi-timescale characteristics of the 502 

original series quasi-periodically and periodically (Nourani et al., 2014a). This feature 503 

greatly facilitated the utilization of deep learning algorithmic advantages in handling 504 

time series tasks. Furthermore, the wavelet-coupled approaches were also remarkably 505 

effective in simulating peak values with TN dynamics (Fig. 5 and Table S5). Generally, 506 

it is quite difficult for data-driven models to accurately predict extreme situations, as 507 

they often treat extreme points as outliers before their normal prediction process (Song 508 

et al., 2021). However, by incorporating the robust resistance and smoothing capability 509 

of wavelet decomposition, the wavelet-coupled approaches effectively reduce the 510 

inclusion of extreme components in the input sub-series. The likelihood of models 511 

detecting original outliers is then reduced, while the fitting accuracy for well-512 

transformed mutations is increased (Du et al., 2018). Danjiangkou reservoir basin has 513 

multiple and complex sources of pollution, resulting in sharp changes in TN dynamics 514 
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(Zhang et al., 2023). The accurate forecasting performance for mutations is absolutely 515 

useful for water quality management. 516 

  517 

5.2 Necessity and potential of uncertainty prediction 518 

 In the past, it was common in most practical engineering management to make 519 

decisions based on the deterministic forecast values obtained from models. However, 520 

due to the inherent limitations and uncertainties present in real-world phenomena and 521 

data, the predictions made by the models are also uncertain (Krzysztofowicz, 1999). 522 

According to statistical decision theory, when making decisions without considering 523 

the uncertainty of the predictions, the value of the model forecasts in the decision-524 

making process may not be non-negative in terms of expectation (Berger, 2013). In 525 

other words, the value of the model forecasts can remain positive only when the 526 

uncertainty of the predictions is considered in decision-making. The decision maker is 527 

responsible for deciding upon a reasonable water resources management course of 528 

action based on the forecaster, relying solely on a single-point estimate of the predictand 529 

may be insufficient (Kelly and Krzysztofowicz, 2000, Yang, 2020). Therefore, 530 

quantifying the uncertainty associated with the predictions regarding probability 531 

distribution and confidence level is necessary. 532 

 In this study, the Copula function was used to establish the joint distribution of 533 

observations and deterministic predictions to quantify the distribution of errors. Copula 534 

function is a statistical tool used to establish the structure of correlations between 535 

random variables (Dai et al., 2020). This approach can help us to better understand and 536 
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model the dependencies between variables and provide more accurate results in 537 

uncertainty assessment, simulations, and predictions. It was widely used in finance, 538 

climatology, and risk management in the early years and has recently gained popularity 539 

in water resources (Sahoo et al., 2020, Zhi et al., 2022). The study of (Liu et al., 2018)  540 

analysed the effect of compound floods in Texas, USA, based on the Copula function 541 

with precipitation, surface runoff, El Nino-Southern Oscillation (ENSO) states, and 542 

rising temperatures as underlying conditions. Aiming at the potential abnormal algal 543 

proliferation in the MRSNWDPC, some scholars modelled dependency structures of 544 

water quality and hydrodynamic factors and conducted risk analysis based on Copula 545 

theory (Zhang et al., 2021). In addition, a Copula-based Bayesian network method was 546 

proposed and proved to be a powerful decision-support tool for the water quality 547 

management of Yuqiao Reservoir (Yu and Zhang, 2021). These studies reveal the power 548 

and flexibility of the Copula function, and the structure of Copula can well characterize 549 

the relationship between the variables. With the help of the Copula function and 550 

Bayesian theory, each deterministic prediction of our model can correspond to a range 551 

of possible outputs. The results also showed that the forecast interval covered almost 552 

all the observations, indicating that our method is reliable (Fig. 6). This range of 553 

possibilities reflects the inherent randomness and variability in the underlying processes 554 

and model establishment, which provides a measure of the reliability and robustness of 555 

the predictions. Such information is valuable in practical engineering management. By 556 

considering uncertainty, decision-makers can evaluate the level of uncertainty 557 

associated with different scenarios and adjust their strategies accordingly. 558 
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 559 

