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Robust Meta-Representation Learning via Global
Label Inference and Classification

Ruohan Wang , John Isak Texas Falk , Massimiliano Pontil , and Carlo Ciliberto

Abstract—Few-shot learning (FSL) is a central problem in meta-
learning, where learners must efficiently learn from few labeled
examples. Within FSL, feature pre-training has become a popular
strategy to significantly improve generalization performance. How-
ever, the contribution of pre-training to generalization performance
is often overlooked and understudied, with limited theoretical
understanding. Further, pre-training requires a consistent set of
global labels shared across training tasks, which may be unavailable
in practice. In this work, we address the above issues by first show-
ing the connection between pre-training and meta-learning. We
discuss why pre-training yields more robust meta-representation
and connect the theoretical analysis to existing works and empirical
results. Second, we introduce Meta Label Learning (MeLa), a novel
meta-learning algorithm that learns task relations by inferring
global labels across tasks. This allows us to exploit pre-training for
FSL even when global labels are unavailable or ill-defined. Lastly,
we introduce an augmented pre-training procedure that further
improves the learned meta-representation. Empirically, MeLa out-
performs existing methods across a diverse range of benchmarks,
in particular under a more challenging setting where the number
of training tasks is limited and labels are task-specific.

Index Terms—Few-Shot image classification, learning with
limited labels, meta-learning, representation learning.

I. INTRODUCTION

D EEP neural networks have facilitated transformative ad-
vances in machine learning in various areas [e.g., [7], [23],

[26], [34], [47], [67]. However, state-of-the-art models typically
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require labeled datasets of extremely large scale, which are
prohibitively expensive to curate. When training data is scarce,
neural networks often overfits with degraded performance. Few-
shot learning (FSL) aims to address this loss in performance
by developing algorithms and architectures capable of learning
from few labeled samples.

Meta-learning [27], [74] is a popular class of algorithms to
tackle FSL. Broadly, meta-learning seeks to learn transferable
knowledge over many FSL tasks, and to apply such knowledge
to novel ones. For instance, Model Agnostic Meta Learning
(MAML) [17] learns a prior over the model initialization that is
suitable for fast adaptation. Existing meta-learning methods for
tackling FSL may be loosely classified into three categories;
optimization [e.g.[6], [17], [80], metric learning [e.g., [68],
[70], [75], and model-based methods [e.g.[24], [53], [62]. The
diversity of existing strategies poses a natural question: can we
derive any “meta-insights” from them to facilitate the design of
future methods?

Among the existing methods, several trends have emerged
for designing robust few-shot meta-learners. Chen et al. [8]
observed that data augmentation and deeper networks signifi-
cantly improves generalization performance. The observations
have since been widely adopted [e.g.[4], [36], [71]. Network pre-
training has also become ubiquitous [e.g.[15], [60], [77], [80],
and dominates state-of-the-art models. Sidestepping the task
structure and episodic training of meta-learning, pre-training
learns (initial) model parameters by merging all FSL tasks
into one “flat” dataset of labeled samples followed by standard
multi-class classification. The model parameters may be further
fine-tuned to improve performance.

Despite its popularity, the limited theoretical understanding
of pre-training leads to diverging interpretations of existing
methods. Many meta-learning methods consider pre-training
as nothing but a standard pre-processing step, and attribute the
observed performance almost exclusively to their respective
algorithmic and network design [e.g.[62], [82], [84]. However,
extensive empirical evidence suggests that pre-training is crucial
for model performance [78], [80]. Tian et al. [71] demonstrated
that simply learning task-specific linear classifiers over the
pre-trained representation outperforms various meta-learning
strategies. Wertheimer et al. [80] further showed that earlier FSL
methods also benefit from pre-training, resulting in improved
performance.

In this work we contributes a unified perspective by showing
that pre-training directly relates to meta-learning by minimizing
an upper bound on the meta-learning loss. In particular, we show
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Fig. 1. (a) Colored squares represent samples. Tasks A and B can be “merged” meaningfully using global labels, but not local ones. (b) A global classifier can
be used as local classifiers given the indices Y of the intended classes to predict.

that pre-training achieves a smaller expected error and enjoys a
better convergence rate compared to its meta-learning counter-
part. More broadly, we connect pre-training to conditional meta-
learning [11], [77], which has favorable theoretical properties
including tighter bounds. Our result provide a principled justi-
fication of why pre-training yields a robust meta-representation
for FSL, and the associated performance improvement.

Motivated by this result, we propose an augmentation pro-
cedure for pre-training that quadruples the number of training
classes by considering rotations as novel classes and classifying
them jointly. This significantly increases the size of training data
and leads to robust representations. We empirically demonstrate
that the augmentation procedure consistently performs better
across different benchmarks.

The standard FSL setting [e.g.[6], [17], [48] assumes access to
a collection of tasks (i.e., the meta-training set) for training data.
To perform pre-training, meta-training tasks must be merged into
a flat dataset (see Section II-C for a formal definition), which
implicitly assumes access to some notion of global labels shared
across all tasks. However, global labels may be unavailable, such
as when each task is independently labeled with only local la-
bels. This renders naive task merging and pre-training infeasible
(see Fig. 1(a)). Independent task annotation is a more realistic
and general assumption, capturing scenarios when training tasks
are collected organically from different sources rather than
generated synthetically from a base dataset. Practical scenarios
where naive task merging is infeasible include non-descriptive
task labels (e.g., numerical ones) or concept overlap (e.g., marine
animals vs mammals) among labels.

To tackle independent task annotation, we propose Meta
Label Learning (MeLa), a novel algorithm that automatically
infers a notion of latent global labels consistent with local task
constraints. The inferred labels enable us to exploit pre-training
for FSL, and to bridge the gap between experimental settings
with or without access to global labels. Empirically, we demon-
strate that MeLa is competitive with pre-training on oracle labels.

For experiments, we introduce a new Generalized FSL
(GFSL) setting. In addition to independent task annotation, we
also adopt a fixed-size meta-training set and enforce no repetition
of samples across tasks. This challenging setting evaluates how
efficiently meta-learning algorithms generalize from limited
number of tasks, and prevents the algorithms from trivially

uncover task relations by implicitly matching identical samples
across tasks. We empirically show that MeLa performs robustly
in both standard and GFSL settings, and clearly outperforms
state-of-the-art models in the latter.

We summarize the main contributions below:
� We prove that pre-training relates to meta-learning as

a loss upper bound. Consequently, minimizing the pre-
training loss is a viable proxy for tackling meta-learning
problems. Additionally, we identify meta-learning regimes
where pre-training offers a clear improvement with re-
spect to sample complexity. This theoretical analysis pro-
vides a principled explanation for pre-training’s empirical
advantage.

� We propose MeLa, a general algorithm for inferring la-
tent global labels from meta-training tasks. It allows us
to exploit pre-training when global labels are absent or
ill-defined.

� We propose an augmented pre-training procedure for FSL
and a GFSL experimental setting.

� Extensive experiments demonstrate the robustness of
MeLa. Detailed ablations provide deeper understanding of
the model.

