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ABSTRACT

In this study, new experimental data for the displacement of a Newtonian liquid by three pure viscoelastic (Boger) fluids with different
relaxation times were obtained with imaging in a 500lm microchannel. Results were compared against those from displacement using a
Newtonian liquid. Small irregular waves were observed at the interface for the Newtonian displacement, while periodic instabilities were seen
for all Boger fluid cases. The elastic Mach number (Ma), describing the ratio of the flow velocity with the elastic wave propagation velocity,
was found to be the key parameter for correlating the wave properties in the case of Boger fluids. The amplitude of the wavy interface initially
increased up to Ma¼ 0.5, before decreasing again. The frequency and the wave velocity increased monotonically with increasing Ma. For all
configurations, a phase shift of p was found between the top and the bottom interfaces. Correlations from experimental data were developed
for all wave properties. Based on these correlations, an empirical wave model was developed to describe the observed planar images and to
reconstruct the three-dimensional waves, which resemble a helical structure.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0186036

INTRODUCTION

Fluid displacement is a process used in many chemical and physi-
cal applications, for example, in cleaning, food production, and oil
extraction. In this process, a functional fluid (displacing phase) is used
to remove another fluid (displaced phase). One of the more prominent
examples of fluid displacement is the extraction of crude oil from
porous rocks in enhanced oil recovery (EOR). Many studies have con-
sidered displacement in porous materials, from simple gas injections
to more complex chemical flooding techniques, which use additives
such as surfactants, polymers, and ionic liquids.1–3 Reducing the inter-
facial tension force with surfactants and increasing the viscosity of the
displacing phase with polymers have shown to increase the amount of
fluid removed and the overall effectiveness of the process. Even though
the use of polymeric fluids improves displacement, it introduces com-
plex non-Newtonian phenomena, which have not been studied
thoroughly.

Earlier studies of fluid displacement considered only Newtonian
fluids in different channel configurations, including Hele–Shaw cells,4–6

porous media,7–12 channels with different cross sections such as
square13–15 and triangular,16 as well as rough17,18 and open channels.18,19

In all cases, if the displaced phase has a higher density or viscosity com-
pared to the displacing phase, the flows are unstable, and viscous finger-
ing appears. Viscous fingering leaves a film of the displaced phase on the
channel wall13,20–26 and greatly reduces the displacement efficiency of
the system.27–31

Following the initial viscous finger, the interface between the two
phases destabilizes, and interfacial waves are formed. At this point, the
displacement flow resembles an annular flow, with the core fluid repre-
senting the displacing phase and the fluid in the annulus representing
the displaced phase. The source of the instability is the velocity gradi-
ent difference between the two sides of the interface due to the differ-
ences in viscosity and density of the two phases.32,33 There is instability
even if the two phases are miscible but with different densities and
viscosities.30,34–45 In addition, different instability patterns have been
observed, such as sausage and bamboo core, wavy interface, plug
flow, and dispersed flow.46–52 In the series of papers by Joseph and
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co-workers,53–57 the stability of liquid–liquid annular flows was studied
both experimentally and numerically for horizontal and vertical con-
figurations and for liquid pairs with different viscosities and densities.
From stability analysis, it was found that if the annular flow has a nega-
tive perturbation growth rate, the system is stable to disturbances.
Conversely, if the growth rate of the perturbation is positive, any small
disturbances introduced into the system will grow in interfacial waves.
For a large instability growth rate, breakup of the core is also possible,
producing slug, plug, or dispersed flows. The instability growth rates
are dependent on several factors, for example, the position of the inter-
face with a thinner core resulting in a more unstable flow.

Although shear-thinning, shear-thickening, and Bingham fluids
have all been considered to replace Newtonian fluids for liquid–liquid
displacement,3,31,58–69 the studies of viscoelastic liquids are few and
usually the fluids combine both shear thinning and elastic properties
(i.e., polymeric fluids).70–78 For the case of the viscoelastic displaced
phase, viscoelastic forces have shown to increase the amount of liquid
left on the wall and lower the displacement efficiency. In contrast,
Soares et al.78 used a pure viscoelastic liquid (Boger fluid) as the dis-
placing phase and found that with increasing flow rates, the displace-
ment efficiency increased. Hue et al.28 for a Boger fluid displacing
phase showed that the remaining film close to the wall could be corre-
lated with the Weissenberg number (Wi) of the displacing phase
[the ratio of the fluid relaxation time to the characteristic flow
time; Wi ¼ k=ðd=VÞ, where k is the viscoelastic fluid relaxation time,
d is the channel diameter, and V is the superficial velocity]. The relaxa-
tion time of the displacing phase was also shown to influence the shape
of the interfacial instabilities.