5.3 Contributions, challenges, and future work 560 

 Data-driven methods are being increasingly appreciated in the context of detailed 561 

real-world observations (Zhong et al., 2021). Various deep learning algorithms have 562 

been widely applied in time-series prediction research (Deng et al., 2021, Harris and 563 

Graham, 2017). This study involves two popular time-series deep learning algorithms, 564 

i.e., the LSTM and Informer. LSTM is known for its excellent long-term dependency 565 

modelling ability to capture temporal relationships in sequence data efficiently (Zheng 566 

et al., 2021). It has demonstrated capacity in the field of water resources. In contrast, as 567 

a newly proposed algorithm, the application of the Informer in this field is relatively 568 

limited. As an improvement of the Transformer, Informer is a model based on the self-569 

attention mechanism that can effectively utilize the temporal and spatial correlation 570 

information within time-series data (Gong et al., 2022). In the study on short-term 571 

irrigation water use forecasting, (Zou et al., 2022) demonstrated the superiority of 572 

Informer over the other five data-driven methods. Based on long-term monitoring data 573 

and Informer, some researchers developed an effective prediction framework for water 574 

quality management (Yao et al., 2022). Our results also showed the best forecast 575 

performance of WInformer at all stations (Fig. S5), indicating the great potential of 576 

Informer in water quality prediction. These experiments enrich the application of 577 

Informer in the field of water resources. Besides, various advanced methods such as 578 

PCMCI, wavelet decomposition, and Copula function were used to improve the 579 

performance of deep learning algorithms in this research. We aimed to provide a more 580 
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accurate and reliable framework to analyse and predict complex time-series data, 581 

providing strong support for applications in related fields and tasks. 582 

 There remains a substantial scope for future exploration and investigation in this 583 

domain. First, due to the funding constraints, the resolution of data monitoring in this 584 

study is only on a daily scale. Water resources management sometimes requires to be 585 

conducted on an hourly scale, so it is crucial to continue studying related models in the 586 

future. Second, although we selected the index set that meets the physical mechanism 587 

based on PCMCI, more detailed studies on the mechanism of water quality variation 588 

are still of concern. Considering that the DJKR will continue to operate for many years, 589 

specific research on models driven by physical-mathematical equations will be carried 590 

out in the future. Third, designing individual or ensemble deep learning models for 591 

multi-steps time-series prediction tasks has been an emerging area in recent years. 592 

Based on the sing-step forecasting framework we established, the results of multi-step 593 

ahead forecasting using alternative approaches, such as recursive- or batch- pattern 594 

model sets would be reported in our future work, aiming to develop more accurate and 595 

robust long-term forecasting models. 596 

 597 

6. Conclusions 598 

In this study, we developed a hybrid time-series forecasting framework integrating 599 

deep learning approach, causal inference, wavelet decomposition, and Copula function, 600 

which was used for TN prediction of the Danjiangkou Reservoir of China. The main 601 

conclusions are as follows: 602 
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(1) PCMCI is a powerful feature selection method based on causal inference. It can 603 

not only select the index set that meets the physical mechanism, but also significantly 604 

reduce the dimensionality of the input data. Our results demonstrated its ability to save 605 

indicator measurement costs and improve prediction efficiency. 606 

(2) Compared to the individual models, the apparent forecasting errors of TN 607 

concentrations were well smoothed and diminished by the wavelet-coupled approaches, 608 

with 24.39%, 32.68%, and 41.26% reduction at most on the average, standard deviation, 609 

and maximum of the prediction errors. Furthermore, WInformer showed the best 610 

performance in all the experiments, indicating this new structure's valuable potential in 611 

water quality management. 612 

(3) With the combinations of the Copula function and Bayesian theory, each 613 

deterministic prediction of our model can correspond to a range of possible outputs, 614 

which measure the reliability and robustness of the predictions. By considering 615 

uncertainty, decision-makers can evaluate the uncertainty associated with different 616 

scenarios and adjust their strategies accordingly. 617 

This study provides insights for applying advanced data-driven methods in time-618 

series forecasting tasks and a practical methodological framework for water resources 619 

management and similar projects. In future research, long-term series monitoring data, 620 

various mechanism models, and more in-situ/ computational experiments are still 621 

needed to be conducted. 622 
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Figure Captions 

Fig. 1. The framework of the proposed coupling predictive methods in this study. 

