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A B S T R A C T 

Knowing the redshift of galaxies is one of the first requirements of many cosmological experiments, and as it is impossible to 

perform spectroscopy for every galaxy being observed, photometric redshift (photo- z) estimations are still of particular interest. 
Here, we investigate different deep learning methods for obtaining photo- z estimates directly from images, comparing these 
with ‘traditional’ machine learning algorithms which make use of magnitudes retrieved through photometry. As well as testing 

a convolutional neural network (CNN) and inception-module CNN, we introduce a no v el mix ed-input model that allows for 
both images and magnitude data to be used in the same model as a way of further improving the estimated redshifts. We also 

perform benchmarking as a way of demonstrating the performance and scalability of the different algorithms. The data used in 

the study comes entirely from the Sloan Digital Sky Survey (SDSS) from which 1 million galaxies were used, each having 5-filtre 
(ugriz) images with complete photometry and a spectroscopic redshift which was taken as the ground truth. The mixed-input 
inception CNN achieved a mean squared error ( MSE ) = 0.009, which was a significant impro v ement (30 per cent ) o v er the 
traditional random forest (RF), and the model performed even better at lower redshifts achieving a MSE = 0.0007 (a 50 per cent 
impro v ement o v er the RF) in the range of z < 0.3. This method could be hugely beneficial to upcoming surv e ys, such as Euclid 

and the Vera C. Rubin Observatory’s Le gac y Surv e y of Space and Time (LSST), which will require vast numbers of photo- z 
estimates produced as quickly and accurately as possible. 
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 I N T RO D U C T I O N  

n the past decade, the number of galaxies observed by large sky
urv e ys has been rapidly increasing with hundreds of millions of
alaxies being imaged by surv e ys such as the Dark Energy Surv e y
DES; DES Collaboration 2016 ), the Kilo-Degree Survey (De Jong
t al. 2013 ), and Hyper Suprime-Cam (HSC; Aihara et al. 2018 ).
his ever growing number is set to rise even faster with upcoming
urv e ys such as Euclid (Amendola et al. 2018 ), the Vera C. Rubin
bservatory’s Le gac y Surv e y of Space and Time (LSST; Tyson

t al. 2003 ), and the Roman Space Telescope (formerly WFIRST
the Wide-Field Infrared Surv e y Telescope; Spergel et al. 2015 )
hich will observe many billions of objects. For most cosmological

tudies in which galaxies are used, the redshift is a key property
hat is required; ho we ver, despite spectroscopic surveys, such as the
ark Energy Spectroscopic Instrument (Flaugher & Bebek 2014 ;
artini et al. 2018 ), only a very small fraction of galaxies have

n associated spectroscopic redshift. Instead, photometric redshift
photo- z) estimations are necessary. 

These photo- z estimates can be obtained using two different
ethods (or a combination of both): template fitting, or machine

earning (ML). The template fitting method uses templates of the
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pectral energy distribution (SED), and by fitting the observed SED
f the galaxy to the template, its redshift can be inferred (Bolzonella,
iralles & Pell ́o 2000 ). ML methods instead use a large training set of

alaxies with labelled ‘true’ values for the redshift (the spectroscopic
edshift) and learn a mapping from the features of the galaxy data
o their redshifts (Collister & Lahav 2004 ). For traditional ML tech-
iques, such as random forests (RF) or k-Nearest Neighbours (kNN),
hese features are taken from the photometry, giving magnitudes in
ifferent filters, which can be combined into colours. However, for
eep learning methods, the image itself can be used as the input, with
he pixel values being akin to features (Hoyle 2016 ). 

There are benefits to each method with template fitting being an
nherently physical model, and by making use of SED templates that
re full spectra, they can be shifted to any redshift and allow for red-
hift estimates to be obtained in ranges without large spectroscopic
ata sets (Benitez 2000 ). ML methods on the other hand require
 representative training sample with the same redshift distribution
s the targets, and as a result are only valid in that range. Despite
his limitation, ML has been increasingly implemented as a faster
ethod, which is able to produce very accurate photo- z estimates
here there is a sufficiently large training set (Abdalla et al. 2011 ). 
Recently great strides have been made in the field of deep

earning, aided by improving computer architectures and faster
raphics processing units (GPUs), far more difficult tasks can now be
© 2022 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Plot showing the redshift distribution of the 1 million galaxies used 
in the study. The histogram was plotted with 50 redshift bins between z = 0 
and z = 1 and displays the o v erall redshift distribution of galaxies in SDSS 
with the two peaks caused by the difference between the galaxies observed 
during the main galaxy surv e y and BOSS as described by Beck et al. ( 2016 ). 

