
R E V I EW

Gene therapy for neurotransmitter-related disorders

Wing Sum Chu1,2 | Joanne Ng1,2 | Simon N. Waddington1,3 |

Manju A. Kurian4,5

1Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London, UK
2Genetic Therapy Accelerator Centre, Queen Square Institute of Neurology, University College London, London, UK
3Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
4Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University
College London, London, UK
5Department of Neurology, Great Ormond Street Hospital for Children, London, UK

Correspondence
Manju A. Kurian, Developmental
Neurosciences, Zayed Centre for Research
into Rare Disease in Children, Great
Ormond Street Institute of Child Health,
University College London, 20 Guildford
Street, London WC1N 1DZ, UK.
Email: manju.kurian@ucl.ac.uk

Funding information
Great Ormond Street Hospital Charity,
Grant/Award Number: V1284; LifeArc,
Grant/Award Number: P2023-0002;
Medical Research Council, Grant/Award
Numbers: MR/K02342X/1, MR/
R015325/1; National Institute for Health
and Care Research, Grant/Award
Number: NIHR-RP-2016-07-019; Rosetrees
Trust, Grant/Award Number: M576; Sir
Jules Thorn Charitable Trust; Wellcome
Trust, Grant/Award Number:
WT098524MA

Communicating Editor: Georg
Hoffmann

Abstract

Inborn errors of neurotransmitter (NT) metabolism are a group of rare,

heterogenous diseases with predominant neurological features, such as movement

disorders, autonomic dysfunction, and developmental delay. Clinical overlap with

other disorders has led to delayed diagnosis and treatment, and some conditions are

refractory to oral pharmacotherapies. Gene therapies have been developed and

translated to clinics for paediatric inborn errors of metabolism, with 38 interven-

tional clinical trials ongoing to date. Furthermore, efforts in restoring dopamine syn-

thesis and neurotransmission through viral gene therapy have been developed for

Parkinson's disease. Along with the recent EuropeanMedicines Agency (EMA) and

Medicines and Healthcare Products Regulatory Agency (MHRA) approval of an

AAV2 gene supplementation therapy for AADC deficiency, promising efficacy and

safety profiles can be achieved in this group of diseases. In this review, we present

preclinical and clinical advances to address NT-related diseases, and summarise

potential challenges that require careful considerations for NT gene therapy studies.

KEYWORD S

AADC deficiency, DTDS, Gene therapy, inborn errors of neurotransmission,
neurotransmitter disease

1 | INTRODUCTION

Neurotransmitters (NT) are a diverse group of chemical
messengers, including the mainly inhibitory aminoaci-
dergic (γ-aminobutyric acid [GABA] and glycine), excit-
atory aminoacidergic (aspartate and glutamate), and
monoaminergic (adrenaline, noradrenaline, dopamine
[DA] and serotonin [5-HT]) systems.1 NT are generally

synthesised, stored, and released from pre-synaptic
neurons, diffuse across the synaptic cleft to bind to post-
synaptic receptors, and finally transported or enzymati-
cally degraded for termination of neurotransmission.1

Inborn errors of NT metabolism (IEM-NT) are a rare
group of conditions due to defects in NT synthesis,
metabolism or reuptake.2,3 For the purpose of this review,
we focus on IEM-NT as defined by the International
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Working Group on Neurotransmitter-related Disorders.2

However, many other disorders can also impair NT
homeostasis with abnormal cerebrospinal fluid (CSF)
NT profiles, including mitochondrial diseases, channelo-
pathies and disorders of sphingolipid and cholesterol
synthesis.4

The majority of IEM-NT affects monoamine synthe-
sis, metabolism, and reuptake, namely DA and 5-HT
(Figure 1). DA is synthesised from L-tyrosine in two steps:
to levodopa (L-DOPA), by rate-limiting tyrosine hydroxy-
lase (TH) with essential co-factor tetrahydrobiopterin
(BH4); then by aromatic L-amino acid decarboxylase
(AADC) and co-factor pyridoxal 5-phosphate (PLP; active
form of vitamin B6).

5 DA can also be converted into
noradrenaline by dopamine β-hydroxylase. Monoamines
are then packaged into vesicles by vesicular monoamine
transporter-2 (VMAT2), a neurotransmitter transporter
(NTT), for subsequent Ca2+-mediated docking and fusion
to release into the synapse. Dopamine transporter (DAT),
a plasma membrane NTT, reuptakes DA from synaptic
cleft to spatiotemporally regulate synaptic DA neurot-
ransmission.6 One key monoamine degradation pathway
is oxidative deamination by monoamine oxidase A.5

Pathogenic variants have been identified in genes encod-
ing enzymes and transporter proteins mentioned
above.7,8 Due to shared metabolic pathways between DA

and 5-HT, 5-HT levels can be affected in pterin defects,
AADC deficiency (AADCD) and VMAT2 deficiency.