Fig. 2. The location of the Danjiangkou Reservoir and three automatic water quality monitoring 

stations. 

Fig. 3. Causal networks of all parameters in the three stations (Note: Based on the PCMCI 

method, the strength of causality is given by the link colour and the time lags are shown in the 

centre of each arrow). 

Fig. 4. Comparisons of the predictive model performances with and without PCMCI in different 

stations. 

Fig. 5. Observation and prediction series of TN using different models in three stations for one 

step ahead (Note: the inner plots represent the relative error (%)). 

Fig. 6. Observations, predictions of the WInformer, and the 95% confidence interval for the TN of 

different stations in the evaluation stages (TC, QS, and MD are the names of stations; CR: 

Coverage Rate; ARIL: Average Relative Interval Length). 
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Fig. 1. The framework of the proposed coupling predictive methods in this study. 
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Fig. 2. The location of the Danjiangkou Reservoir and three automatic water quality monitoring 

stations (i.e., Taocha, Qingshan, and Madeng). 
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Fig. 3. Causal networks of all parameters in the three stations (Note: Based on the PCMCI 

method, the strength of causality is given by the link colour and the time lags are shown in the 

centre of each arrow). 
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Fig. 4. Comparisons of the predictive model performances with and without PCMCI in different 

stations. 
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Fig. 5. Observation and prediction series of TN using different models in three stations for one step ahead (Note: the inner plots represent the relative error (%)). 
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Fig. 6. Observations, predictions of the WInformer, and the 95% confidence interval for the TN of 

different stations in the evaluation stages (TC, QS, and MD are the names of stations; CR: 

Coverage Rate; ARIL: Average Relative Interval Length). 
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Table 1  

Summary of all indicators in the three automatic monitoring stations from 2017 to 2022 (Avg.: Average; S.D.: Standard deviation). 

Parameters 

Taocha (TC) Qingshan (QS) Madeng (MD) 

Avg. ± S.D. Max Min Avg. ± S.D. Max Min Avg. ± S.D. Max Min 

WT (℃) 18.4 ± 6.9 32.7 5.9 18.0 ± 6.6 33 6.3 18.7 ± 6.6 32.5 4.9 

pH 8.08 ± 0.35 9.10 6.50 8.15 ± 0.33 9.30 6.50 8.12 ± 0.32 9.10 6.00  

DO (mg/L) 9.70 ± 1.30 12.70 6.10 9.90 ± 1.30 16.20 7.10 9.60 ± 1.30 16.20 6.59 

Cond (μS/cm) 272.6 ± 46.6 550.8  175.0  256.7 ± 28.4 346.4  142.9  284.8 ± 60.5 1071.0  109.4  

Chl-a (μg/L) 2.36 ± 3.19 98.50 0.20 2.41 ± 1.88 19.10 0.27 2.63 ± 1.89 16.40 0.20  

TP (mg/L) 0.013 ± 0.004 0.041  0.002 0.017 ± 0.010 0.269  0.004  0.014 ± 0.005 0.051  0.001  

Pre (mm) 6.9 ± 28.1 561.5  0 4.0 ± 20.5 361.0  0  7.3 ± 28.4 346.7  0  

HNO3 (μg/m3) 6.76 ± 4.68 43.02  0.02  4.96 ± 4.01 39.16  0.04  6.76 ± 4.67 43.02  0.02  

NO (μg/m3) 30.04 ± 24.37 129.43  0.27  11.30 ± 11.30 59.28  0.07  30.03 ± 24.37 129.43  0.27  

NO2 (μg/m3) 41.80 ± 13.06 173.16  13.95  27.93 ± 9.58 85.49  7.91  41.80 ± 13.06 173.16  13.95  

TN (mg/L) 1.17 ± 0.18 1.81  0.69  1.20 ± 0.18 1.98  0.82  1.19 ± 0.21 2.45  0.42  
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Table 2 

The selected features for different stations. 

