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ABSTRACT
Learning-to-rank is a core technique in the top-N recommendation

task, where an ideal ranker would be a mapping from an item set

to an arrangement (a.k.a. permutation). Most existing solutions fall

in the paradigm of probabilistic ranking principle (PRP), i.e., first

score each item in the candidate set and then perform a sort opera-

tion to generate the top ranking list. However, these approaches

neglect the contextual dependence among candidate items during

individual scoring, and the sort operation is non-differentiable. To

bypass the above issues, we propose Set-To-Arrangement Ranking
(STARank), a new framework directly generates the permutations

of the candidate items without the need for individually scoring

and sort operations; and is end-to-end differentiable. As a result,

STARank can operate when only the ground-truth permutations

are accessible without requiring access to the ground-truth rele-

vance scores for items. For this purpose, STARank first reads the

candidate items in the context of the user browsing history, whose

representations are fed into a Plackett-Luce module to arrange the

given items into a list. To effectively utilize the given ground-truth

permutations for supervising STARank, we leverage the internal
consistency property of Plackett-Luce models to derive a computa-

tionally efficient list-wise loss. Experimental comparisons against

9 the state-of-the-art methods on 2 learning-to-rank benchmark

datasets and 3 top-N real-world recommendation datasets demon-

strate the superiority of STARank in terms of conventional ranking

metrics. Notice that these ranking metrics do not consider the ef-

fects of the contextual dependence among the items in the list, we
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design a new family of simulation-based ranking metrics, where

existing metrics can be regarded as special cases. STARank can

consistently achieve better performance in terms of PBM and UBM

simulation-based metrics.
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1 INTRODUCTION
Learning-to-rank (LTR) covers a branch of machine learning meth-

ods for optimizing ranking performance and is a core technique for

search engine and top-N recommendation applications [22]. Con-

ventional LTR algorithms are usually designed on the basis of the

probability ranking principle (PRP) [30], which consists of a scoring

function that assigns an individual score to each item, and subse-

quently produces the ranking list by sorting items according to

their assigned scores. Note that the crucial difference between LTR

and classical machine learning tasks (e.g., regression, classification)

is that in LTR, the exact score of each item is not important, but the

relative orders of the items matter. It is supported by the behavior

analysis results on search engines [19, 36], which manifests that
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user interactions show strong comparison patterns, namely users

usually compare multiple items before generating a click action.

Being aware of PRP’s limitation of independently assigning the

ranking score for each item and using non-differentiable sort op-

erations [35], there are roughly two lines of previous researches.

One direction [1, 2, 23] investigates incorporating context into the

ranking process and assigning scores to candidate items while tak-

ing into account their dependencies within the context. The other

direction [5, 12, 32, 35] designs a surrogate differentiable list-wise

loss based on permutation probabilities proposed in [24] to avoid

the use of the sort operation. However, all these methods still fall

into a paradigm of first individually scoring items and then putting

them into correct positions in descending order of their scores.

In this paper, we propose a new Set-To-Arrangement Ranking
(STARank) framework, which can directly generate the permuta-

tions of candidate items without the need for individually scoring

and sort operations. Hence, our proposed framework is end-to-end

differentiable, and can be directly supervised with ground-truth

permutations instead of ground-truth scores for all candidate items.

Concretely, as depicted in Figure 1(a), the ultimate goal is to arrange

the candidate items into a permutation close to the ground-truth

permeation based on the historical records from users. For this

purpose, we develop a novel read-arrange-supervise paradigm.

Our reader component, as depicted in Figure 1(b), is required to

encode two types of input items, namely, the user browsed items

and the candidate items. Their major difference lies in that the

user browsed items are characterized by their permutation orders,

while the candidate items do not have an inherent permutation

order. Therefore, we first build a permutation-sensitive module to

encode the browsed items, whose outputs are further fed into a

permutation-invariant module to produce the representation of

each candidate item. Then, our arranger, as shown in Figure 1(c),

applies a Plackett-Luce (PL) module to match the candidate items

to the remaining positions.

Consider that we only have access to the ground-truth permuta-

tions. We leverage the internal consistency property of the arranger

(i.e., PL models) to derive a list-wise loss function, as shown in Fig-

ure 1(d). Compared to existing loss functions based on the ground-

truth relevance scores, our loss focuses on identifying and correct-

ing the relative permutations of neighboring pairs that have errors

during arranging. In other words, this list-wise loss is typically

designed for our recursive permutation generation. Our theoretical

analysis also reveals that the proposed framework is permutation-

invariant regarding the candidate items (namely any permutation

of the input items would not change the output ranking results).

In addition, we notice that conventional rankingmetrics overlook

the effects of contextual dependence among the items (i.e., the

probability of a user favoring an item is affected by other items

placed in the same list). Therefore, we develop a new series of

simulation (i.e., click models) based metrics, where NDCG can be

regarded as special cases of using PBM simulations [29].

We conduct experiments on 2 learning-to-rank benchmark datasets

and 3 real-world recommendation datasets. Empirical results demon-

strate that STARank can consistently outperform 9 the state-of-art

baseline methods in terms of both conventional ranking metrics

and new proposed simulation-based metrics.

Table 1: A summary of notations associated with 𝜋 .

Notations Explanations

𝜋𝑖 ∈ D𝑞 The item at the 𝑖-th position

𝜋<𝑖 ⊆ D𝑞 A set of the items at the higher positions than 𝑖

2 PRELIMINARIES
2.1 Problem Formulation
LTR algorithms usually assume that each item 𝑑 has its utility in

the context of a user (or a query) 𝑞1, which is often modelled as the

relevance score between 𝑞 and 𝑑 . Let D denote the set of candidate

items and D𝑞 denote the set of candidate items associated with 𝑞.

Besides these candidate items to be arranged (a.k.a., permuted), we

would also have access to user 𝑞’s historical records, a sequence of

the browsed item list, denoted as H𝑞 . Notably, D𝑞 and H𝑞 are sub-

sets of D (i.e., D𝑞 ⊆ D,H𝑞 ⊆ D), and there exists a permutation

order in eachH𝑞 but no permutation order in each D𝑞 . We further

use 𝑟𝑑 and 𝑟∗
𝑑
to denote the predicted and ground-truth relevance

of 𝑑 respectively.

