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Abstract

IMPORTANCE Observational studies have associated anorexia nervosa with circadian rhythms and
sleep traits. However, the direction of causality and the extent of confounding by psychosocial
comorbidities in these associations are unknown.

OBJECTIVES To investigate the association between anorexia nervosa and circadian and sleep traits
through mendelian randomization and to test the associations between a polygenic risk score (PRS)
for anorexia nervosa and sleep disorders in a clinical biobank.

DESIGN, SETTING, AND PARTICIPANTS This genetic association study used bidirectional 2-sample
mendelian randomization with summary-level genetic associations between anorexia nervosa (from
the Psychiatric Genomics Consortium) and chronotype and sleep traits (primarily from the UK
Biobank). The inverse-variance weighted method, in addition to other sensitivity approaches, was
used. From the clinical Mass General Brigham (MGB) Biobank (n = 47 082), a PRS for anorexia
nervosa was calculated for each patient and associations were tested with prevalent sleep disorders
derived from electronic health records. Patients were of European ancestry. All analyses were
performed between February and August 2023.

EXPOSURES Genetic instruments for anorexia nervosa, chronotype, daytime napping, daytime
sleepiness, insomnia, and sleep duration.

MAIN OUTCOMES AND MEASURES Chronotype, sleep traits, risk of anorexia nervosa, and sleep
disorders derived from a clinical biobank.

RESULTS The anorexia nervosa genome-wide association study included 16 992 cases (87.7%-
97.4% female) and 55 525 controls (49.6%-63.4% female). Genetic liability for anorexia nervosa was
associated with a more morning chronotype (β = 0.039; 95% CI, 0.006-0.072), and conversely,
genetic liability for morning chronotype was associated with increased risk of anorexia nervosa
(β = 0.178; 95% CI, 0.042-0.315). Associations were robust in sensitivity and secondary analyses.
Genetic liability for insomnia was associated with increased risk of anorexia nervosa (β = 0.369; 95%
CI, 0.073-0.666); however, sensitivity analyses indicated bias due to horizontal pleiotropy. The MGB
Biobank analysis included 47 082 participants with a mean (SD) age of 60.4 (17.0) years and 25 318
(53.8%) were female. A PRS for anorexia nervosa was associated with organic or persistent insomnia
in the MGB Biobank (odds ratio, 1.10; 95% CI, 1.03-1.17). No associations were evident for anorexia
nervosa with other sleep traits.

CONCLUSIONS AND RELEVANCE The results of this study suggest that in contrast to other
metabo-psychiatric diseases, anorexia nervosa is a morningness eating disorder and further
corroborate findings implicating insomnia in anorexia nervosa. Future studies in diverse populations
and with subtypes of anorexia nervosa are warranted.
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Key Points
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Findings In this genetic association
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randomization. In addition, an
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and insomnia was found using

mendelian randomization and a
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in a clinical biobank.

Meaning These findings suggest that

anorexia nervosa is a morningness

eating disorder, in contrast to most

other evening-based psychiatric

diseases, and corroborate the

association between anorexia nervosa

and insomnia, concordant with earlier

observational studies.
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Introduction

The circadian clock is the intrinsic biological system that produces 24-hour cyclical processes called
circadian rhythms.1,2 Circadian rhythms affect a wide spectrum of human physiology, including cycles
in body temperature and sleep-wake patterns. Chronotype, the preference for morningness or
eveningness, is a correlate of circadian rhythms and an individual’s propensity for earlier or later
timing for sleep and other activities and is associated with psychological, neurological,
gastrointestinal, and respiratory disorders.3,4

There is a bidirectional association between circadian rhythms and psychiatric disorders. For
example, tendency for an evening chronotype is associated with depression and schizophrenia.5,6

Conversely, bipolar disorder, anxiety, and schizophrenia onset result in alterations in the rhythmicity
of core clock genes, and interventions that target the circadian system, such as bright light therapy,
are considered valuable treatments.7-9 There is also some evidence implicating the circadian system
in eating disorders, primarily centered on the link between binge eating disorder and evening
chronotype in alignment with other psychiatric disorders.10-12 Characteristics of generally healthy
adults with an evening chronotype, such as emotional eating, later food timing, and impulsivity,
further support the role of eveningness tendency in binge eating–like behaviors.13,14 However, the
relevance of the circadian system in anorexia nervosa remains largely unknown.