Patients with IEM-NT present with a number of
common clinical features, though often with variable age
of onset, severity and treatment response.7,8 For mono-
amine NT disorders, the spectrum includes neonatal hypo-
tonia, movement disorders such as dystonia, parkinsonism,
eye movement disorders including oculogyric crisis (OGC),
autonomic dysfunction, and developmental delay.9–11 Brain
magnetic resonance imaging (MRI) abnormalities are also
observed but are non-specific, including reduced brain vol-
ume, delayed myelination and watershed area changes.12,13

Previously, a timely and accurate diagnosis was a challenge
due to the need for specialist diagnostic investigations, for
instance, CSF NT analysis. Clinical symptoms may also
mimic a range of neurological disorders (such as hypoxic
ischaemic encephalopathy and cerebral palsy), resulting in
misdiagnosis and diagnostic delay.7,8 The increasing avail-
ability of exome and genome sequencing techniques has
accelerated diagnosis for many rare diseases patients and
has changed how children with IEM-NTs are now identi-
fied; genetic testing now often precedes and sometimes
avoids the need for CSF NT analysis.14

Depending on the underlying disorder, treatment
approaches include use of co-factors (e.g., sapropterin
dihydrochloride, pyridoxine) and/or NT precursors

FIGURE 1 Selected pre-synaptic neurotransmitter metabolic pathway with gene therapies in clinic and under development. Proteins

known to be involved in IEM-NT are coloured yellow; those with preclinical and clinical gene therapy investigations are in bold, and type of

strategies are indicated by respective icons. Dashed lines indicate intermediate metabolic steps not shown; drawings not to scale. Created

with BioRender.com. 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin; 5-HTP, 5-hydroxytryptophan; AADC, aromatic L-amino acid

decarboxylase; AAV, adeno-associated virus; ASO, antisense oligonucleotide; BH4, tetrahydrobiopterin; COMT, catechol-O methyl

transferase; DA, dopamine; DAT, dopamine transporter; DBH, dopamine β-hydroxylase; NHTP, dihydroneopterin triphosphate; DOPAL,

3,4-dihydroxyphenylacetaldehyde; GABA, γ-aminobutyric acid; GABA-T, GABA transaminase; GAD, glutamic acid decarboxylase; GAT,

GABA transporter; GHB, gamma-hydroxybutyric acid; GTP, guanosine-50-triphosphate; HVA, homovanillic acid; l-DOPA, levodopa; MAO,

monoamine oxidase; OCT3/PMAT, organic cation transporter 3/plasma membrane monoamine transporter; PLP, pyridoxal phosphate; PTP,

6-pyruvoyltetrahydropterin; PTPS, 6-pyruvoyltetrahydropterin synthase; RV, retroviral; SSA, succinic semialdehyde; SSADH, succinic

semialdehyde dehydrogenase; SERT, serotonin transporter; TCA, tricarboxylic acid; TH, tyrosine hydroxylase; TPH, tryptophan hydroxylase;

VIAAT, vesicular inhibitory amino acid transporter; VMAT2, vesicular monoamine transporter 2.
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(e.g., L-DOPA, 5-hydroxytryptophan [5-HTP]) supple-
mentation.9,15,16 Treatment responses vary between IEM-
NT, with some being curative, such as low dose L-DOPA
with dopa decarboxylase (DDC) inhibitor in auto-
somal dominant GCH1 deficiency, some with variable
responses like in AADCD and TH deficiency (THD), and
others being medically refractory, such as dopamine
transporter deficiency syndrome (DTDS).15–18 Moreover,
in IEM-NT that are treatable, including some BH4 disor-
ders, symptom resolution and quality of life are often
associated with early treatment initiation.19 As such,
novel therapeutic approaches like gene therapy are prom-
ising to address underlying gene defects in drug-resistant
forms of IEM-NT.

Gene therapy aims to deliver genetic materials by
viral or non-viral carriers, known as vectors, to address
disease-specific cellular dysfunctions.20 Current European
Medicines Agency (EMA) and Medicines and Healthcare
Products Regulatory Agency (MHRA)-approved in vivo
neurological gene therapy, namely Zolgensma® (onasem-
nogene abeparvovec) for Spinal Muscular Atrophy (SMA)
and Upstaza™ (eladocagene exuparvovec) for AADCD,
utilise viral vectors called adeno-associated virus (AAV).
In this review, we will mainly focus on AAV-based NT
gene therapies.

Wild-type (WT) AAV is a replication-deficient parvo-
virus with a 4.7 kilobases (kb) single-stranded (ss) DNA
genome; recombinant AAV vectors (rAAV) retain only the
inverted terminal repeats, which involve in vector packag-
ing, transduction and transgene expression.21,22 Self-
complementary AAV (scAAV) bypasses the rate-limiting
second strand synthesis, thereby achieving earlier and
higher level of transgene expression21; but induces
higher immune responses than ssAAV in mice.23,24 Differ-
ent combinations of AAV capsid, regulatory elements
(RE) such as promoters and delivery route are adopted
depending on desired expression profile.25 Generally, cap-
sid serotype determines tissue tropism due to recognition
of specific cell surface receptors, followed by particle inter-
nalisation, endosomal escape, uncoating and subsequent
transgene transcription.21,26 Capsid engineering, by ratio-
nal design, ancestral sequence reconstruction, or directed
evolution by DNA shuffling, could further enhance trans-
duction, specificity, and CNS-specific axonal retrograde
and/or anterograde transport.26,27 Many novel capsids are
being tested in clinical trials, for example, AAV-LK03
(liver-tropic,28 for haemophilia A (NCT03003533)29), and
Anc80 (liver, muscle and retina-targetting,30 for Wilson
disease [NCT04537377]). The inclusion of cis-acting RE
can further define transgene specificity and expression
level.21,26 Most clinical trial gene therapy constructs
employ ubiquitous promoters such as cytomegalovirus
(CMV) and hybrid CMV immediate-early enhancer/

chicken β-actin promoter (CAG).31 This has added benefits
if transgene products can be secreted for cross-correction,
for instance, in lysosomal storage diseases.32 Tissue-
specific promoters could potentially limit off-target expres-
sion and related toxicities25; inducible,33 and activity-
dependent,34 promoters are in development but have not
reached clinical application. Recent rodent and non-
human primates (NHP) studies indicate capsid-promoters
interactions may impact cell-type selectivity as well.35,36

