Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI

Erick J. Canales-Rodríguez1,2 | Marco Pizzolato2,3 | Feng-Lei Zhou4,5 | Muhamed Barakovic6 | Jean-Philippe Thiran1,7,8 | Derek K. Jones9 | Geoffrey J. M. Parker4,10,11 | Tim B. Dyrby2,3

Correspondence
Erick J. Canales-Rodríguez, Signal Processing Laboratory (LTSS), EPFL-STI-IEL-LTSS, Station 11, CH-1015 Lausanne, Switzerland.
Email: erick.canalesrodriguez@epfl.ch

Funding information
Wellcome Trust, Grant/Award Numbers: 096646/Z/11/Z, 104943/Z/14/Z; EPSRC, Grant/Award Number: EP/M020533/1; European Research Council, Grant/Award Number: 101044180; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: PZ00P2_185814; Danmarks Frie Forskningsfond, Grant/Award Number: 10.46540/3105-00129B; UCL Department of Medical Physics and Biomedical Engineering, the NIHR UCLH Biomedical Research Centre

Abstract

Purpose: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T\textsubscript{2}-based pore size estimation technique.

Theory and Methods: A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images.

Results: Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T\textsubscript{2}-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes.

Conclusion: The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T\textsubscript{2}-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.

KEYWORDS
biomorphic phantoms, diffusion MRI, fiber radius, microstructure, T\textsubscript{2} relaxometry
INTRODUCTION

Accurately measuring the diameter of axons in vivo has been a crucial goal in diffusion MRI (dMRI),1-13 because the axon diameter modulates the speed of action potentials along the axon and may serve as a biomarker of axonal degeneration.14-17 However, existing dMRI techniques are affected by a resolution limit, or diameter lower-bound, below which smaller axons cannot be detected. This limit is determined by the experimental setup, particularly the strength of the diffusion encoding gradient and the SNR.3,18 Unfortunately, dMRI signals collected in 3T clinical scanners equipped with diffusion gradients below 80 mT/m have a higher resolution limit,18 allowing only the detection of large axons. For additional discussions, the reader is referred to Edgar et al.,19 Dyrbey et al.,20 Caminiti et al.,21 and Innocenti et al.22,23

As a result, dMRI-based diameter estimation techniques are primarily implemented in advanced human “Connectom” scanners with stronger diffusion gradients (i.e., 300 mT/m)24 and preclinical scanners.7 A recent study has shown that the effective radius—defined as the “apparent” MRI-visible mean axon radius representing the entire axon radius distribution within a voxel—can be estimated by eliminating two crucial confounding factors from the dMRI signal that affected previous studies: extra-axonal water and axonal orientation dispersion.5

This method is referred to as the spherical mean power-law approach.

Alternatively, in porous media and tissues, pore and cell sizes can be estimated using a surface-based T2 relaxation model.25-30 This model predicts a linear dependence between the inverse of the intra-pore/cell T2 and the surface-to-volume ratio of the confining pore/cell geometry,31 which is proportional to the inverse of the radius for a cylinder. However, this technique cannot be directly applied in living tissue to estimate axon radius because the T2 measured by conventional quantitative MRI techniques is affected by both the intra-axonal and extra-axonal water compartments. To overcome this limitation, we recently proposed a new diffusion-relaxation MRI approach for quantifying axon radii32,33 based on estimating the intra-axonal T2 relaxation time.34

In practice, both approaches for estimating axon radii—the spherical mean power-law method2 and the T2-based pore size estimation technique35—involve collecting a first dMRI dataset using a fixed echo time (TE > 50 ms) long enough to attenuate the myelin water dMRI signal35 and multiple diffusion gradients orientations with a high b-value (e.g., $b \geq 4000–6000 \text{s/mm}^2$ for in vivo data) to attenuate the extra-axonal dMRI signal.36

This way, the acquisition parameters act as a filter, significantly reducing the contribution of water molecules from all white matter compartments to the measured dMRI signal, but not the intra-axonal space. The difference between the two acquisition approaches lies in how the second data block is acquired. The spherical mean power-law method requires measuring another dMRI dataset using the same TE and much higher b-values (e.g., $b \geq 10000 \text{s/mm}^2$ for in vivo data) with ultra-strong diffusion gradients only available on specific scanners. This is needed to reduce the resolution limit.18 On the other hand, the T2-based pore size estimation method requires collecting another dMRI dataset using the same b-value used in the first acquisition block, but using different TEs. In both techniques, the dimensionality of the data is reduced before fitting the models by computing the orientation-averaged spherical mean signal, which is a rotationally invariant metric that does not depend on the underlying fiber orientation distribution.37 This strategy effectively reduces the number of parameters estimated in the diffusion and relaxation models.

In the spherical mean power-law approach,2 the intra-axonal radial diffusivity D_\perp is calculated from the dMRI data acquired with high and ultra-high b-values, which is then converted into a radius by using the van Gelderen model based on the Gaussian phase distribution approximation.38 Conversely, for the T2-based pore size estimation method,33 the intra-axonal T2 time is determined from the dMRI data acquired using multiple TEs, following the approach suggested by McKinnon and Jensen.34 The intra-axonal T2 is subsequently converted into a radius using a surface-based relaxation model30,39 that requires a calibration process to determine the T2 surface relaxivity, an unknown parameter that depends on the relaxation properties of the inner axon surface.33 The main practical disadvantage of the calibration step is that it requires knowing the ground-truth radius in some brain regions, which is information that is not always available.

Although both methods hold great promise for accurate pore/cell size estimation, a systematic evaluation of these techniques in a controlled setting with a known ground truth has yet to be conducted. Additionally, the absence of a comprehensive multi-contrast diffusion-relaxation model for the spherical mean signal generated by water molecules within a distribution of pore sizes (or axon radii) represents a notable limitation that hinders our ability to elucidate the theoretical relationship between these techniques.