p  

c
w  

2  

u  

(  

2
2  

s
a

 

t
M
o  

e
c
e  

s
b
n
b
r

i
p
m
2  

e  

a
a
w
p
t
2  

a  

i
i

p
c

m  

f
d  

i  

b  

t  

z

a  

h  

o  

l
 

c
a
w
a  

t  

a
t  

i  

a

2

T  

e  

D  

1
t
t
b  

p  

t
m  

t
 

h
(  

w  

d  

F
d  

t  

i
 

p
w
b  

i  

u  

t  

t  

d  

e
 

fi
e
f  

g  

a  

b  

e  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/512/2/1696/6536923 by U
niversity C

ollege London user on 17 January 2024
erformed using much larger data sets (Kirk 2007 ). In industry, many
ompanies have been taking advantage of these methods for tasks 
hich range from creating outfits for f ast-f ashion (Bettaney et al.
019 ), to self driving vehicles (Bojarski et al. 2016 ). In astronomy,
pcoming surv e ys, such as Euclid (Amendola et al. 2018 ), LSST
Ivezi ́c et al. 2019 ), the Roman Space Telescope (Spergel et al.
015 ), and the Square Kilometer Array (SKA) (Dewdney et al. 
009 ), will be producing petabytes of data and ML provides a viable
olution to the otherwise unimaginable task of data analysis on such 
 scale. 

In addition to the difficult task of processing data on these scales,
he photometric redshifts produced must also be highly accurate. 

any cosmological analyses, such as weak-lensing-driven cosmol- 
gy (DES Collaboration 2021 ; Heymans et al. 2021 ), rely on having
xtremely low errors in the redshift estimates to allow for more 
onfident predictions of the cosmological parameters (Hildebrandt 
t al. 2021 ; Myles et al. 2021 ). Indeed, LSST have stated in their
cience requirements that the error on the mean redshift must be 
elow 0.003 (Mandelbaum et al. 2018 ). Greater accuracy may 
aturally be achieved through larger, or novel deep learning methods, 
ut also through increased emphasis on model interpretability and 
obustness to input error. 

There are many other benefits to being able to directly use 
mages rather than photometric features for photo- z estimation, 
redominantly that the deep learning algorithms could extract far 
ore information than from the magnitudes alone (Pasquet et al. 

019 ; Schuldt et al. 2020 ). Indeed previous studies such as Soo
t al. ( 2017 ) w ork ed hard to include morphological parameters that
re implicitly contained in the images and that the deep learning 
lgorithms could extract. Furthermore, other work has been done 
hich found that deep learning methods have been able to produce 
hoto- z estimates which outperform the previously best performing 
raditional methods based on kNN or RFs (D’Isanto & Polsterer 
018 ). Ho we ver, the deep learning algorithms are often much slower
nd more computationally e xpensiv e to run, and there has been little
nvestigation into whether the benefits of these methods is worthwhile 
n the long-term. 

Other studies have also demonstrated methods for estimating 
robability density functions (PDFs) which can be desirable for 
osmological analyses. Cavuoti et al. ( 2017 ) introduced a binned 
ethod where the input data point is modulated, and the relative
requencies of binned output estimates converted to probability 
ensities. Pasquet et al. ( 2019 ) showed that a classifier can be used
n a similar manner where each output ‘class’ is treated as a part of a
inned redshift distribution, while the softmax of the output is taken
o represent a probability density. We treated this problem of photo-
 estimation as a regression problem, where the models produced 
 point estimate for the redshift. This allowed us to demonstrate
ow the no v el mix ed-input methods performed and act as a proof
f concept, as well as simplify the comparison between the deep
earning algorithms and traditional methods. 

Here, we investigate if it is worth using deep learning on images
ompared to traditional ML using only the magnitudes as features, 
pplying different types of convolutional neural networks (CNNs), as 
ell as mixed-input models, which use both images and magnitudes 

s inputs. In Section 2 , we describe the data collected and used to
rain and test the ML algorithms, which are outlined in Section 3 ,
long with the metrics and optimization process. We then present 
he results in Section 4 with discussions about how the mixed-input
nception CNN was able to achieve such low errors and outperform
ll the other algorithms, before concluding in Section 5 . 

 DATA  

he data used to train and test the different ML algorithms came
ntirely from the Sloan Digital Sk y Surv e y data release 12 (SDSS
R-12; York et al. 2000 ; Alam et al. 2015 ). In this work, we compiled
059 678 data points each representing a galaxy. We downloaded 
he Petrosian magnitudes and spectroscopic redshifts, then acquired 
heir corresponding images, each one comprising the five wavelength 
ands (u, g, r, i, and z). It w as a requirement to have spectroscop y
erformed to be able to use the spectroscopic redshift as the ground-
ruth, and in order to directly compare methods, the photometric 
agnitudes were also required to use as features for both the

raditional ML algorithms and mixed-input models. 
While the total number of galaxies which met the requirement of

aving an associated spectroscopic redshift was closer to 2 million 
Beck et al. 2016 ), we decided that a training set of 1 million galaxies
as sufficient. This decision was made as there would not be a large
ifference in error performance going from 1 to 2 million galaxies.
urthermore, the scaling of the algorithms would only be visibly 
ifferent with changing orders of magnitude of the training set , and
herefore simulations would have then been required to be able to
nclude more galaxies and reach the next order of magnitude. 