Prevailing ranking methods formulate the ranking problem as

to predict 𝑟 for each item, whose risk function is defined as

Fpoint =
∑︁
𝑞

∑︁
𝑑∈D𝑞

ℓpoint

(
fpoint (𝑑 |H𝑞), 𝑟∗𝑑

)
(1)

where ℓpoint (·, ·) denotes a point-wise loss function, fpoint (𝑑 |H𝑞)
is a ranker that makes prediction over one item 𝑑 in the context of

H𝑞 . In practice, following PRP, the trained ranker is used to assign

an individual score for each item independently and sort the items

according to their scores. However, this pipeline internally suffers

from the following limitations: (i) it lacks the consideration over the

contextual dependence among items, as the score of each item is

solely determined by itself; (ii) it requires the sort operation, which

brings the non-differentiable issue.

Instead, we formulate the ranking problem as to seek for the

ground-truth permutation for the given set of candidate items.

Formally, let 𝜋 (𝑞) and 𝜋∗ (𝑞) denote the predicted permutation and

ground-truth permutation of the given item set D𝑞 respectively.

In other words, 𝜋 (𝑞) is the sequence of the arranged items in D𝑞 .

In the followings, we use 𝜋 and 𝜋∗ instead of 𝜋 (𝑞) and 𝜋∗ (𝑞) for
convenience. We list the key notations associated with 𝜋 in Table 1.

Our set-to-arrangement ranking problem can be described as

Definition 2.1 (Set-to-Arrangement Ranking Problem). For
each user/query 𝑞, given a tuple (D𝑞,H𝑞, 𝜋

∗) where D𝑞 is the set

of candidate items and 𝜋∗ is the ground-truth permutation of 𝑞,

and H𝑞 is the set of browsed items; our goal is to learn a ranker

fset (D𝑞 |H𝑞) that generates the permutation 𝜋 for the given set of

items D𝑞 in the context of H𝑞 . The risk function can be written as

Fset =
∑︁
𝑞

ℓlist

(
fset (D𝑞 |H𝑞), 𝜋∗

)
, (2)

where ℓlist (·, ·) is a list-wise loss function.

1
In the context of LTR [22], the terms “query” and “user” normally appear in the

search engines and the top-N recommendation scenarios respectively. For simplicity,

we mainly use “user” in this paper.
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We illustrate our task in Figure 1(a).We note that in our task, only

the ground-truth permutation 𝜋∗ is accessible, while the ground-
truth relevance score 𝑟∗

𝑑
for each item 𝑑 is not available.

2.2 Connections to Related Work
LTR algorithms refer to a group of machine techniques designed

to solve ranking problems that have been successfully applied in

multiple areas including top-N recommendation [9], search engine

[17, 22]. These techniques can be broadly categorized as point-wise,

pair-wise, and list-wise methods regarding the computation of train-

ing losses. The point-wise methods [11] directly treat the ranking

problems as classifications or regressions by taking one item as

the input to predict its score. The pair-wise methods [3, 18] take

a pair of items as the input and optimize their relative positions

in the final ranked list. The list-wise methods [4, 5, 35] further

extend the above methods by taking multiple items together and

optimizing the ranking metrics. In addition, there are recently pro-

posed models to build multi-variant scoring functions for each item

[1] or design permutation-invariant encoders [21, 23] or pointer

network encoders [2] for the input item set. However, all the above

methods following PBP fall into a paradigm of first individually

scoring items and then putting them into correct positions through

a non-differentiable sort operation [35] or a surrogate loss based on

permutation probability [24]. In contrast, STARank directly learns

to generate the permutation of the candidate items does not involve

individually scoring items and the sort operation.

3 THE STARANK FRAMEWORK
3.1 Overview
In this section, we present the architecture design of fset (·|·) as fol-
lows. We first describe our reader module (as shown in Figure 1(b))

to generate the representations of the candidate items in the con-

text of the browsed items in Section 3.2. Then, we introduce our

arranger module (as shown in Figure 1(c)) to produce the permu-

tation of the given candidate items in Section 3.3. We also answer

how to derive a our list-wise loss ℓlist (fset (·|·), 𝜋∗) (as shown in

Figure 1(d)) in Section 3.4.

3.2 Reader Module
For each user/query 𝑞 there are two types of inputs: (i)D𝑞 is a set of

candidate items, which is expected to be encoded in a permutation-

invariant manner. In other words, any permutation of the input

items should not change the output ranking. (ii)H𝑞 is a sequence

of browsed items that have their natural orders and thus should be

encoded in a permutation-sensitive fashion. Namely, the positions

of browsed items should be considered. In the light of this, we

construct fset (D𝑞 |H𝑞) as follows.
Let 𝒙𝑑 denote the feature vector of item 𝑑 . We first introduce a

permutation-sensitive (PS) module, denoted as PS(·), to represent

the user embedding in a recursive manner as

𝒖𝑞 = PS
(
𝒖0, 𝒙1, . . . , 𝒙 |H𝑞 |

)
, (3)

where 𝒖𝑞 is the embedding vector for user 𝑞. For simplicity, we

regard the user profiles (e.g., gender, age) as the original user fea-

ture, denoted as 𝒖0 which is fed into our PS module as shown in

Figure 1(b). While practical, we adopt a recurrent neural network

(RNN), i.e., an LSTM [15] to form the PS module.

Given 𝒖𝑞 , we then deploy a permutation-invariant (PI) module,

denoted as PI(·) to encode the candidate items in D𝑞 , which can

be expressed as

{𝒉𝑑 |𝑑 ∈ D𝑞} = PI
(
{𝒙𝑑 |𝑑 ∈ D𝑞}, 𝒖𝑞

)
, (4)

where 𝒉𝑑 is the representation vector of item 𝑑 . In particular, our

PI module is based on an attention mechanism [33], where the

representation vector of each item 𝑑 is produced by

𝒉′
𝑑
= 𝒘⊤

1
tanh(𝑾1𝒙𝑑 + 𝒃1), 𝑑 ∈ D𝑞, (5)

𝒉𝑑 = 𝛽𝑑𝒉
′
𝑑
, where 𝛽𝑑 =

𝒉′
𝑑
𝒖⊤𝑞∑

𝑗∈D𝑞
𝒉′
𝑗
𝒖⊤𝑞

, (6)

where𝒘 · ,𝑾· , 𝒃· are trainable matrices and vectors.

By incorporating Eqs. (3), (5) and (6) into Eq. (4), we can obtain the

representation vectors of items, being aware of the representations

of the user and her browsed items.

3.3 Arranger Module
With the representation vector of each input item, we use a Plackett-

Luce (PL) module to generate their permutation. Formally, the PL

module, denoted as PL(·), is defined as

𝜋 = PL
(
{𝒉𝑑 |𝑑 ∈ D𝑞}, 𝒖𝑞

)
. (7)

Noticing that the original pointer network [34] using LSTM as the

encoder is permutation-sensitive, we tweak the pointer network

by replacing the LSTM with the aforementioned reader.