Station Selected features 

Taocha (TC) TN(t-1), TN(t-2), DO(t), Cond(t), TP(t-2), NO2(t-1)  

Qingshan (QS) TN(t-1), TN(t-2), Cond(t), Chl-a(t-2), Chl-a(t-1), NO2(t) 

Madeng (MD) TN(t-1), TN(t-2), WT(t), DO(t), WT(t-1) 
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Table 3 

Comparisons of the prediction models with and without causal inference in the evaluation stages. 

Station Model RMSE MAPE R2 

TC NO_LSTM 0.0716  4.06% 0.7912  

 LSTM 0.0711  4.06% 0.8029  

 NO_Informer 0.0924  5.31% 0.7268  

 Informer 0.0713  4.12% 0.8110  

QS NO_LSTM 0.0800  4.71% 0.8077  

 LSTM 0.0759  4.46% 0.8126  

 NO_Informer 0.0811  4.71% 0.7810  

 Informer 0.0764  4.47% 0.8078  

MD NO_LSTM 0.0642  3.71% 0.8858  

 LSTM 0.0618  3.44% 0.8890  

 NO_Informer 0.0824  5.01% 0.8326  

 Informer 0.0649  3.77% 0.8758  
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Table 4 

The forecasting performance of WInformer comparing to the other three models. 

Calibration  Evaluation 

RMSE (mg/L)  MAPE  R2  RMSE (mg/L)  MAPE  

0.0576   3.55%  0.8783   0.0581   3.30 %  

0.0690  (+Δ16.53%) 4.08% (+Δ12.81%) 0.8234  (+Δ6.66%) 0.0713  (+Δ18.49%) 4.12% (+Δ19.85%) 

0.0684  (+Δ15.70%) 4.07% (+Δ12.79%) 0.8274  (+Δ6.15%) 0.0692  (+Δ16.08%) 3.90% (+Δ15.37%) 

0.0715  (+Δ19.47%) 4.33% (+Δ18.00%) 0.8208  (+Δ7.00%) 0.0711  (+Δ18.29%) 4.06% (+Δ18.65%) 

0.0594   3.35%  0.8848   0.0641   3.68%  

0.0694  (+Δ14.47%) 3.92% (+Δ14.56%) 0.8433  (+Δ4.91%) 0.0764  (+Δ16.11%) 4.47% (+Δ17.55%) 

0.0648  (+Δ8.38%) 3.73% (+Δ10.30%) 0.8627  (+Δ2.56%) 0.0753  (+Δ14.83%) 4.42% (+Δ16.71%) 

0.0656  (+Δ9.39%) 3.82% (+Δ12.32%) 0.8607  (+Δ2.80%) 0.0759  (+Δ15.50%) 4.46% (+Δ17.43%) 

0.0712   3.95%  0.8842   0.0472   2.85%  

0.0943  (+Δ24.51%) 5.12% (+Δ22.85%) 0.7928  (+Δ11.54%) 0.0649  (+Δ27.38%) 3.77% (+Δ24.39%) 

0.0824  (+Δ13.56%) 4.41% (+Δ10.32%) 0.8419  (+Δ5.02%) 0.0624  (+Δ24.46%) 3.48% (+Δ18.21%) 

0.0832  (+Δ14.40%) 4.46% (+Δ11.44%) 0.8387  (+Δ5.43%) 0.0618  (+Δ23.70%) 3.44% (+Δ17.17%) 

Note: The values in parentheses represent the improvement rates of the WInformer model over the 

other three models in terms of the corresponding metrics. 
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Table S1 

Hyperparameter selections of the LSTM for different data series in the three stations in this study. 

Station Series num_layers num_neurons Epoch batch_size dropout_rate 

TC S_NO 1 128 80 64 0.1 
 S 1 32 60 32 0.2 
 A3 1 32 40 32 0.2 
 D1 1 32 80 16 0.5 
 D2 1 256 100 16 0.4 
 D3 1 256 80 64 0.4 

QS S_NO 1 256 80 64 0.3 
 S 1 32 80 64 0.3 
 A3 1 32 80 64 0.1 
 D1 1 32 100 16 0.4 
 D2 1 256 80 128 0.1 
 D3 1 256 100 64 0.1 

MD S_NO 1 64 40 64 0.4 
 S 1 256 80 128 0.4 
 A3 1 128 100 128 0.1 
 D1 1 128 100 128 0.2 
 D2 1 128 60 32 0.5 
 D3 1 128 60 64 0.5 
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Table S2 

Hyperparameter selections of the Informer for different data series in the three stations in this study. 