Anorexia nervosa is a major eating disorder characterized by severe food intake restriction,
weight loss, and intense fear of weight gain15 and has among the highest mortality rates of all
psychiatric diseases.16 Some evidence suggests the role of the circadian clock: for example,
morningness tendency, with lack of appetite, of which the most prominent is the well-recognized
morning anorexia and evening hyperphagia dichotomy that characterizes patients with night eating
syndrome,17 but also with evening preference in small observational studies.18 Additional evidence
includes early morning awakening insomnia among people with anorexia nervosa, indicative of
perturbations in sleep-wake cycles.19 Directionality of the association and whether any effects are
causal or mediated by mood and anxiety pathophysiology that often cluster with anorexia nervosa
remain unknown.20

Genetic analyses can further interrogate the link between anorexia nervosa and circadian and
sleep traits. Genome-wide association studies (GWAS) for anorexia nervosa revealed several loci.21,22

Mendelian randomization (MR) uses genetic variants that are robustly associated with a trait to
examine potential causal effects on outcomes of interest.23 Due to the properties of genetic variants,
MR is less likely to be affected by unmeasured confounding factors or reverse causation than
observational studies. The application of MR has provided additional evidence supporting
observational data on hypoleptinemia among patients with anorexia nervosa.24,25 It is also
speculated that there is a bidirectional association between sleep and eating processes, such that
eating pathology disrupts sleep, and conversely, dysregulation in sleep influences eating behaviors.26

The aim of this study was to investigate the bidirectional association between anorexia nervosa and
chronotype and other sleep traits through MR and a polygenic risk score (PRS) for anorexia nervosa.

Methods

GWAS for Anorexia Nervosa
This study followed the Strengthening the Reporting of Observational Studies in Epidemiology Using
Mendelian Randomization (STROBE-MR) reporting guidelines.31 The largest GWAS meta-analysis for
anorexia nervosa from the Eating Disorders Working Group of the Psychiatric Genomics Consortium
aggregated data from participants of European ancestry across 33 data sets and included 16 992
cases and 55 525 controls, of which 87.7% to 97.4% of cases were female, 49.6% to 63.4% of
controls were female, and 5.3% of the samples were from the UK Biobank.22 The case definition of
anorexia nervosa was based on a lifetime diagnosis of anorexia nervosa from hospital or register
records, structured clinical interviews, online questionnaires based on standardized criteria (ie,
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Diagnostic and Statistical Manual of Mental Disorders [Third Edition Revised]; Diagnostic and
Statistical Manual of Mental Disorders [Fourth Edition]; International Classification of Diseases,
Eighth Revision; International Classification of Diseases, Ninth Revision [ICD-9]; or International
Statistical Classification of Diseases and Related Health Problems, Tenth Revision [ICD-10]), or a
self-reported diagnosis. The GWAS identified 8 independent genome-wide significant (P < 5 × 10−8)
single-nucleotide variants (SNVs). SNV-based heritability was estimated at 11% to 17%, reflecting the
polygenicity of anorexia nervosa.

GWAS for Self-Reported Chronotype and Sleep Traits
The primary outcome was chronotype. Summary statistics for the largest GWAS of European
ancestry predominantly from the UK Biobank for chronotype (morning preference) was retrieved
from the Sleep Disorder Knowledge Portal27 (eMethods in Supplement 1). Four sleep traits were also
considered secondary outcomes, including daytime napping, daytime sleepiness, and sleep duration
from the Sleep Disorder Knowledge Portal27 and insomnia from the Center for Neurogenomics and
Cognitive Research in Amsterdam.28 Traits were determined using primarily self-reported data
(eMethods in Supplement 1).