To overcome these limitations, this study outlines the following objectives: (1) formulate a theoretical diffusion-relaxation model capable of encompassing both the spherical mean power-law and T2-based methods. This formulation shall be helpful to clarify the main assumptions underpinning each approach. (2) Evaluate
both techniques using diffusion-relaxation MRI data acquired in biomimetic phantoms where the ground truth is known. These phantoms consist of co-electrospun hollow axon-mimicking microfibers with non-circular cross-sections and different radii distributions. (3) Introduce a novel numerical approach for calculating effective radius from radius distributions measured via scanning electron microscopy (SEM). This numerical approach is necessary to circumvent the limitations associated with previous approximated analytical expressions, which are not accurate for the range of pore sizes in the used phantoms.

2 | THEORY

2.1 | Intra-pore diffusion-relaxation MRI model

This section introduces a diffusion-relaxation model for the spherical mean MRI signal generated by water molecules filling the intra-pore space of a distribution of cylinders with different radii. This formulation unifies into a single model the two techniques evaluated in this study:

$$\overline{S}(b, TE) = k \int \frac{P(r)r^2S_{\text{Rel}}(TE, r)S_{\text{Diff}}(b, r)dr}{P(r)r^2dr},$$ \hspace{1cm} (1)

where the spherical mean diffusion-relaxation signal $S(b, TE)$ depends on the b-value and TE, k is a constant proportional to the total intra-pore volume, r denotes the radius, $P(r)$ is the radius distribution, and the volumetric correction factor r^2 accounts for the volume-weighted nature of the measured MRI signal (i.e., the signal intensity from each cylinder is proportional to the number of water molecules inside the cylinder, and therefore, to its volume).

The T_2 relaxation-weighted MRI signal $S_{\text{Rel}}(TE, r)$ for a cylinder with radius r is

$$S_{\text{Rel}}(TE, r) = \exp\left(-\frac{TE}{T_2(r)}\right),$$ \hspace{1cm} (2)

where the intra-pore transversal relaxation time T_2 depends on r, according to Brownstein and Tarr, Barakovic et al. and Zimmerman and Brittin.

$$\frac{1}{T_2} = \frac{1}{T_2^b} + \frac{2\rho_2}{r},$$ \hspace{1cm} (3)

where T_2^b denotes the T_2 relaxation time of the bulk (free) water filling the cylinders and ρ_2 is the T_2 surface relaxivity depending on the phantom material.

The spherical mean diffusion-weighted signal $S_{\text{Diff}}(b, r)$ from a cylinder with radius r, in Eq. (1), is modeled as

$$\overline{S}_{\text{Diff}}(b, r) = \sqrt{\frac{\pi}{4}} \exp(-D_{\perp}(b)r) \frac{erf\left(\frac{b(D_{\parallel} - D_{\perp}(r))}{\sqrt{b(D_{\parallel} - D_{\perp}(r))}}\right)}{\sqrt{b(D_{\parallel} - D_{\perp}(r))}},$$ \hspace{1cm} (4)

which is the spherical mean signal equation for an axis-symmetric diffusion tensor, where erf denotes the error function, and the radial diffusivity D_{\perp} depends on r according to the van Gelderen model, defined in Eq. (A1) in Appendix A.

In the following two subsections, we will examine the necessary approximations required to derive the T_2-based pore size estimation technique and the spherical mean power-law method from the more general model presented in Eqs. (1–4).

2.2 | Intra-pore pure relaxation MRI model: T_2-based estimation technique

When the data is measured using a diffusion gradient that is not sufficiently strong, the sensitivity of the diffusion-weighted signal to the cylinder radius is significantly reduced, that is, the diffusion signal becomes proximately proportional to the radial diffusion signal. Similar to the spherical mean power-law method described in the next subsection, the integral in Eq. (5) is approximated by the relaxation signal from a single cylinder with an effective radius characterizing the whole distribution

$$\overline{S}(TE) \approx K\overline{S}_{\text{Rel}}(TE, r_{\text{eff-MRI-R}}).$$ \hspace{1cm} (6)

Notably, the T_2-based pore size estimation technique, as proposed in Barakovic et al., relies on the pure relaxation model defined in Eq. (6). Note that $r_{\text{eff-MRI-R}}$ denotes the effective MRI-visible radius resulting from the relaxation process.
2.3 Intra-pore pure diffusion MRI model: Spherical mean power-law

If the relaxation signal $\overline{S}_{\text{Rel}}(TE, r)$ can be neglected in Eq. (1), (e.g., by assuming that $T_2^* \rho_2$ is a constant independent of r) when $\rho_2 \to 0$, then it can be treated as a constant term and moved outside the integral. Accordingly, the diffusion-relaxation model is simplified, resulting in a pure diffusion model

$$
\overline{S}(b) \approx \beta \int P(r) r^2 \overline{S}_{\text{Diff}}(b, r) dr \int P(r) r^2 dr,
$$

(7)

where β is a constant to be estimated that absorbed the relaxation signal. The integral in Eq. (7) is approximated by the spherical mean diffusion signal from a cylinder with an effective radius:

$$
\overline{S}(b) \approx \beta \overline{S}_{\text{Diff}}(b, r_{\text{eff-MRI-D}}).
$$

(8)

where $r_{\text{eff-MRI-D}}$ denotes the effective MRI-visible radius resulting from the diffusion process. Notice that $r_{\text{eff-MRI-D}}$ and the effective radius calculated from the relaxation process described in the previous subsection $r_{\text{eff-MRI-R}}$ are not necessarily equal, as the MRI signals from both modalities may have different sensitivities to pore size.

It is important to note that the spherical mean power-law technique for estimating axon radius presented in Veraart et al.\(^2\) is based on Eq. (8). In that study, however, the authors simplified the model by using two additional approximations (1): the term involving the error function in Eq. (4) was omitted because it tends to one for the axon radii found in the brain; and (2) the van Gelderen model defined by Eq. (A1) relating D_\perp and r was replaced by the wide pulse approximation derived by Neuman,\(^42\) which is valid for small radii and long pulses ($\Delta \gg \delta \gg r_1^2/D_\parallel$); for more details see Eq. (A2) in Appendix A. However, because these approximations are not valid for large radii, such as those measured in our phantoms, in this study we estimated the axon radii using the more general expressions given by Eqs. (8), (4), and (A1) using the van Gelderen model, as suggested by Andersson et al.\(^43\)

For theoretical purposes only, in Appendix A Eq. (A3) (see also Figure C1 of Appendix C), we introduce a new approximation for a broader application in the regime of medium-pulse times, $\Delta \gg \delta \gg r_1^2/D_\parallel$, which is more accurate than Neuman’s approximation for both small and large radii.