Other RE, including intron, polyadenylation (polyA) sig-
nal, and woodchuck hepatitis virus post-transcriptional
regulatory element (WPRE), increase transgene expression
level by promoting mRNA stability and/or nuclear
export,37 whereas inserting binding sites for tissue or cell-
specific microRNAs at 30 end can regulate transgene
transcript levels,38 and prevented transgene overexpres-
sion in mice.39 Delivery route is another important con-
sideration for the desired vector biodistribution profile
and safety. For CNS diseases, direct parenchymal deliv-
ery is relatively invasive and can result in focal or
broad transduction; the latter is achievable by retro-
grade/anterograde transport due to extensive connec-
tivity of regions such as putamen and thalamus.40

Alternatively, intracerebroventricular (ICV), intra-
cisterna magna, and intrathecal (IT) injections utilise
CSF flow for distribution, resulting in spinal and brain
transduction with some peripheral ‘leakage’.41 Intrave-
nous (IV) delivery is feasible for some serotypes
(e.g., AAV9, rh8, rh10) that can cross the blood–brain
barrier; however, concerns about large doses, systemic
genotoxicity and immunogenicity may prompt the use
of alternative routes.42 It is also possible to undertake
dual delivery, such as intrathalamic (ITH) and IT deliv-
ery is undertaken in GM2 gangliosidosis patients.43

One of the first NT-related gene therapies was for Par-
kinson's disease (PD), which provided important clinical
evidence relevant to the development of gene therapy for
IEM-NT. PD is a neurodegenerative disorder with no
disease-modifying therapy currently available; symptomatic
improvement from L-DOPA declines as PD progresses.44

Different gene therapy strategies have been reviewed in
detail elsewhere.45,46 Of particular interest, intraparenchy-
mal delivery of DA (AADC, with or without TH and guano-
sine triphosphate cyclohydrolase 1 [GTPCH, rate-limiting
of BH4 synthesis]),

47–54 and GABA (glutamic acid decarbox-
ylase 65 and 67 [converts glutamate to GABA]),55–57 synthe-
sis enzymes were generally well-tolerated in clinical trials.
Common adverse events in DA trials included treatment-
related dyskinesia and surgery-related events. In a Phase
2 rAAV2-AADC trial (NCT03562494), which used a higher
infusion volume of 1800 μL/putamen,58 T2 MRI abnormali-
ties were observed and thus placed on clinical hold, and
the sponsor partnership was terminated in 2021.59

178 CHU ET AL.
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With the clinical precedents of NT gene therapies
developed for PD, insights into vector design, dosage,
delivery methods, safety, tolerability, and transduction of
neural pathways are valuable for developing gene thera-
pies for IEM-NT in the clinic.60 The recent EMA and
MHRA approvals of Upstaza™ for AADCD and recom-
mendation by the National Institute for Health and Care
Excellence (HST26) have further paved the way for the
development and translation of these disease-modifying
therapies. Here, we summarise preclinical and clinical
gene therapy studies for IEM-NT (Figure 2) and discuss
the potential future challenges in clinical translation.

2 | GENE THERAPY FOR
MONOAMINE NT DISORDERS

2.1 | AADC deficiency

AADCD (OMIM #608643) is a rare neurodevelopment
disorder characterised by impaired DA and 5-HT
synthesis due to biallelic mutations in the DDC
(7p12.2) gene. Noradrenaline and adrenaline synthesis
are also affected as they are downstream of DA;

therefore, typical CSF markers include low DA, 5-HT, and
noradrenaline metabolites, namely homovanillic acid
(HVA), 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-
4-hydroxyphenylglycol, along with high precursors L-DOPA
and 5-HTP levels.61 A total of 120 patients have been pub-
lished to date; 80% of cases are classified as severe, whereby
patients typically present in the early months of life with
hypotonia, OGC and developmental delay.16,62 Autonomic
dysfunction, such as excessive sweating and sleep distur-
bances, movement disorders, for example dystonia, and cere-
bral atrophy on brain MRI are also observed.16,62,63 A higher
prevalence in Taiwan is attributed to a founder variant
c.714+4A>T (IVS6+4A>T), and homozygous patients mani-
fest severe phenotypes, with severe motor impairment,
weight stagnation and increased risk of premature death.64

Existing drug treatments, including DA agonists, mono-
amine oxidase inhibitors, vitamin B6 and tonal agents such
as benzodiazepines have limited benefits, and adverse effects
are common.62

rAAV2 gene supplementation therapies targeting the
putamen or midbrain have been trialled in AADCD
patients. Upstaza™, approved by EMA and MHRA for
severe AADCD in 18-month-old and above, is delivered
as bilateral intraputaminal infusion (3 μL/min, 80 μL/site,

FIGURE 2 Summary of clinical and preclinical advanced therapeutics for IEM-NT. 30-UTR, 30-untranslated region; AADCD, aromatic

L-amino acid decarboxylase deficiency; AAV, adeno-associated virus; ASO, antisense oligonucleotide; CMV, cytomegalovirus enhancer/

promoter; DTDS, dopamine transporter deficiency syndrome; hAADC, human aromatic L-amino acid decarboxylase; hBG, human β-globin;
hBG2/3, human β-globin partial intron 2/partial exon 3; hGHpA, human growth hormone polyadenylation signal; ICV,

intracerebroventricular; IP, intraperitoneal; IT, intrathecal; IV, intravenous; N.D., not disclosed; PTPSD, pyruvoyltetrahydropterin synthase

deficiency; RE, regulatory elements; RO, retro-orbital; RV, retroviral; SLC6A1, SLC6A1-related disorder (GABA transporter 1-related

myotonic-astatic epilepsy); SN, substantia nigra; SNpc, substantia nigra pars compacta; SSADHD, succinic semialdehyde dehydrogenase