Statistical Analysis
MR Primary Analyses
Bidirectional 2-sample MR between anorexia nervosa and chronotype and sleep traits was
conducted using the largest publicly accessible GWAS studies in participants of European ancestry
(eTable 1 in Supplement 2) using the “TwoSampleMR” R package. All data sources obtained
participant informed consent and relevant ethical approval; as we used publicly available data which
does not constitute human participant research, per the US code of federal regulations (45 CFR
46.102), no additional institutional review board approvals were necessary. The primary analysis
considered chronotype (morning preference) and 4 secondary sleep traits: daytime napping,
daytime sleepiness, insomnia, and sleep duration. For each trait, a genetic instrument was generated
using lead GWAS variants (eTables 2-15 in Supplement 2), and standard data harmonization was
conducted (eMethods in Supplement 1). The inverse variance weighted (IVW) regression method
was used as the primary analysis. The IVW method yields an unbiased estimate in the absence of
horizontal pleiotropy.23,29 A range of sensitivity analyses robust to the presence of horizontal
pleiotropy were tested, including MR-Egger and weighted median estimator (WME) methods.
Consistency in effect sizes and overlap of 95% CIs were examined.30 A threshold of .05 was used for
statistical significance in the MR for our primary analysis with chronotype and secondary analyses
with sleep traits. All analyses were performed between February and August 2023.

MR Sensitivity and Secondary Analyses
For any significant finding from the IVW analyses, additional sensitivity analyses were conducted
including MR pleiotropy residual sum and outlier (PRESSO),32 leave-one-out analysis,29 MR-Egger
intercept,29 I2 quantification,33 and a Steiger test34 (eMethods in Supplement 1). Secondary analyses
were conducted to examine the robustness of the findings including MR analyses for a binary self-
report chronotype variable and 3 objective measures of chronotype,35 and MR using female-only
summary statistics from the insomnia GWAS.28

PRS for Anorexia Nervosa in the Mass General Brigham Biobank
The Mass General Brigham (MGB) Biobank is the health care enterprise clinical biobank from the MGB
health care network in Boston, Massachusetts, and links electronic health records to genetics and
lifestyle data. The present protocol was approved by the MGB institutional review board. Patients
provided blood samples for genotyping with written consent (eMethods in Supplement 1). All genetic
analyses were restricted to participants of European ancestry. A PRS for anorexia nervosa based on
effect estimates from the recent meta-analysis GWAS for anorexia nervosa of European ancestry was
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calculated for each patient.22 The PRS was generated using PRS–continuous shrinkage (PRS-CS)
based on bayesian regression that places a continuous shrinkage prior on SNV effect sizes.36 The
UKBiobank EUR-ancestry linkage disequilibrium (LD) panel was set. A total of 1 734 712 SNVs were
retained in the PRS following clumping. The PRS was standardized with a mean of 0 and an SD of 1.

Disease designation for anorexia nervosa and sleep disorders was based on PheCode
classifications, which aggregate clinically relevant ICD-9 and ICD-10 billing codes into disease groups
as described in the PheCode catalog37 (eMethods in Supplement 1). Anorexia nervosa cases were
based on the anorexia nervosa-specific code (305.21), which uses ICD-9 billing code 307.1 and ICD-10
billing code F50.0. Association analyses for the anorexia nervosa PRS were conducted for anorexia
nervosa and sleep disorders with at least 1% prevalent cases, using the PheWAS R package.38

Associations were tested using logistic regression models with adjustments for age, sex, genotyping
array, batch, and 10 principal components of ancestry to account for genetic substructure (minimal
model), then further adjusted for body mass index, employment status, smoking status, exercise,
alcohol intake, and education attainment (fully adjusted model). Significance was considered at the
Bonferroni threshold for 9 tested sleep disease outcomes (P < .05 / 9 tests).

Enrolled patients were invited to complete an optional Health Information Questionnaire,
which included questions on sleep habits (eMethods in Supplement 1). The following circadian and
sleep variables from self-report were examined for associations with the PRS: time in bed, sleep debt,
sleep midpoint, and social jetlag. Associations were tested using adjusted linear regression models
as described previously, and in sensitivity analyses, further adjusted for PheCodes for depression
(296.2) and anxiety (300.1), 2 prevalent comorbidities.39 Significance was considered at the
Bonferroni threshold for 4 circadian and sleep outcome traits (P < .05 / 4 tests). All analyses were
conducted using R software version 4.2.3 (R Project for Statistical Computing).