In this paper, the displacement of a Newtonian organic liquid by
three Boger fluids with different relaxation times is studied experimen-
tally and compared against the displacement by another Newtonian
fluid. Characteristics of the interfacial instabilities, such as wave fre-
quency, amplitude, and speed, are presented. It is shown that these
properties are correlated with the elastic Mach number, highlighting
the importance of elastic effects on the interfacial deformation. Based
on these correlations, a modified empirical wave-based model is used
to qualitatively describe the periodic interfacial instability appearing
during the liquid displacement.

METHODOLOGY
Test liquids

Organic liquid (displaced phase)

A blend of 20 cP (SI20) and 100 cP (SI100) silicone oils (VWR
Chemicals) is chosen as the displaced phase, allowing the viscosity
of the displaced phase to change while the density and the interfa-
cial tension are kept constant. Four different samples are produced,
90 wt. % SI20 and 10 wt. % SI100 with a viscosity of 23.86 cP (Org
O), 73.5 wt. % SI20 and 26.5 wt. % SI100 with a viscosity of
32.52 cP (Org A), 72 wt. % SI20 and 28 wt. % SI100 with a viscosity
of 33.79 cP (Org B), and 71 wt. % SI20 and 29wt. % SI100 with a
viscosity of 35.70 cP (Org C) (Table I). Viscosity data are obtained
from rheological tests with a rotational rheometer (MCR 302,
Anton Paar) equipped with 1� 50mm diameter cone & plate geom-
etry (CP50) and a Peltier plate set at 25 �C. The densities are mea-
sured using a pycnometer for ten different prepared samples, and
an average value is used for each liquid (Table I). The refractive
index is measured using an Abbe refractometer (Edmund Optics).

Aqueous liquid (displacing phase)

The displacing phase consists of an aqueous Newtonian liquid
where different concentrations of long chain polymers are added to
produce pure viscoelastic liquids. The Newtonian liquid (N) is made
up of 20wt. % polyethylene glycol (PEG, Sigma Alrich Science), 10wt.
% zinc chloride (ZnCl2, Sigma Alrich Science), and 70wt. % de-
ionized (DI) water. One drop of black Nigrosin dye (Sigma Aldrich) is
added per 10ml of sample to differentiate the aqueous phase from the
organic phase during imaging. This mixture composition is chosen to
obtain refractive index equal to 1.390, which is similar to that of the
organic phase (1.400) and the channel wall (1.404), thus preventing
refractions during imaging. PEG is added to increase the viscosity of
the aqueous phase. Rheological measurements confirmed that the liq-
uid is Newtonian and has a constant viscosity equal to 19.68 cP. The
interfacial tension between the organic and aqueous phases is in all
cases equal to 26.08mN/m, as measured with a force tensiometer

TABLE I. Summary of test liquid pairs and the physical properties for each liquid. The range of flow rates for each liquid pair is also given.

Fluid pair (displacing-
displaced phase) Fluid constituents

Density
(kg=m3)

Density
ratio

ðqaq=qorg)
Viscosity
(cP)

Viscosity
ratio

(laq=lorg)
Relaxation
times (s)

Interfacial
tension
(mN=m)

Refractive
index
(�)

Flow rate
range

(ml=min)

N Aqueous-Org O 10wt. % ZnCl2
þ 20wt. % PEG

þ 70wt. % DI water (N)

1089 1.15 19.677 0.82 - 26.08 1.40 0.025–0.40

90wt. % SI20þ 10wt. % SI100 950 23.858 1.39
Boger A-Org A Nþ 500 ppm PEO 5M 1090 1.15 26.685 0.82 (1) 0.063 26.08 1.40 0.025–0.30

73.5 wt. % SI20
þ 26.5 wt. % SI100

950 32.52 1.39

Boger B-Org B Nþ 700 ppm PEO 5M 1091 1.15 27.807 0.82 (1) 0.099 26.08 1.40 0.05–0.27
72wt. % SI20þ 28wt. % SI100 950 33.792 (2) 0.004 1.39

Boger C-Org C Nþ 1000 ppm PEO 5M 1092 1.15 29.311 0.82 (1) 0.134 26.08 1.40 0.05–0.25
71wt. % SI20þ 29wt. % SI100 950 35.701 (2) 0.020 1.39
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(K100c, Kruss GmbH) at 25 �C using a Wilhelmy plate attachment
(Table I).