2.4 Numerical effective radius

We evaluate the relaxation and diffusion models in Eqs. (6) and (8) by comparing the effective radii $r_{\text{eff-MRI-R}}$ and $r_{\text{eff-MRI-D}}$ estimated from the MRI data with the actual effective radius of the biomimetic phantoms determined from the underlying radius distribution $P(r)$, which was measured in our study using SEM. However, the method for estimating the actual effective radius from $P(r)$ has a significant limitation. The standard formula for calculating the effective radius $r_{\text{eff}} \approx \left(\langle r^4 \rangle / \langle r^2 \rangle \right)^{1/4}$ from the 6th and 4th moments of $P(r)^{2,44}$ was derived under the wide pulse approximation by Neuman. Therefore, it is only valid for small radii,\(^43\) much smaller than the ones measured in the phantoms. Hence, this formula cannot be used in the evaluation. For further information, refer to Figure C1 in Appendix C.

To address this issue, we propose a new numerical approach to estimate effective radius from $P(r)$, which is valid for radius distributions with both small and large radii. This approach generates the synthetic relaxation $\overline{S}_{\text{Rel-SEM}}$ and diffusion $\overline{S}_{\text{Diff-SEM}}$ signals produced by the actual radius distribution $P(r)$. The synthetic signals are generated by discretizing the integrals in Eqs. (5) and (7) using the measured radii, respectively:

$$
\begin{align*}
\overline{S}_{\text{Rel-SEM}}(TE, \rho_2) & \approx K \sum_{i=1}^{N} \left(\frac{r_i}{\sum_{j=1}^{N} r_j^{2}} \right) \overline{S}_{\text{Rel}}(TE, r_i, \rho_2), \\
\overline{S}_{\text{Diff-SEM}}(b) & \approx \beta \sum_{i=1}^{N} \left(\frac{r_i}{\sum_{j=1}^{N} r_j^{2}} \right) \overline{S}_{\text{Diff}}(b, r_i),
\end{align*}
$$

(9)

where $\{r_i, i = 1, \ldots, N\}$ denotes the set of N radii measured per phantom.

By using the same equations used to predict the effective radius from the MRI data, (i.e., Eqs. [6] and [8]), it is then possible to estimate the SEM-based effective radii $r_{\text{eff-SEM-R}}$ and $r_{\text{eff-SEM-D}}$ from these synthetic signals for the assumed relaxation and diffusion models.

Additionally, for the pure relaxation model, we consider a further approximation to estimate the effective radius by calculating the ratio of the second and first moments of $P(r)$, $r_{\text{eff-SEM-R}} = \langle r^2 \rangle / \langle r \rangle$. This approximation is based on a Taylor expansion of the relaxation model, presented in Appendix B. Notice that $r_{\text{eff-SEM}}$ provides an approximation to the value of $r_{\text{eff-SEM-R}}$. It is estimated directly from the radius distribution and does not involve generating a synthetic relaxation signal.

3 METHODS

3.1 Phantom construction and characterization

Five phantom samples consisting of micron-scale hollow fibers mimicking axons in white matter were built using the co-electrospinning technique\(^45\) to produce microfibers with a different distribution of inner fiber radius per
phantom. Each phantom was constructed by concatenating various phantom samples (layer substrates) created to have similar distributions of fiber radii.

The inner fiber radii of each phantom were measured using five SEM images taken from different phantom samples. The SEM images were captured using a Phenom ProX desktop SEM (Thermo Fisher Scientific) with an accelerating voltage of 5 kV. The ImageJ software (imagej.nih.gov/ij) was used to analyze the SEM images, following the methods described in Zhou et al.46 and Huang et al.47 Specifically, for each sample, the SEM images underwent a process of binarization and thresholding. Subsequently, the intra-fiber area of each pore was determined using the “Analyze Particles” feature in ImageJ. The automated measurements of each intra-fiber area (A_i) were then transformed into the corresponding inner fiber radius under the assumption that the cross-section of the pore is circular. This transformation was achieved through the formula $r_i = \sqrt{A_i}/\pi$, where r_i represents the inner fiber radius of each ith measured pore. Therefore, the inner fiber radius is defined as the radius of a cylinder with the same cross-sectional area (or volume) as the pore, ensuring that the computed radius reflects the pore’s volumetric properties.

Phantom 1, 3, 4, and 5 were composed of parallel fibers with different radii, whereas Phantom 2 comprised two groups of parallel fibers with an inter-fiber angle of 90°. Phantom 1 and Phantom 2 were designed to have similar distributions of fiber radius.

All phantoms were placed inside 15 mL centrifuge tubes filled with de-ionized water. An additional control tube only containing de-ionized free water was also studied. The control tube was used to estimate the diffusion coefficient and T_2 relaxation time of the de-ionized water.

3.2 Data acquisition

Diffusion-relaxation and multi-shell dMRI data were collected using a 7T Bruker preclinical scanner at the Danish Research Center for Magnetic Resonance (DRCMR). Airflow at a controlled room temperature was applied around the sample to ensure a steady sample temperature during the acquisition. The diffusion-relaxation protocol used to fit the pure relaxation model (i.e., spherical mean power-law) consisted of using five high b-values: $b = [5000, 6000, 7000, 8000, 10000]$ s/mm2 with respective diffusion gradients $G = [166.8, 182.7, 197.3, 210.95, 235.85]$ mT/m. The TE was set to 51 ms, and one $b = 0$ s/mm2 (b0) image was acquired per b-value. The other experimental parameters, such as TR, Δ, δ, voxel size, and the number of diffusion directions, were kept the same as in the diffusion-relaxation acquisition sequence. To evaluate the SNR in our experiments, we used the following approach. For each voxel, we calculated the SNR as the ratio of the mean value to the SD across the set of five b0 images. Subsequently, the mean SNR was determined from the individual voxelwise SNR values within a mask comprising the five phantoms, yielding a mean SNR value of 34. In our experiments, we opted to use the raw data without preprocessing because the phantom data remained unaffected by motion. Introducing any denoising step was avoided to prevent unwanted smoothing effects and partial volume contamination, especially given the small size of the phantoms.