Extension of [78]: This paper is an extended version of [78]
with the following contributions in addition to those of the
original work: i) a deeper theoretical insight into the role of
pre-training from the perspective of the risk (rather than the
empirical risk as in [78]), and quantifying its benefit in terms
of sample complexity, ii) the augmented training procedure for
FSL, iii) the GFSL experimental setting, iv) significantly more
empirical evidence to support the proposed algorithm.

II. BACKGROUND

We formalize FSL as a meta-learning problem and review
related methods. We also discuss the pre-training procedure
adopted by many FSL methods.

A. Few-Shot Learning Using Meta-Learning

FSL [16] considers a meta-training set of tasks T =
{(St, Qt)}Tt=1, with support set St = {(xj , yj)}ns

j=1 and query
set Qt = {(xj , yj)}nq

j=1 sampled from the same distribution.
Typically, St and Qt contain a small number of samples ns
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and nq respectively. We denote byD the space of datasets of the
form St or Qt.

The meta-learning formulation for FSL aims to find the best
base learner Alg(θ, ·) : D → F that takes as input support sets
S, and outputs predictors f = Alg(θ, S), such that predictions
y = f(x) generalize well on the corresponding query sets Q.
The base learner is meta-parameterized by θ ∈ Θ. Formally, the
meta-learning objective for FSL is

E(S,Q)∈T L (Alg(θ, S), Q) , (1)

where E(S,Q)∈T � 1
|T |

∑
(S,Q)∈T is the empirical average over

the meta-training set T . The task loss L : F ×D → R is the
empirical risk of the learner f over query sets, based on some
inner loss � : Y × Y → R, where Y is the space of labels,

L(f,D) = E(x,y)∈D [�(f(x), y)]. (2)

Equation (1) is sufficiently general to describe most ex-
isting methods. For instance, model-agnostic meta-learning
(MAML) [17] parameterizes a model fθ : X → Y as a neural
network, and Alg(θ,D) performs one (or more) steps of gradient
descent minimizing the empirical risk of fθ on D. Formally,
given a step-size η > 0,

fθ′ = Alg(θ,D) with θ′ = θ − η∇θL(fθ, D). (3)

Clearly, base learners Alg(θ, ·) is key to model performance and
various strategies have been explored. Our proposed method is
most closely related to meta-representation learning [6], [18],
[36], [55], which parameterizes the base learner as A(θ,D) =
w(gθ(D))gθ(·), consisting of a global feature extractor gθ :
X → R

m and a task-adaptive classifier w : D → {f : Rm →
Y} that optimizes the following

min
θ∈Θ

E(S,Q)∈T [L (w(gθ(S)), gθ(Q))] (4)

where gθ(D) � {(gθ(x), y) | (x, y) ∈ D} is the embedded
dataset. Equation (4) specializes (1) by learning a feature ex-
tractor gθ shared (and fixed) among tasks. Only the classi-
fier returned by w(·) adapts to the current task, in contrast
to having the entire model fθ : X → Y adapted (e.g., (3) for
MAML). While this may appear to restrict model adaptabil-
ity, [55] has demonstrated that meta-representation learning
matches MAML’s performance. Moreover, they showed that
feature reuse is the dominant contributor to the generalization
performance rather than adapting the representation to the task
at hand.

The task-adaptive classifier w(·) may take various forms, in-
cluding nearest neighbor [68], ridge regression classifier [6], em-
bedding adaptation with transformer models [84], and Wasser-
stein distance metric [85]. In particular, the ridge regression
estimator

wridge(D) = argminW E(x,y)∈D ‖Wx− y‖2 +λ1 ‖W‖2F ,
(5)

where ‖·‖F is the Frobenius norm, admits a differentiable
closed-form solution and is computationally efficient for op-
timizing (4).

B. Conditional Meta-Learning

Conditional formulations of meta-learning [11], [77] extends
(1) by considering base learners of the form Alg(τ(Z), S),
where the meta-parameters θ = τ(Z) is conditioned on some
“contextual” information Z ∈ Z about the task S. Assuming
each task in the meta-training set T to be equipped with such
contextual information, (1) can be re-expressed as

min
τ :Z→Θ

E(S,Q,Z)∈T L (Alg(τ(Z), S), Q) , (6)

namely the problem of learning a function τ : Z → Θ, which
maps contextual information Z ∈ Z (e.g., a textual meta-
description of the task/dataset) to a good task-specific base
learner with parameters θ = τ(Z).

The conditional formulation seeks to capture complex (e.g.,
multi-modal) distributions of meta-training tasks, and uses a
unique base learner tailored to each one. In particular, [62], [76],
[83] directly learn data-driven mappings from target tasks to
meta-parameters, and [31] conditionally transforms feature rep-
resentations based on a metric space trained to capture inter-class
dependencies. Alternatively, [30] considers a mixture of hierar-
chical Bayesian models over the parameters of meta-learning
models in order to condition on target tasks. In [77], Wang et al.
showed that conditional meta-learning can be interpreted as a
structured prediction problem and proposed a method leverag-
ing structured prediction. From a more theoretical perspective,
Denevi et al. [11], [12] proved that conditional meta-learning
is theoretically advantageous compared to unconditional ap-
proaches by incurring smaller excess risk and being less prone to
negative transfer. As we will discuss in Section III, conditional
meta-learning is closely related to our theoretical analysis on
feature pre-training.

C. Feature Pre-Training

Feature pre-training has been widely adopted in the recent
meta-learning literature [e.g.[1], [4], [8], [45], [50], [58], [69],
[77], [80], [82], [84], [85], and is arguably one of the key
contributors to performance of state-of-the-art models. Instead
of directly learning the feature extractor gθ by optimizing (4),
pre-training first learns a feature extractor via standard super-
vised learning.

Formally, the meta-training set T is “flattened” into Dglobal

by merging all tasks:

Dglobal = D(T ) = {(xi, yi)}Ni=1 =
⋃

(S,Q)∈T
(S ∪Q), (7)

where we have re-indexed the (xi, yi) samples from i = 1 to
N (the cumulative number of points from all support and query
sets) to keep the notation uncluttered. Pre-training then learns
the embedding function gθ on Dglobal using the standard cross-
entropy loss �ce for multi-class classification:

(W pre
N , θpreN ) = argmin

θ,W
L(Wgθ, Dglobal). (8)

where W is the linear classifier over all classes. After pre-
training, the feature extractor is either fixed [e.g.[62], [71],
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[77], [84], [85] or further adapted [e.g., [4], [5], [21], [58] via
meta-learning.

There is limited theoretical understanding and consensus on
the effect of pre-training in FSL. In [4], [62], [82], the pre-
training is only considered a standard pre-processing step for
encoding the raw input and model performance is predominantly
attributed to the proposed meta-learning algorithms. In [21] the
authors similarly argued that meta-trained features are better
than pre-trained ones, observing that adapting the pre-trained
features with several base learners resulted in worse performance
compared to the meta-learned features. In contrast, however,
several works also empirically demonstrated that pre-training
contributes significantly towards performance. [71] showed that
combining the pre-trained features with suitable base learners
already outperforms various meta-learning methods, while [15]
observed that pre-training dominates top entries in 2021 Meta-
learning Challenge.