Results

MR Analyses for Anorexia Nervosa and Chronotype
The anorexia nervosa GWAS included 16 992 cases (87.7%-97.4% female) and 55 525 controls
(49.6%-63.4% female). We first conducted bidirectional 2-sample MR between anorexia nervosa
and chronotype. Using IVW MR, we found a bidirectional association between anorexia nervosa and
morning chronotype (Table 1 and Figure 1). Genetic liability for anorexia nervosa was associated with
a more morning chronotype (β = 0.039; 95% CI, 0.006-0.072), and conversely, genetic liability for
morning chronotype was associated with increased risk of anorexia nervosa (β = 0.178; 95% CI,

Table 1. MR Primary Analyses Results for the Associations Between Anorexia Nervosa and Chronotype and Sleep Traits

Exposure SNVs, No.

IVW WME MR-Egger

β (SE)a P value β (SE)a P value β (SE)a P value
Anorexia nervosa with circadian and sleep traits

Chronotype (morning) 8 0.039 (0.017) .02 0.043 (0.017) .01 0.157 (0.052) .02

Daytime napping 8 −0.003 (0.015) .83 0.011 (0.009) .23 0.040 (0.061) .54

Daytime sleepiness 8 −0.008 (0.006) .16 −0.005 (0.007) .41 0.014 (0.023) .57

Insomnia 8 −0.005 (0.037) .89 −0.004 (0.035) .91 0.311 (0.088) .01

Sleep duration 8 −0.020 (0.011) .08 −0.021 (0.014) .13 −0.094 (0.039) .05

Circadian and sleep traits with anorexia nervosa

Chronotype (morning) 315 0.178 (0.070) .01 0.175 (0.086) .04 0.177 (0.211) .40

Daytime napping 112 0.351 (0.244) .15 0.117 (0.262) .66 0.433 (0.869) .62

Daytime sleepiness 40 0.225 (0.469) .63 0.752 (0.518) .15 1.422 (1.767) .43

Insomnia 467 0.339 (0.147) .02 0.306 (0.172) .08 −0.490 (0.568) .39

Sleep duration 73 −0.084 (0.170) .62 −0.164 (0.187) .38 −0.681 (0.642) .29

Abbreviations: IVW, inverse variance weighted; MR, mendelian randomization; SNV, single-nucleotide variant; WME, weighted median estimator.
a β Values reflect the difference in the outcome for each 1-unit increase in the exposure.
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0.042-0.315). Bidirectional effect sizes were consistent using MR-Egger and WME (Table 1 and
Figure 1).

We performed a series of sensitivity analyses to further assess the presence of horizontal
pleiotropy. Results from the MR-Egger intercept were not significant for horizontal pleiotropy with
anorexia nervosa as the exposure or with chronotype as the exposure. Findings from MR PRESSO
suggested possible pleiotropy with chronotype as the exposure (P < .001), however this was
mitigated by removing 3 outlier variants, resulting in estimates consistent with the main analysis
(β = 0.197; 95% CI, 0.067-0.327) (Figure 1; eTable 16 in Supplement 2). Assessment of horizontal
pleiotropy using MR PRESSO was not significant for pleiotropy with anorexia nervosa as the
exposure. Leave-one-out analysis did not suggest undue influence by single outliers or systemic bias
(eTables 17-18 in Supplement 2). The calculated I2 quantity was 49.6% with anorexia nervosa as the
exposure and 48.2% with chronotype as the exposure. The Steiger test held true in both directions.

The observed direction of the association between chronotype and anorexia nervosa was
consistent in secondary analyses using summary statistics for binary chronotype (morning vs evening
preference) as the outcome (β = 0.014; 95% CI, 0.002-0.026) (Figure 1 and Table 2). In sensitivity
analyses, there was no evidence of horizontal pleiotropy using the MR-Egger intercept test or MR
PRESSO. Leave-one-out analysis did not suggest undue influence by single outliers or systemic bias
(eTable 19 in Supplement 2). The I2 quantity was calculated as 41.0%, and the Steiger test held true.