3.3 Estimation

Like in previous studies,34,48-50 we assumed that for $b \geq 5000$ s/mm2 the signals originating from water molecules outside the intra-fiber compartment, which likely experience larger diffusion displacements, are highly attenuated. This assumption allows us to focus on the signals originating within the intra-fiber compartment. We computed the spherical mean signal $\bar{S}(TE, b)$ by averaging the signal measurements over all the diffusion gradient directions37,51-53 for each b-value and TE.

From the diffusion-relaxation data acquired at different TEs, we estimated the relaxation time within the intra-fiber compartment T_2^i by fitting the mono-exponential relaxation model34,49,50 defined by Eqs. (6) and (2). To perform the fitting, we used the non-linear “L-BFGS-B” optimization method available in Scipy.54 Subsequently, we implemented a calibration approach to estimate ρ_2, which enables us to calculate $r_{\text{eff-MRI-R}}$ from the intra-fiber T_2^i times using Eq. (3). The following subsection provides additional information on the calibration procedure.

To obtain the effective radius from the pure diffusion model $r_{\text{eff-MRI-D}}$ (i.e., spherical mean power-law method) we fitted Eqs. (8), (4) and (A1) to the multi-shell dMRI data. In Eq. (10), we included the first $m = 18$ terms in the series to capture the diffusion behavior within the fibers accurately.2

The estimated radii $r_{\text{eff-MRI-R}}$ and $r_{\text{eff-MRI-D}}$ were compared with the SEM-based effective radii $r_{\text{eff-SEM-R}}$ and $r_{\text{eff-SEM-D}}$ derived from the underlying radius distributions...
The comparison between the effective radii $r_{\text{eff-MRI-R}}$ calculated from the measured diffusion-relaxation data, assuming that all the phantoms have the same surface relaxation ρ_2, and the SEM-based effective radii $r_{\text{eff-SEM-R}}$ is presented in Figure 3A. The estimates align closely with the “$y = x$ line of identity”, indicating a nearly perfect linear relationship, except for Phantom 3, which substantially differs from this linear trend. The regression line fitted to the data has an intercept of 0.66 μm and a slope of 0.88.

The correlation coefficient (R) measuring the strength of the linear relationship between the two radii sets was not statistically significant, $R = 0.66$, $p = 0.228$. However, excluding Phantom 3 from the analysis made it statistically significant ($R = 0.95$, $p = 0.046$), indicating a strong linear relationship between the estimated radii for the remaining phantoms.

Figure 3B shows the measured MRI data and the generated synthetic signals from the ground truth radii distributions as a function of TE. Overall, there is a close agreement between the two data sets for all phantoms, except for Phantom 3, which exhibits notable discrepancies.

The analysis considering a different surface relaxivity for each phantom is presented in Figure 4. Figure 4A displays the regression line comparing the effective radii, demonstrating a perfect agreement between the estimated radii and the radii derived from the SEM-measured distributions. The regression line has an intercept of -0.0046 μm and a slope of 1.001, indicating a nearly one-to-one correspondence between the two sets of radii. The correlation coefficient is 1.0, with a significant p-value of 7e-9, confirming the strong linear relationship. Figure 4B compares the measured diffusion-relaxation data and the synthetic signals generated from the respective SEM-based radii distributions. The two data sets show excellent agreement, with close correspondence across the entire range of TE values.

In Figure 5, the linear relationship between the estimated effective radius $r_{\text{eff-MRI-R}}$ and the approximated effective radius derived from the second and first moments of the radius distribution, $r_{\text{eff-SEM}} = <r^2>/<r>$, is depicted. The regression analysis demonstrates a strong linear relationship between the radii, as indicated by the intercept of 0.15 μm and the slope of 0.93. The correlation coefficient ($R = 0.93$) indicates a high degree of linear association between $r_{\text{eff-MRI-R}}$ and $r_{\text{eff-SEM}}$, which is statistically significant, $p = 0.0046$.

4.3 | Diffusion-based pore size estimation

The diffusion-based pore size estimation analysis is presented in Figure 6. Figure 6A demonstrates the linear relationship for each phantom is presented in Figure 4. Figure 4A displays the regression line comparing the effective radii, demonstrating a perfect agreement between the estimated radii and the radii derived from the SEM-measured distributions. The regression line has an intercept of -0.0046 μm and a slope of 1.001, indicating a nearly one-to-one correspondence between the two sets of radii. The correlation coefficient is 1.0, with a significant p-value of 7e-9, confirming the strong linear relationship. Figure 4B compares the measured diffusion-relaxation data and the synthetic signals generated from the respective SEM-based radii distributions. The two data sets show excellent agreement, with close correspondence across the entire range of TE values.

In Figure 5, the linear relationship between the estimated effective radius $r_{\text{eff-MRI-R}}$ and the approximated effective radius derived from the second and first moments of the radius distribution, $r_{\text{eff-SEM}} = <r^2>/<r>$, is depicted. The regression analysis demonstrates a strong linear relationship between the radii, as indicated by the intercept of 0.15 μm and the slope of 0.93. The correlation coefficient ($R = 0.93$) indicates a high degree of linear association between $r_{\text{eff-MRI-R}}$ and $r_{\text{eff-SEM}}$, which is statistically significant, $p = 0.0046$.