We conclude by noting that recently pre-training has also
been successfully applied to large-scale multi-modal settings
combining visual and language input, enabling zero-shot learn-
ing [54], more flexible few-shot learning [2] (i.e., tasks may
be described using free text), and generating more samples to
augment FSL [81]. While this line of work further showcases
the efficacy of pre-training strategies for FSL, in this work we
focus on few shot learning settings with a single input modality.

III. PRE-TRAINING AS META-LEARNING

In this section, we characterize how feature pre-training re-
lates to meta-learning as a loss upper bound. More precisely,
we show that pre-training induces a special base learner with its
corresponding meta-learning loss upper bounded by the cross-
entropy loss �ce. Consequently, pre-training already produces
a meta-representation suitable for FSL, matching the empirical
results from [71], [84]. In addition, we show that pre-training
incurs a smaller risk compared to its meta-learning counterpart,
and more generally induces a conditional formulation that ex-
ploits contextual information for more robust learning.

A. Notation and Problem Setting

We consider a few-shot classification setting with a total of
C classes (global labels). Denote by μ the meta-distribution
sampling distributions (a.k.a. tasks) ρ, from which we sample
support and query sets (S,Q) for each task. Each task distri-
bution ρ is associated with k ≤ C class labels y(1)ρ , . . . , y

(k)
ρ ∈

{1, . . . , C}. Denote by ρY = {y(1)ρ , . . . , y
(k)
ρ } the correspond-

ing subset of {1, . . . , C}. Given a matrix W ∈ R
C×m and a

vector Y ∈ {1, . . . , C}k of indices, we denote by W [Y ] =
W [ρY ] ∈ R

k×m the submatrix of W obtained by selecting the
rows corresponding to the unique indices ρY in Y . Lastly, Given
a dataset D = (xi, yi)

n
i=1 we denote by DY ∈ {1, . . . , C}n the

vector with entries corresponding to the labels yi.
We also define the expected error incurred by a meta-learning

algorithm solving (4)

E(θ, μ) = Eρ∼μ E(S,Q)∼ρ L(w(gθ(S)), gθ(Q)). (9)

This is the meta-learning risk incurred by a meta-parameter θ,
namely the error incurred by training the classifier via w(gθ(S))
(e.g., (5)) and testing it on the query set gθ(Q), averaged over
(S,Q) pairs sampled from tasks ρ, which in turn are sampled
from meta-distribution μ. The risk is the ideal error we wish to
minimize.

B. Global Label Selection (GLS)

We start our analysis by introducing a special FSL scenario
that will be useful for understanding the relation between pre-
training and meta-learning. To this end, we assume in this
scenario that global labels are available to the model.

Given the access to global labels, we can design a new
algorithm that learns a single global multi-class linear classifier
W at the meta-level (i.e., shared across all tasks), and simply
selects the required rows W [SY ] when tackling a task. More
formally, we can define a special base learner called global label
selector (GLS) such that

Alg((W, θ), S) = GLS(W, θ, S) = W [SY ]gθ(·).

Illustrated in Fig. 1(b), this “algorithm” does not solve an op-
timization problem on the support set S, but only selects the
subset of rows of W corresponding to the classes present in S
as the task-specific classifier.

Since W and θ are now both shared across all tasks, we may
learn them jointly by minimizing the following

E(S,Q)∈T L(W [SY ]gθ(·), Q), (10)

over both W and θ. This strategy, to which we refer as meta-
GLS, learns both the representation and linear classifier at the
meta-level, with the sole task-specific adaptation process being
the selection of columns of W using the global labels.

GLS Finds a Good Meta-representation: Learning a globalW
shared among multiple tasks (rather than having each classifier
w(gθ(S)) accessing exclusively the tasks’ training data), can be
very advantageous for generalization. This is evident when the
(global) classes are separable for a meta-representation gθ. Let

EGLS(W, θ, μ) = Eρ∼μ E(S,Q)∼ρ L(W [SY ]gθ(·), Q), (11)

denote the expected meta-GLS risk incurred by the minimizer
of (10). Then, for any inner algorithm w(·), we have

min
W
EGLS(W, θ, μ) ≤ E(θ, μ), (12)

namely that, for any given representation gθ, finding a global
classifier W for all classes is more favorable than solving each
task in isolation. In other words, solving meta-GLS provides a
good representation gθ(·) for standard meta-learning problem.

C. Pre-Training and GLS

Existing works such as [15], [71] demonstrates that
pre-training offers a robust alternative to learn the meta-
representation gθ(·). We will show that GLS is related to pre-
training, under some mild assumptions.

Assumption 1: The meta-distributionμ samples tasks ρ. Sam-
pling from each ρ is performed as follows:
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1) For each j ∈{1, . . . , k} and class y(j)ρ ∈ ρY , we sample n

examples x(j)
1 , . . . , x

(j)
n i.i.d. from a conditional distribu-

tion π(x|y= y
(j)
ρ ) shared across all tasks. All generated

pairs are collected in the support set S = (x
(j)
i , y

(j)
ρ )n,ki,j=1.

2) The query set Q is generated by sampling m points i.i.d.
from πρ(x, y), namely Q ∼ πm

ρ with

πρ(x, y) = π(x|y)Unifρ(y) (13)

and Unifρ the uniform distribution over the labels in ρY .
In essence, Assumption 1 characterizes the standard process of
constructing meta-training tasks for FSL, typically adopted to
build pre-training datasets in practice. In particular, let πμ(x, y)
be the marginal probability of observing (x, y) in the meta-
training tasks, i.e., first sampling a task ρ from μ, followed
by sampling a class y uniformly by Unifρ(·) and finally x by
π(·|y). It then follows that sampling a dataset Dglobal from πμ

is equivalent to sample a meta-training set T from μ and flatten
it into D(T ) according to the pre-training procedure described
in (7).

We can therefore introduce the (global) multi-class classifi-
cation risk associated to πμ

L(Wgθ(·), πμ) = E(x,y)∼πμ
�ce(Wgθ(x), y). (14)

The above risk can be seen as the ideal objective for the pre-
training estimator in (8). In addition, the following result relates
pre-training to meta-GLS.

Theorem 1: Under Assumption 1, letπμ(x, y)be the marginal
distribution of observing (x, y) in the meta-training set. Then,
for any (global) classifier W ,

EGLS(W, θ, μ) ≤ L(W, θ, πμ). (15)

Moreover, if the global classes are separable,

min
W,θ
EGLS(W, θ, μ) = min

W,θ
L(W, θ, πμ), (16)

The result shows that the GLS error is upper bounded by the
global multi-class classification error. Hence, minimizing the
global multi-class classification error also indirectly minimizes
the meta-learning risk. This implies that pre-training implicitly
learns a meta-representation suitable for FSL.