More concretely, we construct a batch of one-hot position embed-

ding vectors {𝒑𝑖 }
|D𝑞 |
𝑖=1

to encode the position information. These

embeddings can be obtained by applying a LSTM as the decoder.

Let 𝜋𝑖 denote the item at the 𝑖-th position, and 𝜋<𝑖 denote a

set of the items whose positions are smaller than 𝑖 , namely 𝜋<𝑖 =

{𝜋1, . . . , 𝜋𝑖−1}. For convenience, we define 𝜋<1 as ∅.
Then, the probability distribution of item 𝑑 at the 𝑖-th position

can be produced as

𝑠𝑖
𝑑
= 𝒗𝑖

𝑑
𝒖⊤𝑞 , where 𝒗

𝑖
𝑑
= 𝒘⊤

2
tanh(𝑾2𝒉𝑑 +𝑾3𝒑𝑖 + 𝒃2), (8)

𝑃 (𝜋𝑖 = 𝑑 |𝜋<𝑖 ) =


𝑒𝑠

𝑖
𝑑 /

∑︁
𝑘∈D𝑞\𝜋<𝑖

𝑒𝑠
𝑖
𝑘 , if 𝑑 ∉ 𝜋<𝑖 ,

0, otherwise.

, (9)

where 𝑖 = 1, . . . , |D𝑞 |, 𝑑 ∈ D𝑞 ; 𝑠
𝑖
𝑑
is the trainable attention score

associated with placing item 𝑑 at position 𝑖 and 𝑝𝑖
𝑑
= 𝑃 (𝜋𝑖 = 𝑑 |𝜋<𝑖 )

is the probability representing the degree to which the PL module

points item 𝑑 to position 𝑖 . 𝑝𝑖
𝑑
is computed by a softmax over the

remaining items and is set to 0 for items already been arranged.

Once item 𝑑 is placed at position 𝑖 , its embedding 𝒉𝑑 is fed as the

input at the next step to produce the scores of position 𝑖 + 1.

We demonstrate the arrangement process in Figure 1(c). This

way can ensure the module holds the information on the items

already been arranged at each position to eventually output the

predicted permutation 𝜋 .
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Figure 1: An illustrated example of STARank: (a) the task of STARank is to train a ranker fset (D𝑞 |H𝑞) which produces the
permutation 𝜋 of the candidate items D𝑞 = {𝑑A, 𝑑B, 𝑑C, 𝑑D, 𝑑E} in the context of the user 𝑞 and the browsed itemsH𝑞 = [𝑑X, 𝑑Y].
Specifically, (b) STARank reads a set of candidate items into {𝒉A,𝒉B,𝒉C,𝒉D,𝒉E}, where the browsed items together with the
user profile are first encoded in a permutation-sensitive fashion, and then are fed into a permutation-invariant module to
embed the candidate items. (c) STARank arranges the candidate items into their positions (namely generating the predicted
permutation 𝜋) according to the attention scores of placing the item into the position that are learned via a Plackett-Luce
module. (d) STARank is supervised by optimizing a list-wise loss function L over 𝜋 and the oracle permutation 𝜋∗ where 𝜋∗ is
given. Additionally, we introduce a family of simulation-based ranking metrics.

As Eq. (9) shows the step-by-step generation of 𝜋 , we follow

Eq. (10) in [16] to derive the predicted permutation 𝜋 as

𝑃 (𝜋 |D𝑞) =
|D𝑞 |∏
𝑖=1

𝑒
𝑠𝑖𝜋𝑖∑ |D𝑞 |

𝑗=𝑖
𝑒
𝑠
𝑗
𝜋𝑗

, (10)

where 𝑖 = 1, . . . , |D𝑞 | and 𝑠𝑖𝜋𝑖 is computed by Eq. (8). We apply

Eq. (10) as PL(·) in Eq. (7).

3.4 List-wise Loss Function
For each user/query 𝑞, we can compute the predicted permutation

𝜋 , then one direct way to construct ℓlist (𝜋, 𝜋∗) can be formulated

as ℓlist (𝜋, 𝜋∗) =
∑ |D𝑞 |
𝑖=1

ℓpoint (𝜋∗𝑖 , 𝜋𝑖 ). However, this formulation

is a simple summation of point-wise loss that fails to consider the

contextual dependence among items.

Notice that the generation of 𝜋𝑖 is conditioned on the arranged

items (i.e., 𝜋<𝑖 ), as shown in Eq. (9). Therefore, the correspond-

ing supervision of each 𝜋𝑖 should be 𝜋∗
𝑖
|𝜋<𝑖 , where 𝜋∗ |𝜋<𝑖 is the

ground-truth permutation given the items in 𝜋<𝑖 have been ar-

ranged, and 𝜋∗
𝑖
|𝜋<𝑖 is the item at position 𝑖 in 𝜋∗ |𝜋<𝑖 . In this regard,

ℓlist (𝜋, 𝜋∗) can be written as

ℓlist (𝜋, 𝜋∗) =
|D𝑞 |∑︁
𝑖=1

ℓpoint (𝜋∗𝑖 |𝜋<𝑖 , 𝜋𝑖 |𝜋<𝑖 ) . (11)

However, 𝜋∗ |𝜋<𝑖 is not available, since we only have the ground-

truth permutation 𝜋∗. Alternatively, we construct the following
surrogate loss to optimize the arrangement of position 𝑖 when the

previous items are arranged following the ground-truth. In this

regard, ℓlist (𝜋, 𝜋∗) can be written as

ℓlist (𝜋, 𝜋∗) =
|D𝑞 |∑︁
𝑖=1

ℓpoint (𝜋∗𝑖 |𝜋
∗
<𝑖 , 𝜋𝑖 |𝜋

∗
<𝑖 ) . (12)

However, calculating 𝜋𝑖 conditioned on 𝜋∗
<𝑖

is still challenging.

Therefore, we leverage the internal consistency property of our ar-

ranger (i.e., PLmodels) to derive a computable version of ℓlist (𝜋, 𝜋∗).
We derive the difference between 𝑃 (𝜋𝑖 |𝜋∗<𝑖 ) and 𝑃 (𝜋∗

𝑖
|𝜋∗
<𝑖
) as

follows.