To produce the Boger fluids, small amounts of polyethylene oxide
(Sigma Alrich Science) with a molecular weight of 5 000 000Da (5M
PEO) are added to the Newtonian liquid. Three samples of Boger fluid
are prepared by adding 500ppm (Boger A), 700ppm (Boger B), and
1000 ppm (Boger C) of 5M PEO to the Newtonian liquid. Small
amplitude oscillatory shear (SAOS) at a 1% strain with angular fre-
quencies between 0.1 and 400 rad/s is used to measure the storage and
loss moduli (G0 and G00) of the samples, and the relaxation times are
obtained from the crossings of the G0 and G00 curves.79,80 The SAOS
methodology is used instead of the normal stress difference method as
the solutions have low viscosity and the first normal stress difference is
below the sensitivity of the rheometer (0.001 Pa). Boger A has a poly-
mer concentration at the limit of the critical value for a dilute solution,
and its elasticity is characterized by a single relaxation time at 0.063 s.
The other two solutions, Boger B and Boger C, have polymer concen-
trations that are in the semi-dilute region and exhibit multiple relaxa-
tion times. Both Boger B and Boger C have two distinct relaxation
times, Boger B at 0.099 and 0.004 s and Boger C at 0.13 and 0.02 s
(Table I). The presence of short chain PEG in the Newtonian fluid sup-
presses the entanglement and sliding of the long chain PEO, prevent-
ing any shear-thinning effects.79 The detailed methodology for
preparing the sample liquids can be found in Hue et al.28

By changing the viscosity of the organic phase, the viscosity ratio
of the liquid pairs is kept constant at 0.82. The density ratio is also con-
stant for each liquid pair at 1.15. Hence, the only appreciable difference
between each liquid pair is the elasticity of the displacing phase,
expressed as the viscoelastic relaxation time of the liquid.

Experimental setup

A bright field shadowgraphy setup is used to obtain planar
images of the displacement core, using a high-speed camera (Phantom

V1212, Vision Research, Ametek) with a 20�microscopic lens (depth
of field, 1.60lm, Mitutoyo) and non-flickering light emitting diode
(LED) backlights (GS Vitec). The channel is a circular hydrophobic
fluorinated ethylene–propylene (FEP) capillary (Dolomite, Unchained
Labs) with an internal diameter (ID) of 500lm and a total length of
30 cm. The channel is placed inside a rectangular enclosure filled with
a 56% glycerol–water solution to match the refractive index of the wall
and avoid any curvature effects (Fig. 1).

Experimental procedure

The channel is first flooded with the displaced phase, and a three-
way valve is used to switch between the displaced and the displacing
phase to allow for a seamless transition without introducing any air
bubbles. The channels from the syringes leading up to the main chan-
nel as well as the ports in the three-way valve have the same ID as the
main channel, which is equal to 500lm. The focal plane of the lens is
set at the middle of the channel and the camera is fixed at 10 cm from
the channel inlet to avoid any end effects.81 The resulting displacement
core is recorded on an x–y plane at frame rates between 1000 and
5000, depending on the flow rate, for a minimum of 15 s up to 120 s,
capturing both the displacement front and the instabilities along the
interface. A syringe pump (KD Scientific) is used to deliver both fluids,
with the displacing flow rates varying between 0.025–0.40ml/min and
0.05 and 0.25ml/min for the lowest and the highest viscosities of the
displacing phase, respectively; these values are within the highest pres-
sure that the pump could deliver.