D. Generalization Properties

Theorem 1 shows that under the class-separability assump-
tion, pre-training is equivalent to performing meta-GLS. We now
study which of the two approaches is more sample-efficient from
a generalization perspective.

Let (WGLS
T , θGLS

T ) denote the meta-parameters learned by an
algorithm minimizing (10) over a dataset T comprising of T
separate tasks. Applying standard results from statistical learn-
ing theory, we can obtain excess risk bounds characterizing the
quality of θT ’s predictions in terms of the number T of tasks
the algorithm has observed in training. For instance, follow-
ing [65, Chapter 26] we have that in expectation with respect to
sampling T

ET [EGLS(W
GLS
T , θGLS

T , μ)]

≤ min
(W,θ)∈Ω

EGLS(W, θ, μ) + 2LGLSRT (Ω)

≤ min
(W,θ)∈Ω

EGLS(W, θ, μ) +
2LGLSCΩ√

T

where LGLS denotes the Lipschitz constant of EGLS, while
Ω ⊂ R

m×C ×Θ is the space of hypotheses for the multi-class
classifier Wgθ(·). Here, RT (Ω) is the Rademacher complexity
of Ω [65], which measures the overall potential expressivity
of an estimator that can be trained over them. For neural
networks, [22] showed that RT (Ω) may be further bounded
by RT (Ω) ≤ CΩ/

√
T , where CΩ is a constant depending on

the specific neural architecture, with deeper networks having a
larger constant. The bound indicates that the risk incurred by
GLS becomes closer to that of the ideal meta-parameters as the
number of observed tasks T grows.

We can apply the same Rademacher-based bounds to (14) and
the pre-training estimator from (8), obtaining that in expectation
with respect to sampling T

ET [L(W pre
N , θpreN , πμ)] ≤ min

(W,θ)∈Ω
L(W, θ, πμ) +

2LpreCΩ√
N

where N is the number of samples in Dglobal and Lpre is the
Lipschitz constant of the global multi-class classification risk.
By combining the above bound with the result from Theorem 1
we conclude that

ET [ EGLS(W
pre
N , θpreN , μ)] ≤ min

W,θ
EGLS(W, θ, μ) +

2LpreCΩ√
N

,

which is an excess risk bound analogous to that obtained for
meta-GLS. The key difference is that the bound above depends
on the number N of total samples in Dglobal, rather that the total
number T of tasks.

Comparing the rates of meta-GLS and the pre-training esti-
mator, we observe that typically N � T (for instance N = nT
when each task has the same number ofn samples). Additionally,
since Lpre is comparable or smaller than LGLS (see Appendix B,
available online), we conclude that

Given exactly the same data (T for meta-GLS and D(T ) for
pre-training), pre-training achieves a much smaller error than
meta-GLS.

For instance, in the case of a 5-way-5-shot FSL problem,
pre-training improves upon the meta-GLS bound on excess risk
by a factor of

√
N/T =

√
n =
√
100 = 10.

Given the relation between GLS and standard meta-learning
that we highlighted in Section III-B, our analysis provides a
strong theoretical argument in favor of adopting pre-training in
meta-learning settings. To our knowledge, this is a novel and
surprising result.

E. Connection to Conditional Meta-Learning

More generally, we observe that GLS is also an instance of
conditional meta-learning: the global labels of the task provide
additional contextual information about the task to facilitate
model learning. Global labels directly reveal how tasks relate
to one another and in particular if any classes to be learned
are shared across tasks. GLS thus simply map global labels of
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tasks to task classifiers via W [SY ]. In contrast, unconditional
approaches (e.g., R2D2 [6], ProtoNet [48]) learn classifiers by
minimizing some loss over support sets, losing out on the access
to the contextual information provided by global labels.

In addition to our result, [11], [12] also proved that conditional
meta-learning is advantageous over the unconditional formu-
lation by incurring a smaller excess risk, especially when the
meta-distribution of tasks is organized into distant clusters. We
refer readers to the original papers for a detailed discussion. In
practice, global labels provide clustering of task samples for free
and improve regularization by enforcing each cluster (denoted
by global label yjρ) to share classifier parameters W [yjρ] across
all tasks. This provides further explanation to why pre-training
yields a robust meta-representation with strong generalization
performance.

F. Leveraging Pre-Training in Practice

The goal of meta-learning is to generalize to novel classes
unseen during training. Therefore, practical FSL applications
assume meta-testing and meta-training distributions to share no
class labels. To apply our analysis in Section III-D to these set-
tings, we may follow the theoretical approach in [13] and assume
that meta-training and meta-testing classes share a common
representation. The assumption is reasonable since extensive
empirical evidences demonstrate that pre-trained representation
on meta-training set is robust for directly classifying novel
classes [15], [71]. To prevent overfitting on meta-training set and
ensure a robust represntation for meta-testing, well-established
techniques e.g., [3], [71], [77] include imposing �2 regular-
ization during pre-training (see weight decay in Appendix
C.2, available online) and early stopping by performing meta
validation.

While pre-training might offer a powerful initial represen-
tation θ – as highlighted by our analysis in Section III-D – it
may be advisable to further improve θ. One general strategy
is to fine-tune θ by directly optimizing (4) using the desired
classifier to tackle novel classes [e.g. [60], [72], [84], [85]. This
strategy is known as meta fine-tuning. A different approach is
based on a transfer learning perspective. Specifically, [33], [38],
[66] showed that careful task-specific fine-tuning (e.g., limiting
the number of learnable parameters) from a pre-trained repre-
sentation achieves robust generalization performance, even in
FSL settings. We investigate both strategies in our experiments.

IV. METHODS

In this section, we propose three practical algorithms mo-
tivated by our theoretical analysis. In Section IV-A, we in-
troduce an augmentation procedure for pre-training to further
improve representation learning in image-based tasks. In Section
IV-B, we tackle the scenario where global labels are absent
by automatically inferring a notion of global labels. Lastly, we
introduce a meta fine-tuning procedure in Section IV-C to inves-
tigate how much meta-learning could improve the pre-trained
representation.

A. Augmented Pre-Training for Image-Based Tasks

In general, pre-training is a standard process with well-studied
techniques for improving the final learned representation. Many
of these techniques, including data augmentation [8], auxiliary
losses [45] and model distillation [71], are also effective for
FSL (i.e., the learned representation is suitable for novel classes
during meta-testing). In particular, we may interpret data aug-
mentation techniques as increasing N in the bounds for the
pre-training estimator outlined in Section III-D, thus improving
the error incurred by pre-training and consequently the learned
representation gθ.

In addition to standard augmentations (e.g., random crop-
ping and color jittering) investigated in [8], we further pro-
pose an augmented procedure for pre-training via image ro-
tation. For every class yi in the original dataset, we create
three additional classes by rotating all images of class yi by
r ∈ {90◦, 180◦, 270◦} respectively. All rotations are multiples
of 90◦ such that they can be implemented by basic operations
efficiently (e.g., flip and transpose) and prevent pre-training from
learning any trivial features from visual artifacts produced by
arbitrary rotations [20]. Pre-training is then performed normally
on the augmented dataset.