Figure 1. Forest Plot of Mendelian Randomization (MR) Primary, Sensitivity, and Secondary Results for the Associations Between Anorexia Nervosa
and Morning Chronotype

–1.0 0.5 1.00
β (95% CI)

–0.5

P valueβ (SE)

β (SE)

Primary analysis

Secondary analysis

Anorexia nervosa with chronotype (morning)

Chronotype (morning) with anorexia nervosa

.020.039 (0.017)IVW

.010.043 (0.017)WME

.020.157 (0.052)MR Egger

.010.178 (0.070)IVW

.040.175 (0.086)WME

.400.177 (0.211)MR Egger

Binary chronotype (morning) with anorexia nervosa
.020.014 (0.006)IVW
.070.012 (0.006)WME
.020.056 (0.019)MR Egger

Anorexia nervosa with midpoint of least active 5 h
.14–0.031 (0.021)IVW
.33–0.027 (0.027)WME
.26–0.104 (0.083)MR Egger

Anorexia nervosa with midpoint of most active 10 h
.12–0.032 (0.021)IVW
.18–0.038 (0.028)WME
.57–0.050 (0.082)MR Egger

Anorexia nervosa with and sleep midpoint
.22–0.026 (0.021)IVW
.26–0.031 (0.028)WME
.36–0.083 (0.083)MR Egger

Midpoint of least active 5 h with anorexia nervosa
.42–0.244 (0.301)IVW
.27–0.239 (0.216)WME
.16–0.850 (0.458)MR Egger

.0030.197 (0.066)MR PRESSO

P < .05
P ≥ .05

Forest plot of MR primary, sensitivity, and secondary results for the associations between anorexia nervosa and chronotype (morning), including accelerometer-derived objective
chronotype measures of midpoint of least active 5 hours, midpoint of most active 10 hours, and sleep midpoint. β Values reflect the difference in the outcome for each 1-unit increase
in the exposure, with blue boxes denoting statistically significant results. Error bars represent 95% CIs. Primary analyses included inverse variance weighted (IVW) MR, weighted
median estimator (WME), and MR-Egger, and sensitivity analyses included MR pleiotropy residual sum and outlier (PRESSO).
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We found no evidence for the association between anorexia nervosa and chronotype using
accelerometer-derived sleep timing (Figure 1 and Table 2). However, MR direction of associations for
risk of anorexia nervosa were consistent.

MR Analyses for Anorexia Nervosa and Sleep Traits
In MR, we found an association between insomnia and increased risk of anorexia nervosa, and no
associations between anorexia nervosa and daytime napping, daytime sleepiness, or sleep duration
(Table 1). Genetic liability for insomnia was associated with increased risk of anorexia nervosa using
IVW MR (β = 0.339; 95% CI, 0.052-0.627); however, no association was observed for the genetic
liability of anorexia nervosa with increased risk of insomnia (Table 1 and Figure 2). In sensitivity
analyses, effect sizes were consistent using WME but not MR-Egger models. Results from the
MR-Egger intercept were not significant for horizontal pleiotropy. However, results from MR PRESSO
were significant (P < .001), and subsequently mitigated through removing 6 outlier variants resulting
in estimates consistent with the main analysis (β = 0.449; 95% CI, 0.195-0.703) (Figure 2; eTable 16
in Supplement 2). Leave-one-out analysis did not suggest influence by single outliers or systemic bias
(eTable 20 in Supplement 2). The I2 quantity was calculated as 51.5%, and the Steiger test proved
false, suggesting the direction of causality of insomnia on anorexia nervosa cannot be ascertained.

When using effect sizes from the female-only insomnia GWAS, we also found that genetic
liability for insomnia was associated with increased risk of anorexia nervosa using IVW MR (β = 0.324;

Table 2. MR Secondary Analyses Results for the Associations Between Anorexia Nervosa and Chronotype and Sleep Traits

Exposure SNVs, No.

