of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 512, 1696-1709 (2022)
Advance Access publication 2022 February 25

https://doi.org/10.1093/mnras/stac480

Deep learning methods for obtaining photometric redshift estimations
from images

Ben Henghes “,!* Jeyan Thiyagalingam,?> Connor Pettitt,> Tony Hey? and Ofer Lahav!

' Department of Physics & Astronomy, University College London, Gower Street, London WCIE 6BT, UK
2Scientific Computing Department, Rutherford Appleton Laboratory, Science and Technology Facilities Council (STFC), Harwell Campus, Didcot OX11 00X,
UK

Accepted 2022 February 17. Received 2022 February 17; in original form 2021 September 6

ABSTRACT

Knowing the redshift of galaxies is one of the first requirements of many cosmological experiments, and as it is impossible to
perform spectroscopy for every galaxy being observed, photometric redshift (photo-z) estimations are still of particular interest.
Here, we investigate different deep learning methods for obtaining photo-z estimates directly from images, comparing these
with ‘traditional’ machine learning algorithms which make use of magnitudes retrieved through photometry. As well as testing
a convolutional neural network (CNN) and inception-module CNN, we introduce a novel mixed-input model that allows for
both images and magnitude data to be used in the same model as a way of further improving the estimated redshifts. We also
perform benchmarking as a way of demonstrating the performance and scalability of the different algorithms. The data used in
the study comes entirely from the Sloan Digital Sky Survey (SDSS) from which 1 million galaxies were used, each having 5-filtre
(ugriz) images with complete photometry and a spectroscopic redshift which was taken as the ground truth. The mixed-input
inception CNN achieved a mean squared error (MSE) =0.009, which was a significant improvement (30 per cent) over the
traditional random forest (RF), and the model performed even better at lower redshifts achieving a MSE = 0.0007 (a 50 per cent
improvement over the RF) in the range of z < 0.3. This method could be hugely beneficial to upcoming surveys, such as Euclid
and the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), which will require vast numbers of photo-z

estimates produced as quickly and accurately as possible.

Key words: methods: data analysis — galaxies: distances and redshifts —cosmology: observations.

1 INTRODUCTION

In the past decade, the number of galaxies observed by large sky
surveys has been rapidly increasing with hundreds of millions of
galaxies being imaged by surveys such as the Dark Energy Survey
(DES; DES Collaboration 2016), the Kilo-Degree Survey (De Jong
et al. 2013), and Hyper Suprime-Cam (HSC; Aihara et al. 2018).
This ever growing number is set to rise even faster with upcoming
surveys such as Euclid (Amendola et al. 2018), the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time (LSST; Tyson
et al. 2003), and the Roman Space Telescope (formerly WFIRST
— the Wide-Field Infrared Survey Telescope; Spergel et al. 2015)
which will observe many billions of objects. For most cosmological
studies in which galaxies are used, the redshift is a key property
that is required; however, despite spectroscopic surveys, such as the
Dark Energy Spectroscopic Instrument (Flaugher & Bebek 2014;
Martini et al. 2018), only a very small fraction of galaxies have
an associated spectroscopic redshift. Instead, photometric redshift
(photo-z) estimations are necessary.

These photo-z estimates can be obtained using two different
methods (or a combination of both): template fitting, or machine
learning (ML). The template fitting method uses templates of the

* E-mail: ben.henghes.13 @ucl.ac.uk

spectral energy distribution (SED), and by fitting the observed SED
of the galaxy to the template, its redshift can be inferred (Bolzonella,
Miralles & Pell6 2000). ML methods instead use a large training set of
galaxies with labelled ‘true’ values for the redshift (the spectroscopic
redshift) and learn a mapping from the features of the galaxy data
to their redshifts (Collister & Lahav 2004). For traditional ML tech-
niques, such as random forests (RF) or k-Nearest Neighbours (kNN),
these features are taken from the photometry, giving magnitudes in
different filters, which can be combined into colours. However, for
deep learning methods, the image itself can be used as the input, with
the pixel values being akin to features (Hoyle 2016).

There are benefits to each method with template fitting being an
inherently physical model, and by making use of SED templates that
are full spectra, they can be shifted to any redshift and allow for red-
shift estimates to be obtained in ranges without large spectroscopic
data sets (Benitez 2000). ML methods on the other hand require
a representative training sample with the same redshift distribution
as the targets, and as a result are only valid in that range. Despite
this limitation, ML has been increasingly implemented as a faster
method, which is able to produce very accurate photo-z estimates
where there is a sufficiently large training set (Abdalla et al. 2011).

Recently great strides have been made in the field of deep
learning, aided by improving computer architectures and faster
graphics processing units (GPUs), far more difficult tasks can now be

© 2022 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

http://orcid.org/0000-0002-1448-219X
mailto:ben.henghes.13@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/

No. of galaxies

0.0 0.2 0.4 0.6 0.8 1.0
Redshift

Figure 1. Plot showing the redshift distribution of the 1 million galaxies used
in the study. The histogram was plotted with 50 redshift bins between z = 0
and z = 1 and displays the overall redshift distribution of galaxies in SDSS
with the two peaks caused by the difference between the galaxies observed
during the main galaxy survey and BOSS as described by Beck et al. (2016).

performed using much larger data sets (Kirk 2007). In industry, many
companies have been taking advantage of these methods for tasks
which range from creating outfits for fast-fashion (Bettaney et al.
2019), to self driving vehicles (Bojarski et al. 2016). In astronomy,
upcoming surveys, such as Euclid (Amendola et al. 2018), LSST
(Ivezi¢ et al. 2019), the Roman Space Telescope (Spergel et al.
2015), and the Square Kilometer Array (SKA) (Dewdney et al.
2009), will be producing petabytes of data and ML provides a viable
solution to the otherwise unimaginable task of data analysis on such
a scale.

In addition to the difficult task of processing data on these scales,
the photometric redshifts produced must also be highly accurate.
Many cosmological analyses, such as weak-lensing-driven cosmol-
ogy (DES Collaboration 2021; Heymans et al. 2021), rely on having
extremely low errors in the redshift estimates to allow for more
confident predictions of the cosmological parameters (Hildebrandt
et al. 2021; Myles et al. 2021). Indeed, LSST have stated in their
science requirements that the error on the mean redshift must be
below 0.003 (Mandelbaum et al. 2018). Greater accuracy may
naturally be achieved through larger, or novel deep learning methods,
but also through increased emphasis on model interpretability and
robustness to input error.

There are many other benefits to being able to directly use
images rather than photometric features for photo-z estimation,
predominantly that the deep learning algorithms could extract far
more information than from the magnitudes alone (Pasquet et al.
2019; Schuldt et al. 2020). Indeed previous studies such as Soo
et al. (2017) worked hard to include morphological parameters that
are implicitly contained in the images and that the deep learning
algorithms could extract. Furthermore, other work has been done
which found that deep learning methods have been able to produce
photo-z estimates which outperform the previously best performing
traditional methods based on kNN or RFs (D’Isanto & Polsterer
2018). However, the deep learning algorithms are often much slower
and more computationally expensive to run, and there has been little
investigation into whether the benefits of these methods is worthwhile
in the long-term.

Other studies have also demonstrated methods for estimating
probability density functions (PDFs) which can be desirable for
cosmological analyses. Cavuoti et al. (2017) introduced a binned

Deep learning for photo-z 1697

method where the input data point is modulated, and the relative
frequencies of binned output estimates converted to probability
densities. Pasquet et al. (2019) showed that a classifier can be used
in a similar manner where each output ‘class’ is treated as a part of a
binned redshift distribution, while the softmax of the output is taken
to represent a probability density. We treated this problem of photo-
z estimation as a regression problem, where the models produced
a point estimate for the redshift. This allowed us to demonstrate
how the novel mixed-input methods performed and act as a proof
of concept, as well as simplify the comparison between the deep
learning algorithms and traditional methods.