Post-processing procedure

An example of the interface tracking procedure is shown in
Fig. 2(a). The position of the interface between the displacing and the
displaced phases is tracked at a single x-position [shown as a red
dashed line X–X in Fig. 2(a)] over time using an in-house algorithm

FIG. 1. Schematic of the experimental
and bright field shadowgraphy setup. The
light source, the glass enclosure contain-
ing the channel, and the camera are
placed in parallel. Inset: Schematic of the
liquid–liquid displacement in a channel,
with the displaced phase in yellow, and
the displacing phase in blue. In the planar
coordinates, flow is in the x-direction,
while the recorded interface varies in the
y-direction.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 013109 (2024); doi: 10.1063/5.0186036 36, 013109-3

VC Author(s) 2024

pubs.aip.org/aip/phf


on MATLAB 2020a (MathWorks). The resulting measurements are a
spatial temporal plot of the interface position; an example of the inter-
face data over time is shown in Fig. 2(b). Full details of the tracking
algorithm used can be found in Hue et al.28

From Fig. 2(b), the interface amplitude, A, is calculated from the
distance of the peaks from the base of the wave. The wave frequency, f,
is estimated from the fast Fourier transform of the interface signal. The
wave velocity, Vwave, is measured by recording the distance a wave
peak has traveled over 50 frames. For each of the wave properties, at
least 20 measurements are averaged and maximum deviations of 9.8%
for the wave amplitude, 2% for the frequency, and 12.5% for the wave
velocity were found.

RESULTS

Figure 3 shows an example of the top and bottom interface data
for the Newtonian fluid displacement case and a Boger fluid displace-
ment case at two different flow rates. For the same flow rate, the N–N
case [Fig. 3(a)] shows a disturbed interface, which results from the dif-
ferences in the viscosities and densities of the two phases. In contrast,
the displacement with the Boger fluid [Figs. 3(b) and 3(c)] exhibits a
periodic interfacial deformation, which is attributed to the propagation
of elastic instabilities in the viscoelastic fluid. The characteristic time of
the flow (s ¼ d=V , where d is the channel diameter andV is the super-
ficial velocity Þ ranges between 0.011 and 0.23 s for the lowest and the
highest flow rates for all cases. The values are comparable to the relaxa-
tion times of the Boger fluids (0.06, 0.09, and 0.13 s), suggesting that
both viscous and elastic effects are important in the displacement flow.

The curvature of the local streamlines in the flow causes the polymer
chains in the Boger fluid to stretch, thereby increasing the local elastic
normal stresses, which trigger the elastic waves;82–85 these are the sour-
ces of the instabilities manifested as interfacial waves. The small distur-
bances seen in the N–N flow are suppressed by the Boger fluid, as the
energies are absorbed and redistributed into the polymers.

In Figs. 3(b) and 3(c), as the Boger fluid flow rate increases to
0.3ml/min from 0.1ml/min, the frequency of the waves increases.

The section “Wave properties” will discuss the periodic instability
obtained with different Boger displacing liquids, including the ampli-
tude, the frequency, the wave velocity, and the phase difference
between the top and the bottom parts of the interface. For the current
channel and ranges of flow rates, the flow is laminar with the Reynolds
number (Re ¼ qVd=l; where q is the density of the displacing phase,
V is the superficial velocity, d is the channel diameter, and l is the vis-
cosity of the displacing phase) below one in all cases. Similarly, the
Bond number [Bo ¼ Dqd2g=r, where Dq is the density difference
between the two phases (Dq ¼ qaq � qorg , with subscripts aq and org
representing the aqueous and the organic phases, respectively), g is the
gravitational acceleration and r is the interfacial tension] is below one,
and the effect of gravity can be neglected.

Wave properties

The amplitudes of both the top and bottom interfaces for increas-
ing flow rates are shown in Fig. 4(a) for the three cases of Boger fluids.
For all Boger fluids, the amplitude increases linearly with the flow rate
until a maximum is reached, before decreasing again. In addition, the
amplitude increases as the relaxation time of the Boger fluid decreases.
Indeed, Boger A shows a maximum amplitude of 50lm, while Boger
fluids B and C show, respectively, a maximum amplitude of 35 and
22lm.

At low flow rates (below 0.1ml/min), the Weissenberg number is
small (Wi< 1), and the elastic effect of the polymer on the flow is
weak. The amplitude increases with the displacing phase flow rate due
to the non-linear response of the elastic stress with increasing flow
rate. For flow rates above 0.12, 0.10, and 0.08ml/min for Boger A,
Boger B, and Boger C, respectively, the amplitude decreases with an
increasing flow rate. For these configurations, the elastic effects should
be strong (with a transition toward elastic turbulence forWi> 186). At
this regime, the attenuation from polymer relaxation and viscous dissi-
pation87–89 is expected to increase with the flow rate, which confirm
the experimental observations.