The data set used was also kept clean by requiring complete
hotometry where there were no missing values of any magnitudes 
hich could have negatively impacted the redshift estimations and 
iased the results. Furthermore, the redshift range was kept to only
nclude galaxies with z < 1, with the final distribution of galaxies
sed shown in Fig. 1 . Although this simplified the problem rather
han having a larger redshift range, this distribution matched that of
he o v erall SDSS surv e y as shown by Beck et al. ( 2016 ), and as the
ata used were representative of SDSS, it therefore allowed for valid
stimates to be made in this range. 

To generate the images used by the deep learning algorithms, we
rst downloaded the full frames made available by SDSS which 
ach comprised the five flexible image transport system (fits) files 
or the five different filters. For each galaxy within the frame, we then
enerated 32 × 32 pixel images by centering the frame on the galaxy
nd cropping. We chose 32 × 32 pixel images as they were found to
e sufficiently large to contain the full galaxy and surrounding sky for
ven the closer galaxies. When compared with 64 × 64 pixel images
MNRAS 512, 1696–1709 (2022) 
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Figure 2. In this figure, we illustrate how a convolutional filter is applied 
to an input as a part of a CNN. The filter (or kernel) is applied across the 
input, being shifted by the stride (here = 1) each time before calculating the 
dot product to produce the output. 
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hich other studies had previously used, the smaller galaxy images
llowed for much smaller file sizes and more efficient computations,
s well as decreasing the incidence of image contamination by other
alaxies. Tests were conducted using even smaller 20 × 20 pixel
mages, ho we v er, the y resulted in worse performances by the CNNs,
nd as a result the 32 × 32 images were used throughout. 

The final result was a set of five 32 × 32 pixel images for each
alaxy which we saved in a numpy array (Harris et al. 2020 ) with
hape (32 × 32 × 5) which could then be used with the deep learning
YTHON package KERAS (Chollet et al. 2015 ), our chosen interface
or TENSORFLOW (Abadi et al. 2015 ). 

 M E T H O D S  

ith the magnitude data and images downloaded in a usable format,
e were then able to apply the ML algorithms. The algorithms

ested were as follows. A CNN and an inception module CNN
hich both used the image data as the input. A RF and extremely

andomized trees (ERT) that had previously been found to be the best
erforming traditional methods (Henghes et al. 2021 ) and which only
sed magnitude features. And two experimental mixed-input models,
hich combined a CNN or inception module CNN with a multilayer
erception to use both the image data and magnitude features as
nputs. Each of the algorithms is described in more detail below. 

The algorithms were trained multiple times while varying the size
f the training set used (up to 1 million galaxies), and tested on a fixed
est set of 59 678 galaxies. By doing this we were able to benchmark
he different algorithms to determine their scalability as described in
ection 3.8 . The optimization process is also described in Section 3.7
nd the metrics used to e v aluate the models’ performances are given
n Section 3.6 . 

.1 Convolutional neural networks 

rtificial neural networks are algorithms which aim to mimic the
uman brain (McCulloch & Pitts 1943 ). They are made up of many
nterconnected nodes called neurons which, similar to their biological
ounterparts, are used to signal and process information. This is done
y taking the inputs, which can either be feature values from the data
in this case the pixel values from the images), or outputs from other
eurons, and then calculating the weighted sum of of these inputs.
he weights are taken from the connections between neurons and are

he key property which is varied during the training process to learn
he best possible network. A bias is then also added to the weighted
NRAS 512, 1696–1709 (2022) 
um which is finally passed to an acti v ation function that produces
he output. 

Neural networks are comprised of multiple layers with a minimum
f an input layer and output layer, but typically with at least one
hidden’ layer of nodes in-between, and in the case of deep neural
etworks many hidden layers are employed (LeCun, Bengio &
inton 2015 ). The neurons of each layer are connected to some

or all in the case of fully connected networks) of the neurons from
he previous layer. CNNs (Fukushima & Miyake 1982 ) are a type of
eep neural networks that include convolutional layers. They were
lso inspired by a biological counterpart in the visual cortex where
eurons only respond to stimulus in a specific region called the
eceptive field and the receptive fields of neurons then o v erlap to
o v er the entire region (Hubel & Wiesel 1968 ). 

In CNNs, the convolutional layers act to convolve the input in a
imilar way to the visual cortex. The layer works by using filters (or
ernels), which are initially random values that get updated during
raining to provide more rele v ant v alues. Each filter is applied across
he volume of the input data as shown in Fig. 2 , computing the dot
roduct between the filter values and input values, and produces
n acti v ation map (or feature map). This acti v ation map highlights
egions of the input, learning features or patterns in the input images,
nd the maps from all filters are stacked to form the output of the
onvolutional layer. 

As well as being able to learn features directly from the input image
ata, CNNs allow for much smaller o v erall network architectures,
s filters require far fewer learnable parameters compared with the
qui v alent fully connected netw ork. This mak es them perfectly suited
o image data where large images would quickly result in exploding
radients in a traditional neural network. Furthermore, the spatial
elationship between features is preserved by the convolutional
ayers, so for data where spatial information is important (like
mages), CNNs are a natural choice. 