Here, we investigate if it is worth using deep learning on images
compared to traditional ML using only the magnitudes as features,
applying different types of convolutional neural networks (CNNs), as
well as mixed-input models, which use both images and magnitudes
as inputs. In Section 2, we describe the data collected and used to
train and test the ML algorithms, which are outlined in Section 3,
along with the metrics and optimization process. We then present
the results in Section 4 with discussions about how the mixed-input
inception CNN was able to achieve such low errors and outperform
all the other algorithms, before concluding in Section 5.

2 DATA

The data used to train and test the different ML algorithms came
entirely from the Sloan Digital Sky Survey data release 12 (SDSS
DR-12; York et al. 2000; Alam et al. 2015). In this work, we compiled
1059 678 data points each representing a galaxy. We downloaded
the Petrosian magnitudes and spectroscopic redshifts, then acquired
their corresponding images, each one comprising the five wavelength
bands (u, g, 1, i, and z). It was a requirement to have spectroscopy
performed to be able to use the spectroscopic redshift as the ground-
truth, and in order to directly compare methods, the photometric
magnitudes were also required to use as features for both the
traditional ML algorithms and mixed-input models.

While the total number of galaxies which met the requirement of
having an associated spectroscopic redshift was closer to 2 million
(Beck et al. 2016), we decided that a training set of 1 million galaxies
was sufficient. This decision was made as there would not be a large
difference in error performance going from 1 to 2 million galaxies.
Furthermore, the scaling of the algorithms would only be visibly
different with changing orders of magnitude of the training set , and
therefore simulations would have then been required to be able to
include more galaxies and reach the next order of magnitude.

The data set used was also kept clean by requiring complete
photometry where there were no missing values of any magnitudes
which could have negatively impacted the redshift estimations and
biased the results. Furthermore, the redshift range was kept to only
include galaxies with z < 1, with the final distribution of galaxies
used shown in Fig. 1. Although this simplified the problem rather
than having a larger redshift range, this distribution matched that of
the overall SDSS survey as shown by Beck et al. (2016), and as the
data used were representative of SDSS, it therefore allowed for valid
estimates to be made in this range.

To generate the images used by the deep learning algorithms, we
first downloaded the full frames made available by SDSS which
each comprised the five flexible image transport system (fits) files
for the five different filters. For each galaxy within the frame, we then
generated 32 x 32 pixel images by centering the frame on the galaxy
and cropping. We chose 32 x 32 pixel images as they were found to
be sufficiently large to contain the full galaxy and surrounding sky for
even the closer galaxies. When compared with 64 x 64 pixel images

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_f1.eps

1698 B. Henghes et al.

]
i/

o
(=]
-t
=
1
T
b

/
/

1 0:0:1 1

Input

Figure 2. In this figure, we illustrate how a convolutional filter is applied
to an input as a part of a CNN. The filter (or kernel) is applied across the
input, being shifted by the stride (here =1) each time before calculating the
dot product to produce the output.

which other studies had previously used, the smaller galaxy images
allowed for much smaller file sizes and more efficient computations,
as well as decreasing the incidence of image contamination by other
galaxies. Tests were conducted using even smaller 20 x 20 pixel
images, however, they resulted in worse performances by the CNNs,
and as a result the 32 x 32 images were used throughout.

The final result was a set of five 32 x 32 pixel images for each
galaxy which we saved in a numpy array (Harris et al. 2020) with
shape (32 x 32 x 5) which could then be used with the deep learning
PYTHON package KERAS (Chollet et al. 2015), our chosen interface
for TENSORFLOW (Abadi et al. 2015).

3 METHODS

With the magnitude data and images downloaded in a usable format,
we were then able to apply the ML algorithms. The algorithms
tested were as follows. A CNN and an inception module CNN
which both used the image data as the input. A RF and extremely
randomized trees (ERT) that had previously been found to be the best
performing traditional methods (Henghes et al. 2021) and which only
used magnitude features. And two experimental mixed-input models,
which combined a CNN or inception module CNN with a multilayer
perception to use both the image data and magnitude features as
inputs. Each of the algorithms is described in more detail below.

The algorithms were trained multiple times while varying the size
of the training set used (up to 1 million galaxies), and tested on a fixed
test set of 59 678 galaxies. By doing this we were able to benchmark
the different algorithms to determine their scalability as described in
Section 3.8. The optimization process is also described in Section 3.7
and the metrics used to evaluate the models’ performances are given
in Section 3.6.

3.1 Convolutional neural networks

Artificial neural networks are algorithms which aim to mimic the
human brain (McCulloch & Pitts 1943). They are made up of many
interconnected nodes called neurons which, similar to their biological
counterparts, are used to signal and process information. This is done
by taking the inputs, which can either be feature values from the data
(in this case the pixel values from the images), or outputs from other
neurons, and then calculating the weighted sum of of these inputs.
The weights are taken from the connections between neurons and are
the key property which is varied during the training process to learn
the best possible network. A bias is then also added to the weighted

MNRAS 512, 1696-1709 (2022)

sum which is finally passed to an activation function that produces
the output.

Neural networks are comprised of multiple layers with a minimum
of an input layer and output layer, but typically with at least one
‘hidden’ layer of nodes in-between, and in the case of deep neural
networks many hidden layers are employed (LeCun, Bengio &
Hinton 2015). The neurons of each layer are connected to some
(or all in the case of fully connected networks) of the neurons from
the previous layer. CNNs (Fukushima & Miyake 1982) are a type of
deep neural networks that include convolutional layers. They were
also inspired by a biological counterpart in the visual cortex where
neurons only respond to stimulus in a specific region called the
receptive field and the receptive fields of neurons then overlap to
cover the entire region (Hubel & Wiesel 1968).

In CNNs, the convolutional layers act to convolve the input in a
similar way to the visual cortex. The layer works by using filters (or
kernels), which are initially random values that get updated during
training to provide more relevant values. Each filter is applied across
the volume of the input data as shown in Fig. 2, computing the dot
product between the filter values and input values, and produces
an activation map (or feature map). This activation map highlights
regions of the input, learning features or patterns in the input images,
and the maps from all filters are stacked to form the output of the
convolutional layer.

As well as being able to learn features directly from the input image
data, CNNs allow for much smaller overall network architectures,
as filters require far fewer learnable parameters compared with the
equivalent fully connected network. This makes them perfectly suited
to image data where large images would quickly result in exploding
gradients in a traditional neural network. Furthermore, the spatial
relationship between features is preserved by the convolutional
layers, so for data where spatial information is important (like
images), CNNs are a natural choice.

After the convolution, an activation function is used which acts to
introduce nonlinearities and decides which neurons fire. The most
common activation function is the rectified linear unit (ReLU; Nair
& Hinton 2010), which is defined as

0 for x<O
fx)= { (1)
X

for szo

While the sigmoid function and hyperbolic tangent have histor-
ically been popular choices for the activation function, ReLU sets
negative values to 0 and is much faster without decreasing accuracy.
Recently an adapted parametric ReLU was introduced (He et al.
2015), which is an example of a ‘leaky’ ReL.U, defined as

ax for x <O
f(x)={ 2)

)
x for x>0

where the coefficient of leakage, a, is an extra parameter that is also
learned.

Another type of layer which is used in CNNs is the pooling
layer. Pooling layers, like the one shown in Fig. 3, reduce the
size of activation maps by combining the outputs within a set
space (typically 2 x 2). The two types of pooling take either the
maximum value (max-pooling) or average value (average-pooling)
within this space, and by down-sampling, these layers act to further
reduce the computational demand of the CNN, as well as reduce
overfitting.