deficiency; SV40pA, simian virus 40 early polyadenylation signal; vg, vector genomes; VTA, ventral tegmental area.
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2 sites/hemisphere) at a total dose of 1.8 � 1011vg.65 The
construct contains AADC cDNA, CMV promoter, human
β-globin partial intron 2/partial exon 3, and simian virus
40 (SV40) polyA. A putaminal target was chosen due to its
accessibility, striatal DA deficiency, connectivity in the
cortico-basal ganglia network, and safety profiles from PD
AADC trials.66 The compassionate use,67 Phase 1/268 and
Phase 2b69 trial treated a total of 21 patients (age range,
1.7–8.5 years) at 1.8 � 1011vg, demonstrating continuous
improvement in primary endpoints of gross and fine
motor development (Peabody Developmental Motor
Scales–Second Edition [PDMS-2]), significantly improved
motor performance (Alberta Infant Motor Scale [AIMS]),
cognitive function, language skills and AADC activity in
putamen, as measured by PET 18F-DOPA scans, up to
5 years post-treatment.69 Milestone attainments, such as
head control and sitting unassisted, were progressive, with
44% and 20% at 1 year and 75% and 67% at 5 years, respec-
tively.70 Reduced OGC frequency, increased CSF HVA
(but not 5-HIAA), and improvement in weight gain, auto-
nomic (sweating) and serotonergic (mood) symptoms were
also reported 1-year post-treatment.67–69 No significant dif-
ference in PDMS-2 was achieved with higher dosage at
2.4 � 1011vg in the Phase 2b study; rather, earlier treat-
ment was significantly correlated to higher PDMS-2 scores
and improvement in white matter microstructure on
MRI.69,71 Three patients that are able to walk without
assistance post-treatment were also treated early, by
4.2 years old.69 Adverse events include surgical complica-
tions, pyrexia, and transient orofacial and limb dyskinesia,
possibly due to early DA receptor hypersensitivity. Dyski-
nesia onset within 3 months of treatment, was relieved by
risperidone and resolved by 10 months; severity and dura-
tion correlated with age of patients rather than dosage.69

Lately, motor and non-motor improvements 1-year post-
treatment were reported in two older patients (treated
when >10 years old) with severe AADCD, with improved
putaminal 18F-DOPA uptake compared to baseline.72

Similar results were shown in a Japanese Phase 1/2
rAAV2 study also using CMV promoter, showing signif-
icant putaminal AADC activity detected by PET,
improved motor functions (AIMS), and reduced OGC
duration up to 2 years post-gene therapy in severe
AADCD patients.73 The gene therapy was administered
at a higher concentration (i.e., lower infusion volume
of 50 μL/site, with a similar total dose of 2 � 1011vg).
Variable responses in CSF HVA levels and cognition
were seen; transient orofacial dyskinesia and choreic
movements occurred in all six patients, peaking at
2 months and diminishing by 6 months.73 Further analy-
sis showed PET tyrosine tracer uptake was significantly
increased in the putamen and substantia nigra (SN)
post-gene therapy, and associated with gross motor

improvement via prefrontal cortico-putaminal network
restoration.74 Treatment of two patients with moderate
AADCD, at 4 and 12 years of age, respectively, led to
improvements in AIMS score, but improvement in the
development quotient score was only seen in the earlier-
treated patient.75

Unlike in PD, midbrain structures in AADCD are not
known to degenerate.76 Therefore, another approach is to
directly deliver rAAV2-AADC to the midbrain, specifi-
cally to the SNpc and ventral tegmental area (VTA)
DA neurons, to address DA deficiency in nigrostriatal
and other dopaminergic pathways.77 Also driven by a
CMV promoter, a Phase 1 (NCT02852213) study of
seven patients (aged 4–9 years old) were treated at 1.3 or
4.2 � 1011vg total dose by bilateral MRI-guided convection-
enhanced delivery (50 μL in SNpc and 30 μL in VTA/
hemisphere). Eighty percent coverage of both areas was
obtained; 18F-DOPA PET scan showed increased AADC
activity in both the midbrain and striatum at 3 and
24 months, likely due to anterograde axonal transport of
vector and AADC protein. Notably, complete and sustained
resolution of OGC occurred within 9–33 days for 5 subjects;
6 (86%) gained head control and 4 (57%) could sit indepen-
dently by 12 months. All five patients followed up till
18 months achieved clinically meaningful improvement in
motor score (Gross Motor Function Measure; GMFM-88),
reduction in irritability and insomnia. Similar to the trials
reported above, post-treatment improvement in CSF HVA
(but not 5-HIAA), and transient dyskinesia in all patients
3–4 weeks after treatment were observed. Ongoing dose-
escalation study evaluated a larger volume (up to 300 μL,
1 infusion/hemisphere, in between SNpc and VTA) and
dose up to 1.5 � 1012vg, and with a patient age range span-
ning from 4- to 27-year-old.78,79

Recently, an early Phase 1 trial delivering AAV9-
AADC (VGN-R09b) to bilateral putamen was initiated in
China (NCT05765981).80 The trial is recruiting children
between 2 and 8 years with homozygous or compound
heterozygous IVS6+4A>T missense and baseline motor
development <3 months. Outcome measures are adverse
events and motor development at 1 year. Dosage and
construct design are not available.