The augmented dataset quadruples the number of samples
and classes compared to the original dataset. According to
our analysis from Section III-D, pre-training on the augmented
dataset may yield a more robust representation. Further, we also
hypothesize that the quality of the representation also depends
on the number of classes available in the pre-training dataset,
since classifying more classes requires learning increasingly
discriminating representations. Our experiments show that 1)
augmented pre-training consistently outperforms the standard
one, and 2) quality of the learned representation depends on
both the dataset size and the number of classes available for
training.

B. Meta Label Learning

The ability to exploit pre-training crucially depends on access
to global labels. However, as discussed in Section I, global labels
may be inaccessible in practical applications. For instance when
meta-training tasks are collected and annotated independently.
Additionally, tasks may have conflicting labels over similar
data points based on different task requirements – a setting
illustrated by our experiments in Section V-D. Therefore in some
applications, global labels are ill-defined, and pre-training is not
directly applicable.

To tackle this problem, we consider the more general setting
where only local labels from each task are known. This set-
ting is also the one originally adopted by most earlier works
in meta-learning [e.g., [6], [17], [36], [39], [68], [75]. In the
local label setting, we propose Meta Label Learning (MeLa),
which automatically infer a notion of latent global labels across
tasks. The inferred labels enable pre-training and thus bridge the
gap between the experiment settings with and without global
labels. We stress that our proposed method does not replace
standard pre-training with global labels, but rather provides



2002 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 4, APRIL 2024

Algorithm 1: MeLa.

Input: meta-training set T = {St, Qt}Tt=1

gsimθ = argmingθ
E(S,Q)∈T [L(w(gθ(S)), gθ(Q)])

Global clusters G = LearnLabeler(T , gsim
θ )

gpreθ = Pretrain(D(T ), G)
g∗θ = MetaFinetune(G, T , gpreθ )
Return g∗θ

a way to still benefit from such a strategy when they are
absent.

Algorithm 1 outlines the general approach for learning a
few-shot model using MeLa: we first meta-learn an initial repre-
sentation gsimθ ; Second, we cluster all task samples using gsimθ as
a feature map while enforcing local task constraints. The learned
clusters are returned as inferred global labels. Using the inferred
labels, we can apply pre-training to obtain gpreθ , which may be
further fine-tuned to derive the final few-shot model g∗θ. We
present in Section IV-C a simple yet effective meta fine-tuning
procedure.

For learning gsimθ , we directly optimize (4) using ridge re-
gression (5) as the base learner. We use ridge regression for
its computational efficiency and good performance. Using gsimθ

as a base for a similarity measure, the labeling algorithm takes
as input the meta-training set and outputs a set of clusters as
global labels. The algorithm consists of a clustering routine for
sample assignment and centroid updates and a pruning routine
for merging small clusters.

Clustering: The clustering routine leverages local labels for
assigning task samples to appropriate global clusters and enforc-
ing task constraints. We observe that for any task, the local labels
describe two constraints: 1) samples sharing a local label must
be assigned to the same global cluster, while 2) samples with
different local labels must not share the same global cluster. To
meet constraint 1, we assign all samples {x(j)

i }ni=1 of class y(j)ρ

to a single global cluster by

v∗ = argmin
v∈{1,...,V }

∥∥∥∥∥
1

n

n∑

i=1

gsimθ (x
(j)
i )− gv

∥∥∥∥∥

2

, (17)

with V being the current number of centroids.
We apply (17) to all classes y

(1)
ρ , . . . , y

(k)
ρ within a task. If

multiple local classes map to the same global label, we simply
discard the task to meet constraint 2. Otherwise, we proceed to
update the centroid gv∗ and sample count Nv∗ for the matched
clusters using

gv∗ ←
Nv∗gv∗ +

∑n
i=1 g

sim
θ (xi)

Nv∗ + n
,

Nv∗ ← Nv∗ + n, (18)

Pruning. We also introduce a strategy for pruning small clusters.
We model the sample count of each cluster as a binomial
distribution Nv ∝ B(T, p). We set p = 1

V , assuming that each
cluster is equally likely to be matched by a local class of samples.
Any cluster with a sample count below the following threshold

Algorithm 2: LearnLabeler.

Input: embedding model gsim
θ , meta-training set

T = {St, Qt}Tt=1, number of classes in a task k
Initialization: sample tasks from T to initialize clusters
G = {gv}Vv=1,
While |G| has not converged:

Nv = 1 for each gv ∈ G
For (S,Q) ∈ T :

Match S ∪Q to its centroids M = {gq}Kq=1 using
(17)

If M has k unique clusters
Update centroid gq for each gq ∈M via (18)
G← {gv|gv ∈ G,Nv ≥ threshold in (19)}

Return G

is discarded,

Nv < N̄v − q
√

Var(Nv) (19)

where N̄v is the expectation of Nv , Var(Nv) the variance, and q
a hyper-parameter controlling how aggressive the pruning is.

Algorithm 2 outlines the full labeling algorithm. We first
initialize a large number of clusters by setting their centroids
with mean class embeddings from random classes in T . For V
initial clusters, �Vk � tasks are needed since each task contains
k classes and could initialize as many clusters. The algorithm
then alternates between clustering and pruning to refine the
clusters and estimate the number of clusters jointly. The algo-
rithm terminates and returns the current clusters G when the
number of clusters does not change from the previous iteration.
Using clusters G, local classes from the meta-training set can
be assigned global labels with nearest neighbor matching using
(17). For tasks that fail to map to k unique global labels, we
simply exclude them from the pre-training process.

The key difference between Algorithm 2 and the classical
K-means algorithm [42] is that the proposed clustering algo-
rithm exploits local information to guide the clustering process,
while K-means algorithm is fully unsupervised. We will show
in the experiments that enforcing local constraints is necessary
for learning robust meta-representation.

Algorithm 2 also indirectly highlights how global labels, if
available, offer valuable information about meta-training set. In
addition to revealing precisely how input samples relate to one
another across tasks, global labels provide an overview of meta-
training set, including the desired number of clusters and their
sizes. In contrast, Algorithm 2 needs to estimate both properties
when only local labels are given.

Time Complexity: The time complexity of training MeLa is
dominated by the computational cost of pretraining, accounting
for over 70% of the overall running time. From our benchmarks,
the time complexity of MeLa is comparable to those of the
current state-of-the-art methods based on pre-training e.g., [80],
[84] and significantly more efficient than methods relying on
complex base learners e.g., [85]. We refer to Section C.3 for a
more detailed discussion and comparison with [80], [84], [85].
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When global labels are not available MeLa requires perform-
ing an additional inference step to estimate them. While this
stage accounts for around 20% of the total running time, we
observe in Section V that it provides a significant performance
boost compared to FSL methods not utilizing pre-training, which
are the only applicable ones in the absence of global labels.