The final layers which make up most CNNs are fully connected
layers. Unlike the convolutional layer, the neurons of fully connected
layers do not share weights and are connected to every other neuron

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_f2.eps

11234

Figure 3. In this figure we show how the down-sampling is performed by a
(2 x 2) average pooling layer (with stride =2), and how it acts to reduce the
size of the input.

[] []

3x3 convolution 5x5 convolution 1x1 convolution

Figure 4. Figure showing a typical inception module which makes up a part
of the inception module CNN with each layer and kernel size labelled. The
inception module is made of several convolutions, as well as a pooling layer,
each applied in parallel with the (1 x 1) convolutions acting to improve the
computational efficiency. The outputs are then concatenated to produce the
output of the inception module which can then be fed into the CNN similar
to any other layers.

in the previous layer. Typically these final fully connected layers
behave in a similar way to a traditional neural network, taking the
features extracted by the convolutional layers and further processing
the information to reach the final predictions.

The full CNN architecture used in this study is shown in Fig. Al
and made use of two convolutional layers, each followed by an
average pooling layer, to extract the information from the images. It
then fed the flattened 4096 long array into two dense layers, with 1024
followed by 32 neurons, before a final dense layer was used to give
the single value output for the predicted redshift. This architecture
was found to be the most effective simple CNN, and while deeper
models were also tested, we found that the best performance occurred
with only a few layers.

3.2 Inception modules

Many variations of CNNs are possible, one example is the inception
module CNN which makes use of inception modules. These are sets
of convolutional layers applied in parallel rather than sequentially, as
displayed in Fig. 4. Using convolutional layers with a kernel size of
(1 x 1) before then applying larger (3 x 3) or (5 x 5) kernels allows
for more efficient computation for deeper networks (Szegedy et al.
2015).

In the inception module CNN implemented here (shown in
Fig. A3), we used two different sets of inception modules. The first
had the same architecture as displayed in Fig. 4, however, after four

Deep learning for photo-z 1699

sets of these inception modules the resulting output was too small to
usefully apply a (5 x 5) kernel to, and instead we simply removed this
layer from the inception module. Following this smaller inception
module, the flattened 192 long array was fed into two further dense
layers each with 1096 neurons before the final dense layer gave the
predicted redshift.

Unlike the simple CNNs tested, when testing different configura-
tions of inception module CNNs, we found that the deeper models
performed best. As well as changing the depth of the network we also
tested different inception modules, changing the size of the kernels
and swapping the max pooling layer for an average pooling layer.
This resulted in a somewhat different model to that used by Pasquet
et al. (2019) while still resembling the original GoogLeNet network.

3.3 Mixed-input models

Itis also possible to include multiple inputs in a CNN. This works by
defining separate input data and running through networks in parallel
before then combining the networks by concatenating similar to how
the inception modules are built. In this work we experimented with
two mixed-input models which took both SDSS images with shape
(32 x 32 x 5) used by the CNNs, as well as the five magnitudes
(u, g, 1, 1, and z) which were used as the sole features for the RFs.
To handle the magnitude features, a simple multilayer perceptron
(MLP) was used which included five fully connected layers each
with 1024 neurons (for full network architectures used see Figs A2
and A4).

A perfect CNN would theoretically be able to extract all useful
information from the galaxy images (including the magnitudes which
are obtained from performing photometry on the same images),
and hence render the mixed-input models superfluous. However,
as we saw from the results, the mixed-input inception CNN was
able to outperform the inception CNN it was based off, where the
only difference was the magnitude features also being included.
This suggested that the CNN was not able to perfectly extract the
magnitudes from the images, and by explicitly providing them as
additional features to be handled by a MLP, we were able to boost
the performance.

In other cases of ML, it can be ill-advised to use features which are
highly correlated. This is due to the chance that the model will output
results which vary drastically and would not generalize to other data
sets (Goldstein 1993). However, due to the difference in extracting
information from the images through convolutional layers, which
result in more abstract features than the magnitudes, and the fact that
the results we saw suggested the explicit inclusion of magnitude fea-
tures helped rather than hurt the model performance, we concluded
that this was not a multicollinearity issue (Garg & Tai 2013).

There are two additional reasons for avoiding using correlated
features. The first reason is an increase in model complexity which
results in slower models than if fewer, independent features were
used. However, in this case the inclusion of a MLP to handle the
additional magnitude features had a minimal effect on the overall
speed of the model . The second reason is that using correlated
features often makes models less interpretative. This point was also
less of an issue in this case as the addition of the magnitudes as
features was physically motivated and the MLP that handled these
features was kept separate to the rest of the CNN.

This allows the mixed-input models to be thought of as a combi-
nation of two separate models. This process of taking a combination
of different models to give the final prediction is more widely used,
and when using neural networks one has the option to implement
subnetworks (as we have done here). Subnetworks, such as the CNN
and MLP we used, handle the different inputs separately before their

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_f3.eps
art/stac480_f4.eps

1700 B. Henghes et al.

1.0 - 25
Inception module
CNN .

0.8 20
Noe| L3
]
=
z
Z0.4 10

0.2 5

0.0 0

. - 25

4 ERT 2 1 Mixed-input - Mixed-input

s . 4 CNN Inception module’

0.8 CNN 20
506 15
a
[}

2
£ 0.4 10
0.2 5
097 & 0
.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
True z True z True z

Figure 5. Density-scatter plots of the photometric redshift estimates against the true spectroscopic redshift for each of the algorithms tested. The RF and ERT
algorithms both used magnitudes as their input features, whereas the CNN and Inception module CNN used image data, and the mixed-input CNNs used both

images and magnitudes as inputs.

Table 1. Results of testing the different ML algorithms, where each algorithm was trained using 1000 000 galaxies, and the best performance
for each metric is shown in bold. The RF and ERT both used photometric data with only the magnitudes taken as input features, whereas the
CNN and inception module CNN used image data, and the mixed-input CNNs used both images and magnitudes as inputs.

Random Extremely Convolutional Inception Mixed-input Mixed-input
Forest Randomized Neural Module CNN CNN Inception
(RF) Trees (ERT) Network (CNN) CNN

MSE 0.01253 0.01261 0.01009 0.00956 0.00997 0.00916
MAE 0.05003 0.05067 0.04388 0.04310 0.04154 0.03966
R? 0.76154 0.76002 0.80809 0.81810 0.81030 0.82567
Bias 0.00498 0.00538 0.00122 —0.00094 0.00292 0.00878
Precision 0.03076 0.03170 0.02985 0.02987 0.02764 0.02588
Catastrophic Outlier Fraction 0.04722 0.04866 0.03619 0.03309 0.03048 0.03075

outputs are concatenated into a single feature vector which can then
be used to give the final output prediction (Burkov 2019).

3.4 Random forests

RFs (Breiman 2001) are built from many decision trees, where
the predictions of all the individual trees are averaged to give the
prediction of the overall forest. Each decision tree is a non-parametric
algorithm that works by taking the input features and applying simple
if-then-else statements which give decision boundaries to split the
data into branches until eventually the data reache a leaf node where
there are no further splits. The trees are trained recursively whereby
the features splits are chosen to give the most information gain (the
largest difference between the two branches).

MNRAS 512, 1696-1709 (2022)

By averaging the predictions of many individual trees, the resulting
RF has a lower variance. This is also achieved by employing extra
elements of randomness. First, the data used for each tree is a random
subset of the overall training set (Breiman 1996). Secondly, the
feature splits used are taken from a random subset of the total possible
feature splits rather than always taking the split which resulted in the
largest information gain. These random steps result in decision trees
with higher errors, but after averaging the predictions these errors
cancel out and the overall RF is a much more robust model with
lower variance and less overfitting.