Finally, since the founder variant c.714+4A>T results
in aberrant splicing and produces a premature stop
codon from a pseudoexonic +38 cryptic splice site,64 an
antisense oligonucleotide (ASO) strategy was tested in
vitro to restore normal mRNA splicing.81 ASO binds to
target mRNA via Watson-Crick base pairing, and modu-
late pre-mRNA splicing via steric hindrance for the
recruitment of splicing factors.82,83 The desired proper-
ties can be generated by chemical modifications of back-
bone, sugar moiety and/or nucleoside.82,83 Using a
phosphorodiamidate morpholino oligomer (PMO), up to

180 CHU ET AL.
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41% restoration in mRNA level was observed after 72-h
transfection in patient-derived lymphoblastoid, with sig-
nificant increase in AADC protein and 5HT levels.81

However, two new out-of-frame isoforms arouse, indi-
cating the need to refine and/or use of combinatory
ASOs to ensure appropriate splicing to minimise the risk
of off-target effects.

2.2 | Pyruvoyltetrahydropterin synthase
deficiency

Pyruvoyltetrahydropterin synthase (PTPS) is the second
step of BH4 synthesis from GTP.84 It is the most common
BH4 disorder identified by newborn screening (due to the
presence of hyperphenylalaninaemia). Pyruvoyltetrahy-
dropterin synthase deficiency (PTPSD) (OMIM #261140)
has a broad phenotypic spectrum and can be biochemi-
cally characterised into mild and severe forms with
reduction of HVA and 5-HIAA, which generally requires
BH4 and NT precursor supplementations with variable
response.15,85 One hundred ninety-nine autosomal reces-
sive variants of the PTS gene, located at 11q22.3-23.3,
have been identified, including 115 missense and
26 splicing substitutions; protein structures, particularly
active site BH4 binding region, are known to be dis-
rupted.86,87 To address the genetic defect, a retroviral
(RV) gene transfer and two ASO strategies have been
evaluated in patients fibroblasts. In PTPSD patients, low
biopterin and high neopterin are observed; following
Moloney murine leukaemia virus (MLV)-based RV
transfection, PTPS enzyme activity and a trend for
pterin normalisation was observed in all three patient
fibroblast lines.88 However, a potential translation chal-
lenge is that MLV vectors are inefficient in transducing
slowly or non-dividing cells, as well as concerns about
insertional mutagenesis.89 Splice site variants can lead
to aberrant intron inclusion (pseudoexons), as mediated
via mechanisms such as novel 50 or 30 splice site, and
influencing splice enhancer/silencer.90 Therefore, ASO
blockage of these cryptic splice sites could facilitate
the expression of more functional proteins.83 The two
approaches utilised different ASO chemistries, specifi-
cally PMO91 and 20-O-methyl phosphorothioate,92 to
block the recruitment of splicing factors for pathogenic
pseudoexon production. Splice site-targeted ASOs were
able to rescue three deep intronic mutations, which nor-
mally result in extra amino acid insertions, premature
termination, and frameshift,93 in patients' fibroblasts on
mRNA and protein levels.91 A further study on another
intron 2 variant provided evidence that the same ASO
can be used in variants affecting the same region, such
as a common splice site or regulatory binding motifs.92

3 | NT TRANSPORT

3.1 | Dopamine transporter deficiency
syndrome

DAT is vital in regulating DA neurotransmission by reup-
take of extracellular DA into midbrain dopaminergic
(mDA) neurons, thereby regulating mDA excitability.94

DAT belongs to the solute carrier (SLC) 6 family, and co-
transports Na+ and Cl� along electrochemical gradients, to
drive DA translocation against a concentration gradient via
alternating access.95,96 Gene variants have been implicated
in PD, attention deficit hyperactivity disorder, autism and
neuropsychiatric disorders.97–99 DTDS (OMIM #613135)
results from biallelic loss-of-function mutations in SLC6A3.
Classical DTDS is an infantile-onset, progressive motor dis-
order, with symptoms including hyperkinesia, orolingual
dyskinesia, parkinsonism-dystonia and ocular flutter; atypi-
cal juvenile and adult-onset forms are also reported with a
less aggressive disease course, and associated with higher
residual DAT function.18,100,101 Evidence of neurodegenera-
tion by DAT-single-photon emission computed tomography
(SPECT) was observed in two atypical adult patients.102,103

There is one adult case where autism spectrum disorder
and PD are associated with a dominant-negative variant
identified via exome sequencing.102 In DTDS, loss of DAT
function results in extraneuronal DA accumulation, leading
to elevated CSF HVA but normal 5-HIAA.101 Little benefit
from pharmacological treatments is observed in patients101;
whilst pharmacochaperones could potentially correct
mutation-related protein folding defects and DAT surface
expression,104 such approaches are mutation-specific, as
opposed to a gene supplementation strategy, which could
treat a broader spectrum of DTDS patients.

DAT-knockout (KO) mice recapitulate major human
DTDS motor features, including progressive motor
deficits, dyskinesia, tremors and metabolic profiles of
high HVA and low DA; shortened lifespan with parkin-
sonism and reduced TH levels were also found in these
mice.105–107 A dual rAAV2/10 strategy, utilising Cre/LoxP
system (FLEX switch108) for specific DA neuronal expres-
sion, was evaluated in adult post-natal (P70) DAT-KO
mice.109 Briefly, the GOI (mouse Slc6a3 or reporter gene),
in inverted antisense orientation, was put into a double-
inverted open reading frame containing two pairs of
reciprocally orientated LoxP sites, driven by a ubiquitous
(CMV) promoter and packaged as the first rAAV.
The second rAAV contains a target cell/ tissue-specific
promoter (midbrain DA neuronal promoter, rat TH110)
to deliver Cre-recombinase, which can recognise the
LoxP sites and inverse the GOI sequence, therefore
allowing transgene expression.109,111 Bilateral stereotactic
SN injections of the two vectors, approximately at
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5 � 109vg each, resulted in DAT expression and signifi-
cant improvements in striatal extracellular DA levels and
restoration of TH in the dorsal striatum.109 Further beha-
vioural, survival, tissue and metabolite analyses showed
significant improvements compared to reporter gene-
treated KO, and in some, phenotype restoration was com-
parable to wild-type (WT). Whilst this approach has pro-
vided great proof-of-concept for rAAV-DAT gene
therapy, the use of a murine transcript, P1 bacteriophage-
derived Cre/LoxP, and potential Cre-related neurotoxic-
ity112 will limit clinical translation.