IVW WME MR-Egger

β (SE)a P value β (SE)a P value β (SE)a P value
Anorexia nervosa with chronotype

Binary chronotype (morning) 8 0.014 (0.006) .02 0.012 (0.006) .07 0.056 (0.019) .02

Midpoint of least active 5 h, accelerometer 8 −0.031 (0.021) .14 −0.027 (0.027) .33 −0.104 (0.083) .26

Midpoint of most active 10 h, accelerometer 8 −0.032 (0.021) .12 −0.038 (0.028) .18 −0.050 (0.082) .57

Sleep midpoint, accelerometer 8 −0.026 (0.021) .22 −0.031 (0.028) .26 −0.083 (0.083) .36

Chronotype and sleep traits with anorexia nervosa

Midpoint of least active 5 h, accelerometer 5 −0.244 (0.301) .42 −0.239 (0.216) .27 −0.850 (0.458) .16

Female-only insomnia 272 0.324 (0.157) .04 0.289 (0.171) .09 −0.063 (0.740) .93

Abbreviations: IVW, inverse variance weighted; MR, mendelian randomization; SNV, single-nucleotide variant; WME, weighted median estimator.
a β Values reflect the difference in the outcome for each 1-unit increase in the exposure.

Figure 2. Forest Plot of Mendelian Randomization (MR) Primary, Sensitivity, and Secondary Results
for Associations Between Anorexia Nervosa and Insomnia

–1.0 0.5 1.00
β (95% CI)
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P valueβ (SE)Primary analysis

Secondary analysis

Anorexia nervosa with insomnia

Insomnia with anorexia nervosa

.89–0.005 (0.037)IVW

.91–0.004 (0.035)WME

.010.311 (0.088)MR Egger

.020.339 (0.147)IVW

.080.306 (0.172)WME

.39–0.490 (0.568)MR Egger

Female-only insomnia with anorexia nervosa

.93–0.063 (0.740)MR Egger

.040.312 (0.148)MR PRESSO

.0010.449 (0.130)

β (SE)

MR PRESSO

.040.324 (0.157)IVW

.090.289 (0.171)WME

P < .05
P ≥ .05

β Values reflect the difference in the outcome for each
1-unit increase in the exposure, with blue boxes
denoting statistically significant results. Error bars
represent 95% CIs. Primary analyses included inverse
variance weighted (IVW) MR, weighted median
estimator (WME), and MR-Egger, and sensitivity
analyses included MR pleiotropy residual sum and
outlier (PRESSO).
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95% CI, 0.015-0.632) (Table 2 and Figure 2). Results from the MR-Egger intercept were not
significant for horizontal pleiotropy. However, results from MR PRESSO were significant (P < .001)
and subsequently mitigated through removing 4 outlier variants, resulting in estimates consistent
with the main analyses (β = 0.312; 95% CI, 0.021-0.603) (Figure 2; eTable 16 in Supplement 2).
Leave-one-out analysis did not suggest influence by single outliers or systemic bias (eTable 21 in
Supplement 2). The I2 quantity was calculated as 54.0%, and the Steiger test was also false.

Anorexia Nervosa in the MGB Biobank
To further examine associations between anorexia nervosa and sleep disorders in a disease-enriched
and independent health enterprise clinical biobank, we conducted a series of analyses in the MGB
Biobank. A total of 47 082 adult patients of European ancestry with genetic data were included in the
MGB Biobank analyses (mean [SD] age, 60.4 [17.0] years; 25 318 [53.8%] female). We first examined
associations between the anorexia nervosa PRS and anorexia nervosa diagnosis based on PheCodes.
Each SD increase in the PRS was associated with 36% higher odds of anorexia nervosa (odds ratio
[OR], 1.36; 95% CI, 1.14-1.63) (Table 3). In association analyses with 9 prevalent sleep disorders, we
found associations with higher organic or persistent insomnia. Each additional SD in the anorexia
nervosa PRS was associated with 10% higher odds for organic or persistent insomnia (OR, 1.10; 95%
CI, 1.03-1.17), which remained unchanged when accounting for lifestyle factors. Associations with
other sleep disorders including sleep apnea and restless legs syndrome were not significant. In
addition, among patients with self-reported sleep habits (n = 16 109), there were no associations
evident between the anorexia nervosa PRS and time in bed, sleep midpoint, sleep debt, or social
jetlag (eTable 22 in Supplement 2).

Discussion

Using MR, we provide evidence for bidirectional associations between anorexia nervosa and morning
chronotype, which were consistent in a series of sensitivity and secondary analyses. We also found
associations between insomnia and higher risk for anorexia nervosa concordant with earlier
observational studies; however, these effect sizes were possibly confounded by psychosocial
comorbidities. We did not find associations between anorexia nervosa and other sleep traits,
including daytime napping, daytime sleepiness, and sleep duration.