3.5 Extremely randomized trees

ERT (Geurts, Ernst & Wehenkel 2006) is an adaptation of the RF
with an additional element of randomness. As well as using a random

20z Aenuep /| uo Jesn uopuo 8bs|j0) AlsieAlun Aq £269£59/9691/2/2 1 S/ol0nie/seiuwl/woo dnoolwspeoe//:sdpy wolj pepeojumoq

art/stac480_f5.eps

0.8 . 40
0.6{ ‘ A - 35
0.4 | - 30
0.2 25

g 0.0 20

-0.2 15
-0.4 : _ 10
—-0.6 5
—99% 02 0.4 0.6 08 o 0

True z

Figure 6. Plot showing the residuals of the mixed-input inception CNN (with
lighter colours indicating denser regions). The residuals, Az, were plotted
against the true redshift, z, to show how the errors scaled with redshift. The
plot clearly displayed the region where no redshifts would be predicted, as
well as there being a slight systematic overestimation at lower spectroscopic
redshifts, with underestimation at higher values.

Training times with varying training set

10*

10°

10?

\{

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

10t

10°

10°*

102 103 104 10° 106
No. Galaxies

—~8&— CNN ~#- RF
~¥— Inception_CNN —a— ERT

—~ Mixed-input Inception CNN
~—#— Mixed-input CNN

Figure 7. Plot showing how the training time changes with the number of
galaxies used in the training set to display how each algorithm scaled.

subset of the possible features, it also takes a random threshold for
each of the features before then using the best of the these random
thresholds as the decision rule. This results in a model with lower
variance at the cost of a slightly greater bias, however, perhaps the
biggest improvement is to the efficiency of the model. As shown by
the benchmarking performed, the ERT is a much faster algorithm
than the RF.

For details of the RF and ERT implemented in this study, we
provide the hyperparameters used in Appendix B.

Deep learning for photo-z 1701

Inference times with varying training set

10!
a
1)
£
=

10°

1071

102 103 104 10° 10°
No. Galaxies
—8— CNN —&— RF —— Mixed-input Inception CNN

~%— Inception_CNN —#— ERT —4— Mixed-input CNN

Figure 8. Plot showing how the inference time changes with the number of
galaxies used in the training set to display how each algorithm scaled.

3.6 Metrics

One of the most important steps of any ML problem is defining
sensible metrics that can be used to evaluate model performance.
As we treated this as a regression problem, where we found a single
value for the photometric redshift, the natural choice was to calculate
the three most commonly used regression metrics: MSE defined as

1 Nsamples — 1

> -2 ©)
i=0

mean absolute error (MAE) given by

MSE(z, 2) =

Nsamples

Nsamples — 1

MAE(z, 2) = lzi — 2, “)

Nsamples i—0

and R squared score (R?) defined as

Z?:l(zi - 21’)2
izt —2)? .

The equations for each metric is given above for a data set with n
galaxies where for the i galaxy, 2; is the predicted redshift, and z;
is the true spectroscopic redshift.

As well as these standard regression metrics, there are three
additional metrics which are commonly used in photometric redshift
estimation. These metrics are the bias, precision, and outlier fraction,
which are all calculated from the residuals, Az, defined as

R*(z,5)=1-— 3)

_ Zpred — Zspec

Az
1 + Zspcc

(0)
The bias is simply defined as the mean of these residuals, given

by

Bias =< Az > . (@)

The precision (also 1.48 x median absolute deviation (MAD; Ilbert
et al. 2006) gives the expected scatter and is defined as

Precision = 1.48 x median(|]Az]). ®)

MNRAS 512, 1696-1709 (2022)

art/stac480_f6.eps
art/stac480_f7.eps
art/stac480_f8.eps

1702 B. Henghes et al.

MSE with varying training set

101
w
wv
=

1072

102 103 10% 10° 108
No. Galaxies
—8— CNN —&— RF —+— Mixed-input Inception CNN

—%— Inception_CNN —#— ERT —4— Mixed-input CNN

Figure 9. Graphs of the mean squared error (MSE) plotted against the
number of galaxies in the training set to show how each algorithm’s
performance scaled.

Finally, the catastrophic outlier fraction is simply the fraction of
predictions with an error greater than a set threshold, here set >0.10,
which is given by

N(|Az]) > 0.10

€)
N total

Catastrophic Outlier Fraction =
The results of our tests are given in Table 1 with each of the metrics
quoted for the various different algorithms.

3.7 Optimization

Optimization is the process of fine tuning the hyperparameters
of ML algorithms to give the best possible predictions. These
hyperparameters are parameters that are set previous to the learning
process and dictate how the algorithms create the mapping from input
data to answer. For traditional methods, such as the RF and ERT, this
optimization can be done by specifying a grid of hyperparameters
and iteratively testing which combination of parameters gives the best
predictions. The process of testing every combination of the specified
grid (called brute-force optimization) is very slow, and instead we
tested 200 random combinations within the hyperparameter grid
(called random optimization) which gave a good estimate of the
best possible parameters in much less time.

Neural networks, such as the CNN, inception module CNN, and
mixed-input models, cannot be optimized in the same way. As well
as being far more computationally expensive, which would make
any brute-force optimization impossibly slow, each network has a
unique architecture which changes the hyperparameters that need
optimizing. In this study, we tested various architectures, and instead
of defining grids of hyperparameters to test, we simply went through
the hyperparameters which have the greatest impact on the models
(such as the number of layers, the number of neurons in each layer,
and the kernel size, stride, and padding of convolutional layers) and
tested different combinations to find the best preforming models.

MNRAS 512, 1696-1709 (2022)

3.8 Benchmarking

Benchmarking is the process of running a set of standardized
tests to determine the relative performance of an object, in this
case iteratively running the training and testing of different ML
algorithms. Here, benchmarking was performed in a similar vein
to Henghes et al. (2021). We recorded the time taken throughout the
ML process and varied the size of the training data set to be able to
compare the efficiency of the various models. By combining these
measurements with the error results for the photometric redshifts,
we were able to better understand the performance of the different
algorithms and give more discussions along with plots in Section 4.

Generally the hardware used to test each algorithm should be
kept the same, however, in this case as we were comparing CNN's
with traditional ML methods, the CNNs were trained using a GPU,
whereas the RF and ERT were trained using the central processing
unit (CPU). While this did change the nature of the comparison, it
was still a valid test as both the GPU and CPU used were simply
standard laptop components (an nvidia GTX1050Ti and intel i9-
8950hk). Additionally, this highlights one of the key differences
between deep learning methods, which are highly parallelizable, and
traditional ML methods, which often are not. Even in the case of
RFs which are also parallelizable, and indeed were run over multiple
CPU cores, they do not benefit to the same extent as CNNs can when
run using thousands of CUDA cores (Kirk 2007).

4 RESULTS

The results of our investigation are presented in multiple ways.
Table 1 details the error metrics achieved by each of the ML
algorithms when using the full 1 million galaxies in the training set.
We plotted density-scatter graphs of the predicted photo-z estimates
against the true spectroscopic redshift in Fig. 5, as well as plotting the
scatter of the error of the best performing mixed-input inception CNN
in Fig. 6, and displaying the results of the benchmarks in Figs 7-9
to show how the different algorithms scaled. Finally, the results of
running the same algorithms on a smaller redshift range of z < 0.3
are discussed in Section 4.1.

Our results showed that the mixed-input inception module CNN
was the best performing algorithm in terms of errors, with a MSE
= 0.009. It also had the best performance in every other metric
other than catastropic outlier fraction and bias, where the mixed-
input (standard) CNN had a slightly better outlier fraction with both
algorithms having just over 3 per cent outliers, and the inception
module CNN had a lower bias due to its remarkably symmetric
predictions as shown in Fig. 5.