After the convolution, an acti v ation function is used which acts to
ntroduce nonlinearities and decides which neurons fire. The most
ommon acti v ation function is the rectified linear unit (ReLU; Nair
 Hinton 2010 ), which is defined as 

 ( x) = 

{ 

0 for x < 0 

x for x ≥ 0 
. (1) 

While the sigmoid function and hyperbolic tangent have histor-
cally been popular choices for the acti v ation function, ReLU sets
e gativ e values to 0 and is much faster without decreasing accuracy.
ecently an adapted parametric ReLU was introduced (He et al.
015 ), which is an example of a ‘leaky’ ReLU, defined as 

 ( x) = 

{ 

ax for x < 0 

x for x ≥ 0 
, (2) 

here the coefficient of leakage, a , is an extra parameter that is also
earned. 

Another type of layer which is used in CNNs is the pooling
ayer. Pooling layers, like the one shown in Fig. 3 , reduce the
ize of acti v ation maps by combining the outputs within a set
pace (typically 2 × 2). The two types of pooling take either the
aximum value (max-pooling) or average value (average-pooling)
ithin this space, and by down-sampling, these layers act to further

educe the computational demand of the CNN, as well as reduce
 v erfitting. 
The final layers which make up most CNNs are fully connected

ayers. Unlike the convolutional layer, the neurons of fully connected
ayers do not share weights and are connected to every other neuron

art/stac480_f2.eps
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Figure 3. In this figure we show how the down-sampling is performed by a 
(2 × 2) average pooling layer (with stride = 2), and how it acts to reduce the 
size of the input. 

Figure 4. Figure showing a typical inception module which makes up a part 
of the inception module CNN with each layer and kernel size labelled. The 
inception module is made of several convolutions, as well as a pooling layer, 
each applied in parallel with the (1 × 1) convolutions acting to impro v e the 
computational efficiency. The outputs are then concatenated to produce the 
output of the inception module which can then be fed into the CNN similar 
to any other layers. 
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n the previous layer. Typically these final fully connected layers 
ehave in a similar way to a traditional neural network, taking the
eatures extracted by the convolutional layers and further processing 
he information to reach the final predictions. 

The full CNN architecture used in this study is shown in Fig. A1
nd made use of two convolutional layers, each followed by an 
verage pooling layer, to extract the information from the images. It
hen fed the flattened 4096 long array into two dense layers, with 1024
ollowed by 32 neurons, before a final dense layer was used to give
he single value output for the predicted redshift. This architecture 
as found to be the most ef fecti ve simple CNN, and while deeper
odels were also tested, we found that the best performance occurred 
ith only a few layers. 

.2 Inception modules 

any variations of CNNs are possible, one example is the inception 
odule CNN which makes use of inception modules. These are sets

f convolutional layers applied in parallel rather than sequentially, as 
isplayed in Fig. 4 . Using convolutional layers with a kernel size of
1 × 1) before then applying larger (3 × 3) or (5 × 5) kernels allows
or more efficient computation for deeper networks (Szegedy et al. 
015 ). 
In the inception module CNN implemented here (shown in 

ig. A3 ), we used two different sets of inception modules. The first
ad the same architecture as displayed in Fig. 4 , ho we ver, after four
ets of these inception modules the resulting output was too small to
sefully apply a (5 × 5) kernel to, and instead we simply remo v ed this
ayer from the inception module. Following this smaller inception 

odule, the flattened 192 long array was fed into two further dense
ayers each with 1096 neurons before the final dense layer gave the
redicted redshift. 
Unlike the simple CNNs tested, when testing different configura- 

ions of inception module CNNs, we found that the deeper models
erformed best. As well as changing the depth of the network we also
ested different inception modules, changing the size of the kernels 
nd swapping the max pooling layer for an average pooling layer.
his resulted in a somewhat different model to that used by Pasquet
t al. ( 2019 ) while still resembling the original GoogLeNet network.

.3 Mixed-input models 

t is also possible to include multiple inputs in a CNN. This works by
efining separate input data and running through networks in parallel 
efore then combining the networks by concatenating similar to how 

he inception modules are built. In this work we experimented with
wo mixed-input models which took both SDSS images with shape 
32 × 32 × 5) used by the CNNs, as well as the five magnitudes
u, g, r, i, and z) which were used as the sole features for the RFs.
o handle the magnitude features, a simple multilayer perceptron 
MLP) was used which included five fully connected layers each 
ith 1024 neurons (for full network architectures used see Figs A2

nd A4 ). 
A perfect CNN would theoretically be able to extract all useful

nformation from the galaxy images (including the magnitudes which 
re obtained from performing photometry on the same images), 
nd hence render the mixed-input models superfluous. Ho we ver, 
s we saw from the results, the mixed-input inception CNN was
ble to outperform the inception CNN it was based off, where the
nly difference was the magnitude features also being included. 
his suggested that the CNN was not able to perfectly extract the
agnitudes from the images, and by explicitly providing them as 

dditional features to be handled by a MLP, we were able to boost
he performance. 