Table 3. Associations Between Polygenic Risk Score for Anorexia Nervosa and Anorexia Nervosa and Sleep Disorders
in the Mass General Brigham Biobank (n = 47 082)a

Disease description Phecode

Model 1 Model 2
No. of cases/No.
of controls OR (95% CI) P value

No. of cases/No.
of controls OR (95% CI) P value

Anorexia nervosa 305.21 182/17 106 1.36 (1.14-1.63) <.001 57/6417 NA NA

Organic or persistent insomnia 327.41 1343/31 569 1.10 (1.03-1.17) .005 403/11 266 1.18 (1.05-1.33) .006

Insomnia 327.4 5748/35 974 1.04 (1.00-1.07) .04 1637/11 266 1.01 (0.94-1.07) .87

Restless legs syndrome 327.71 1281/31 507 1.07 (1.00-1.14) .06 397/11 266 0.99 (0.88-1.11) .84

Central/nonobstructive sleep apnea 327.31 555/30 781 0.95 (0.86-1.05) .32 172/11 266 0.83 (0.70-0.99) .04

Sleep apnea 327.3 4161/34 387 0.99 (0.95-1.03) .66 1190/11 266 1.02 (0.95-1.10) .64

Parasomnia 327.5 497/30 723 1.02 (0.92-1.13) .70 154/11 266 1.01 (0.83-1.21) .95

Obstructive sleep apnea 327.32 6722/36 948 1.01 (0.97-1.04) .71 1952/11 266 1.01 (0.96-1.08) .63

Hypersomnia 327.1 989/31 215 1.01 (0.94-1.09) .72 314/11 266 1.03 (0.90-1.18) .65

Sleep disorders 327 3048/33 274 1.01 (0.96-1.05) .73 898/11 266 1.00 (0.92-1.08) .99

Abbreviations: NA, not applicable; OR, odds ratio.
a Effect sizes are per SD increase in the polygenic risk score for anorexia nervosa. Associations were tested using adjusted logistic regression models. Model 1 was adjusted for age, sex,

genotyping array, batch, and 10 principal components of ancestry (minimal model). Model 2 was further adjusted for body mass index, employment status, smoking status, exercise,
alcohol intake, and education attainment (fully adjusted model). Findings for anorexia nervosa are missing for model 2 due to insufficient number of cases. Significance was
considered at the Bonferroni threshold for 9 tested sleep disease outcomes (P < .05 / 9 tests).
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The bidirectional association between anorexia nervosa and morning chronotype proved robust
to sensitivity analyses using alternative approaches to ascertain chronotype and to major bias due
to pleiotropy. Results using accelerometer-derived measures of chronotype were consistent with
findings from self-report implicating morningness with anorexia nervosa but were ultimately not
significant likely due to limited power (85 670 participants in the accelerometer GWAS in comparison
with 449 734 participants in the self-report GWAS). In a clinical biobank, we did not observe
associations between the anorexia nervosa PRS and self-reported sleep midpoint, a measure of
chronotype, possibly due to limited power or confounding comorbidities. As many as 62% and 54%
of people diagnosed with an eating disorder also have an anxiety disorder and a mood disorder such
as depression, respectively.39 Anxiety and depression, and most other psychiatric diseases, have
consistently been associated with eveningness, potentially confounding previous findings using
observational data.40,41 Furthermore, anorexia nervosa is most common at a younger age, peaking in
onset around ages 15 to 16 years, when people experience a delay in chronotype toward
eveningness.42,43 MR mitigates these confounding effects through the use of random genetic
variation, allowing for robust analysis of the connection between anorexia nervosa and chronotype
independent of psychosocial comorbidities and resolution of seemingly conflicting evidence from
observational studies.