4.3 | Diffusion-based pore size estimation

The diffusion-based pore size estimation analysis is presented in Figure 6. Figure 6A demonstrates the linear relationship...
FIGURE 1 Scanning electron micrographs depicting the microscopic morphology of the biomimetic phantom samples. All phantom samples are presented on the same length scale (80 μm). Phantom 1 and Phantom 2 are shown together as they were constructed using similar distributions of fiber radii.

The relationship between the fiber radii estimated from the multi-shell dMRI data using the spherical mean power-law approach and the radii derived from the SEM images. The statistically significant correlation coefficient ($R = 0.91$, $p = 0.031$) confirms the strength of this relationship. The intercept and slope of the regression line are 2.32 μm and 0.57, respectively. Figure 6B compares the measured multi-shell dMRI data and the synthetic diffusion signals generated from the SEM-based radius distribution. The plot shows the decay rates of the diffusion signals as a function of the b-value. It is observed that the synthetic diffusion signals exhibit lower decay rates compared to the measured data for all phantoms.
FIGURE 2 Radius distribution per phantom estimated using scanning electron microscopy. Phantom 1 and Phantom 2 are displayed together as both were built using similar distributions. The right tail of each distribution is zoomed in to visualize the distribution of the largest fibers. The mean radius and number of radii measured for each phantom are reported in Table 1.

TABLE 1 Mean radius \(\langle r \rangle \) per phantom, calculated from the radius distributions depicted in Figure 2.

<table>
<thead>
<tr>
<th>Phantom</th>
<th>(\langle r \rangle) (\mu \text{m})</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantoms 1 and 2</td>
<td>1.07</td>
<td>11,618</td>
</tr>
<tr>
<td>Phantom 3</td>
<td>0.70</td>
<td>11,827</td>
</tr>
<tr>
<td>Phantom 4</td>
<td>1.18</td>
<td>9,880</td>
</tr>
<tr>
<td>Phantom 5</td>
<td>1.21</td>
<td>7,246</td>
</tr>
</tbody>
</table>

Note: The number of measured radii \(N \) using scanning electron microscopy is reported.

5 | DISCUSSION

We evaluated the spherical mean power-law method\(^2\) and the \(T_2 \)-based pore size estimation technique\(^3\) using diffusion-relaxation MRI data acquired in biomimetic phantoms consisting of hollow axon-mimicking microfibers with non-circular cross-sections and different radii distributions. While the \(T_2 \)-based pore size estimation technique requires a single high \(b \)-value and multiple TEs, the spherical mean power-law method relies on a single TE and multiple (at least two) high \(b \)-values with very strong diffusion gradients. Notably, the \(T_2 \)-based approach has more modest demands on the \(b \)-value than the diffusion-based spherical mean power-law technique. However, the \(T_2 \)-based estimation approach relies on a calibration step that requires knowledge of the ground-truth radius distribution in specific regions to determine its surface relaxivity.

The linear relationship between the \(T_2 \)-based effective radii estimated from the diffusion-relaxation MRI data and the ground truth radius distributions, as depicted in Figures 3–5, highlights the overall agreement between the estimates. However, it is worth noting that the estimation approach assuming a constant surface relaxivity for all phantoms was not accurate for Phantom 3, as evident from Figure 3A. This deviation is attributed to the smaller surface relaxivity estimated for Phantom 3. Consequently, the predicted radius for Phantom 3 was considerably higher, leading to a mismatch between the generated synthetic signal and the measured data, as shown in Figure 3B. The linear correlation coefficient for the estimated effective radii was not statistically significant. However, on removing Phantom 3 from the analysis, the
FIGURE 3 (A) Presents the relationship between the T₂-based inner fiber radius (y-axis, \(r_{\text{eff-MRI-R}} \)) predicted using the measured diffusion-relaxation data with a fixed surface relaxivity of \(\rho_2 = 3.7 \text{ nm/ms} \) and the effective radius estimated from the synthetic relaxation signal generated using the radius distribution obtained from scanning electron microscopy (SEM) images (x-axis, \(r_{\text{eff-SEM-R}} \)). The scatter plot represents the radius estimated from the mean signal for all voxels within each phantom. The regression line compares the estimates, whereas the reference line \((y = x) \) indicates perfect linear agreement. (B) Displays the logarithm of the measured relaxation MRI (rMRI) data represented by the mean value and standard deviation across all voxels per phantom, along with the SEM-based generated synthetic signal as a function of the TE in the whole interval.

FIGURE 4 (A) Presents the relationship between the T₂-based inner fiber radius (y-axis, \(r_{\text{eff-MRI-R}} \)) predicted using the measured diffusion-relaxation data with the surface relaxivity estimated individually for each phantom, and the effective radius calculated from the synthetic relaxation signal generated using the radius distribution obtained from scanning electron microscopy (SEM) images (x-axis, \(r_{\text{eff-SEM-R}} \)). The scatter plot represents the radius estimated from the mean signal for all voxels within each phantom. The regression line compares the estimates, whereas the reference line \((y = x) \) indicates perfect linear agreement. (B) Displays the logarithm of the measured relaxation MRI (rMRI) data represented by the mean value and SD across all voxels per phantom, along with the SEM-based generated synthetic signal as a function of the TE in the whole interval.
The linear relationship between the T_2-based inner fiber radius (y-axis, $r_{\text{eff-MRI-R}}$) predicted using the measured diffusion-relaxation data with the surface relaxivity estimated individually for each phantom (as in Figure 4) and the effective radius calculated from the moments of the radius distributions (x-axis, $r_{\text{eff-SEM}} = \frac{<r^2>}{<r>}$). The scatter plot represents the radius estimated from the mean signal across all voxels within each phantom. In addition to the regression line comparing both estimates, the reference line ($y = x$) is provided for visualizing perfect linear agreement between the two measures.