𝑃 (𝜋𝑖 |𝜋∗<𝑖 ) =
𝑃 ({𝜋𝑖 } ∪ 𝜋∗

<𝑖
)

𝑃 (𝜋∗
<𝑖
) =

𝑃 ({𝜋𝑖 } ∪ {𝜋∗
𝑖−1} ∪ 𝜋∗

<𝑖−1)
𝑃 (𝜋∗

<𝑖
)

=𝑃 ({𝜋𝑖 } ∪ {𝜋∗𝑖−1}|𝜋
∗
<𝑖−1) ·

𝑃 (𝜋∗
<𝑖−1)

𝑃 (𝜋∗
<𝑖
) ,

(13)
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where 𝑃 (𝜋𝑖 |𝜋∗<𝑖 ) denotes the probability of arranging 𝜋𝑖 at position
𝑖 conditioned on arranged items 𝜋∗

<𝑖
, and 𝑃 ({𝜋𝑖 } ∪ 𝜋∗

<𝑖
) denotes

the probability of arranging 𝜋∗
<𝑖

at positions from 1 to 𝑖 − 1 and

arranging 𝜋𝑖 at position 𝑖 . Eq. (13) tells us the main difference lies

in 𝑃 ({𝜋𝑖 } ∪ {𝜋∗
𝑖−1}|𝜋

∗
<𝑖−1) and 𝑃 ({𝜋

∗
𝑖
} ∪ {𝜋∗

𝑖−1}|𝜋
∗
<𝑖−1).

We then formally describe the internal consistency property of

PL models in the following lemma.

Lemma 3.1. Given a set of itemsD𝑞 and one subsetD′
𝑞 ⊆ D𝑞 , the

internal permutation of the items in D′
𝑞 , denoted as 𝜋

′, is consistent
in the context of either D𝑞 or D′

𝑞 , which can be formulated as

𝑃 (𝜋 ′ |D𝑞) = 𝑃 (𝜋 ′ |D′
𝑞), (14)

where 𝑃 (𝜋 ′ |D𝑞) and 𝑃 (𝜋 ′ |D′
𝑞) are the probabilities of the items in

D′
𝑞 satisfying 𝜋 ′ in the context of using the candidate item sets D𝑞

and D′
𝑞 as inputs respectively.

This property is originally proposed in [16], and one can refer

to Eq. (27) in [16] for the derivation of Lemma 3.1 (i.e., Eq. (14)).

Then, by assigningD′
𝑞 = {𝜋𝑖 , 𝜋∗𝑖−1} andD𝑞 = {𝜋𝑖 }∪𝜋∗<𝑖 , we can

derive that 𝑃 ({𝜋𝑖 }∪{𝜋∗
𝑖−1}) = 𝑃 ({𝜋𝑖 }∪{𝜋∗

𝑖−1}|𝜋
∗
<𝑖−1), namely the

relative permutation of 𝜋𝑖 and 𝜋
∗
𝑖−1 is independent of how positions

from 1 to 𝑖 − 2 are arranged. In other words, the main difference

between 𝑃 (𝜋𝑖 |𝜋∗<𝑖 ) and 𝑃 (𝜋
∗
𝑖
|𝜋∗
<𝑖
), as derived in Eq. (13) exists in

𝑃 (𝜋𝑖 |𝜋∗𝑖−1) and 𝑃 (𝜋
∗
𝑖
|𝜋∗
𝑖−1).

For convenience, let 𝜋∗
0
= ∅. Then, we re-write Eq. (12) as

ℓlist (𝜋, 𝜋∗) =
|D𝑞 |∑︁
𝑖=1

ℓpoint (𝜋𝑖 |𝜋∗𝑖−1, 𝜋
∗
𝑖 |𝜋

∗
𝑖−1) . (15)

Eq. (15) establishes a list-wise approach to optimize STARank by

supervising the arrangement at each position. In practice, we for-

mulate the overall loss as

L = −
∑︁
𝑞

|D𝑞 |∑︁
𝑖=1

log 𝑃 (𝜋𝑖 = 𝜋∗𝑖 |𝜋
∗
𝑖−1), (16)

where 𝑃 (𝜋𝑖 = 𝜋∗
𝑖
|𝜋∗
𝑖−1) is the probability of arranging 𝜋∗

𝑖
after the

arranged item 𝜋∗
𝑖−1.

Compared to existing loss based on the ground-truth relevance

scores, L pushes STARank to fit the ground-truth permutation

directly in a position-by-position way, which corresponds to the

recursive generation process in our arranger (as shown in Eq. (9)).

In other words, L focuses on identifying and correcting the rel-

ative permutations of neighboring pairs that have errors during

generating the arrangement.

3.5 Model Analysis

Complexity. From Algorithm 1, we can see that the main com-

ponents of STARank are the reader component and the arranger

component.

Let 𝐿 denote the length of candidate items of user/query 𝑞, then

the time complexity of computing an attention score of placing an

item is 𝑂 (𝐿𝐹1𝐹2 + 𝐸𝐹1), where 𝐸 is the number of input features,

and 𝐹1 and 𝐹2 are the number of rows and columns of the attention

matrix respectively. The above process needs to iterate for each

item and for each user/query. Therefore, the overall complexity is

𝑂 (𝑄𝐿2𝐹1𝐹2 +𝑄𝐿𝐸𝐹1) where 𝑄 is the number of users/queries.

Algorithm 1: STARank

INPUT: item set D𝑞 , historical dataH𝑞 , ground-truth 𝜋∗.
OUTPUT: ranker fset (·|·), predicted permutation 𝜋 .

1: Initialize all parameters.

2: repeat
3: for each user (or query) 𝑞 do
4: Read H𝑞 , D𝑞 into 𝒖𝑞 , {𝒉𝑑 |𝑑 ∈ D𝑞} via Eqs. (3) and (4).

5: Recursively arrange D𝑞 into 𝜋 using Eq. (7).

6: end for
7: Update parameters by minimizing L using Eq. (16).

8: until convergence

Property. We theorize that STARank is permutation-invariant re-

garding the candidate items in the following lemma:

Lemma 3.2. For the given item space D, assume that its elements
are finite, i.e., |D| < ∞. For each candidate item set D𝑞 ⊆ D and its
corresponding browsed itemsH𝑞 ⊆ D, the ranker fset (D𝑞 |H𝑞) in
Eq. (2) following STARank is permutation-invariant to the elements
in D𝑞 .