In other cases of ML, it can be ill-advised to use features which are
ighly correlated. This is due to the chance that the model will output
esults which vary drastically and would not generalize to other data
ets (Goldstein 1993 ). Ho we ver, due to the difference in extracting
nformation from the images through convolutional layers, which 
esult in more abstract features than the magnitudes, and the fact that
he results we saw suggested the explicit inclusion of magnitude fea-
ures helped rather than hurt the model performance, we concluded 
hat this was not a multicollinearity issue (Garg & Tai 2013 ). 

There are two additional reasons for a v oiding using correlated
eatures. The first reason is an increase in model complexity which
esults in slower models than if fewer, independent features were 
sed. Ho we ver, in this case the inclusion of a MLP to handle the
dditional magnitude features had a minimal effect on the o v erall
peed of the model . The second reason is that using correlated
eatures often makes models less interpretative. This point was also 
ess of an issue in this case as the addition of the magnitudes as
eatures was physically moti v ated and the MLP that handled these
eatures was kept separate to the rest of the CNN. 

This allows the mixed-input models to be thought of as a combi-
ation of two separate models. This process of taking a combination
f different models to give the final prediction is more widely used,
nd when using neural networks one has the option to implement
ubnetworks (as we have done here). Subnetworks, such as the CNN
nd MLP we used, handle the different inputs separately before their
MNRAS 512, 1696–1709 (2022) 
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Figure 5. Density-scatter plots of the photometric redshift estimates against the true spectroscopic redshift for each of the algorithms tested. The RF and ERT 

algorithms both used magnitudes as their input features, whereas the CNN and Inception module CNN used image data, and the mixed-input CNNs used both 
images and magnitudes as inputs. 

Table 1. Results of testing the different ML algorithms, where each algorithm was trained using 1000 000 galaxies, and the best performance 
for each metric is shown in bold. The RF and ERT both used photometric data with only the magnitudes taken as input features, whereas the 
CNN and inception module CNN used image data, and the mixed-input CNNs used both images and magnitudes as inputs. 

Random Extremely Convolutional Inception Mixed-input Mixed-input 
Forest Randomized Neural Module CNN CNN Inception 
(RF) Trees (ERT) Network (CNN) CNN 

MSE 0.01253 0.01261 0.01009 0 .00956 0.00997 0.00916 
MAE 0.05003 0.05067 0.04388 0 .04310 0.04154 0.03966 
R 

2 0.76154 0.76002 0.80809 0 .81810 0.81030 0.82567 
Bias 0.00498 0.00538 0.00122 − 0 .00094 0.00292 0.00878 
Precision 0.03076 0.03170 0.02985 0 .02987 0.02764 0.02588 
Catastrophic Outlier Fraction 0.04722 0.04866 0.03619 0 .03309 0.03048 0.03075 
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utputs are concatenated into a single feature vector which can then
e used to give the final output prediction (Burkov 2019 ). 

.4 Random forests 

Fs (Breiman 2001 ) are built from many decision trees, where
he predictions of all the individual trees are averaged to give the
rediction of the o v erall forest. Each decision tree is a non-parametric
lgorithm that works by taking the input features and applying simple
f-then-else statements which give decision boundaries to split the
ata into branches until eventually the data reache a leaf node where
here are no further splits. The trees are trained recursively whereby
he features splits are chosen to give the most information gain (the
argest difference between the two branches). 
NRAS 512, 1696–1709 (2022) 
By averaging the predictions of many individual trees, the resulting
F has a lower variance. This is also achieved by employing extra
lements of randomness. First, the data used for each tree is a random
ubset of the o v erall training set (Breiman 1996 ). Secondly, the
eature splits used are taken from a random subset of the total possible
eature splits rather than al w ays taking the split which resulted in the
argest information gain. These random steps result in decision trees
ith higher errors, but after averaging the predictions these errors

ancel out and the o v erall RF is a much more robust model with
o wer v ariance and less o v erfitting. 

.5 Extremely randomized trees 

RT (Geurts, Ernst & Wehenkel 2006 ) is an adaptation of the RF
ith an additional element of randomness. As well as using a random
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Figure 6. Plot showing the residuals of the mixed-input inception CNN (with 
lighter colours indicating denser regions). The residuals, �z, were plotted 
against the true redshift, z, to sho w ho w the errors scaled with redshift. The 
plot clearly displayed the region where no redshifts would be predicted, as 
well as there being a slight systematic o v erestimation at lower spectroscopic 
redshifts, with underestimation at higher values. 

Figure 7. Plot showing how the training time changes with the number of 
galaxies used in the training set to display how each algorithm scaled. 
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Figure 8. Plot showing how the inference time changes with the number of 
galaxies used in the training set to display how each algorithm scaled. 
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ubset of the possible features, it also takes a random threshold for
ach of the features before then using the best of the these random
hresholds as the decision rule. This results in a model with lower
ariance at the cost of a slightly greater bias, ho we ver, perhaps the
iggest impro v ement is to the efficienc y of the model. As shown by
he benchmarking performed, the ERT is a much faster algorithm 

han the RF. 
For details of the RF and ERT implemented in this study, we

rovide the hyperparameters used in Appendix B . 
.6 Metrics 

ne of the most important steps of any ML problem is defining
ensible metrics that can be used to e v aluate model performance.
s we treated this as a regression problem, where we found a single
alue for the photometric redshift, the natural choice was to calculate 
he three most commonly used regression metrics: MSE defined as 