Fig. 5 also displays a potential downfall in the majority of the
CNN-based methods, with all but the standard CNN having an initial
redshift cut below which they failed to predict any redshifts at all.
While this was a result of both the architectures selected and the
smaller number of galaxies included in the training set with a redshift
z < 0.05, one would need to be careful to ensure that any algorithm
implemented in a photo-z pipeline could predict redshifts in the full
range.

While the mixed-input inception module CNN showed impressive
performance, it did come at the cost of being the slowest algorithm
tested, which made sense being the most complex model. As seen
from Figs 7 and 8, the two inception module based CNNs were the
slowest algorithms, with the mixed-input model being only slightly
slower in both training and inference than the image only model.
Similarly, the mixed-input CNN was only slightly slower compared
with the CNN, showing that the addition of the magnitude features to

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_f9.eps

Deep learning for photo-z 1703

Table 2. Results of testing the different ML algorithms for the redshift range z < 0.3. Each algorithm was retrained using 400 000 galaxies
with the RF and ERT both using the photometric magnitudes as input data, whereas the CNN and inception module CNN used images, and the

mixed-input CNNs used both images and magnitudes.

Random Extremely Convolutional Inception Mixed-input Mixed-input
Forest Randomized Neural Module CNN CNN Inception
(RF) Trees (ERT) Network (CNN) CNN
MSE 0.00140 0.001 62 0.00072 0.00070 0.001 69 0.000 69
MAE 0.02472 0.028 55 0.01851 0.01773 0.027 85 0.016 93
R? 0.760 04 0.72196 0.87732 0.88074 0.71023 0.88230
Bias 0.00292 0.001 28 0.00713 0.004 47 —0.00670 0.00070
Precision 0.02218 0.028 03 0.01875 0.01691 0.026 31 0.01543
Catastrophic outlier fraction 0.02245 0.02393 0.005 57 0.006 59 0.023 38 0.008 16
Inception module ; 140
CNN i o i
‘ 1120
100
N
E 80
é
& 60
40
20
0
Mixed input Mixed input _—
CNN ‘:‘;ﬁ? inception module
: CNN 120
100
N
©
g 80
S
°
(]
a 60
40
20
0

0.00 0.05 010 015 020 025 0.30

00800 065 010 015 020 025 030

True z

0.00 0.05 0.10 0.15l 0.20 0.25 0.30
True z

True z

Figure 10. Graphs of photometric redshift estimates against the true spectroscopic redshift for ML algorithms retrained on galaxies within the range z < 0.3.

the image-based CNNs means only a small increase in computational
requirements.

We also saw that the traditional ML methods, RF and ERT, were
significantly faster but also worse in terms of their error performance.
While these methods could still be very useful in the absence of
image data, the improvements seen by making use of images made
the CNNs an exciting alternative. Furthermore, by directly using the
image data rather than the magnitude features, one could offset the
increased time required to train the algorithms with the time saved
due to not needing to previously extract features.

What’s more, the RF and ERT also showed the worst scaling of
all the algorithms, slowing down at a faster rate as the number of
galaxies included in the training set was increased. This was due to
the fact that the tree-based algorithms are non-parametric and the
complexity increases with the increasing data set, whereas the neural
networks have a fixed size. Past 1 million galaxies in the training

set the RF was already slower in inference than the CNN, and with
large enough data sets it is possible that they could become almost
as slow during training. If for the largest data sets CNNs become
faster than traditional methods, then their main setback of being
slower and more computationally expensive would no longer be of
concern.

The performance of the RF and ERT highlighted the improvements
possible when including image data rather than using magnitudes
alone, with a reduction in errors of around 25 per cent. The exper-
imental mixed-input models also showed good potential to further
improve performance; however, it was clear that the CNN network
architecture had a greater impact than the addition of the magnitudes
as extra features. The improvement from inception module CNN to
the mixed-input inception CNN was much less than the improvement
from RF or ERT to the CNNs (the improvement from including
images), with a further error reduction at just over 4 per cent.

MNRAS 512, 1696-1709 (2022)

20z Atenuer /| uo Jasn uopuo absjj0) AlisIaAlun AQ £269£59/9691/2/Z 1 S/2I0NB/SBIUW/WO02 dNo olwapeoe//:sdiy Woll papeojumod

art/stac480_f10.eps

1704 B. Henghes et al.

4.1 Lower redshift range

Although the algorithms performed well over the entire data set, we
wanted to also test the performance for a smaller region to be able
to more directly compare with other studies (such as Pasquet et al.
(2019)) and see how much better the performance could be when the
problem of estimating redshifts was made easier by only considering
the range z < 0.3.

The exact same process was carried out using the same six
algorithms and the results from the retrained ML algorithms are
given in Table 2. We also plotted the redshift estimations against the
true spectroscopic redshift in Fig. 10.

From these we saw that in general the algorithms performed
much better, reaffirming the fact that photometric redshift estimation
becomes an easier problem over a shorter range. The mixed-input
inception CNN continued to be the best performing algorithm with
an MSE = 0.0007, however, there was far less separating the CNN
and inception module CNN in the smaller redshift range. In fact, the
CNN performed better than every other algorithm when it came to the
catastrophic outlier fraction with only 0.56 per cent outliers and one
of the best constrained scatter plots (second only to the mixed-input
inception module CNN).

Fig. 10 shows how well constrained the redshift estimates of the
mixed-input inception module CNN were, with a denser region, along
the Zpred = Zspec line. Furthermore, the algorithm no longer exhibited
its previous issue of not predicting redshifts across the full redshift
range. Indeed the algorithms which had a redshift cut in the smaller
redshift range were the RF, ERT, and mixed input CNN, however, in
this case they failed to predict redshifts above a certain value.

There was also a greater disparity between the CNN-based
methods and traditional methods for this smaller redshift range.
While there was around a 30 per cent improvement going from the
RF and ERT to CNNs over the entire data set, this increased to
50 per cent for the smaller redshift range. The image-based CNNs
were therefore able to provide even more advantage in this range,
suggesting that the additional information extracted from the images
is even more beneficial in the smaller range, possibly due to the fact
that the galaxies would generally occupy a larger region of the image.

However, this boost in performance for the redshift range of z < 0.3
also highlighted a key failing of the algorithms, in that an ideal model
would generalize well enough to perform just as well across the entire
redshift range. This might not be realistic as by removing a large
section of the data there was far less chance of having catastrophic
outliers, and the overall problem was made easier.

5 CONCLUSIONS

Processing accurate photometric redshift estimations will remain a
vital task of cosmological analyses. Future surveys, such as Euclid
and LSST, aim to observe more galaxies than ever before, and with
such strict error requirements, it is of upmost importance that the
methods developed and implemented are both effective and efficient.

Here, we have shown how image-based CNN methods compare to
traditional tree-based methods that make use of magnitude features
from photometry. We found that the additional information the CNNs
were able to extract directly from the images of galaxies allowed for
a significant reduction in errors. However, as the CNNs were more
complex than the RF and ERT algorithms, they were also much
slower to run and required far more computational resources.

Our results showed that the experimental mixed-input models in
particular had great potential for photo-z estimation. Using 1 million
images of galaxies to train the algorithm the mixed-input inception

MNRAS 512, 1696-1709 (2022)

CNN was able to achieve a MSE = 0.009. Furthermore, when the
problem was simplified to only include galaxies in the range z <
0.3, the model achieved an even more impressive MSE = 0.0007,
outperforming the traditional RF by > 50 per cent.