Proof. We first re-express STARank as a function producing the

predicted scores for all the possible permutations, namely fset :

P → R which can be specified as

𝑃 (𝜋 |D𝑞,H𝑞) = PL
(
PI(D𝑞, PS(H𝑞))

)
. (17)

Here, as H𝑞 is independent of D𝑞 , we can omit PS(H𝑞) here. As
shown in Eq. (6), PI(D𝑞) employing an attention mechanism can be

regarded as the summarization of the items in D𝑞 weighted by the

attention scores. And, the formulation of PL(·) is provided in Eq. (10).
According to Theorem 2 in [37], one can easily conclude that the

whole STARank framework is permutation-invariant regarding the

candidate items. □

4 EXPERIMENT
4.1 Datasets and Data Pre-processing

Dataset.We introduce 3 industrial recommendation datasets, namely

Tmall, Taobao, andAlipay, and 2 learning-to-rank benchmark datasets,

namely Yahoo and LETOR in our experiment.

• Tmall2 is a dataset consisting of 54,925,331 interactions of 424,170
users and 1,090,390 items. These sequential histories are collected

by the Tmall e-commerce platform from May 2015 to November

2015 with an average sequence length of 129 and 9 feature fields.

• Taobao3 is a dataset containing 100,150,807 interactions of 987,994
users and 4,162,024 items. These user behaviors including several

behavior types (e.g., click, purchase, add to chart, item favoring)

are collected from November 2007 to December 2007 with an

average sequence length of 101 and 4 feature fields.

• Alipay4 is a dataset collected by Alipay, an online payment ap-

plication from July 2015 to November 2015. There are 35,179,371

2
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

3
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

4
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53

https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
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Table 2: Comparison of different rankers on three industrial top-N recommendation datasets in terms of NDCG and MAP at
positions 5, 10. * indicates 𝑝 < 0.001 in significance tests compared to the best baseline.

Ranker

Tmall | Alipay | Taobao |

N@5 N@10 M@5 M@10 N@5 N@10 M@5 M@10 N@5 N@10 M@5 M@10

FM 0.1233 0.1140 0.2494 0.2572 0.1342 0.1277 0.2634 0.2709 0.1124 0.1106 0.2228 0.2354

DeepFM 0.1241 0.1181 0.2515 0.2591 0.1276 0.1214 0.2551 0.2629 0.1117 0.1104 0.2209 0.2339

PNN 0.1248 0.1185 0.2525 0.2602 0.1296 0.1227 0.2601 0.2666 0.1145 0.1123 0.2266 0.2385

LSTM 0.1341 0.1287 0.2660 0.2716 0.1427 0.1348 0.2783 0.2816 0.1308 0.1284 0.2496 0.2587

GRU 0.1311 0.1255 0.2606 0.2668 0.1422 0.1345 0.2773 0.2810 0.1300 0.1275 0.2488 0.2578

DIN 0.1345 0.1305 0.2674 0.2725 0.1401 0.1365 0.2705 0.2751 0.1230 0.1227 0.2351 0.2457

DIEN 0.1243 0.1182 0.2518 0.2594 0.1351 0.1293 0.2632 0.2696 0.1132 0.1122 0.2245 0.2366

SetRank 0.2733 0.2640 0.4090 0.4284 0.2969 0.2850 0.4289 0.4458 0.2594 0.2498 0.3876 0.4062

Seq2Slate 0.2385 0.2340 0.3720 0.3948 0.2452 0.2412 0.3771 0.3993 0.2223 0.2180 0.3437 0.3690

STARank−PI 0.3042 0.3251 0.4095 0.4254 0.3214 0.3264 0.4014 0.4446 0.2632 0.2734 0.3974 0.4214

STARank−PS 0.2952 0.3052 0.3974 0.4035 0.3046 0.3035 0.4046 0.4256 0.2678 0.2742 0.4025 0.4264

STARank 0.3353∗ 0.3745∗ 0.4328∗ 0.4358∗ 0.4509∗ 0.4803∗ 0.5337∗ 0.5703∗ 0.3479∗ 0.4278∗ 0.4082∗ 0.4635∗

STARank+PBM 0.3591∗ 0.4311∗ 0.4472∗ 0.4932∗ 0.4725∗ 0.5046∗ 0.5402∗ 0.5854∗ 0.4006∗ 0.4868∗ 0.4683∗ 0.5250∗

STARank+UBM 0.3482∗ 0.4208∗ 0.4359∗ 0.4828∗ 0.4481∗ 0.4709∗ 0.5189∗ 0.5644∗ 0.3930∗ 0.4792∗ 0.4545∗ 0.5164∗

Table 3: Comparison of different rankers on Yahoo dataset. *
indicates 𝑝 < 0.001 in significance tests.

Ranker

Yahoo |

N@5 N@10 M@5 M@10

FM 0.2122 0.2434 0.3574 0.3629

DeepFM 0.2483 0.2490 0.3587 0.3662

PNN 0.2563 0.2693 0.3598 0.3602

LSTM 0.2763 0.2731 0.3602 0.3641

GRU 0.2901 0.2876. 0.3674 0.3675

DIN 0.2932 0.2975. 0.3772 0.3706

DIEN 0.2911 0.2983 0.3703 0.3688

SetRank 0.3053 0.3185 0.3932 0.3868

Seq2Slate 0.3121 0.3234 0.4001 0.3987

STARank−PI 0.3188 0.3210 0.4079 0.4154

STARank−PS 0.3110 0.3356 0.4139 0.4201

STARank 0.3399∗ 0.3525∗ 0.4301∗ 0.4398∗

STARank+PBM 0.3474∗ 0.3612∗ 0.4342∗ 0.4450∗

STARank+UBM 0.3355∗ 0.3543∗ 0.4324∗ 0.4463∗

Table 4: Comparison of different rankers on LETOR dataset.
* indicates 𝑝 < 0.001 in significance tests.

Ranker

LETOR |

N@5 N@10 M@5 M@10

FM 0.1752 0.1721 0.3282 0.3292

DeepFM 0.1746 0.1689 0.3243 0.3204

PNN 0.1775 0.1739 0.3296 0.3301

LSTM 0.1851 0.1795 0.3405 0.3384

GRU 0.1739 0.1741. 0.3170 0.3205

DIN 0.1550 0.1671. 0.2815 0.2988

DIEN 0.1818 0.1811 0.3409 0.3402

SetRank 0.2035 0.2246 0.4045 0.4002

Seq2Slate 0.2436 0.2546 0.4122 0.4031

STARank−PI 0.2443 0.2568 0.4172 0.4075

STARank−PS 0.2467 0.2606 0.4231 0.4123

STARank 0.2824∗ 0.2622∗ 0.4876∗ 0.4529∗

STARank+PBM 0.2843∗ 0.2646∗ 0.4906∗ 0.4573∗

STARank+UBM 0.2863∗ 0.2668∗ 0.4887∗ 0.4587∗

interactions of 498,308 users and 2,200,191 items with an average

sequence length of 70 and 6 feature fields.