C. Meta Fine-Tuning

As discussed in Section III-F, while pre-training already
yields a robust meta-representation for FSL, it is desirable to
adapt the pre-trained representation such that the new meta-
representation better matches the base learner intended for novel
classes. We call this additional training meta fine-tuning, which
is adopted by several state-of-the-art FSL models [37], [77],
[84], [85].

For meta fine-tuning, existing works suggest that model per-
formance depends crucially on preserving the pre-trained repre-
sentation. In particular, [37], [62], [77] all keep the pre-trained
representation fixed, and only learn a relatively simple trans-
formation on top for the new base learners. Additionally, [21]
showed that meta fine-tuning the entire representation model
lead to worse performance compared to standard meta-learning,
negating the advantages of pre-training completely.

We thus present a simple residual architecture that preserves
the pre-trained embeddings and allows adaptation for the new
base learner. Formally, we consider the following parameteriza-
tion for a fine-tuned meta-learned embedding g∗θ,

g∗θ(x) = gpreθ (x) + h(gpreθ (x)) (20)

where gpreθ is the pre-trained representation and h a learnable
function (e.g., a small fully connected network). We again use (5)
as the base learner and optimizes (4) directly. Our experiments
show that the proposed fine-tuning process achieves results
competitive with more sophisticated base learners, indicating
that the pre-trained representation is the predominant contributor
to good test performance.

V. EXPERIMENTS

We evaluate MeLa on various benchmark datasets and com-
pare it with existing methods. The experiments are designed to
address the following questions:
� How does MeLa compare to existing methods for gener-

alization performance? We also introduce the more chal-
lenging GFSL setting in Section V-B.

� How do different model components (e.g., pre-training,
meta fine-tuning) contribute to generalization perfor-
mance?

� Does MeLa learn meaningful clusters? Can MeLa handle
conflicting task labels?

� How can we improve the quality of the pre-trained repre-
sentation?

� How robust is MeLa to hyper-parameter choices?

A. Benchmark Datasets

Mini/tiered-ImageNet: [57], [75] has become default bench-
mark for FSL. Both datasets are subsets of ImageNet [61]
with miniIMAGENET having 60 K images over 100 classes,
and tieredIMAGENET having 779 K images over 608 classes.
Following previous works, we report performance on 1- and
5-shot settings, using 5-way classification tasks.

Variants of mini/tiered-ImageNet: We introduce several vari-
ants of mini/tiered-ImageNet to better understand MeLa and
more broadly the impacts of dataset configuration on pre-
training. Specifically, we create mini-60 that consists of 640
classes and 60 samples per class. Mini-60 contains the same
number of samples as miniIMAGENET, though with more classes
and fewer samples per class. Mini-60 keeps the same meta-test
set as miniIMAGENET to ensure a fair comparison of test perfor-
mance of model trained on each dataset in turn. We designed
mini-60 to investigate the behavior of MeLa when encountering
a dataset with a high number of base classes and low number of
samples per base class. We also use mini-60 to explore how data
diversity present in the training data affects the learned represen-
tation. Analogous to mini-60, we also introduce tiered-780 as a
variant to tieredIMAGENET, where we take the total number of
samples in tieredIMAGENET and calculate the number of samples
over the full 1000 ImageNet classes, excluding those used in the
meta-test set of tieredIMAGENET.

Meta-Dataset: [72] is a meta-learning classification
benchmark combining 10 widely used datasets: ILSVRC-2012
(ImageNet) [61], Omniglot [35], Aircraft [44], CUB200 [79],
Describable Textures (DTD) [10], QuickDraw [32],
Fungi [64], VGG Flower (Flower) [49], Traffic Signs [28]
and MSCOCO [40]. We use Meta-Dataset to construct several
challenging experiment scenarios, including learning a unified
model for multiple domains and learning from tasks with
conflicting labels.

B. Experiment Settings

The standard FSL setting [5], [17], [68], [80], [84] assumes
that a meta-distribution of tasks is available for training. This
translates to meta-learners having access to an exponential num-
ber of tasks synthetically generated from the underlying dataset,
a scenario unrealistic for practical applications. Recent works
additionally assume access to global labels in order to leverage
pre-training, in contrast with earlier methods that assume access
to only local labels. We will highlight such differences when
comparing different methods.

Generalized Few-Shot Learning (GFSL) Setting: We intro-
duce a more challenging and realistic FSL setting. Specifically,
we only allow access to local labels, since global ones may
be inaccessible or ill-defined. In addition, we employ a no-
replacement sampling scheme when synthetically generating
tasks from the underlying dataset.1 This sampling process limits
the meta-training set to a fixed-size, a standard assumption for
most machine learning problems. The fixed size also enables

1For instance, miniIMAGENET (38400 training samples) will be randomly split
into around 380 tasks of 100 samples.
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TABLE I
TEST ACCURACY OF META-LEARNING MODELS ON MINIIMAGENET AND TIEREDIMAGENET

us to evaluates the sample efficiency of different methods.
Second, no-replacement sampling prevents MeLa and other
meta-learners from trivially learning task relations, a key objec-
tive of meta-learning, by matching same samples across tasks.
For instance, an identical sample appearing in multiple tasks
would allow MeLa to trivially cluster local classes. Lastly, the
sampling process reflects any class imbalance in the underlying
dataset, which might present a more challenging problem.

C. Performance Comparison in Standard Setting

We compare MeLa to a diverse group of existing methods on
mini- and tieredIMAGENET in Table I. We separate the methods
into those requiring global labels and those that do not. We note
that the two groups of methods are not directly comparable since
global labels provides a significant advantage to meta-learners
as discussed previously. The method groupings are intended to
demonstrate the effect of pre-training on generalization per-
formance. Lastly, bold values in all tables indicate the best
performing models.

Table I clearly shows that “global-labels” methods leveraging
pre-training generally outperform “local-labels” methods except
MeLa. We highlight that the re-implementation of ProtoNet
in [80] benefits greatly from pre-training, outperforming the
original by over 10% across the two datasets. Similarly, while
RFS and R2D2 both learn a fixed representation and only adapt
the classifier based on each task, RFS’s pre-trained represen-
tation clearly outperforms R2D2’s meta-learned representation.
We further note that state-of-the-art methods such as DeepEMD
and FEAT are heavily reliant on pre-training and performs
drastically worse in GFSL setting, as we will discuss in Section
V-D.

In the local-labels category, MeLa outperforms existing meth-
ods thanks to its ability to still exploit pre-training using the
inferred labels. MeLa achieves about 4% improvement over the
next best method in all settings. Across both categories, MeLa

obtains performance competitive to state-of-the-art methods
such as FRN, FEAT and DeepEMD despite having no access to
global labels. This indicates that MeLa is able to infer meaning-
ful clusters to substitute global labels and obtains performance
similar to methods having access to global labels. We will
provide further quantitative results on the clustering algorithm
in Section V-G. Lastly, we note that MeLa also outperforms
several methods from the “global-label” category, such as RFS
and Meta-Baseline. We attribute MeLa’s better performance to
more robust representation via augmented pre-training and our
formulation for meta fine-tuning. In particular, we explicitly
preserve the pre-trained representation using residual connec-
tions, in contrast to meta fine-tuning the entire representation
model as in ProtoNet and Meta-Baseline. Consistent with [21],
the results suggest that meta fine-tuning the entire representation
model could negate the advantages of pre-training shown in our
theoretical analysis.