At even higher flow rates, beyond the values measured in this
study, inertial effects are expected to dominate and the wave ampli-
tudes will start increasing again.56,90,91 Driel and Ayyash92 showed in
their study, for a laminar flow of a viscoelastic fluid with forced oscilla-
tion at the inlet, that there is an initial increase in the amplitude up to
a maximum value before it decreased again. Additionally, by increas-
ing the polymer concentration and consequently the relaxation time of
the displacing phase, the perturbation growth rate decreases, resulting
in smaller wave amplitudes for the same displacing flow rates.93

Figure 4(b) shows the wave amplitude normalized by the maxi-
mum amplitude Amax (see the Appendix) against the elastic Mach
number (Ma), which accounts for the elastic, viscous, and inertial
forces, and can be defined as a combination of the Weissenberg num-
ber (Wi) and the Reynolds number (Re) as follows:94–96

FIG. 2. (a) Detected interface (yellow) overlaid onto an original image captured dur-
ing an interfacial instability. The red dashed line X–X shows the locations where the
upper and the lower interface positions are recorded for each frame over time. (b)
Spatial–temporal plot of the tracked interface with the definitions of the interface
period and amplitude shown. The results are for the displacement of Boger A-Org A
at 0.15ml/min.
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Ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
WiRe

p
� V=

ffiffiffiffiffiffiffiffiffiffiffi
l=kq

p
; (1)

where V is the superficial velocity, l is the steady shear viscosity, q is the
density, and k is the largest viscoelastic relaxation time of the displacing
phase. The term

ffiffiffiffiffiffiffiffiffiffiffi
l=kq

p
is further defined as the elastic wave speed of

the viscoelastic liquid, which is a measure of the propagation speed of
the elastic stress within the fluid. The elastic wave speed is an inherent
fluid property, which does not change with the flow conditions.

As can be seen in Fig. 4(b), the data collapses into two lines before
and afterMa¼ 0.5. Following the previous assumption that the change
of slope comes with the appearance of elastic turbulence, Ma can be
chosen as a predicator of elastic turbulence for the present microsys-
tem. For Ma < 0.5, the dimensionless amplitude increases with Ma
due to the increase in elastic stress propagating larger waves. For Ma
> 0.5, the normalized amplitude decreases withMa and the interfacial
waves are attenuated at a rate faster than the increase in elastic stress
because the energy is redistributed from the interface to the bulk of the
flow by elastic turbulence. The following linear empirical correlations
were found to describe the non-dimensional amplitudes:

A=Amax ¼
2:1Ma; Ma < 0:5;

�0:65Maþ 1:33; Ma > 0:5:

(
(2)

The first part of Eq. (2) has an R2 value of 0.93, while the second
part has an R2 value of 0.95.

Contrary to the wave amplitude, the frequency shows a mono-
tonic increase with flow rates [Fig. 5(a)]. The frequencies are similar
for all Boger fluids at low flow rates, while for flow rates above 0.15ml/
min, Boger A, the fluid with the lowest viscoelastic relaxation time
exhibits higher frequencies compared to the other two. The wave fre-
quency, normalized with the viscoelastic relaxation time, is plotted
against theMa in Fig. 5(b). The dimensionless frequency collapses into
a single curve for all cases, and the following empirical correlation
describes the data with an R2 value of 0.97

k:f ¼ 0:115Ma3=2: (3)

Meanwhile, Fig. 6(a) shows that the wave velocity increases with the
displacing phase flow rate, similar to the behavior of the wave

FIG. 3. Interfacial data for (a) N-Org O displacement at 0.1 ml/min, (b) Boger A-Org A displacement at 0.1 ml/min, and (c) Boger A-Org A displacement at 0.3 ml/min. The two
lines in each graph represent the top and the bottom interfaces captured by the camera. Black borders indicate the position of the channel wall.
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frequency. At low flow rates, all fluids show similar wave velocities,
while at high flow rates, the wave velocity slightly decreases with an
increasing viscoelastic relaxation time.