• Yahoo5 is a dataset collected by Yahoo, an online search engine.

It consists of 29,921 queries and 710k items. Each query document

pair is represented by a 700-dimensional feature vector manually

assigned with a label denoting relevance at 5 levels [6].

• LETOR6
is a package of benchmark datasets for research on

LEarning TO Rank, which uses the Gov2 web page collection

and two query sets from the Million Query track of TREC2007

and TREC2008. We conduct experiments on MQ2007, one of two

datsets for supervised learning-to-rank tasks in LETOR. MQ2007

contains 2,476 queries and 85K documents. Each query-document

pair is represented by a 46-dimensional feature vector with a

manually assigned 3-level label [26].

Data Pre-processing7. We split each dataset using the timestep.

Let 𝑇 denote the length of user browsing logs. We first filter out

the data instances whose browsing logs are smaller than 30 (i.e.,

𝑇 < 30). Next, for each user 𝑞, we assign 1-st to (𝑇 -20)-th items as

the training dataset where 1-st to (𝑇 − 30)-th items are used as the

user’s history data (i.e., H𝑞) and (𝑇 − 29)-th to (𝑇 − 20)-th items

construct the candidate item set (i.e., D𝑞). In validation, we use

1-st to (𝑇 − 20)-th items as H𝑞 and the (𝑇 − 19)-th to (𝑇 − 10)-th

items as D𝑞 ; while for evaluation, we use 1-st to (𝑇 − 10)-th items

asH𝑞 and (𝑇 − 9)-th to𝑇 -th items as D𝑞 . ForH𝑞 and D𝑞 , we keep

their original browsing orders and do not adopt any initial ranker

to generate the initial ranking list.

4.2 Experimental Configurations

Simulation-based Ranking Metrics. Consider that real-world
datasets usually offer ground-truth relevance scores for candidate

items, instead of ground-truth permutations. Therefore, we are

required to first generate the ground-truth permutations. For this

purpose, we introduce a ranking metric, denoted as R(·). Let P
5
http://webscope.sandbox.yahoo.com

6
https://www.microsoft.com/en-us/research/project/

letor-learning-rank-information-retrieval/

7
We note that our setting on how to divide datasets is different from previous work

such as SetRank [23] which would make the results not consistent with their results

reported in original papers, because our framework requires a sequence of items as

the history (i.e., H𝑞 ) and another set of items as the candidate items (i.e., D𝑞 ).

http://webscope.sandbox.yahoo.com
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
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Table 5: Comparison of different rankers on three industrial top-N recommendation datasets in terms of the proposed
simulation-based ranking metrics based on PBM and UBM at positions 5, 10. * indicates 𝑝 < 0.001 in significance tests compared
to the best baseline.

Ranker

Tmall | Alipay | Taobao |

P@5 P@10 U@5 U@10 P@5 P@10 U@5 U@10 P@5 P@10 U@5 U@10

FM 0.1026 0.1027 0.1015 0.1016 0.1138 0.1157 0.1013 0.1014 0.1073 0.1067 0.1013 0.1017

DeepFM 0.1023 0.1023 0.1005 0.1008 0.1037 0.1040 0.1008 0.1009 0.1093 0.1097 0.1008 0.1015

PNN 0.1248 0.1185 0.1014 0.1016 o.1023 0.1021 0.1002 0.1005 0.1142 0.1155 0.101 0.1016

LSTM 0.2074 0.2734 0.1301 0.1460 0.2137 0.2068 0.1274 0.1488 0.2498 0.2922 0.2025 0.2842

GRU 0.2188 0.3066 0.1299 0.1437 0.2292 0.2208 0.1308 0.1512 0.2541 0.3023 0.1928 0.2747

DIN 0.2725 0.2474 0.2493 0.1818 0.2257 0.2333 0.1443 0.1648 0.2748 0.2741 0.2099 0.2846

DIEN 0.2520 0.3693 0.1014 0.1012 0.2366 0.2194 0.1281 0.1456 0.2345 0.2986 0.1891 0.2654

SetRank 0.3778 0.3973 0.3378 0.3650 0.4171 0.4330 0.3346 0.3584 0.3094 0.3191 0.3704 0.3820

Seq2Slate 0.3182 0.3455 0.3210 0.3482 0.3337 0.3600 0.3254 0.3533 0.3285 0.3541 0.3189 0.3470

STARank−PI 0.3962 0.3967 0.4346 0.4426 0.5025 0.5046 0.4325 0.4602 0.3429 0.3478 0.4385 0.4255

STARank−PS 0.3873 0.3863 0.4253 0.4371 0.5010 0.5024 0.4242 0.4523 0.3321 0.3368 0.4257 0.4211

STARank 0.4240∗ 0.4010∗ 0.4435∗ 0.4493∗ 0.5283∗ 0.5058∗ 0.4578∗ 0.4888∗ 0.3529∗ 0.3599∗ 0.4418∗ 0.4308∗

denote the set of all the possible permutation ofD𝑞 . Then, we have

|P | = A
|D𝑞 |
|D𝑞 | = 𝑂 ( |D𝑞 |!) where A·· represents permutation operator.

After we enumerate all the possible permutations 𝜋 ∈ P, we select

the one received the highest score in terms of R(·) as the oracle
permutation 𝜋∗. In other words, we have:

𝜋∗ = argmax

𝜋∈P
R(𝜋) . (18)

We note that conventional rankingmetrics, such as NDCG, only con-

sider the effects of the positions of the arranged items but overlook

the contextual dependence among the items (i.e., the probability of

a user favoring an item should be dependent on other items posted

in the same sequence).

To this end, we propose to construct a virtual user to consider

the contextual dependence and make the evaluation according to

the user’s feedbacks. These virtual user models are known as the

click models [7], which generate users’ feedback by making some

reasonable assumptions based on some heuristics or eye-tracking

experimental results [20]. Formally, we use CM to denote an arbi-

trary click model (CM) (e.g., position-based model (PBM) [29], user

browsing model (UBM) [10]) treated as a black block to generate

the user’s feedback for the input sequence. Then, we introduce a

new family of the ranking metrics based on the aforementioned

simulations (i.e., click models), which is called simulation-based

ranking metrics and defined as

RCM (𝜋) =
|D𝑞 |∑︁
𝑖=1

𝑃 (𝑐𝜋𝑖 |𝜋<𝑖 ; CM) =
|D𝑞 |∑︁
𝑖=1

𝑃 (𝑜𝜋𝑖 |𝜋<𝑖 ; CM) · 𝑃 (𝑟𝜋𝑖 |𝜋<𝑖 ; CM),

(19)

which reflects a simple fact that a user clicks an item 𝑑 (i.e., 𝑃 (𝑐𝑑 =

1)) only when it is both observed (i.e., 𝑃 (𝑜𝑑 = 1)) and perceived as

relevant (i.e., 𝑃 (𝑟𝑑 = 1)), and the observation probability and the rel-
evance probability are determinated by the click model CM. We use