SE ( z, ̂  z ) = 

1 

n samples 

n samples −1 ∑ 

i= 0 

( z i − ˆ z i ) 
2 , (3) 

ean absolute error (MAE) given by 

AE ( z, ̂  z ) = 

1 

n samples 

n samples −1 ∑ 

i= 0 

| z i − ˆ z i | , (4) 

nd R squared score ( R 

2 ) defined as 

 

2 ( z, ̂  z ) = 1 −
∑ n 

i= 1 ( z i − ˆ z i ) 2 ∑ n 

i= 1 ( z i − z̄ ) 2 
. (5) 

The equations for each metric is giv en abo v e for a data set with n
alaxies where for the i th galaxy, ˆ z i is the predicted redshift, and z i 
s the true spectroscopic redshift. 

As well as these standard regression metrics, there are three 
dditional metrics which are commonly used in photometric redshift 
stimation. These metrics are the bias, precision, and outlier fraction, 
hich are all calculated from the residuals, �z, defined as 

z = 

z pred − z spec 

1 + z spec 
. (6) 

The bias is simply defined as the mean of these residuals, given
y 

ias = < �z > . (7) 

he precision (also 1.48 × median absolute deviation (MAD; Ilbert 
t al. 2006 ) gives the expected scatter and is defined as 

recision = 1 . 48 × median ( | �z| ) . (8) 
MNRAS 512, 1696–1709 (2022) 
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M

Figure 9. Graphs of the mean squared error (MSE) plotted against the 
number of galaxies in the training set to show how each algorithm’s 
performance scaled. 
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inally, the catastrophic outlier fraction is simply the fraction of
redictions with an error greater than a set threshold, here set > 0.10,
hich is given by 

atastrophic Outlier Fraction = 

N ( | �z| ) > 0 . 10 

N total 
. (9) 

The results of our tests are given in Table 1 with each of the metrics
uoted for the various different algorithms. 

.7 Optimization 

ptimization is the process of fine tuning the hyperparameters
f ML algorithms to give the best possible predictions. These
yperparameters are parameters that are set previous to the learning
rocess and dictate how the algorithms create the mapping from input
ata to answer. For traditional methods, such as the RF and ERT, this
ptimization can be done by specifying a grid of hyperparameters
nd iteratively testing which combination of parameters gives the best
redictions. The process of testing every combination of the specified
rid (called brute-force optimization) is very slow, and instead we
ested 200 random combinations within the hyperparameter grid
called random optimization) which gave a good estimate of the
est possible parameters in much less time. 
Neural networks, such as the CNN, inception module CNN, and
ixed-input models, cannot be optimized in the same way. As well

s being far more computationally e xpensiv e, which would make
ny brute-force optimization impossibly slow, each network has a
nique architecture which changes the hyperparameters that need
ptimizing. In this study, we tested various architectures, and instead
f defining grids of hyperparameters to test, we simply went through
he hyperparameters which have the greatest impact on the models
such as the number of layers, the number of neurons in each layer,
nd the kernel size, stride, and padding of convolutional layers) and
ested different combinations to find the best preforming models. 
NRAS 512, 1696–1709 (2022) 
.8 Benchmarking 

enchmarking is the process of running a set of standardized
ests to determine the relative performance of an object, in this
ase iteratively running the training and testing of different ML
lgorithms. Here, benchmarking was performed in a similar vein
o Henghes et al. ( 2021 ). We recorded the time taken throughout the

L process and varied the size of the training data set to be able to
ompare the efficiency of the various models. By combining these
easurements with the error results for the photometric redshifts,
e were able to better understand the performance of the different

lgorithms and give more discussions along with plots in Section 4 . 
Generally the hardware used to test each algorithm should be

ept the same, ho we ver, in this case as we were comparing CNNs
ith traditional ML methods, the CNNs were trained using a GPU,
hereas the RF and ERT were trained using the central processing
nit (CPU). While this did change the nature of the comparison, it
as still a valid test as both the GPU and CPU used were simply

tandard laptop components (an nvidia GTX1050Ti and intel i9-
950hk). Additionally, this highlights one of the key differences
etween deep learning methods, which are highly parallelizable, and
raditional ML methods, which often are not. Even in the case of
Fs which are also parallelizable, and indeed were run o v er multiple
PU cores, they do not benefit to the same extent as CNNs can when

un using thousands of CUDA cores (Kirk 2007 ). 

 RESULTS  

he results of our investigation are presented in multiple ways.
able 1 details the error metrics achieved by each of the ML
lgorithms when using the full 1 million galaxies in the training set.
e plotted density-scatter graphs of the predicted photo- z estimates

gainst the true spectroscopic redshift in Fig. 5 , as well as plotting the
catter of the error of the best performing mixed-input inception CNN
n Fig. 6 , and displaying the results of the benchmarks in Figs 7 –9
o show how the different algorithms scaled. Finally, the results of
unning the same algorithms on a smaller redshift range of z < 0.3
re discussed in Section 4.1 . 