Station Series n_heads e_layers d_layers seq_len label_len pred_len epoch batch_size dropout_rate 

TC S_NO 8 3 1 30 14 1 20 16 0.05 
 S 8 2 1 14 7 1 20 16 0.05 
 A3 4 3 1 30 7 1 20 16 0.05 
 D1 4 3 1 7 3 1 20 16 0.05 
 D2 4 3 1 14 3 1 20 16 0.05 
 D3 4 3 1 7 3 1 20 16 0.05 

QS S_NO 8 3 1 14 3 1 20 16 0.05 
 S 8 3 1 7 3 1 20 16 0.05 
 A3 8 3 1 7 3 1 20 32 0.05 
 D1 8 3 1 14 7 1 20 16 0.05 
 D2 8 2 1 7 3 1 20 16 0.05 
 D3 4 2 1 14 3 1 20 16 0.05 

MD S_NO 8 3 1 14 3 1 20 16 0.05 
 S 8 2 1 14 3 1 20 16 0.05 
 A3 8 2 1 14 3 1 20 16 0.05 
 D1 8 2 1 14 3 1 20 16 0.05 
 D2 4 2 1 14 3 1 20 16 0.05 
 D3 4 2 1 7 3 1 20 16 0.05 
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Table S3 

The selected bivariate copula functions and their mathematical expressions in this study. 

Copula functions Abbreviation Mathematical expressions Parameters 

Gaussian N ∫ ∫
1

2𝜋√1 − 𝜃2

∅−1(𝑣)

−∞

∅−1(𝑢)

−∞

𝑒𝑥𝑝⁡(
2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
)𝑑𝑥𝑑𝑦 𝜃 ∈ [−1，1] 

Student-t t ∫ 𝑧∫
Γ(
𝜃2 + 2
2 )

Γ(
𝜃2
2 )𝜋𝜃2

√1− 𝜃1
2

𝑡𝜃2
−1(𝑣)

−∞

𝑡𝜃2
−1(𝑢)

−∞

⁡(1 +
𝑥2 + 𝑦2 − 2𝜃1𝑥𝑦

𝜃2
)
𝜃2+2
2 𝑑𝑥𝑑𝑦 𝜃1 ∈ [−1，1]&𝜃2 ∈ (0，∞) 

Gumbel G 𝑒𝑥𝑝 {−[(−ln𝑢)𝜃 + (−ln𝑣)𝜃]
1/𝜃

} 𝜃 ∈ [1，∞) 

Clayton C (𝑢−𝜃 + 𝑣−𝜃 − 1)
−1/𝜃

 𝜃 ∈ (0，∞) 

Frank F −
1

𝜃
𝑙𝑛 [1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
] 𝜃 ∈ R\{0} 
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Table S4 

Numerical results for PCMCI with parents, corresponding lags, and dependency coefficients (link strength) in this study. 

TC QS MD 

Variable Parents Lag p-value Dep. Coef. Variable Parents Lag p-value Dep. Coef. Variable Parents Lag p-value Dep. Coef. 