Further work would include using even more data with tens or
hundreds of millions of galaxies and images (which would require
the use of large-scale simulations and more powerful computer
architectures). The use of more powerful CPUs and GPUs in high
perfomance computing systems could allow for better practices in
benchmarking and set a standard system. Additionally, by stretching
the amount of data further, we could then determine with certainty at
what point the CNNs would become faster than the RF and ERT, as
well as discover whether increasing the amount of data used in the
training set would eventually have no effect on model performance.
Finally, the models tested here could also be extended to produce
PDFs for the estimated redshifts, and through further optimization
(including using custom loss functions) the errors could be reduced
even more.

ACKNOWLEDGEMENTS

BH was supported by the STFC UCL Centre for Doctoral Training
in Data Intensive Science (grant no. ST/P006736/1). OL thanks
All Souls College, Oxford for a Visiting Fellowship. Authors also
acknowledge the support from following grants: O.L.’s European
Research Council Advanced Grant (TESTDE FP7/291329), STFC
Consolidated Grants (ST/M001334/1 and ST/R000476/1), J.T.’s
UKRI Strategic Priorities Fund (EP/T001569/1), particularly the
Al for Science theme in that grant and the Alan Turing Institute,
Benchmarking for Al for Science at Exascale (BASE), EPSRC
ExCALIBUR Phase I Grant (EP/V001310/1).

Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science.
The SDSS-III website is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium
for the Participating Institutions of the SDSS-III Collaboration,
including the University of Arizona, the Brazilian Participation
Group, Brookhaven National Laboratory, Carnegie Mellon Uni-
versity, University of Florida, the French Participation Group,
the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max
Planck Institute for Extraterrestrial Physics, New Mexico State Uni-
versity, New York University, Ohio State University, Pennsylvania
State University, University of Portsmouth, Princeton University,
the Spanish Participation Group, University of Tokyo, University of
Utah, Vanderbilt University, University of Virginia, University of
Washington, and Yale University.

DATA AVAILABILITY

The data used in this paper came entirely from the SDSS-DR12, and
are openly available from: https://www.sdss.org/dr12/.

REFERENCES

Abadi M. et al., 2015, TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. Available at: https://www.tensorflow.org/
Abdalla F. B., Banerji M., Lahav O., Rashkov V., 2011, MNRAS, 417, 1891
Aihara H. et al., 2018, PASJ, 70, S4

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

http://www.sdss3.org/
https://www.sdss.org/dr12/
https://www.tensorflow.org/
http://dx.doi.org/10.1111/j.1365-2966.2011.19375.x
http://dx.doi.org/10.1093/pasj/psx066

Alam S. et al., 2015, ApJS, 219, 12

Amendola L. et al., 2018, Living Rev. Relativ., 21, 2

Beck R., Dobos L., Budaviri T., Szalay A. S., Csabai L., 2016, MNRAS, 460,
1371

Benitez N., 2000, ApJ, 536, 571

Bettaney E. M., Hardwick S. R., Zisimopoulos O., Chamberlain B. P., 2019,
preprint (arXiv:1904.00741)

Bojarski M. et al., 2016, preprint (arXiv:1604.07316)

Bolzonella M., Miralles J.-M., Pell6 R., 2000, A&A, 363, 476

Breiman L., 1996, Mach. Learn., 24, 123

Breiman L., 2001, Mach. Learn., 45, 5

Burkov A., 2019, The Hundred-Page Machine Learning Book. Quebec City,
QC, Canada, Andriy Burkov

Cavuoti S., Brescia M., Amaro V., Vellucci C., Longo G., Tortora C., 2016,
in IEEE Symposium Series on Computational Intelligence (SSCI), p. 1

Chollet F, et al., 2015, Keras. Available at: https://keras.io

Collister A. A., Lahav O., 2004, PASP, 116, 345

D’Isanto A., Polsterer K. L., 2018, A&A, 609, A111

DES Collaboration, 2016, MNRAS, 460, 1270

DES Collaboration, 2022, Phys. Rev. D, 105, 023520

Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L., 2009, Proc. IEEE,
97, 1482

De Jong J. T., Kleijn G. A. V., Kuijken K. H., Valentijn E. A., 2013, Exp.
Astron., 35, 25

Flaugher B., Bebek C., 2014, in Ground-Based and Airborne Instrumentation
for Astronomy V. SPIE, Bellingham, p. 914708

Fukushima K., Miyake S., 1982, in Competition and Cooperation in Neural
Nets. Kyoto, Japan, Springer, p. 267

Garg A., Tai K., 2013, Int. J. Mod. Identif. Control, 18, 295

Geurts P., Ernst D., Wehenkel L., 2006, Mach. Learn., 63, 3

Goldstein R., 1993, Conditioning Diagnostics: Collinearity and Weak Data
in Regression. Taylor & Francis, NY, USA

Harris C. R. et al., 2020, Nature, 585, 357

He K., Zhang X., Ren S., Sun J., 2015, in Proceedings of the IEEE
International Conference on Computer Vision. p. 1026

Henghes B., Pettitt C., Thiyagalingam J., Hey T., Lahav O., 2021, MNRAS,
505, 4847

Heymans C. et al., 2021, A&A, 646, A140

Hildebrandt H. et al., 2021, A&A, 647, A124

Hoyle B., 2016, Astron. Comput., 16, 34

Hubel D. H., Wiesel T. N., 1968, J. Physiol., 195, 215

Tlbert O. et al., 2006, A&A, 457, 841

Ivezi¢ Z. et al., 2019, ApJ, 873, 111

Kirk D., 2007, in Proceedings of the 6th International Symposium on Memory
Management, ISMM *07, Association for Computing Machinery. p. 103

LeCun Y., Bengio Y., Hinton G., 2015, Nature, 521, 436

Mandelbaum R. et al., 2018, preprint (arXiv:1809.01669)

Martini P. et al., 2018, in Ground-Based and Airborne Instrumentation for
Astronomy VII. SPIE, Bellingham, p. 410

McCulloch W. S., Pitts W., 1943, Bul. Math. Biophys., 5, 115

Myles J. et al., 2021, MNRAS, 505, 4249

Nair V., Hinton G. E., 2010, in International Conference on Machine Learning,
Haifa, p. 807

Pasquet J., Bertin E., Treyer M., Arnouts S., Fouchez D., 2019, A&A, 621,
A26

Schuldt S., Suyu S., Cafiameras R., Taubenberger S., Meinhard T., Leal-Taixé
L., Hsieh B., 2021, A&A, 651, A55

SooJ. Y. H. etal., 2017, MNRAS, 475, 3613

Spergel D. et al., 2015, preprint (arXiv:1503.03757)

Szegedy C. et al., 2015, in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). p. 1

Tyson J., Wittman D., Hennawi J., Spergelb D., 2003, Nucl. Phys. B, 124,
21

York D. G. et al., 2000, AJ, 120, 1579

Deep learning for photo-z 1705

APPENDIX A: NETWORK ARCHITECTURES

In the following pages, we present plots of the full-network architec-
tures used in the four CNN-based methods tested in this paper.

input: | [(None, 32, 32, 5)]
InputLayer
output: | [(None, 32, 32, 5)]
A
mput: (None, 32, 32, 5)
Conv2D
output: | (None, 32, 32, 32)
. mput: | (None, 32, 32, 32)
AveragePooling2D -
output: | (None, 16, 16, 32)
y
input: | (None, 16, 16, 32)
Conv2D
output: | (None, 16, 16, 64)
. input: | (None, 16, 16, 64)
AveragePooling2D
output: (None, 8, 8, 64)
input: | (None, 8, 8, 64)
Flatten
output: | (None, 4096)
mput: | (None, 4096)
Dense
output: | (None, 1024)
mput: | (None, 1024)
Dense
output: (None, 32)
input: | (None, 32)
Dense

output: | (None, 1)

Figure Al. Network architecture of the base CNN tested. The CNN was
constructed with two convolutional layers, each followed by an average
pooling layer to reduce the dimensionality, before the feature map was
flattened to give a 1D feature vector. This could then be handed to the two
dense layers (which are the fully connected layers) that process the features
before the final, single neuron layer is used to give the value of the predicted
redshift.