PBM and UBM as examples for CM and introduce their detailed con-

figurations as follows. PBM [29] simulates user browsing behavior

based on the assumption that the bias of a document only depends

on its position, which can be formulated as 𝑃 (𝑜𝑖 ) = 𝜌𝜏
𝑖
, where 𝜌𝑖

represents position bias at position 𝑖 and 𝜏 ∈ [0, +∞] is a parameter

controlling the degree of position bias. The position bias 𝜌𝑖 is ob-

tained from an eye-tracking experiment in [20] and the parameter

𝜏 is set as 1 by default. It also assumes that a user decides to click a

document𝑑𝑖 according to the probability 𝑃 (𝑐𝑖 ) = 𝑃 (𝑜𝑖 ) ·𝑃 (𝑟𝑖 ).UBM
[10] is an extension of the PBMmodel that has some elements of the

cascade model. The examination probability depends not only on

the rank of an item 𝑑𝑖 but also on the rank of the previously clicked

document 𝑑𝑖′ as 𝑃 (𝑜𝑖 = 1|𝑐𝑖′ = 1, 𝑐𝑖′+1 = 0, . . . , 𝑐𝑖−1 = 0) = γ0.
Similarly, we get γ0 from the eye-tracking experiments in [10, 20].

The click probability is determined by 𝑃 (𝑐𝑖 ) = 𝑃 (𝑜𝑖 ) · 𝑃 (𝑟𝑖 ).
In this regard, NDCG metric is a special case of the proposed

ranking metrics using PBM as CM. Concretely, the formulation of

NDCG can be written as

RNDCG (𝜋) =
1

𝑁

|D𝑞 |∑︁
𝑖=1

( 1

log
2
(𝑖 + 1) ) (2

𝑟𝜋𝑖 − 1), (20)

where 𝑁 normalizes for the number of relevant items, and 𝑟𝜋𝑖 is the

relevance of item 𝜋𝑖 . By comparing Eq. (20) to Eq. (19), we reveal

that RNDCG (·) is a special case of RCM (·) by assigning 𝑃 (𝑜𝜋𝑖 |𝜋<𝑖 ; CM) =
1

𝑁𝑜
( 1

log
2
(𝑖+1) ), 𝑃 (𝑟𝜋𝑖 |𝜋<𝑖 ; CM) =

1

𝑁𝑟
(2𝑟𝜋𝑖 − 1), where 𝑁 = 𝑁𝑜 · 𝑁𝑟 .

We can see that the observation probability of an arbitrary item is

solely determined by its position, showing that CM here is a special

case of PBM.

Noting that STARank metrics can be seamlessly adopted in the

supervision generation, we can re-formulate Eq. (18) as

𝜋∗ = argmax

𝜋∈P
RCM (𝜋). (21)

Note that the supervisions of STARank are determined by the

ranking metrics. For those datasets described in with binary scores

in the browsing logs, there might exist multiple oracle permutations

when applying either Eq. (18) or (21). In these cases, we randomly

choose one oracle permutation as the supervision. Also, these cases

would occur during the evaluation phase, where we act similarly.

We notice that there is a related paper [31] investigating the impacts

of different evaluation scheme regarding the same scores, which is

out of the scope of this paper and we leave it for future work.
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Hyperparameter Setting. The learning rate is decreased from

the initial value 1 × 10
−2

to 1 × 10
−6

during the training process.

The batch size is set as 100. The weight for the L2 regularization

term is 4 × 10
−5
. The dimension of embedding vectors is set as

64. The dropout rate is 0.5. All experimental comparisons are con-

ducted with 10 different random seeds. All the models are trained

under the same hardware settings with 6-Core AMD Ryzen 9 5950X

(2.194GHZ), 62.78GB RAM, NVIDIA GeForce RTX 3080 cards.

4.3 Baseline Methods and Ranking Metrics

Baseline Descriptions. We compare STARank against 9 strong

baselines, introduced as follows. FM [28] is the factorization ma-

chine using the linear projection and inner product of features to

measure the user-item relevance. DeepFM [13] is a generalized

model consisting of a FM as a wide component and a MLP as a

deep component. PNN [27] is product-based neural networks in-

cluding an embedding layer and a product layer to model user-item

interactions. DIN [39] designs a local activation unit to capture

user interests from historical records. LSTM [15] is a standard long

short memory approach widely used for modeling user’s sequential

pattern.GRU [14] uses the gate recurrent units to model sequential

user behaviors. DIEN [38] is an extension of DIN that builds an

interest extractor layer to model user’s temporal interests. SetRank
[23] uses a stack of self-attention blocks based on set transformer

[21] to model the cross-item interactions. Seq2Slate [2] employs

the pointer network [25] to sequentially encode previously selected

items and predict the next one. All the methods are trained based

on click feedback only.

Evaluation Metrics. We evaluate the performance of these meth-

ods according to two series of rankingmetrics, namely conventional

ranking metrics and simulation-based ranking metrics built upon

the specific click models. To be more specific, for the former ones,

we choose MAP (Mean Average Precision) and NDCG (Normalized

Distributed Cumulative Gain) at position 5, 10, denoted as M@K

and N@Kwhere K is 5, 10. For the later ones, we use PBM and UBM

as the click models and compute the cumulative click probability at

positions 5, 10, which are denoted as P@K and U@K and K is 5, 10.

Considering that the implementation of STARank is conditioned
on which click model we choose. Here, besides the standard im-

plementation of STARank using NDCG as the metric, we further

introduce two variants using PBM and UBM as the click models:

• STARank is the proposed framework, which uses NDCG over

the whole ranking list to compute 𝜋∗ following Eq. (18).
• STARank+PBM is a variant of STARank using RPBM (·) in Eq. (19)

to produce 𝜋∗ (i.e., PBM [29] as the click model).

• STARank+UBM is another variant of STARank using RUBM (·) in
Eq. (19) to generate 𝜋∗ (i.e., UBM [10] as the click model).

We also develop the following variants to investigate the impact

of each component of the proposed framework:

• STARank−PI is a variant of STARank using multi-layer percep-

tron (MLP) layer as PI module to encode the input items instead

of the attention network, where the user representation is con-

catenated with item embeddings to be fed into the MLP layer.