TN TN -1 0.0000  0.594  TN TN -1 0.0000  0.522  TN TN -1 0.0000  0.591  

 TN -2 0.0001  0.089   TN -2 0.0000  0.194   TN -2 0.0000  0.100  

 DO 0 0.0016  -0.071   Cond 0 0.0033  0.066   WT 0 0.0243  0.051  

 Cond 0 0.0233  0.051   Chl-a -2 0.0045  0.064   DO 0 0.0379  0.047  

 TP -2 0.0264  -0.050   Chl-a -1 0.0110  -0.057   WT -1 0.0494  -0.044  

 NO2 -1 0.0378  -0.047   NO2 0 0.0399  -0.046  WT WT -1 0.0000  0.632  

WT WT -1 0.0000  0.661  WT WT -1 0.0000  0.644   Pre 0 0.0000  -0.133  

 Cond 0 0.0000  0.223   Cond 0 0.0000  0.207   DO 0 0.0000  -0.128  

 Pre 0 0.0000  -0.177   pH 0 0.0007  0.077   HNO3
-
 0 0.0000  0.098  

 DO 0 0.0000  -0.158   WT -2 0.0012  0.073   Cond 0 0.0000  0.093  

 HNO3
-
 0 0.0000  0.103   Pre 0 0.0015  -0.072   WT -2 0.0001  0.091  

 NO -1 0.0000  0.097   HNO3
-
 0 0.0031  0.067   NO -1 0.0001  0.087  

 pH 0 0.0015  0.072   Chl-a 0 0.0126  0.056   TP -1 0.0081  -0.060  

 DO -1 0.0187  -0.053   NO2 0 0.0154  -0.055   TN -2 0.0090  -0.059  

 NO 0 0.0383  0.047   NO -1 0.0191  0.053   TN 0 0.0243  0.051  

pH pH -1 0.0000  0.616   pH -1 0.0381  0.047   NO 0 0.0283  0.050  

 DO 0 0.0001  0.089   Chl-a -2 0.0409  0.046   HNO3
-
 -2 0.0364  -0.047  

 Pre 0 0.0002  -0.083  pH pH -1 0.0000  0.529  pH pH -1 0.0000  0.504  

 WT 0 0.0015  0.072   pH -2 0.0000  0.133   pH -2 0.0000  0.116  

 Cond -1 0.0371  0.047   DO 0 0.0000  0.096   DO 0 0.0000  0.098  
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DO DO -1 0.0000  0.602   WT 0 0.0007  0.077   WT -1 0.0002  0.084  