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

http://dx.doi.org/10.1088/0067-0049/219/1/12
http://dx.doi.org/10.1007/s41114-017-0010-3
http://dx.doi.org/10.1093/mnras/stw1009
http://dx.doi.org/10.1086/308947
http://arxiv.org/abs/1904.00741
http://arxiv.org/abs/1604.07316
https://keras.io
http://dx.doi.org/10.1086/383254
http://dx.doi.org/10.1051/0004-6361/201731326
http://dx.doi.org/10.1093/mnras/stw641
http://dx.doi.org/10.1103/PhysRevD.105.023520
http://dx.doi.org/10.1109/JPROC.2009.2021005
http://dx.doi.org/10.1007/s10686-012-9306-1
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1093/mnras/stab1513
http://dx.doi.org/10.1051/0004-6361/202039063
http://dx.doi.org/10.1051/0004-6361/202039018
http://dx.doi.org/10.1016/j.ascom.2016.03.006
http://dx.doi.org/10.1051/0004-6361:20065138
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1038/nature14539
http://arxiv.org/abs/1809.01669
http://dx.doi.org/10.1093/mnras/stab1515
http://dx.doi.org/10.1051/0004-6361/201833617
http://dx.doi.org/10.1051/0004-6361/202039945
http://dx.doi.org/10.1093/mnras/stx3201
http://arxiv.org/abs/1503.03757
http://dx.doi.org/10.1016/S0920-5632(03)02073-5
http://dx.doi.org/10.1086/301513
art/stac480_fA1.eps

1706 B. Henghes et al.

input [(None, 32, 32, 5)]
InputLayer
output: [[(None, 32, 32, 3)]
y
input: | (None, 32, 32, 5)
Conv2D
output: | (None, 32, 32, 32)
y
o input: | (None, 32, 32, 32) input: | [(None, 5)]
AveragePooling2D InputLayer
output: | (None, 16, 16, 32) output: | [(None, 3)]
nput: | (None, 16, 16, 32) input: (None, 5)
Conv2D Dense
output: | (None, 16, 16, 64) output: | (None, 1024)
. input: | (None, 16, 16, 64) input: | (None, 1024)
AveragePooling2D Dense
output: (None, 8, 8, 64) output: | (None, 1024)
input: | (None, 8, 8, 64) input: | (None, 1024)
Flatten Dense
output: (None, 4096) output: | (None, 1024)
mput: | (None, 4096) mput: | (None, 1024)
Dense Dense
output: | (None, 1024) output: | (None, 1024)
input: | (None, 1024) input: | (None, 1024)
Dense e Dense >
output: (None, 32) output: | (None, 1024)

~N

input: | [(None, 32). (None, 1024)]
output: (None, 1056)

l

Co e

input: | (None, 1056)
Dense

output: | (None, 1024)

mput None, 1024
Dense = :)

output: (None, 1)

Figure A2. Network architecture of the mixed-input CNN. This model used
the same CNN as Al to handle the images, and added a MLP with five
fully connected layers each of 1024 neurons to handle the magnitude data.
The outputs of both were then concatenated before being handed to a fully
connected layer and finally the single neuron layer which gave the value of
the predicted redshift.

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_fA2.eps

Deep learning for photo-z 1707

InputLayer

ouput: | [(None, 32, 32, 5)]

m

AveragePocling2D

I "D‘ input_ [(None. 16, 16.32) |
o2

[inpur | None. 16.16.32) |
2D
| autput: | iNone. 16. 16, 16) |

| output: | None. 16. 16, 32) |

. .1D| input_ | (None. 16, 16.32) |
2 | output | (Nene. 15, 16, 16) |

5 vn‘ input: | (None, 16, 16, m\
anv2)

F— | input: | (None, 16, 16, 16) \
| outpur: | (None. 16, 16. 16) |

[outpur | (None. 16, 16, 16) |

] input: ‘lNl)m 16, 16, 32) |

Conan | 16,16, 32) |
| output: | (None. 16, 16.16) |

[output | (Mane. 16, 16,16} |

mput: \ (Mon

Conv2D

2 | input ‘ [(None, 16, 16, 16), (None, 16, 16, 16), (None, 16, 16, 16), (None, 16, 16, 16)] |
“oncatenate

| output J (None, 16, 16, 64)
[mput [(None, 16, 16, 64) | [t] (Nome, 16, 16, 64) | input | (None, 16, 16, 64)
Com2D Com2D - AveragePooling2D -
[output: | (None. 1616, 161 | [Coutput | (None. 16,16, 16) | output: | (None, 16, 16, 64)
o \ mput: | (None, 16, 16, mj mmz”{ input. | (None, 16, 16, 16) \ - | input: JiNulv:. 16, 16, 64) \ Coxitls | mput: “Num: 16, 16, cm]
| oupur: | (None. 16, 16. 16) | [owpur: | (None. 16, 16, 16) | | outpur | (None. 16, 16, 16) | [ourpur: | {Nane. 16, 16, 16} |
[Cinput: T [(None, 16. 16, 16). (None. 16, 16, 16, (None. 16, 16, 16), (None, 16, 16. 16)] |
Concatenate
[“oupur | (None, 16, 16, 64)
[Cinpuc_[(None, 16, 16, 64) |
= 20
[outpur. | (None 8.8, 64)
input._ | (None, 8. 8, 64) nput. | (None, 8.8, 64) input. | (None, 8. 8, 64)
Com?2 [| | Com2D [Lowor] | AvecagePooling2D) |
| output: | (None, 8,8, 8) | | outpur | iNoe, 8,8, 8) | outpur- | (None, 8, 8, 64)
P [mput [(None.8.8.8) | Comats [Linpue: T (Mone, 5.3.8) | — [inpur_ | (None, 8.8, 64) | coma [input. [pione, 8.5 64) |
[output: | (None, 8,881 | [(output | {None. 8,8, 8) | [output- | (Nane, 8.8,8) | [[output | iNone, 8,881
~ [mput: T [(None, . 8. 8). (None. 8. 8, 8). (None, . 8. 8). (None, 8. &, 8)] |
Concatenate
[outpur: | (None. 8,8, 32) |
J— [mput. [(None.8,8,32) | Cond [mpur:] (None, 8.5, 32) | reacPoolingZD [mpue:] (None. 8,
[oupur: | (None_ 8.8.8) | [‘outpur [None. 5.8 8) | [outpur | (Mone. 8.
[input: | (Mone. 8.%.8) | [input. | (None, 8.8.8) | [iput: | None. 8.8.32) | [imput: T {None. &, 8,32y |
Con2D Conv2D ConvD Com2D
| output | (None, 8, §, 8) \ \ autput: | (None, 8, 8, a;] J output: | (None, 8, 8, 8) \] output. \ (None, 8, 8, 8) |
[mput: | [{None, 8. 8. 8). (None. 8, 8, 8). (None, & 8, 8). (None. §. &, 8)] |
Cancatenate

[output: | (None, 8 8, 32)

(None, 8, &, 32)
(None, 4,4, 3

) mput.
AveragePooling2D

input. | (Nome, 4, 4, 32)
Conv2D AveragePooling2D

outpui: | (None, 4, 4.4) (None. 4.4, 3

[mput:] (None, 4. 4.4 | [mpur | (None. 44,32 | [mpur] (None, 4,432} |
Comv2D Conv2D Conv2D

[[ovtput. | (Hone 4.4 [owput | None 4,44 | [outpu | None 4391

[mput: | [(None. 4. 4.4). (None, 4. 4. 4). (None. 4. 4. 4] |
[outpur: | (None, 4,4, 12)

Concatenate

(Hone. 4.4 12)
Flaen | 22| Glone 44,1 |
(None, 192)

(None, 192)
Dense | P05 [(None, 192)]
(None, 1096)

(None, 1096)
(Nane, 109)

(None, 1096)

Figure A3. Network architecture of the inception module CNN. This model used a single convolutional layer and average pooling layer before applying five
inception modules, where the fifth inception module was a modified version to be smaller and not include a (5 x 5) kernel. Following the inception modules,
the output was flattened to give the feature vector which was processed by two fully connected layers with 1096 neurons, and finally the single neuron layer to
give the predicted redshift.