The linear correlation coefficient became statistically significant, indicating a strong relationship between the estimated effective radii for the remaining phantoms. The reason behind the discrepancy in surface relaxivity for Phantom 3 remains uncertain. One plausible hypothesis is that, at the time of scanning, Phantom 3 underwent a natural degradation process typical of this type of material, resulting in altered interactions between water molecules and the pore surface. This hypothesis is further supported by the observation that, a few weeks after the MRI acquisitions, the white color of Phantom 3—unlike the other phantoms—turned to a light white-pink color, indicating a change in its properties. Despite this issue, we decided to include the results of Phantom 3 in our study to provide a comprehensive analysis and present the complete findings.

The analysis using the individual surface relaxivity estimated for each phantom revealed a remarkable agreement between the effective radii, as demonstrated in Figure 4A. Although this type of analysis is not practically feasible because of the requirement of knowing the radius distribution for each phantom, it serves as a valuable tool for model validation. Validating a model involves verifying whether the synthetic signal predicted by the model closely matches the measured data. Although this criterion alone is insufficient to validate a model, as an incorrect over-parameterized model can still fit the data, it provides a necessary condition. In this study, the predicted synthetic signal for the relaxation model strongly agreed (Figure 4B) with the measured data. To further explore the relationship between the T_2-based effective radius and the radius distribution, we conducted an additional analysis by replacing the effective radius used in Figure 4, estimated from the synthetic signals, with the effective radius calculated from the ratio of the second and first moments of the radius distribution. The results in Figure 5 demonstrate that this relationship provides a good approximation.

Moreover, the spherical mean power-law method exhibited a statistically significant linear relationship between the effective radii estimated from the multi-shell dMRI data and the ground truth radius distributions, as demonstrated in Figure 6A, corroborating the sensitivity of this technique. However, the intercept of the linear regression line deviated considerably from zero, indicating an overestimation of the effective radius, particularly for phantoms with smaller radii. A closer examination of the synthetic signals generated by this model using the ground truth radius distributions (Figure 6B) revealed notable discrepancies with the measured dMRI data. Specifically, the measured signals displayed a faster attenuation (i.e., a steeper slope of the logarithm of the signal as a function of the b-value), suggesting the presence of additional processes not accounted for in the model, which contributed to signal attenuation. One possible explanation for this discrepancy is the presence of numerical errors in accurately measuring the radius distribution used to generate the synthetic signals. However, although numerical errors cannot be entirely ruled out, they are unlikely to be the main contributor to the observed discrepancies because the SEM analysis measured several 1000s of fiber radii per phantom (Table 1).

On comparing the effective radii obtained from the T_2-based and diffusion-based techniques, Figures 3–5 and 6, it is evident that these methods exhibit different sensitivities to spatial scales. Notably, the T_2-based approach demonstrates a higher sensitivity to smaller radii, resulting in smaller effective radii than the diffusion-based method. To further support this observation, we refer to Figure C2 in Appendix C, where we present plots of the diffusion and relaxation signals as a function of the radius for the specific acquisition protocols used in this study. Consistently with our findings, these plots highlight that the T_2-based method has a lower resolution limit for detecting small cylindrical fibers than the diffusion-based method.
Nevertheless, the radii estimated by the spherical mean power-law method showed less variability.

Another contribution of this study is the numerical approach to estimate the effective radius from the underlying radius distribution. This approach offers several advantages as it does not rely on specific theoretical approximations. It can be applied more universally to different acquisition sequences, MRI contrasts, and materials with varying pore sizes. By comparing the generated synthetic signals with the measured data, this numerical approach allows us to assess the ability of the used relaxation or diffusion models to explain the observed data. It is worth noting that previous studies proposed an expression for estimating the effective radius in dMRI based on the assumptions that the dMRI signal from the intra-fiber compartment can be approximated by the wide pulse or Neuman limit and that the diffusion model can be well-approximated by a first-order Taylor expansion, resulting in \(r_{\text{eff-SEM}} = \left(\frac{\langle r^6 \rangle}{\langle r^2 \rangle} \right)^{1/4} \). However, these assumptions only hold for a population of microfibers with radii smaller than 2.5 \(\mu \)m and do not apply to our study. In Figure C1 of Appendix C, we conducted a supplementary analysis revealing that the signals derived from these approximations do not align with those predicted by the van Gelderen model across the entire range of measured radii in the phantoms. As a result, the new numerical approach proposed in this study becomes crucial for accurately determining the effective radius from the radius distribution.

Additionally, we introduced a general diffusion-relaxation theoretical model for the spherical mean signal originating from water molecules within a distribution of cylinders with varying radii. The two evaluated models are specific cases of this more comprehensive model. Examining the approximations made by each model provides valuable insights into their underlying assumptions. The pure-relaxation model provides a correct approximation for data acquired with high \(b \)-values, which effectively attenuates the extra-fiber signal. However, the diffusion gradients should not be strong enough to reduce the sensitivity of the data to the diffusion process inside the cylindrical pores. This setting may be more appropriate for clinical scanners with weaker diffusion gradients (\(\sim <100 \text{mT/m} \)). Conversely, the spherical mean power-law approach represents the solution to the general diffusion-relaxation model when the relaxation effect is neglected. In this case, it is less straightforward to determine how acquisition parameters should be adjusted to mitigate the influence of relaxation on the measured signal. Interestingly, by considering Eqs. (1), (7), and (8) it is possible to demonstrate that neglecting the relaxation effect in the spherical mean power-law approach leads to an effective radius estimate corresponding to a distorted radius distribution \(\tilde{P}(r) \), which right-hand tail is inflated.
leading to overestimated radii $\tilde{r}_{\text{eff-MRI-D}}$. This theoretical prediction aligns with the findings presented in Figure 6. For more technical details, see Appendix D.