Our group previously showed in mDA neurons derived
from DTDS patient fibroblasts, DAT dysfunction is associ-
ated with TNF-α-mediated apoptotic neurodegeneration,
which was not seen in age-matched and isogenic lines.113

Lentiviral transduction of human SLC6A3 rescued DA
uptake and prevented neurodegeneration. For proof-of-
principle in vivo investigation, rAAV9-SLC6A3 driven
under truncated human synapsin 1 (hSyn1) promoter was
injected neonatally by ICV at 2 � 1010 and 2 � 1011vg/pup
in DAT-KO mice. Compared to untreated DAT-KO, low
dose increased 1-year survival from 41% to 100%, restored
body weight, locomotor behaviour, DA and HVA profiles,
and striatal neuronal firing. Widespread, rostrocaudal tra-
nsduction was observed, with no dose-dependent increase
in target mDA neurons; rather, brain-wide overexpression
in high-dose animals led to adverse events requiring
euthanasia in 50%, cortical reactive astrogliosis, neuronal
loss and vacuolation. Therefore, to combat these observed
off-target effects, a more restricted rAAV2 was used to
treat symptomatic DAT-KO at 4 weeks; 3-log dose-ranging
(2 � 108–1010vg/mouse) showed a dose-dependent
increase in mDA neurons, human DAT protein, mRNA,
and vector genome copy in the midbrain, with evidence of
anterograde transport to the striatum. All doses rescued
foot fault to WT level, with high dosage 2 � 1010 demon-
strating open field and vertical pole descent time equiva-
lent to WT. No neuropathology was observed in with
these dosages, delivery route and capsid. Gene therapy for
DTDS has recently been granted orphan drug designation
by EMA and rare paediatric disease designation by FDA,
with a Phase 1/2/3 clinical trial currently being
planned.114

3.2 | SLC6A1-related disorder
(GABA transporter 1-related
myotonic-astatic epilepsy)

GABA transporter (GAT)-1 and -3 are the major GATs
which are widely expressed in different cell types
throughout the brain; GAT-1, encoded by SLC6A1 on
chromosome 3, is mainly localised to axonal terminals of

GABAergic neurons and astrocytes.115,116 Myoclonic astatic
epilepsy (OMIM #616421), caused by haploinsufficiency of
SLC6A1, is a developmental and epileptic encephalopathy,
associated with myoclonic–astatic and absence seizures,
intellectual disability, autism spectrum disorder, and hypo-
tonia in early years of life.117,118 Around 120 patients have
been published.117 Loss-of-function SLC6A1 variants lead
to impaired protein trafficking and GABA transport activ-
ity; increased extracellular and reduced intracellular GABA
levels are postulated to cause tonic and phasic inhibi-
tions.119,120 Given GABA's role in brain development from
the early embryonic stage until maturity,121 restoration of
GAT-1 expression with gene therapy may be beneficial
over current symptomatic treatments.

TSHA-103, a scAAV9 driving codon-optimised copy
of human SLC6A1, is currently in preclinical development
by Taysha Gene Therapies.122 In a homozygous SLC6A1-
KO mice model, neonatal ICV delivery at 3 � 1011vg/pup
of two constructs driven by either a ubiquitous (JeT) or a
neuronal-specific (MeP) promoter significantly reduced
seizure burden. Behavioural improvements were only
noted in the neuronal-specific version. Furthermore,
adverse effects were observed, including higher mortality
with the ubiquitous promoter.123 For clinical translation,
older mice were treated IT at 7–7.5 � 1011vg/mouse, with
lower cortical expression than neonatal ICV but was well-
tolerated for up to 1 year. However, only modest efficacy
in behavioural tests was observed when treated at P7–10,
with no improvement in the P28–35 group.123 To evaluate
whether therapeutic efficacy is linked to transduction effi-
ciency or earlier intervention, AAV-PHP.eB, a neurotropic
variant of AAV9, was used for IV injection in P23 mice.124

Seizure reduction was not achieved at any of the three
doses (ranging from 2 � 1010 to 1 � 1012vg/mouse). This
suggests both a narrow therapeutic window and that fur-
ther expression optimisation is required.

4 | NT DEGRADATION

4.1 | Succinic semialdehyde
dehydrogenase deficiency

Succinic semialdehyde dehydrogenase (SSADH) is a
systemically expressed mitochondrial enzyme, with
major expression in the brain and liver.125 In healthy
individuals, synaptic GABA is transported into astrocytes
by GAT, converted to succinic semialdehyde by GABA
transaminase (GABA-T), then oxidised in tandem by
SSADH to succinate, a substrate of the TCA cycle.125 In
SSADHD (OMIM #271980), biallelic loss-of-function
mutations in the encoding ALDH5A1 (6p22.3) gene result
in the cytosolic conversion of succinic semialdehyde to
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γ-hydroxybutyrate (GHB), a neuromodulator with neuro-
toxic properties, instead.126 Excess accumulations of
GABA, GHB and other GABA metabolites are found in
brain and body fluids, but the exact pathophysiology
remains to be elucidated.125 Clinical symptoms, including
hypotonia, developmental delay, epilepsy, and beha-
vioural and sleep disturbances, manifest in early child-
hood126; age-dependent association in symptom severity
and seizure types have been described.127 Post-mortem
study of one patient also found amino acid, phospholipid,
and NT disturbances.128 No effective treatment currently
exists to address the underlying deficiency and down-
stream metabolic sequelae.