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_fA3.eps

1708 B. Henghes et al.

[(Nane, 32,32, 5)]
[t [e .51

[input T (None, 52,32, 32} |
| upur | (one, 16, 16, 32)

Comab | input: | (None, 16, 16, 321'] Comts ‘ inpur- | (None, 16, 16, 32) | [input |u~'nm, 16, 16, 32) |

™ oupot | MNone, 16,16, 161 | | =™ [outpu: | (Nane, 16, 16, 161 | ¥ [owput | (None. 16, 16,32 |
ComaD [| (Nome, 16, 16, 16 | ComDs [inpur-_| (dons, 16, 16, 16) | ComiD [mpu: T (Nane, 16, 16,32) | S [input:] on, 1 521
| ouput: | (None, 16, 16. 16) | [outpur: | (None. 16 16, 161 | | output: | (Nane, 16, 16, 16) | | cutpur | (None, 16, 16, 161 |

i [mput | [iNone, 16, 16, 16), (None, 16, 16, 16), (None, 16, 16, 16), (None, 16,16, 16)] |
‘oneatenate
[owpur: | {Nonc, 16, 16, 64) |

. [inpur T None, 16, 16,601 | [[impur: T Nane, 16,1664 | [i (one, 16, 16,64 |
Cony2D¥ Com2D 2!
[output | (None, 16, 16, 16) | | outpur: | (None, 16, 16, 16) | | ourput: | (None, 16, 16, 64) |
CW:D\ input._| (None. 16, 16,161 | Cm“m| ioput._| (None, 16, 16, 16) | Cnmlﬂl input._| (None, 16,16, 64} | Cmwm[mput_| (None, 16, 16, 64) |
[outpur- | None, 16, 16, 161 | | ouput: | None. 16, 16 16) | | outpur: | tone, 16, 16, 16 | | ourpur: | (None, 16, 16, 16) |
) [input | [(None, 16, 16, 16), (Mone. 16, 16. 16), (Nane, 16, 16, 16), (None. 16, 16, 16]] |
Concatenate
[outpur: | (None, 16, 16, 64) |
T inpu_| itlone. 16, 16, 64) |
| mgctvalgt [ouput: | (None. 8,8, 64)
oD [Cinput_[None, 8.5, 64) | ContlDl nput_| None, 86, 64) | Pr——— input | (None. 8. 8, 64)
[putput: | (None, 5,8, 5) | [output: | ane, 8,881 | output: | (None, 8, 8, 64)
conzn [mpur T Nane 58,8 | — [Cinpur. T None. 5.8, 8) | Coman [Cipur | (Mone, 8 8 64} | o [inpur] (None 88 641 |
[outpur: | one, 5,5, %) | [oupur | one, 5,5, 8 | | ouput: | hone, 8,8.8) | [outpur | (Mone, 5.5.8 |
. [input._| [(None. 8, 8. 8). (None, 8. 8, B). (None, 8, 8. 8). (None, 8.8, 8)] |
Cotesats [outpur: | {None, 8, 8, 32)
C‘,MD[iput_| (None 8.8 32) | Conu"D1 inpul_| (Mone_ 8812} | I (Nane. 8, 8, 32)
[oupur | vone. 5.8.8) | [owpur: | (None 5.8 8) | {None, 8, 8, 32)

P [t T one, 8.3.8) | | input. | (None, 5.8.8) | input._| (None, 8. 8,32) |
v
9 [Coupur | (Nane 5.5.8) | [outpur | one. 5,5, 8) | output: | (None,8.8.8) |

e Y

| input \ [(None, &, 8, 8), (None, &, & 8), (None, 8, 8, 8), (None, &, 8, 8] \
[outpur | (None, 8, 8, 32}

| input. | None, 8.8,32) |

ComvD
[oupur | None, 5.5.8) |

Comv2D

Com2D |

Concatenate

input._| (None, 8,8, 32)

AveragePooling2D
| eePoolng2D [7 e o, 44,72

/

input | (None.4,4,32) | [input T (None, 44,321]
| - [Couput | {Hone, 44,52 |

coma |
[Ccutpur | one, 44 4)

input. | (None, 4.4.4) |
ouput | (Nove, 44,4 |

[imput | (None, 4,432 |
[Coutpur | (None 4 4.4 |

Comv2D Com2D

Com2D }

[inpur. | (Mone 4.4.32) | [mput [(None,s)]
[output | None,4.4.4) | e [Coutpur: | one, 1024) |

[Vinput [[(None, 4,4, 4). (None, 4,4, 4), (None, 4,4, 4] |
[outpur | (None, 4,4, 12)

input._ | (None, 1024)
output: | (None, 1024)

Concatenate

‘ Dease

mput. | (None, 4, 4, 12)
output: (None, 192)

input. | (None, 1024)

Flatten
output | (Nene, 1024)

| e

|D¢m [input: T (None, 192)

.:[= e | . [Cinput [(hone, 1024) |
autpul ne.

* [ouput | Mone. 1024) |

|Dem[put: | (Nane, 1096) | ‘ Ume\ input [(None, 1024) |

[autpur. | Nane, 1096) | | output: | (Mone, 1024) |

input: | [(None, 1096], (None, 1024)]
output (Mone. 2120)

‘Concatenate

- (None, 2120)
nse
[output: | (Nane, 1024)

input- | (None, 1024)
o]

Figure A4. Network architecture of the mixed-input inception CNN. This model used the same inception module CNN as A3 to handle the images, and added
the same five layer MLP which was used in A2 to handle the magnitude features. The outputs of both were concatenated and handed to a single fully connected
layer before the final single neuron layer gave the predicted redshift.

APPENDIX B: HYPERPARAMETERS and ERT methods tested in this investigation.

Here, we present a table detailing the hyperpameters used by the RF

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

art/stac480_fA4.eps

Deep learning for photo-z 1709

Table B1. Grids of hyperparameters that were used in the RF and
ERT, selected by the random optimization.

Classifier Hyperparameter Selected value
RF ‘no. estimators’ 200
‘max. features’ 2
‘min. samples leaf’ 7
‘min. samples split’ 3
‘min weight fraction leaf’ 0
‘criterion’ mse
ERT ‘no. estimators’ 147
‘max. features’ 4
‘min. samples leaf’ 3
‘min. samples split’ 87
‘min weight fraction leaf’ 0
‘criterion’ mse

This paper has been typeset from a TEX/IXTEX file prepared by the author.

MNRAS 512, 1696-1709 (2022)

$20z Arenuer /| uo Jasn uopuoT abs|j0) AlsisAlun Aq £Z269£59/9691/2/2 1 G/o/0NE/SeIuW/Woo dnoolwapeoe//:sdiy Woll papeojumod

	1 INTRODUCTION
	2 DATA
	3 METHODS
	4 RESULTS
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: NETWORK ARCHITECTURES
	APPENDIX B: HYPERPARAMETERS