The wave velocity, normalized with the viscoelastic relaxation
time and the channel diameter, reduces to a line when plotted against
Ma, as shown in Fig. 6(b). The dimensionless wave velocities can be
described by Eq. (4) [dashed line in Fig. 6(b)], with an R2 value of 0.96

Vwave:
k
d

� �
¼ 0:1Ma: (4)

In contrast to the wave amplitude, which initially increases and
then decreases with increasing Ma, both the wave frequency and the
wave velocity increase monotonically withMa. The changes in ampli-
tude are attributed to the force balance normal to the interface; an
increase in Ma increases the elastic stress normal to the interface.
However, as discussed above, at Ma above 0.5, there is a transition to
the elastic turbulence even though the Reynolds number remains low
(Re< 1). The energy at the interface from the elastic stress is redistrib-
uted to the bulk of the flow and hence the amplitude of the interface
decreases. Meanwhile, the frequencies and velocities of the interfacial

FIG. 4. (a) Interfacial instability amplitude A against the displacing phase flow rate for the three different Boger fluids. (b) Dimensionless interfacial instability amplitude against
the elastic Mach number for the three different Boger fluids. The yellow shaded region shows the first part of Eq. (2) (dashed line), and the gray shaded region shows the sec-
ond part of Eq. (2) (dotted line). Open symbols are amplitude measurements from the top interface, and closed symbols are amplitude measurements from the bottom
interface.

FIG. 5. (a) Frequency of instability waves f against the displacing phase flow rate for the three different Boger fluids. (b) Dimensionless frequency against the elastic Mach num-
ber for the three different Boger fluids. The empirical correlation [Eq. (3)] is shown as a black dashed line. Open symbols are frequency measurements from the top interface,
and closed symbols are frequency measurements from the bottom interface.
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waves are less strongly dependent on the normal forces at the interface.
Instead, the propagation of waves in the direction of flow is related to
the velocity of the displacing phase. Similar trends for the frequency
and the wave velocity were also observed for viscoelastic flows past cyl-
inders by Varshney and Steinberg,87 who found that these wave prop-
erties increased with the flow rate of the viscoelastic fluid.

Phase difference

The wave properties between the top and the bottom interfaces
discussed in the section “Wave properties” are very similar. However,
it was found that the bottom interface is delayed compared to the top
interface as can be seen in Fig. 7 for Boger A-Org A displacement at
0.35ml/min. For all cases, the average phase difference between the
top and the bottom interfaces was found to be around p, or half the
period of oscillation, with an average error of 3.8%, as shown in Fig. 8.
As the displacing phase core is three-dimensional, the phase shift
between the measured top and bottom interfaces is expected since the
images are captured on a two-dimensional plane. The shape of the

core with the constant phase difference of p will be discussed in detail
in the section “Extension of planar waves as a representation of 3D
waves.”

Empirical plane wave modeling

Assuming that a single point on the interface during displace-
ment follows a sinusoidal deformation over time, the interface can be
described by

x tð Þ ¼ Asin xt þ uð Þ; (5)

where x is the instantaneous position of the interface, A is the peak
amplitude, x is the radian frequency (x ¼ 2pf , f is the interfacial
wave frequency), t is the instantaneous time, and u is the phase of the
wave.

However, experimental observations showed that the interfacial
deformation is more similar to a half rectified sinusoidal wave, which
can be obtained by multiplying Eq. (5) with 1

2 sgn sin xtþ uð Þð Þ þ 1½ �,
where sgn represents a sign function. Additionally, as previously

FIG. 6. (a) Wave velocity Vwave against the displacing phase flow rate for the three different Boger fluids. (b) Dimensionless wave velocities against the elastic Mach number
for the three different Boger fluids. The empirical correlation [Eq. (4)] is shown as a black dashed line. Open symbols are the wave velocity measurements from the top inter-
face, and closed symbols are the wave velocity measurements from the bottom interface.

FIG. 7. The top and the bottom interfaces
overlaid onto each other for Boger A-Org
A displacement at 0.35ml/min. The y-
position of the interface is normalized with
the maximum amplitude, and the experi-
mental time is normalized with the period
of oscillation.
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shown, the top and the bottom interfaces follow mostly the same pat-
tern with a phase shift, /, between them. To obtain the mean position
of the interface relative to the channel wall, the correlation for the
empirical film thickness, H, by Hue et al.28 is used. Applying these to
Eq. (5) yields

x tð Þ ¼

1
2
sgn sin xt þ uð Þð Þ þ 1½ �:A sin xt þ uð Þ þ H;

Top interface;
1
2

sgn sin xt þ uþ /ð Þð Þ þ 1
� �

:A sin xt þ uþ /ð Þ � H;

Bottom interface:

8>>>>><
>>>>>:

(6)

The key instability parameters obtained previously for the Boger fluids
[Eqs. (2)–(4)] can be used to build a toy model based on Eq. (6).
Comparisons between this empirical model and an independent exper-
iment of Boger A-Org A displacement at a flow rate of 0.35ml/min in
Fig. 9 showed good agreement. Qualitatively, the empirical model
agrees well with experimental data, with very small deviations appear-
ing in both the frequency and the amplitude. In fact, when comparing
the interface position between the model and the experimental data, a

mean absolute percentage error (MAPE) of 4.60% and 4.36% is
obtained for the top and the bottom interfaces, respectively, indicating
a good fit. The MAPE is defined by

MAPE ¼ 1
n

Xn
1

xexp � xmodel

xexp

����
����; (7)

where n is the number of data points, xexp is the position of the inter-
face measured from experiments, and xmodel is the interface position
from the planar wave model.

The mean position of the interface obtained experimentally is not
constant. Instead, the interface moves closer to the channel wall with
time as the displaced phase is removed from the channel. This results in
an increase in the deviations between experiments and model with time.

Extension of planar waves as a representation of 3D
waves

As discussed above, the top and the bottom interfaces display the
same average wave properties for each case (see Figs. 4–6). Assuming
continuity of the interface along the channel, a helical deformation,
similar to a coiled structure, is expected.97 Indeed, this wave shape has

FIG. 8. Phase difference between the top
and the bottom interfaces for the three dif-
ferent Boger fluids.

FIG. 9. Dimensionless interface position
against dimensionless time for the inter-
face between the proposed empirical
wave model in a black dotted line [Eq. (6)]
and the experimental measurements in a
blue dashed line for the Boger A-Org A
displacement at 0.35ml/min. The two lines
in each graph represent the top and the
bottom interfaces, and the black borders
indicate the position of the channel wall.
The y-position of the interface is normal-
ized with the maximum amplitude, and the
experimental time is normalized with the
period of oscillation.
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been observed in previous literature findings in large channels for
unstable annular flows.53,57 By generating a volume of revolution from
the plane wave model [Eq. (6)], a 3D representation of the wave is pro-
duced, showing a helical structure (Fig. 10). The planar projection of
this 3D wave, shown in red in Fig. 10, illustrates a 2D wavy interface
similar to the one observed experimentally. Additionally, the cross-
sectional shape of the 3D wave is found to be circular, which is consis-
tent with the shape of the viscous finger inside a circular channel dur-
ing displacement.15

CONCLUSIONS

The displacement of a Newtonian organic liquid by viscoelastic
Boger liquids with different relaxation times was studied. It was found
that while for a Newtonian displacing fluid the interface had small
irregular waves, when the viscoelastic fluids were used, the instabilities
became periodic and the amplitudes increased. The amplitudes pre-
sented an interesting trend, increasing initially with the flow rate and
then decreasing. This behavior was attributed to the relative impor-
tance of the elastic effects on the flow. The frequency and the velocity
of the instability waves both increased with increasing displacement
flow rates. It was possible to correlate all three dimensionless wave
characteristics, amplitude, frequency, and wave velocity, with an elastic
Mach number, Ma, defined as the ratio of the flow velocity with the
elastic wave propagation velocity. The wave properties of both the top
and the bottom interfaces obtained from the planar images of the dis-
placement agreed well with a phase shift between them equal to half
an oscillation period. Using the wave properties and the phase shift, it
was possible to reconstruct the three-dimensional waves, which resem-
bled a helical screw structure.

In the future, it is planned to investigate the flow fields during the
interfacial instability. Using particle image velocimetry (PIV) and

particle tracking velocimetry (PTV) techniques, the velocity fields close
to the interfacial instability in both phases can be measured, which
might reveal any non-uniform structures in the flow.
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FIG. 10. 3D model of helical screw waves, produced using Eq. (6). The projection of the 3D waves on a plane is shown on the back and as an image inset. The cross section
of the waves is shown on the right. The interface is normalized with the maximum amplitude, and the experimental time is normalized against the period of oscillation.
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APPENDIX: MAXIMUM AMPLITUDE AND RELAXATION
TIME DEPENDENCY

Figure 11 shows the dependence of the maximum ampli-
tude on the physical property of the fluid through its linear rela-
tionship with the viscoelastic relaxation time of the displacing
phase.
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