As the liver also expresses high levels of SSADH,
and central and peripheral GHB rapidly equilibrates,125

a liver-directed adenoviral approach was evaluated in
a mouse SSADH-KO model.129 These mice recapitulate
metabolic features observed in humans but have more
severe phenotypes, with reduced survival up to P26 due
to status epilepticus.130 Using a first-generation
E1-deleted adenovirus, human SSADH cDNA was
delivered under a potent Rous sarcoma virus promoter
intraperitoneally (IP) at P10 at three doses (4.5 � 108,
1 � 1010, 1 � 1011 viral particles [vp]), and retro-
orbitally (RO) at P13 with 1 � 1011vp.129 Extension in
survival was observed in all treatment groups, highest
by 39.3% in the 4.5 � 108 IP group. For tissue analysis,
different sets of mice were injected and tissues were col-
lected at different timepoints; at 72 h post-injection,
higher hepatic SSADH enzymatic activity was achieved
by RO (maximum �20%) than IP. RO-treated also had
GHB reduction in the liver, brain, kidney and serum,
but restricted to the liver only for IP. In treated mice
that survived beyond 1 month, mRNA but not SSADH
enzyme activity was detected. Neonatal (P0) IP injec-
tions reduced liver GHB for up to 8 days, but was
accompanied by unexplained rebound elevation in the
brain. Overall, the vector appeared to be safe, but tran-
sient expression secondary to immunogenicity, dividing
nature of hepatocytes, and hepatic-only targeting may
have limited its effectiveness, all factors that need to be
addressed for future clinical translation.

5 | DISCUSSION

Effective management of rare diseases, including IEM,
requires accurate diagnoses and disease-modifying treat-
ments. For IEM-NT, only a handful of disorders are iden-
tified through newborn screening and there can often
be diagnostic delay. The clinical responses to existing
small molecule pharmacotherapies are variable from dis-
ease to disease, with some evidence showing that earlier

treatment initiation is associated with better outcomes
for some IEM.8,19 Advances in genome/exome sequenc-
ing, transcriptomics, and other complementary diagnos-
tic techniques has significantly improved the diagnostic
rate of rare diseases patients.14 Other avenues include
building on existing newborn screening programmes,
which are either already adopted or being currently vali-
dated for AADCD. In Taiwan, Italy, Germany and Brazil,
the diagnostic utility of detecting high levels of 3-O-
methyldopa in dried blood spots via mass spectrometry is
under evaluation.131–134 In terms of treatments, gene ther-
apy, both preclinically and clinically, is proving to be a
promising disease-modifying approach for many IEM.135,136

Other technologies, such as gene-editing, utilises machi-
nery such as zinc-finger nucleases and CRISPR-Cas
(clustered regularly interspaced short palindromic repeat-
Cas-associated nucleases), delivered in vivo as proteins in
nanoparticle delivery systems or nucleic acid in AAV, are
being evaluated preclinically and clinically for some IEM
conditions.137,138

As the majority of IEM-NT are monogenic and auto-
somal recessive, AAV gene supplementation therapy is
an attractive, one-off, disease-modifying treatment for
many of these rare diseases. This offers some advantages
over ASOs that require repeated direct administration
into CNS, and avoids the need to tailor guide RNAs for
each pathogenic mutation in gene editing. Safety and tol-
erability of NT-related gene therapies in humans have
been evaluated with PD, and efficacy has been clearly
shown in AADCD by positive trial outcomes culminating
for putaminal-delivered67–69,73 and midbrain-delivered77

gene therapy, with Upstaza™ receiving EMA and MHRA
approval in 2022.

With gene therapies now reaching the clinical arena,
there are new aspects to consider as we learn more
about AAV gene therapies, for instance, new safety con-
cerns, optimal therapeutic window, ease of global access
to treatment, and how to navigate multiple treatment
options for each IEM-NT. Specific safety concerns of
CNS AAV gene therapies regarding dorsal root ganglion
toxicity, with neuronal degeneration and axonopathy
associated with a variety of rAAV capsids and pro-
moters, having been attributed to transgene overexpres-
sion in NHP.139,140 Dose-associated toxicity via ITH
administration, with highest-dosed NHP at 3.2 � 1012vg
of a rAAVrh8 vector expressing Hexα/β, showed ataxia
and general weakness at 2–3 weeks and requiring eutha-
nasia due to apathy by 1 month.141 To date, the clinical
relevance of DRG toxicity in humans has yet to be eluci-
dated, with no treatment-related DRG toxicity reported in
Zolgensma®'s trials and global access programme.142–144

Moreover, tight control of NT systems may imply a narrow
therapeutic dosing window (i.e., between efficacy and
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toxicity), as seen in our DTDS preclinical gene therapy
study, whereby a 10-fold increase in dose resulted in unex-
pected weight loss and motor disturbances related to off-
target effects.113 Careful dose calibration in achieving effi-
cacy and minimal toxicity can be challenging, given the
irreversibility of AAV gene therapy, the long persistence of
AAV genome (up to 15 years in NHP for PD145), and
potential epigenetic silencing of rAAV genomes in vitro146,
with relevance in human patients yet to be determined. As
described previously, strategies to finetune expression
might include optimisation of delivery routes, capsid, pro-
moters, and/or RE.27