 WT 0 0.0000  -0.158   Chl-a 0 0.0016  0.071   NO2 -1 0.0003  -0.082  

 Cond 0 0.0000  -0.124   NO2 0 0.0230  -0.051   Chl-a 0 0.0278  0.050  

 pH 0 0.0001  0.089   WT -1 0.0336  0.048   Cond -1 0.0386  0.047  

 Chl-a -1 0.0002  0.085  DO DO -1 0.0000  0.484  DO DO -1 0.0000  0.618  

 DO -2 0.0012  0.073   Chl-a 0 0.0000  0.183   WT 0 0.0000  -0.128  

 TN 0 0.0016  -0.071   DO -2 0.0000  0.173   pH 0 0.0000  0.098  

 TP 0 0.0068  0.061   pH 0 0.0000  0.096   Chl-a 0 0.0002  0.084  

 Chl-a 0 0.0091  0.059   Chl-a -1 0.0000  0.093   TP 0 0.0008  0.075  

 HNO3
-
 -1 0.0109  0.057   Cond -1 0.0001  0.086   HNO3

-
 -1 0.0065  0.061  

 NO2 -2 0.0417  0.046   WT -1 0.0052  0.063   NO -1 0.0187  -0.053  

Cond Cond -1 0.0000  0.656   HNO3
-
 -1 0.0328  0.048   TN 0 0.0379  0.047  

 WT 0 0.0000  0.223   WT -2 0.0381  0.047  Cond Cond -1 0.0000  0.641  

 DO 0 0.0000  -0.124  Cond Cond -1 0.0000  0.528   Cond -2 0.0000  -0.141  

 Pre 0 0.0007  -0.077   WT 0 0.0000  0.207   WT 0 0.0000  0.093  

 NO -1 0.0080  0.060   Cond -2 0.0000  0.122   pH -1 0.0186  -0.053  

 HNO3
-
 0 0.0115  0.057   TN 0 0.0033  0.066   TN -1 0.0381  0.047  

 TN 0 0.0233  0.051  Chl-a Chl-a -1 0.0000  0.647   TN -2 0.0414  -0.046  

Chl-a Chl-a -1 0.0000  0.614   DO 0 0.0000  0.183  Chl-a Chl-a -1 0.0000  0.613  

 Chl-a -2 0.0000  -0.352   pH 0 0.0016  0.071   DO 0 0.0002  0.084  

 DO 0 0.0091  0.059   WT 0 0.0126  0.056   Chl-a -2 0.0015  -0.072  

TP TP -1 0.0000  0.466   Pre -1 0.0227  -0.051   TN -2 0.0031  -0.067  

 TP -2 0.0000  0.187   pH -1 0.0314  0.049   pH 0 0.0278  0.050  

 DO 0 0.0068  0.061  TP TP -1 0.0000  0.673   Cond -1 0.0408  0.046  

 Chl-a -2 0.0229  0.051   TP -2 0.0000  -0.280   NO2 -2 0.0415  0.046  

Pre Pre -1 0.0000  0.202   Pre -1 0.0000  0.141  TP TP -1 0.0000  0.509  
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 WT 0 0.0000  -0.177   DO -2 0.0001  0.092   TP -2 0.0000  0.129  

 HNO3
-
 0 0.0000  -0.119  Pre Pre -1 0.0000  0.275   DO 0 0.0008  0.075  

 NO -1 0.0000  -0.105   HNO3
-
 0 0.0002  -0.083   NO2 -1 0.0152  -0.055  

 pH 0 0.0002  -0.083   TP -1 0.0006  -0.077  Pre Pre -1 0.0000  0.278  

 NO 0 0.0005  -0.079   WT 0 0.0015  -0.072   WT 0 0.0000  -0.133  

 Cond 0 0.0007  -0.077   NO 0 0.0042  -0.065   HNO3
-
 0 0.0000  -0.119  

 WT -2 0.0183  -0.053   NO -1 0.0063  -0.062   NO -1 0.0001  -0.101  

 NO2 0 0.0459  0.045   WT -1 0.0093  -0.059   NO 0 0.0002  -0.085  

HNO3
-
 HNO3

-
 -1 0.0000  0.355   Cond -1 0.0238  -0.051   NO2 0 0.0039  0.065  

 NO -1 0.0000  0.262   Cond -2 0.0434  0.046   WT -1 0.0055  -0.063  

 NO 0 0.0000  -0.220  HNO3
-
 HNO3

-
 -1 0.0000  0.334   Pre -2 0.0336  0.048  

 Pre 0 0.0000  -0.119   NO 0 0.0000  -0.187  HNO3
-
 HNO3

-
 -1 0.0000  0.353  

 NO2 -1 0.0000  0.109   NO -1 0.0000  0.182   NO -1 0.0000  0.262  

 WT 0 0.0000  0.103   NO2 -1 0.0000  0.117   NO 0 0.0000  -0.214  

 WT -1 0.0007  0.076   WT -1 0.0002  0.085   Pre 0 0.0000  -0.119  

 Cond 0 0.0115  0.057   Pre 0 0.0002  -0.083   NO2 -1 0.0000  0.115  

 Pre -1 0.0480  -0.045   WT 0 0.0031  0.067   WT -1 0.0000  0.099  

NO NO -1 0.0000  0.459  NO NO -1 0.0000  0.445   WT 0 0.0000  0.098  

 HNO3
-
 0 0.0000  -0.220   HNO3

-
 0 0.0000  -0.187  NO NO -1 0.0000  0.460  

 HNO3
-
 -1 0.0000  -0.142   HNO3

-
 -1 0.0000  -0.130   HNO3

-
 0 0.0000  -0.214  

 NO2 0 0.0000  0.124   NO -2 0.0000  -0.095   HNO3
-
 -1 0.0000  -0.135  

 Pre 0 0.0005  -0.079   TN -1 0.0041  0.065   NO2 0 0.0000  0.120  

 WT -1 0.0042  -0.065   Pre 0 0.0042  -0.065   Pre 0 0.0002  -0.085  

 NO -2 0.0162  -0.054   NO2 -1 0.0055  0.063   WT -1 0.0046  -0.064  

 WT 0 0.0383  0.047   NO2 -2 0.0286  0.050   NO -2 0.0103  -0.058  

NO2 NO2 -1 0.0000  0.365  NO2 NO2 -1 0.0000  0.409   WT 0 0.0283  0.050  
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 NO -1 0.0000  0.353   NO -1 0.0000  0.206   DO -2 0.0446  0.045  