Our results showed that the mixed-input inception module CNN
as the best performing algorithm in terms of errors, with a MSE
 0.009. It also had the best performance in every other metric

ther than catastropic outlier fraction and bias, where the mixed-
nput (standard) CNN had a slightly better outlier fraction with both
lgorithms having just o v er 3 per cent outliers, and the inception
odule CNN had a lower bias due to its remarkably symmetric

redictions as shown in Fig. 5 . 
Fig. 5 also displays a potential downfall in the majority of the

NN-based methods, with all but the standard CNN having an initial
edshift cut below which they failed to predict any redshifts at all.

hile this was a result of both the architectures selected and the
maller number of galaxies included in the training set with a redshift
 < 0.05, one would need to be careful to ensure that any algorithm
mplemented in a photo- z pipeline could predict redshifts in the full
ange. 

While the mixed-input inception module CNN showed impressive
erformance, it did come at the cost of being the slowest algorithm
ested, which made sense being the most complex model. As seen
rom Figs 7 and 8 , the two inception module based CNNs were the
lowest algorithms, with the mixed-input model being only slightly
lower in both training and inference than the image only model.
imilarly, the mixed-input CNN was only slightly slower compared
ith the CNN, showing that the addition of the magnitude features to
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Table 2. Results of testing the different ML algorithms for the redshift range z < 0.3. Each algorithm was retrained using 400 000 galaxies 
with the RF and ERT both using the photometric magnitudes as input data, whereas the CNN and inception module CNN used images, and the 
mixed-input CNNs used both images and magnitudes. 

Random Extremely Convolutional Inception Mixed-input Mixed-input 
Forest Randomized Neural Module CNN CNN Inception 
(RF) Trees (ERT) Network (CNN) CNN 

MSE 0.001 40 0.001 62 0.000 72 0.000 70 0 .001 69 0.000 69 
MAE 0.024 72 0.028 55 0.018 51 0.017 73 0 .027 85 0.016 93 
R 

2 0.760 04 0.721 96 0.877 32 0.880 74 0 .710 23 0.882 30 
Bias 0.002 92 0.001 28 0.007 13 0.004 47 − 0 .006 70 0.000 70 
Precision 0.022 18 0.028 03 0.018 75 0.016 91 0 .026 31 0.015 43 
Catastrophic outlier fraction 0.022 45 0.023 93 0.005 57 0.006 59 0 .023 38 0.008 16 

Figure 10. Graphs of photometric redshift estimates against the true spectroscopic redshift for ML algorithms retrained on galaxies within the range z < 0.3. 
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he image-based CNNs means only a small increase in computational 
equirements. 

We also saw that the traditional ML methods, RF and ERT, were
ignificantly faster but also worse in terms of their error performance. 

hile these methods could still be very useful in the absence of
mage data, the impro v ements seen by making use of images made
he CNNs an exciting alternative. Furthermore, by directly using the 
mage data rather than the magnitude features, one could offset the 
ncreased time required to train the algorithms with the time saved 
ue to not needing to previously extract features. 
What’s more, the RF and ERT also showed the worst scaling of

ll the algorithms, slowing down at a faster rate as the number of
alaxies included in the training set was increased. This was due to
he fact that the tree-based algorithms are non-parametric and the 
omplexity increases with the increasing data set, whereas the neural 
etworks have a fixed size. Past 1 million galaxies in the training
et the RF was already slower in inference than the CNN, and with
arge enough data sets it is possible that they could become almost
s slow during training. If for the largest data sets CNNs become
aster than traditional methods, then their main setback of being 
lower and more computationally e xpensiv e would no longer be of 
oncern. 

The performance of the RF and ERT highlighted the impro v ements
ossible when including image data rather than using magnitudes 
lone, with a reduction in errors of around 25 per cent . The exper-
mental mixed-input models also showed good potential to further 
mpro v e performance; ho we ver, it w as clear that the CNN netw ork
rchitecture had a greater impact than the addition of the magnitudes
s extra features. The improvement from inception module CNN to 
he mixed-input inception CNN was much less than the improvement 
rom RF or ERT to the CNNs (the impro v ement from including
mages), with a further error reduction at just o v er 4 per cent . 
MNRAS 512, 1696–1709 (2022) 
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.1 Lower redshift range 

lthough the algorithms performed well o v er the entire data set, we
anted to also test the performance for a smaller region to be able

o more directly compare with other studies (such as Pasquet et al.
 2019 )) and see how much better the performance could be when the
roblem of estimating redshifts was made easier by only considering
he range z < 0.3. 

The exact same process was carried out using the same six
lgorithms and the results from the retrained ML algorithms are
iven in Table 2 . We also plotted the redshift estimations against the
rue spectroscopic redshift in Fig. 10 . 