It is important to mention that this is not the first study using phantoms of hollow axon-mimicking fibers. Similar phantoms built with the co-electrospinning technique tested in diffusion tensor imaging and fiber tracking, microscopic fractional anisotropy using q-space trajectory encoding, anomalous diffusion, estimation of pore sizes in tumor tissue phantoms, as well as to investigate the stability and reproducibility of various dMRI-derived parameters, the validation of multidimensional dMRI sequences with spectrally modulated diffusion-relaxation MRI signals to estimate the intra-fiber radial diffusivity and intra-fiber T2 were estimated per phantom, the predicted radius is the effective radius. To determine the whole radius distribution, future studies should generalize the used models to estimate distributions of diffusivities or T2 times, respectively. Fifth, all our analyses used raw diffusion-relaxation MRI data without preprocessing, so the Rician bias may partially affect our results. Nevertheless, we verified that the SNR of our data was 34 and visually inspected the data to confirm our images were not dominated by noise. In a preliminary analysis (results not presented), we denoised the data using the Marchenko-Pastur Principal Component Analysis method and attenuated the Rician bias accordingly. However, we noted that the preprocessed data were slightly over-smoothed, and the correlation analysis comparing the estimated radii produced worse results. Therefore, we opted to use the raw data to avoid the smoothing effects and prevent contamination of the diffusion-relaxation MRI signal by voxels outside the phantoms. Finally, despite our multi-shell dMRI acquisition protocol used high and well-separated b-values (from 5000 to 10 000 s/mm2) to attenuate the dMRI signals from the extra-fiber pores significantly and to get “enough” signal contrast to estimate the intra-fiber radial diffusivity, these b-values are not necessarily the optimal ones to assess the fiber radius. For example, in a previous study, b-values up to 30 000 s/mm2 were used to estimate axon radii in the human white matter. Therefore, our findings are specific to the implemented acquisition protocols and should not be extrapolated to other acquisition sequences and parameters.

6 | CONCLUSIONS

This study demonstrates the feasibility of using intra-fiber T2 times derived from diffusion-relaxation MRI data to predict the inner pore sizes of hollow axon-mimicking phantom fibers, as validated against measurements obtained from SEM images. Additionally, it confirms the sensitivity of the spherical mean power-law approach in estimating intra-fiber pore sizes from multi-shell dMRI data. The T2-based estimation approach relies on a calibration step that requires knowledge of the ground-truth radius distribution in specific regions (phantoms) to determine its surface relaxivity. This limitation is absent in the pure dMRI model. However, the T2-based estimation technique offers the advantage of using a smaller b-value. In contrast, the ultra-high diffusion gradients required...
by the dMRI-based approach are only achievable in preclinical or “Connectom” 3T human scanners.

AFFILIATIONS
1 Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2 Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
3 Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
4 Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
5 MicroPhantoms Limited, Cambridge, UK
6 Translational Imaging in Neurology (ThInK) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
7 Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
8 Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
9 Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
10 Department of Neuroinflammation, Queen Square Institute of Neurology, University College London (UCL), London, UK
11 Bioxydyn Limited, Manchester, UK

ACKNOWLEDGMENTS
Erick J. Canales-Rodríguez is supported by the Swiss National Science Foundation, Ambizione grant PZ00P2_185814. Marco Pizzolato acknowledges funding from Danmarks Frie Forskningsfond with case number 10.46540/3105-00129B. Feng-Lei Zhou was supported by the NIHR UCLH Biomedical Research Centre grant and UCL Department of Medical Physics and Biomedical Engineering and EPSRC (EP/M020533/1; CMIC Pump-Priming Award). This research was partially funded by a Wellcome Trust Investigator Award (096646/Z/11/Z) and a Wellcome Trust Strategic Award (096646/Z/11/Z). For the purpose of open access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. Tim B. Dyrbly has received funding from the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme (101044180). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

CONFLICT OF INTEREST STATEMENT
Geoffrey Parker is a shareholder and director of Bioxydyn Limited, a company with an interest in imaging biomarkers. He is also a shareholder and director of Queen Square Analytics Limited, a company with an interest in neuroimaging. Fenglei Zhou provides consultancy on MRI phantom development at MicroPhantoms, which provides imaging phantom services. The other authors have nothing to disclose.

DATA AVAILABILITY STATEMENT
The acquired MRI datasets and estimation scripts will be freely available at https://github.com/ejcanalesr/diffusion-relaxation-biomimetic-phantoms to facilitate reproducible research.

ORCID
Erick J. Canales-Rodríguez https://orcid.org/0000-0001-6421-2633
Marco Pizzolato https://orcid.org/0000-0003-2455-4596
Feng-Lei Zhou https://orcid.org/0000-0002-8348-4658
Muhamed Barakovic https://orcid.org/0000-0001-8557-9223
Jean-Philippe Thiran https://orcid.org/0000-0003-2938-9657
Derek K. Jones https://orcid.org/0000-0003-4409-8049
Geoffrey J. M. Parker https://orcid.org/0000-0003-2934-2234
Tim B. Dyrbly https://orcid.org/0000-0003-3361-9734

REFERENCES
8. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. AxCaliber: a method for measuring axon diameter distribution...

where $D_0 \equiv D_{∥}$ is the free diffusion coefficient, which is equal to the intra-fiber parallel diffusivity when there is no restriction along the principal axes of the cylinders, γ denotes the gyromagnetic ratio, $\delta/\Delta/G$ are the duration/separation/strength of the diffusion gradient, respectively, $t_c = r^2/D_{∥}$, $\beta = \gamma^2 G^2 \delta^2 (\Delta - \delta/3)$, and α_m are the roots of the derivative of the Bessel function of the first kind of order 1, $J'_1(\alpha_m) = 0$.