 NO 0 0.0000  0.124   WT -1 0.0036  -0.066  NO2 NO2 -1 0.0000  0.357  

 NO2 -2 0.0002  0.083   WT 0 0.0154  -0.055   NO -1 0.0000  0.356  

 NO -2 0.0202  -0.053   pH 0 0.0230  -0.051   NO 0 0.0000  0.120  

 Pre 0 0.0459  0.045   TN 0 0.0399  -0.046   TP -2 0.0001  0.087  

           NO2 -2 0.0013  0.073  

           Pre 0 0.0039  0.065  

           NO -2 0.0192  -0.053  
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Table S5 

Statistic characteristics of prediction errors (%) for different models in this study (Avg.: average, 

S.D.: Standard deviation). 

Station Model 
Calibration Evaluation 

Avg. S.D. Max Avg. S.D. Max 

TC LSTM 4.33  5.15  53.31  4.06  3.98  33.16  
 Informer 4.08  4.90  45.26  4.12  3.72  27.81  
 WLSTM 4.07  4.94  51.89  3.90  3.80  30.51  
 Winformer 3.55  4.02  29.23  3.30  3.05  24.57  

QS LSTM 3.82  4.27  47.62  4.46  4.38  42.37  
 Informer 3.92  4.56  48.99  4.47  4.44  42.06  
 WLSTM 3.73  4.30  48.39  4.42  4.45  43.03  
 Winformer 3.35  3.92  48.38  3.68  3.60  30.43  

MD LSTM 4.46  5.83  65.13  3.44  4.01  58.99  
 Informer 5.12  6.42  74.60  3.77  4.22  62.99  
 WLSTM 4.41  5.74  63.54  3.48  4.00  58.35  
 Winformer 3.95  4.85  67.80  2.85  2.84  37.01  
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Table S6 

Fitting results of the marginal distribution of TN for different data sets in this study. 

Station Set x̅ Cv Cs α 1/β a0 

TC Cali-Obs 1.13 0.14 0.35 32.65  0.028  0.226  

 
Cali-Pre 1.14 0.13 0.27 54.87  0.020  0.042  

QS Cali-Obs 1.18 0.15 1.3 2.37  0.115  0.908  

 
Cali-Pre 1.18 0.14 1.2 2.78  0.099  0.905  

MD Cali-Obs 1.17 0.17 1.4 2.04  0.139  0.886  

 
Cali-Pre 1.18 0.16 1.1 3.31  0.104  0.837  

Note: x̅ : Mean; Cs: Coefficient of Skewness; Cv: Coefficient of Variation.The parameters of 

Pearson Ⅲ distribution are α, β and a0, respectively. 

α=
4

Cs
2  β=

2

x̅CsCv

  a0=x̅-
2Cvx̅

Cs
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Table S7 

Fitting results of the Copula function for TN observations-predictions pair in different stations. 

Station family Par.1 Par.2 tau AIC BIC 

TC t 0.944  3.127  0.7851  -3526.544  -3515.815 

QS Gumbel 4.024  
 

0.7515  -3338.221  -3332.856 

MD Gumbel 4.329  
 

0.7690  -3599.480  -3594.116 
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Fig. S1. Structures of the LSTM (a) and Informer (b) models.



67 

 

 

Fig. S2. Wavelet decomposition of the TN dynamics in the TC station (S: original series), using the 

db4 mother wavelet with approximation sub-series (A3) and three levels of detailed sub-series (D1 

- D3). 
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Fig. S3. Wavelet decomposition of the TN dynamics in the QS station (S: original series), using the 

db4 mother wavelet with approximation sub-series (A3) and three levels of detailed sub-series (D1 

- D3). 
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Fig. S4. Wavelet decomposition of the TN dynamics in the MD station (S: original series), using 

the db4 mother wavelet with approximation sub-series (A3) and three levels of detailed sub-series 

(D1 - D3).
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Fig. S5. Improvement rates of the WInformer model over other models in the evaluation stages for TN predictions (Note: Improvement rate = 

|Criterion (Winformer)-Criterion (another model)|

Criterion (another model)
×100% 

 