• STARank−PS is a variant of STARank using the MLP layer as PS

module to encode the sequential records instead of the LSTM.

Figure 2: Visualization of attention probabilities of placing
item 𝑑𝑖 at position 𝑝 𝑗 on Alipay dataset.

4.4 Performance Comparison
Tables 2, 3, 4 and 5 summarize the comparison results on the top-N

recommendation datasets and learning-to-rank datasets, in terms of

conventional rankingmetrics and simulation-based rankingmetrics.

Our major findings are listed as follows.

STARank consistently outperforms all the baselines scoring
and sorting. From these tables, we can clearly see that STARank
outperforms all these baselines including classical tower-based

methods (e.g., DeepFM), sequential methods (e.g., DIEN), and re-

cently proposed set-to-sequence methods (e.g., SetRank) in terms

of all the conventional and new proposed simulation-based ranking

metrics. Since all these baselines are supervised by the relevance

score of each item instead of directly optimizing the model by the

permutation of the items in an end-to-end fashion, these results

would indicate the superiority of the overall design of the proposed

framework.

STARank works well on the proposed simulation-based met-
rics. From comparisons between Tables 2 and 5, we can see that

there are larger performance gains from STARank in terms of the

simulation-based metrics than the conventional configurations. A

possible explanation is that compared to the conventional rank-

ing metrics, the new proposed simulation-based configurations

consider the effects from the contextual dependence; and thus su-

pervising the permutations of the ranking list would perform better

in this case.

SetRank and Seq2Slate consistently outperforms the other
baselines. From these results, we also can observe that among 9

baseline methods, SetRank and Seq2Slate can consistently achieve

the best performance. One possible reason is that due to our exper-

imental configuration typically assigns a set of items served as the

historical records, then these methods can effectively leverage the

contexts to better capture the user needs.

4.5 Ablation Studies

Impact of Permutation-Invariant Module. To investigate the

performance gain from our permutation-invariant module, we eval-

uate the performance of STARank−PI and report the corresponding

results in Tables 2, 3, 4, and 5. From comparisons between STARank
and STARank−PI, the results demonstrate the superiority of our
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Figure 3: Performance comparisons of STARank against base-
lines in terms of accuracy at top 5 positions onAlipay dataset.

TrDLnLng InIerence
AlLSDy

0

10

20

30

40

50

TL
P

e 
(s

ec
Rn

d)

TrDLnLng/InIerence TLPe CRPSDrLsRns
STA5
311
/ST0
DI1
SeT2SlDte
STA5 +

PBM

STA5 +
UBM

ank

ank
ank

Figure 4: Comparisons of training and inference time of
STARank and its variants against baselines on Alipay dataset.

proposed attention networks introduced in Section 3.2 which incor-

porates user representation to produce the representation vector

for each item.

Impact of Permutation-Sensitive Module.We use STARank−PS
to show the performance changes by replacing our RNN module

with the MLP layer which is a permutation-invariant module and is

not suitable to encode the permutation-sensitive user historical data.

Results summarized in Tables 2, 3, 4, and 5 verify the performance

gain by using a PS module to model the user’s history.

Impact of Supervision Generation. As described in the experi-

mental configuration, the proposed simulation-based ranking met-

rics can not only be used for evaluation but also can be adopted

in the ground-truth permutation generation (i.e., Eq. (21)). As Ta-

ble 5 shows the experimental results of each model under these

simulation-based ranking metrics, we further form the variants

STARank+PBM and STARank+UBM whose supervision generations are

simulation-based but evaluations are under conventional ranking

metrics. From the corresponding results shown in Table 2, we can

see that PBM-based supervisions consistently improve the ranking

performance, while UBM-based supervisions succeed in Tmall and

Taobao datasets and fail in Alipay dataset. One possible explanation

is that these supervision signals encourage the model to encode

the sequence dependence based on the assumptions of certain click

models. Therefore, if these assumptions hold in the dataset, the

ranking performance would be improved; otherwise, the ranking

performance would be hurt.

4.6 In-Depth Analysis

Visualization Analysis. To better understand the behavior of the

model, we visualize the probabilities of the attention scores from

Eq. (9), which shows the average probability of placing item 𝑑𝑖

(corresponding to 𝑑 in Eq. (9)) at position 𝑝 𝑗 (corresponding to 𝜋𝑖
in Eq. (9)) at each step. As Figure 2 depicts, the model produces the

permutations that are close to the input order, but with the some

items are placed to the neighboring positions. A possible reason is

that the input orders provided by Taobao platform are expected to

achieve a good performance; and our method in this case can be

regarded as a re-ranking model to refine the input orders.

Also, these attention values provide another perspective to ex-

plain why our framework performs better than existing ranking

methods following PRP. As revealed in [8], considering there are

multiple bias in ranking, the maximization of the utility can be seen

as solving the maximum-weight matching on the item-position

bipartite graph, where the edge weight between an item and a po-

sition denotes the utility of placing the item at this position. In this

regard, our attention scores could be the estimation of the utility.

In contrast, PRP learning to assign individual score to each item,

does not learn to estimate these the edge weights.

Accuracy at Each Position. In order to precisely investigate the

model performance at each position, we compute the accuracy

(ACC) of the ranking list provided by PNN, LSTM, DIN, Seq2Slate,

and STARank, and report the corresponding results on Alipay

dataset in Figure 3. Given the predicted permutation 𝜋 and the

oracle permutation 𝜋∗, for each data instance, ACC value equals

1 at position 𝑖 when 𝜋𝑖 = 𝜋∗
𝑖
holds; 0 otherwise. From Figure 3,

we can see that our method can consistently outperform all these

baseline methods at all the positions. We also note that ACC values

at the highest and lowest positions are higher than other positions.

One reasonable explanation is that the items that a user extremely

favors or dislikes are much easier to distinguish than other items.

4.7 Robustness Analysis
We evaluate the robustness of STARank under different amounts

of training data in Alipay dataset. For comparison, we also em-

ploy LSTM as a baseline method. Results are reported in Figure ??,
which demonstrate that after reaching a threshold (60% in this case),

STARank is almost as robust as LSTM regarding the amounts of

training data.

5 CONCLUSION AND FUTUREWORK
In this paper, we present a novel set-to-arrangement framework

named STARank to directly generate the permutations for input

sets of items without the needs of scoring and sorting items. Our

architecture and supervision designs together enable STARank to

be fully differentiable and also allow STARank to operate when

only ground-truth permutations instead of ground-truth relevance

scores for items are accessible. For future work, it would be interest-

ing to investigate possible applications of the proposed framework

in real-world e-commerce platforms.
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