D. Performance Comparison in Generalized Setting

We evaluate a representative set of few-shot learners under
GFSL. For this setting, we introduce two new experimental
scenario using Meta-Dataset to simulate task heterogeneity.

In the first scenario, we construct the meta-training set from
Aircraft, CUB and Flower, which we simply denote as ”Mixed”.
Tasks are sampled independently from one of the three datasets.
For meta-testing, we sample 1500 tasks from each dataset and
report the average accuracy. The chosen datasets are intended
for fine-grained classification in aircraft models, bird species
and flower species respectively. Thus the meta-training tasks
share the broad objective of fine-grained classification, but are
sampled from three distinct domains. A key challenge of this
scenario is to learn a unified model across multiple domains,
without any explicit knowledge about them or the global labels.

Table II show that MeLa outperforms all baselines under
GFSL setting. In particular, MeLa achieves a large margin of
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TABLE II
TEST ACCURACY ON AIRCRAFT, CUB AND VGG FLOWER (MIXED DATASET)

TABLE III
TEST ACCURACY ON H-AIRCRAFT IN THE GENERALIZED SETTING

10% improvement over the baselines, including state-of-the-art
models FEAT, FRN and DeepEMD, which performed com-
petitively against MeLa in Table I. In particular, FEAT and
DeepEMD performed noticeably worse, indicating the meth-
ods’ reliance on pre-trained representation and the difficulty of
meta-learning from scratch with complex base learners. FRN
outperforms FEAT and DeepEMD, as it is designed to also work
without pre-training.

In the second scenario, we consider meta-training tasks with
heterogeneous objectives, leading to conflicting task-labels and
consequently ill-defined global labels. For the Aircraft dataset,
each sample from the base dataset has three labels associated
with it, including variant, model and manufacturer2 that form
a hierarchy. We sample tasks based on each of the three labels
and creates a meta-training set containing three different task
objectives: classifying fine-grained differences between model
variants, classifying different airplanes, and classifying differ-
ent airplane manufacturers. To differentiate from the original
dataset, we refer to this meta-training set as H-Aircraft. The
training data is particularly challenging given the competing
goals across different tasks: a learner is required to recognize
fine-grained differences between airplane variants, while being
able to identify general similarities within the same manufac-
turer. The meta-training data also reflects the class imbalance
of underlying dataset, with samples from Boeing and Airbus
over-represented.

Table III shows that MeLa outperforms all baselines for
H-Aircraft. To approximate the oracle performance when ground
truth labels were given, we optimize a supervised semantic
softmax loss [59] over the hierarchical labels. Specifically, we
train the (approximate) oracle to minimize a multi-task objective
combining individual cross entropy losses over the three labels.

2E.g., “Boeing 737-300” indicates manufacturer, model, and variant.

MeLa performs competitively against the oracle, indicating
the robustness of the proposed labeling algorithm in handling
ill-defined labels and class imbalance.

The experimental results suggest that MeLa performs robustly
in both the standard and GFSL settings. In contrast, baseline
methods perform noticeably worse in the latter, due to the
absence of pre-training and limited training data.

Connection to theoretical results: We comment on the empir-
ical results so far in relation to our theoretical analysis. The
empirical results strongly indicate that pre-training produces
robust meta-representations for FSL by exploiting contextual
information from global labels. This is consistent with our
observation that pre-training would achieve a smaller error than
its meta-learning counterpart. On the other hand, the results also
validate our hypothesis that the pre-trained representation can
be further improved, since the pre-trained representation is not
explicitly optimized for handling novel classes. In particular,
FEAT, FRN, DeepEMD and MeLa all outperform the pre-trained
representation from [71] by further adapting it.

E. Performance Comparison on Meta-Dataset

We further evaluate MeLa on the full Meta-Dataset to as-
sess our method’s generalization performance. We adopt the
experiment setting of training on ImageNet only and testing
on all meta-test sets [72], to clearly evaluate out-of-distribution
generalization. We note that state-of-the-art methods [e.g.[38],
[63], [73] on Meta-Dataset are heavily reliant on pre-training
with global labels, while MeLa only has access to a collection of
FSL tasks and has to infer such labels. In Table IV, we compare
MeLa with state-of-the-art methods including fine tuning [72],
ALFA+fo-Proto-MAML [72], BOHB [63], FLUTE [73] and
TSA [38].

The results show that MeLa is able to effectively infer mean-
ingful global labels and achieve robust generalization to novel
datasets, achieving an average accuracy of 68.5%. Despite not
being given global labels for pre-training, MeLa only trails
behind TSA while outperforming other methods. In addition, we
note that the task-specific tuning adopted by TSA is orthogonal
– but compatible – to MeLa: by combining MeLa with TSA
(see Section C.2 for details) we are able to further improve
our generalization performance, outperforming the original TSA
approach on 10 out of the 13 meta-test sets (Table IV last
column). These results further demonstrate the robustness of
MeLa in learning robust representations over a large number
of FSL tasks, and the efficacy of task-specific fine-tuning in
improving generalization of novel tasks.
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TABLE IV
TEST ACCURACY ON META-DATASET, TRAINING ON IMAGENET ONLY, USING RESNET-18 FOR ALL MODELS

TABLE V
TEST ACCURACY COMPARISON BETWEEN PRE-TRAINED REPRESENTATIONS:

STANDARD VERSUS ROTATION-AUGMENTED

F. Ablations on Pre-Training

Given the significance of pre-training on final performance,
we investigate how the rotation data augmentation and data
configuration impact the performance of the pre-trained repre-
sentation. We focus on the effects of dataset sizes and the number
of classes present in the dataset.

Rotation-Augmented Pre-training: In Section IV-A, we pro-
posed to increase both the size and the number of classes in a
dataset via input rotation. By rotating the input images by the
multiples of 90◦, we quadruple both the size and the number of
classes in a dataset. In Table V, we compare the performance
of standard pre-training against the rotation-augmented one, for
multiple datasets. We use the inferred labels from MeLa for
pre-training.

The results suggest that rotation-augmented pre-training con-
sistently improves the quality of the learned representation. It
achieves over 3% improvements in both miniIMAGENET and
H-aircraft, while obtains about 0.5% in tieredIMAGENET. It is
clear that rotation augmentation works the best with smaller
datasets with fewer classes. As the dataset increases in size and
diversity, the additional augmentation has less impact on the
learned representation.

Effects of Class Count: We further evaluate the effects of
increasing number of classes in a dataset while maintaining
the dataset size fixed. For this, we compare the performance
of miniIMAGENET and tieredIMAGENET with their respective
variants mini-60 and tiered-780.