In the Neuman limit,42 that is, $\Delta \gg \delta \gg r^2/D_{∥}$, Eq. (A1) becomes

$$D_1(r) \approx \frac{7 \gamma^2 G^2 \delta r^4}{48 b D_{∥}}.$$ \hspace{1cm} (A2)

In this work, we derived a new solution with a less restrictive limit. For $\Delta \gg \delta \in (0, r^2/D_{∥})$, Eq. (A1) becomes,

$$D_1(r) \approx \frac{2 \gamma^2 G^2 r^4}{b D_{∥}} \sum_{m=1}^{\infty} \frac{t_c}{a_m^2 (a_m^2 - 1)} \left[2 a_m^2 \frac{\delta}{t_c} - 2 + 2 e^{-\frac{\alpha_m}{\gamma}} \right]$$

$$= \frac{4 \gamma^2 G^2 r^4}{b D_{∥}} \sum_{m=1}^{\infty} \frac{a_m^2 \delta}{a_m^2 (a_m^2 - 1)} - \frac{t_c}{a_m^2 (a_m^2 - 1)} + \frac{t_c}{a_m^2 (a_m^2 - 1)} - 2 e^{-\frac{\alpha_m}{\gamma}},$$

$$= \frac{4 \gamma^2 G^2 r^4}{b D_{∥}} \sum_{m=1}^{\infty} \frac{a_m^2 \delta}{a_m^2 (a_m^2 - 1)} - \frac{t_c}{a_m^2 (a_m^2 - 1)} + \frac{1}{a_m^2 (a_m^2 - 1)}$$

$$+ \frac{1}{a_m^2 (a_m^2 - 1)} e^{-\frac{\alpha_m}{\gamma}}.$$

$$= \frac{4 \gamma^2 G^2 r^4}{b D_{∥}} \left[\frac{\delta}{48 \times 4} - \frac{t_c}{48 \times 4} \right] + \frac{7}{48 \times 4} \frac{12}{41} + \frac{7}{48 \times 4} \frac{12}{41} e^{-\frac{\alpha_m}{\gamma}}$$

$$= \frac{7 \gamma^2 G^2 r^4}{48 b D_{∥}} \left[\delta - \frac{t_c}{48 \times 4} \frac{12}{41} (1 - e^{-\frac{\alpha_m}{\gamma}}) \right]$$

$$= \frac{7 \gamma^2 G^2 r^4}{48 b D_{∥}} \left[\delta - \frac{t_c}{48 \times 4} \frac{12}{41} (1 - e^{-\frac{\alpha_m}{\gamma}}) \right].$$ \hspace{1cm} (A3)

To derive the previous expression, we used the following approximations:

$$\sum_{m=1}^{\infty} \frac{a_m^2}{a_m^2 (a_m^2 - 1)} \approx \frac{7}{48 \times 4},$$

$$\sum_{m=1}^{\infty} \frac{a_m}{a_m^2 (a_m^2 - 1)} e^{-\frac{\alpha_m}{\gamma}} \approx \frac{1}{a_1^2} e^{-\frac{\alpha_1}{\gamma}},$$

$$\sum_{m=1}^{\infty} \frac{1}{a_m (a_m^2 - 1)} \approx \frac{1}{a_1^2} \frac{7}{48 \times 4} \frac{12}{41}.$$

\hspace{1cm} (A4)

Note that in Eq. (A3), the radial diffusivity is non-negative $D_1(r) \geq 0$ for all radii satisfying the condition:

$$1 - \frac{12}{41} \frac{r^2}{D_{∥}} \delta \left(1 - e^{-\frac{\alpha_m}{\gamma}} \frac{12}{41} \right) \geq 0.$$ \hspace{1cm} (A5)

It can be shown that the inequality in Eq. (A5) is valid for all values of r. For instance, in the limit of small r, $\delta \gg$
APPENDIX B

The effective radius can be determined using the following derivation:

\[
\begin{align*}
\exp\left(-\frac{2TE_p}{r_{\text{eff-MRI-R}}} \right) & \approx \int \frac{P(r)^2 \exp\left(-\frac{2TE_p}{r} \right) \, dr}{\int P(r)^2 \, dr}, \\
& \approx 1 - \frac{2TE_p}{\int P(r)^2 \, dr}, \quad \text{for } \frac{2TE_p}{r} \ll 1 \\
& \approx \exp\left(-\frac{2TE_p}{\int P(r)^2 \, dr} \right).
\end{align*}
\]

Therefore,

\[r_{\text{eff-MRI-R}} \approx \frac{\int P(r)^2 \, dr}{\int P(r)^2 \, dr} = \langle r^2 \rangle / \langle r \rangle. \] (B2)

APPENDIX C

Figure C1 shows the spherical mean diffusion signal for various models, including the van Gelderen model (Eqs. [4] and [A1]), the medium-pulse approximation (Eqs. [4] and [A3]), the Neuman approximation in the long-pulse limit (Eqs. [4] and [A2]) and the first-order Taylor expansion of the Neuman model.

Figure C2 displays the spherical mean diffusion and \(T_2 \) relaxation signals as a function of the fiber radius for the acquisition parameters used in this study. Moreover, we plot the resolution limits for both normalized signals, defined as the minimum radius for which the signal deviates more than one noise SD \(\sigma \) compared to the signal generated for \(r \to 0 \). This definition considers that we cannot accurately detect signal decays smaller than \(\sigma \). Note that the resolution limit is \(>1.4 \mu m \), whereas the \(T_2 \)-based resolution limit is much smaller, <0.2 \(\mu m \). The \(T_2 \)-based resolution limit for shorter TEs is even smaller (result not shown).

APPENDIX D

By considering Eqs. (1), (7), and (8) it is possible to demonstrate that neglecting the relaxation term in the spherical mean power-law approach leads to an effective radius estimate that corresponds to a distorted radius distribution \(\bar{P}(r) \),

\[
\bar{S}_{\text{Diff}}(b, \bar{r}_{\text{eff-MRI-D}}) \approx \frac{\int \bar{P}(r)^2 \bar{S}_{\text{Diff}}(b, r) \, dr}{\int \bar{P}(r)^2 \, dr}.
\] (D1)
where \(\tilde{P}(r) = P(r) \exp\left(-\frac{TE}{T_2^i(r)}\right) \) is a distorted version of \(P(r) \) because of the relaxation process not being modeled in a pure diffusion model. For a constant TE, the signal from the relaxation term \(\exp\left(-\frac{TE}{T_2^i(r)}\right) \) is higher for larger \(T_2^i \) times. As \(T_2^i \) increases with \(r \), the values of \(\tilde{P}(r) \) for big radii are more inflated than those with small radii. Hence, this approximation leads to overestimating the effective radius calculated by the spherical mean power-law method.