From these we saw that in general the algorithms performed
uch better, reaffirming the fact that photometric redshift estimation

ecomes an easier problem o v er a shorter range. The mixed-input
nception CNN continued to be the best performing algorithm with
n MSE = 0.0007, ho we ver, there w as f ar less separating the CNN
nd inception module CNN in the smaller redshift range. In fact, the
NN performed better than every other algorithm when it came to the
atastrophic outlier fraction with only 0 . 56 per cent outliers and one
f the best constrained scatter plots (second only to the mixed-input
nception module CNN). 

Fig. 10 sho ws ho w well constrained the redshift estimates of the
ixed-input inception module CNN were, with a denser region, along

he z pred = z spec line. Furthermore, the algorithm no longer exhibited
ts previous issue of not predicting redshifts across the full redshift
ange. Indeed the algorithms which had a redshift cut in the smaller
edshift range were the RF, ERT, and mixed input CNN, ho we ver, in
his case they failed to predict redshifts above a certain value. 

There was also a greater disparity between the CNN-based
ethods and traditional methods for this smaller redshift range.
hile there was around a 30 per cent impro v ement going from the

F and ERT to CNNs o v er the entire data set, this increased to
0 per cent for the smaller redshift range. The image-based CNNs
ere therefore able to provide even more advantage in this range,

uggesting that the additional information extracted from the images
s even more beneficial in the smaller range, possibly due to the fact
hat the galaxies would generally occupy a larger region of the image.

Ho we ver, this boost in performance for the redshift range of z < 0.3
lso highlighted a key failing of the algorithms, in that an ideal model
ould generalize well enough to perform just as well across the entire

edshift range. This might not be realistic as by removing a large
ection of the data there was far less chance of having catastrophic
utliers, and the o v erall problem was made easier. 

 C O N C L U S I O N S  

rocessing accurate photometric redshift estimations will remain a
ital task of cosmological analyses. Future surv e ys, such as Euclid
nd LSST , aim to observe more galaxies than ever before, and with
uch strict error requirements, it is of upmost importance that the
ethods developed and implemented are both effective and efficient.
Here, we have shown how image-based CNN methods compare to

raditional tree-based methods that make use of magnitude features
rom photometry. We found that the additional information the CNNs
ere able to extract directly from the images of galaxies allowed for
 significant reduction in errors. Ho we ver, as the CNNs were more
omplex than the RF and ERT algorithms, they were also much
lower to run and required far more computational resources. 

Our results showed that the e xperimental mix ed-input models in
articular had great potential for photo- z estimation. Using 1 million
mages of galaxies to train the algorithm the mixed-input inception
NRAS 512, 1696–1709 (2022) 
NN was able to achieve a MSE = 0.009. Furthermore, when the
roblem was simplified to only include galaxies in the range z <
.3, the model achieved an even more impressive MSE = 0.0007,
utperforming the traditional RF by > 50 per cent . 
Further w ork w ould include using even more data with tens or

undreds of millions of galaxies and images (which would require
he use of large-scale simulations and more powerful computer
rchitectures). The use of more powerful CPUs and GPUs in high
erfomance computing systems could allow for better practices in
enchmarking and set a standard system. Additionally, by stretching
he amount of data further, we could then determine with certainty at
hat point the CNNs would become faster than the RF and ERT, as
ell as disco v er whether increasing the amount of data used in the

raining set would eventually have no effect on model performance.
inally, the models tested here could also be extended to produce
DFs for the estimated redshifts, and through further optimization
including using custom loss functions) the errors could be reduced
ven more. 
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n the following pages, we present plots of the full-network architec-
ures used in the four CNN-based methods tested in this paper. 
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Figure A2. Network architecture of the mixed-input CNN. This model used 
the same CNN as A1 to handle the images, and added a MLP with five 
fully connected layers each of 1024 neurons to handle the magnitude data. 
The outputs of both were then concatenated before being handed to a fully 
connected layer and finally the single neuron layer which gave the value of 
the predicted redshift. 
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Figure A3. Network architecture of the inception module CNN. This model used a single convolutional layer and average pooling layer before applying five 
inception modules, where the fifth inception module was a modified version to be smaller and not include a (5 × 5) kernel. Following the inception modules, 
the output was flattened to give the feature vector which was processed by two fully connected layers with 1096 neurons, and finally the single neuron layer to 
give the predicted redshift. 
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Figure A4. Network architecture of the mixed-input inception CNN. This model used the same inception module CNN as A3 to handle the images, and added 
the same five layer MLP which was used in A2 to handle the magnitude features. The outputs of both were concatenated and handed to a single fully connected 
layer before the final single neuron layer gave the predicted redshift. 

APPENDIX  B:  H Y P E R PA R A M E T E R S  

Here, we present a table detailing the hyperpameters used by the RF 
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Table B1. Grids of hyperparameters that were used in the RF and 
ERT, selected by the random optimization. 

Classifier Hyperparameter Selected value 

RF ‘no. estimators’ 200 
‘max. features’ 2 

‘min. samples leaf’ 7 
‘min. samples split’ 3 

‘min weight fraction leaf’ 0 
‘criterion’ mse 

ERT ‘no. estimators’ 147 
‘max. features’ 4 

‘min. samples leaf’ 3 
‘min. samples split’ 87 

‘min weight fraction leaf’ 0 
‘criterion’ mse 
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