Table V suggests that given a fixed size dataset, having
more classes improves the quality of the learned representation

compared to having more samples per class. We hypothesize
that classifying more classes lead to more discriminative and
robust features, while standard �2 regularization applied during
pre-training prevents overfitting despite having fewer samples
per class.

Overall, the experiments suggest that pre-training is a highly
scalable process where increasing either data diversity or dataset
size will lead to more robust representation for FSL. In particular,
the number of classes in the dataset appears to play a more
significant role than the dataset size.

G. Ablations on the Clustering Algorithm

The crucial component of MeLa is Algorithm 2, which infers
a notion of global labels and allows pre-training to be exploited
in GFSL setting. We perform several ablation studies to better
understand Algorithm 2.

The Effects of No-replacement Sampling: We study the effects
of no-replacement sampling, since it affects both the quality of
the similarity measure through gsimθ and the number of tasks
available for inferring global clusters. The results are shown in
Table VI.

In Table VI, clustering accuracy is computed by assigning the
most frequent ground truth label in each cluster as the desired
target. Percentage of tasks clustered refers to the tasks that map
to k unique clusters by Algorithm 2. The clustered tasks satisfy
both constraints imposed by local labels and are used for pre-
training.

For both sampling processes, MeLa achieves comparable per-
formances across all three datasets. This indicates the robustness
of Algorithm 2 in inferring suitable labels for pre-training, even
when task samples do not repeat across tasks. This shows that
Algorithm 2 is not trivially matching identical samples across
task, but relying on gsimθ for estimating sample similarity.
We note that mini-60 is particularly challenging under no-
replacement sampling, with only 384 tasks in the meta-training
set over 640 ground truth classes.

Effects of Pruning Threshold: In Algorithm 2, the pruning
threshold is controlled by the hyper-parameter q. We investigate
how different q values affect the number of clusters estimated
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TABLE VI
THE EFFECTS OF NO-REPLACEMENT SAMPLING ON THE CLUSTERING ALGORITHM

TABLE VII
TEST ACCURACY (PRE-TRAIN ONLY) AND CLUSTER COUNT FOR VARIOUS PRUNING THRESHOLDS, 5-SHOT SETTING

TABLE VIII
TEST ACCURACY (PRE-TRAIN ONLY) USING ALGORITHM 2 VERSUS K-MEAN CLUSTERING

by the algorithm and the corresponding test accuracy. Table VII
suggest that MeLa is robust to a wide range of q and obtains
representations similar to that produced by the ground truth
labels. While it is possible to replace q with directly guessing the
number of clusters in Algorithm 2, we note that tuning for q is
more convenient since appropriate q values appear to empirically
concentrate within a much narrower range, compared to the
possible numbers of global clusters present in a dataset.

Inferred Labels versus Oracle Labels: From Tables VI and
VII, we observe that it may be unnecessary to fully recover the
oracle labels (when they exists). For mini-60, MeLa inferred 463
clusters over 640 classes, which implies mixing of the oracle
classes. However, the inferred labels still perform competitively
against the oracle labels, suggesting the robustness of the pro-
posed method. The results also suggest that we may improve the
recovery of the oracle labels by sampling more tasks from the
meta-distribution.

The Importance of Local Constraints: Algorithm 2 enforces
consistent assignment of task samples given their local labels.
To understand the importance of enforcing these constraints, we
consider an ablation study where Algorithm 2 is replaced with
the standardK-means algorithm. The latter is fully unsupervised
and ignores any local constraints. We initialize the K-means
algorithm with 64 clusters for miniIMAGENET and 351 clusters
for tieredIMAGENET, matching the true class counts in respective
datasets.

Table VIII indicates that enforcing local constraints is critical
for generalization performance during meta-testing. In particu-
lar, test accuracy drops by over 5% for tieredIMAGENET, when
the K-means algorithm ignores local task constraints. Among

the two constraints, we note that (17) appears to be the more
important one since nearly all tasks automatically match K
unique clusters in our experiments (see tasks clustered in Table
VI).

Domain Inference for multi-domain tasks: In addition to infer-
ring global labels, We may further augment Algorithm 2 to infer
the different domains present in a meta-training set, if we assume
that all samples within a task belongs to a single domain. Given
the assumption, two global clusters are connected if they both
contain samples from the same task. This is illustrated in Fig.
2(a). Consequently, inferred clusters form an undirected graph
with multiple connected components, with each representing
a domain. We apply the above algorithm to the multi-domain
Mixed Dataset consisting of Aircraft, CUB and Flower.

Fig. 2(b) visualizes the inferred domains on the multi-domain
scenario. For each inferred cluster, we project its centroid onto a
2-dimensional point using UMAP [46]. Each connected compo-
nent is assigned a different color. Despite some mis-clustering
within each domain, we note that Algorithm 2 clearly separates
the three domains present in the meta-training set and recovers
them perfectly.

Domain inference is important for multi-domain scenario
as it enables domain-specific pre-training. Recent works [e.g.,
[14], [37], [41] on Meta-Dataset have shown that combin-
ing domain-specific representation into a universal represen-
tation is empirically more advantageous than training on all
domains together. Lastly, we remark that multi-domain meta-
learning is also crucial for obtaining robust representation suit-
able for wider range of novel tasks, including cross-domain
transfer.
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Fig. 2. (a) The coloured clusters (red, green, blue and yellow) are connected since they both contains samples from the same task. Domains can be inferred by
computing the connected components of the inferred clusters. (b) UMAP visualization of the three inferred domains from the 5-shot Mixed dataset containing
Aircraft, CUB, and VGG. Circles are the means (using the pretrained features) of the instances in each task averaged per local class while triangles are the learned
centroids, all vectors are embedded using UMAP. The three domains are recovered perfectly.

VI. CONCLUSION

In this work we focused on the role played by pre-training in
meta-learning applications, with particular attention to few-shot
learning problems. Our analysis was motivated by the recent
popularity of pre-training as a key stage in most state-of-the-art
FSL pipelines. We first investigated the benefits of pre-training
from a theoretical perspective. We showed that in some settings
this strategy enjoys significantly better sample complexity than
pure meta-learning approaches, hence offering a justification for
its empirical performance and wide adoption in practice.

We then proceeded to observe that pre-training requires access
to global labels of the classes underlying the FSL problem. This
might not always be possible, due to phenomena like heteroge-
neous labeling (i.e., multiple labelers having different labeling
strategies) or contextual restrictions like privacy constraints. We
proposed Meta-Label Learning (MeLa) as a strategy to address
this concern. We compared MeLa with state-of-the-art methods
on a number of tasks including well-established standard bench-
marks as well as new datasets we designed to capture the above
limitations on task labels. We observed that MeLa is always
comparable or better than previous approaches and very robust
to lack of global labels or the presence of conflicting labels.

More broadly, our work provides a solid foundation for
understanding existing FSL methods, in particular the
vital contribution of pre-training towards generalization
performance. We also demonstrated that pre-training scales
well with the size of datasets and data diversity, which in turn
leads to more robust few-shot models. Future research may
focus on further theoretical understanding of pre-training and
better pre-training processes.
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