Specific to IEM-NT disorders, we must recognise that
NTs are vital in neurodevelopment from the embryonic
stages,147 so one consideration is how to diagnose
patients at the earliest opportunity, and ensure that treat-
ment is administered within the optimal treatment win-
dow for maximal therapeutic efficacy. In BH4

deficiencies, it is already recognised that earlier treatment
is linked to better cognitive outcome, but it is unclear
whether the developmental trajectory can be completely
restored to normal.19,148 Similarly, AADC gene therapy
trials suggest younger patients achieved better motor
scores, and brain structure improvements. Notably, all
patients who gained the ability to walk were treated by
�4 years of age.69,71 In THD, mild–moderate cognitive
delay is observed in a significant portion of patients who
otherwise have a beneficial response to L-DOPA.17

Abnormalities in neuronal and synaptic development
were observed in a miscarried foetus with THD as early
as 16 weeks gestation.149 In addition, for IEM-NT that
affects more than one NT, such as the case for AADC,
careful evaluations are needed in designing the target(s)
of the gene therapy product to achieve maximum
patient benefits. 5-HT is produced in raphe nuclei
throughout the brainstem; current strategies targeting
the putamen or midbrain might not be directly addres-
sing 5-HT deficiency, as CSF 5-HT metabolite (5-HIAA)
was not significantly increased after delivery.69,77

Although significant symptomatic improvements were
seen in the carer-reported questionnaire,69,77 implica-
tions in the longer-term management of these patients
are still unclear. Moreover, interactions within different
components of the NT synthesis pathway can be altered
in disease state, with the exact mechanisms and long-
term implications not fully understood. One example is
different BH4 deficiency murine models, namely sepiap-
terin reductase,150 PTPS,151 and GCH1,152 where reduc-
tion in TH protein levels, particularly in striatum, were
observed, impacting foetal DA circuit development.153

Normal TH levels, therefore, appear critical for psycho-
motor function and DA system maturation.154 It may
be that gene therapies for IEM-NT would be most

efficacious in younger patients, providing a case for ear-
lier diagnosis and potential foetal/newborn screening
for IEM-NT. More extensive natural history studies of
these rare disorders will, therefore, be invaluable when
developing new therapies to better inform about the
timing of gene delivery.

Another important consideration is accessibility for
patients; the list price for Upstaza™ is £3 million (�€3.4
million),155 whereas Zolgensma® for SMA is €1.95 mil-
lion. Discount negotiations, reimbursement schemes, and
cost-effectiveness calculations measured by quality-
adjusted life year vary by country,156 and so regional dif-
ferences are likely expected. Part of the cost is attributed
to the complexities of AAV GMP manufacturing and
downstream processing.157 Moreover, the need for pre-
and post-administration monitoring and establishment of
long-term efficacy and safety profiles (10 years required
for Upstaza™),65 likely means only specialised hospital
sites can provide these therapies, potentially limiting
broader access.

In the rapidly growing space of advanced therapies,
multiple strategies will be approved and licenced, for the
same disease, such as in the case of SMA. For AADCD,
three gene therapy clinical trials and Upstaza™ utilise
different AAV gene supplementation strategies. However,
the clinical impact of the different brain targeting, dos-
age, capsids, and construct designs (with differing RE) is
not yet clear. Putaminally delivered DA restoration in the
prefrontal cortico-putaminal network was found to be
important for motor improvement,66 and directly
targeting the mDA neurons may improve or restore phys-
iological DA homeostasis, and potentially protect from
DA-induced oxidative stress, that may occur with putam-
inal dopamine synthesis. Moreover, expression profiles
vary with different capsids, promoters, and RE. AAV2
shows properties of anterograde transport with predomi-
nant neuronal transduction, whilst AAV9 shows both
anterograde and retrograde transport, and neuronal and
glial transduction.158 The AADCD clinical trials (where
disclosed) have used ubiquitous CMV promoters, yet no
head-to-head in vivo studies have been performed to
compare construct expression efficiency or other differ-
ences (Figure 2), which may result in variable mRNA
levels and stability. From a clinical perspective, different
inclusion ages (Upstaza™ 18 months and over, Kojima
et al.73,75 and Pearson et al.77,79 4 years and over, VGN-
R09b80 2–8 years old), variable baseline disease severity,
and relatively small patient groups may make direct
comparison difficult, as well as the use of different
outcome measures (e.g., PDMS-2 vs. GMFM-88). Over
time, it would be of utmost patient benefit to have an
international, standardised approach from pre-screening
to post-gene therapy surveillance, using appropriate
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disease-specific registries, to consolidate clinical data,
allowing for thorough treatment evaluations, especially
in rare diseases like IEM-NT.159

Adverse effects of gene therapy for IEM-NT would
likely depend on the NT pathway(s) targeted. For exam-
ple, for most AADCD patients, transient dyskinesia is
expected around 4 weeks post-therapy. This is likely a
result of AAV-driven AADC-related DA production, lead-
ing to potential hypersensitivity of DA receptor, and
should resolve as DA homeostasis stabilises.69,73 Manage-
ment of these dyskinesias depends on trial protocol or
local guidelines and should be overseen by a clinician
with expertise in this area. Generally, treatment should
be initiated if the movements interfere with routine care,
function, comfort, sitting or sleeping. Any DA agonists or
monoamine oxide inhibitors may be tapered and weaned
off, as necessary.77,159 Agents such as amantadine, benzo-
diazepines, gabapentin, clonidine or even tetrabenazine
may be considered for the short-term management of this
transient dyskinesia.72,79 Some patients will need more
intensive medical management within intensive care or
high dependency.

Overall, with the rapid innovations in vector technol-
ogy and a better understanding of pathophysiology and
molecular diagnosis, gene therapy for IEM-NT is a grow-
ing field that could soon become a clinical reality for
many diseases. Early diagnosis and treatment would
likely be key for IEM-NT, and accessibility would be fun-
damental in achieving the full potential and clinical
impact of these new treatments globally.
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