Our findings suggest that anorexia nervosa is another eating disorder with likely a circadian
feature. First, in observational data, anorexia nervosa was associated with breakfast and lunch
skipping, reinforcing the connection between anorexia and food temporality.44 Second, morning
bright light therapy was deemed less effective in anorexia nervosa treatment compared with binge
eating disorders and bulimia nervosa, 2 eating disorders presumed to be evening based.7,9 Third,
compared with healthy controls, malnourished patients with anorexia nervosa have an enhanced and
advanced cortisol awakening response often exhibited with earlier chronotype.45,46 Lastly, patients
with anorexia nervosa often experience early morning awakening insomnia indicative of
perturbations in sleep-wake cycles.19 Contradictory evidence from observational data linking
anorexia nervosa with evening chronotype18 or showing no associations with sleep timing47 are small
and may be confounded by psychosocial comorbidities. The precise role of the circadian system in
the etiology of anorexia nervosa remains unclear.

In addition, we found a potential association between insomnia and increased risk of anorexia
nervosa. Although findings from the IVW method were inconsistent in sensitivity analyses using
MR-Egger, a low I2 test statistic48 indicated that the MR-Egger result was likely biased.49 Our findings
provide evidence for a robust association between insomnia and anorexia nervosa without bias due
to horizontal pleiotropy; however, the direction of causality cannot be proven. The results from MR
were further corroborated in a clinical biobank using a PRS for anorexia nervosa, in which we
observed positive associations between anorexia nervosa and organic or persistent insomnia.
Directionality cannot be inferred from this cross-sectional analysis.

The clinical implications of our novel bidirectional chronotype findings are unclear; however, our
study provides several opportunities for future research into the prevention and treatment of
anorexia nervosa. Our findings suggest the role of morningness as an underrecognized risk factor for
anorexia nervosa whose importance should be further investigated in the context of other
established risk factors. If deemed a relevant risk factor, interventions promoting later sleep
schedules may be considered to ameliorate risk conferred by a morning chronotype. Our findings
also direct research into circadian-based mechanisms for future anorexia nervosa treatment. Unlike
morning bright light therapy, which has resulted in mixed findings in preliminary studies, bright light
therapy in the evening, as is recommended for patients with early morning awakening insomnia, may
be efficacious in the prevention and treatment of anorexia nervosa.50 Whether this would impact
transdiagnostic treatment of more evening-based psychiatric comorbidities, eg, depression, remains
unknown. Replication analyses and mechanistic studies are crucial to warrant any circadian-based
therapies suggested by our findings.
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This study has several strengths. We leveraged the largest GWAS for anorexia nervosa,
chronotype, and sleep traits available at the time of analysis. In addition, we provided evidence of
robust replication of the anorexia nervosa genetic variants in an independent clinical biobank
facilitated by a higher prevalence of anorexia nervosa (0.3% of samples) in our clinical MGB Biobank,
far exceeding other biobanks in previous studies including the BioMe Biobank (0.02% of samples).51

However, this prevalence is likely not sufficient to interrogate associations between anorexia nervosa
diagnosis and other genetic variants, such as a PRS for chronotype or insomnia.

Limitations
There are some important limitations to note. As the anorexia nervosa GWAS focused on broadly
defined anorexia nervosa based on billing codes and/or self-report, we were unable to interrogate
anorexia nervosa subtypes, such as restrictive, binge-eating/purging, or atypical anorexia nervosa.22

Our analyses only considered participants of European ancestry, as the genetic discoveries were from
predominantly European cohorts and the transferability of variants into non-European populations
remains unknown.52 It is worth noting that anorexia nervosa prevalence remains currently highest
among European and Western cultures, is rapidly rising among young adolescent girls,53 and is likely
underdiagnosed in men and individuals from minoritized racial and ethnic groups,52 necessitating
future large investigations on early or late onset anorexia nervosa54 and anorexia in non-European
populations. We presented MR P values unadjusted for multiple testing because our study is
exploratory in nature. Therefore, we acknowledge that individual findings should be interpreted with
caution, and that additional studies are necessary to verify these findings. Additionally, as the
anorexia nervosa GWAS included 5.3% samples from the UK Biobank, there was some sample
overlap in the 2-sample MR analysis, which may have led to the overestimation of effect sizes.55

Conclusions

Our study found bidirectional associations between anorexia nervosa and morning chronotype,
suggesting that in contrast to other metabo-psychiatric diseases, anorexia nervosa is distinctly a
morningness eating disorder. In addition, the associations between anorexia nervosa and insomnia
corroborate earlier findings.
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