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Abstract: The presence of amyloid-β (Aβ) deposition is considered important in patients with
amnestic mild cognitive impairment (aMCI), since they can progress to Alzheimer’s disease dementia.
Amyloid positron emission tomography (PET) has been used for detecting Aβ deposition, but its high
cost is a significant barrier for clinical usage. Therefore, we aimed to develop a new predictive scale
for amyloid PET positivity using easily accessible tools. Overall, 161 aMCI patients were recruited
from six memory clinics and underwent neuropsychological tests, brain magnetic resonance imaging
(MRI), apolipoprotein E (APOE) genotype testing, and amyloid PET. Among the potential predictors,
verbal and visual memory tests, medial temporal lobe atrophy, APOE genotype, and age showed
significant differences between the Aβ-positive and Aβ-negative groups and were combined to make
a model for predicting amyloid PET positivity with the area under the curve (AUC) of 0.856. Based
on the best model, we developed the new predictive scale comprising integers, which had an optimal
cutoff score ≥ 3. The new predictive scale was validated in another cohort of 98 participants and
showed a good performance with AUC of 0.835. This new predictive scale with accessible variables
may be useful for predicting Aβ positivity in aMCI patients in clinical practice.

Keywords: mild cognitive impairment; Alzheimer’s disease; positron emission tomography;
apolipoprotein E; medial temporal lobe atrophy

1. Introduction

Mild cognitive impairment (MCI) has been considered as a transitional state between
normal aging and dementia [1]. Since the growth of the elderly population has led to
an increase in the prevalence and socioeconomic burden of dementia patients [2], early
intervention at the MCI stage and prevention of progression to dementia have become
important. In particular, amnestic MCI (aMCI) has a high probability of progression to
dementia due to Alzheimer’s disease (AD) [3,4].
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AD is neuropathologically diagnosed based on the deposition of amyloid-β (Aβ)
plaques and pathologic tau proteins [5]. As the pathologic changes occur in the brain before
the symptoms of AD appear [6], modalities for examining the presence of AD pathology,
such as cerebrospinal fluid (CSF) analysis and amyloid positron emission tomography (PET)
scans, have been developed to detect AD in the preclinical or prodromal stages. The CSF
assay has the advantages of being able to measure not only Aβ but also tau protein [7]. On
the other hand, amyloid PET scans are noninvasive and have high reliability in longitudinal
studies and center-to-center examinations [7].

Although these AD confirmatory diagnostic modalities have been used as enrollment
criteria for research, their application in primary care clinical settings is still difficult. CSF
testing is an invasive test that the patients may be reluctant to undergo. Amyloid PET scans
have the issue of high cost, availability of PET scanners, and radiation exposure [8,9]. Thus,
their widespread use is limited to the first-line approach in clinical trials.

Although several longitudinal studies have developed models for predicting the con-
version of MCI to AD dementia, AD was estimated clinically, not pathologically [10–13].
In addition, a few Aβ-positive (Aβ+) AD prediction models that could replace the confir-
matory tests have been suggested using cortical thickness and brain volumetry [14–16], or
using several blood-based markers, including prostatic acid phosphatase, transthyretin,
matrix metalloproteinase 10 [17], and plasma Aβ42/Aβ40 [18]. However, these models
used variables that are still difficult to apply in clinical practice. Therefore, it will be use-
ful to develop a predictive scale of Aβ positivity using commonly available variables in
aMCI patients.

This study aimed to develop a predictive scale to distinguish amyloid PET positivity
among aMCI patients using easily accessible variables for routine clinical practice. These
variables included demographic and clinical characteristics of aMCI patients such as age,
sex, education, detailed neuropsychological tests including verbal and visual memory
tests [11,19–22], medial temporal lobe atrophy (MTA) [23–26], and apolipoprotein E (APOE)
epsilon 4 (ε4) allele [27,28].

2. Materials and Methods
2.1. Participants

A total of 161 participants with aMCI were recruited from six different memory clinics
in South Korea.

Diagnosis of aMCI was based on the Petersen’s criteria for MCI [3]: (1) subjective
memory complaint by the subject or an informant; (2) preserved general cognitive function;
(3) objective memory impairment below −1.0 standard deviation (SD) of age, sex, and
education matched norms on either verbal or visual delayed recall tests; and (4) indepen-
dent performance of daily life activities. The participants had a global Clinical Dementia
Rating (CDR) score of 0.5. All participants underwent standard assessments including
clinical history, neurological examination, detailed neuropsychological tests, brain magnetic
resonance imaging (MRI), amyloid PET, APOE genotype, and laboratory tests. Patients
who had a critical illness, stroke, brain tumors, psychiatric diseases, and head trauma with
loss of consciousness were excluded from the study population.

The participants were categorized into two groups based on whether the amyloid PET
results were Aβ+ or Aβ-negative (Aβ−). For the APOE genotype, the participants were
classified as carriers or noncarriers of the APOE ε4 allele.

The present study was approved by the Institutional Review Board for Human Re-
search of the institution in each center and written informed consent was obtained from all
participants (ClinicalTrials.gov identifier: NCT02656498).

2.2. Neuropsychological Tests

All participants underwent the Korean-Mini Mental Status Examination (K-MMSE),
global CDR, Sum of Boxes of CDR (CDR-SB), and Seoul Neuropsychological Screening
Battery (SNSB) [29]. SNSB, a detailed neuropsychological test, is subdivided into the
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following domains. Memory function domain included Seoul Verbal Learning Test-delayed
recall (SVLT-DR) and Rey Complex Figure Test-delayed recall (RCFT-DR). Attention domain
included Digit Span Test-forward (DST-forward) and language function domain included
Korean-Boston Naming Test (K-BNT). Visuospatial function domain was composed of the
RCFT-copy. Frontal/executive function domain was evaluated by Controlled Oral Word
Association Test-phonemic (COWAT-phonemic), Korean-Color Word Stroop Test-color
reading (K-CWST-CR), Digit Symbol Coding (DSC), and Korean-Trail Making Test-part B
(K-TMT-B).

All SNSB variables were converted to z-scores standardized for age, sex, and years of
education. Each SNSB variable was considered abnormal when the z-score was lower than
−1.0 SD (16th percentiles) of the age, sex, and education-standardized norms. Subjects were
classified as aMCI, if either SVLT-DR or RCFT-DR was less than −1.0 SD with independent
activity of daily living.

2.3. Axial Visual Rating Scale of Medial Temporal Lobe Atrophy

All participants were evaluated with the axial visual rating scale (aVRS) of MTA
according to the method developed by Kim et al. [30] as the inter-rater and intra-rater
reliability of aVRS were higher than coronal VRS proposed by Scheltens et al. [31] The
MTA of each subject was rated twice by two trained neurologists, who were unaware
of the clinical information of the participants. The left and right sides of the MTA were
evaluated separately, and the larger value was chosen if the left and right values were
different [30,32,33]. According to previous studies which found that an MTA score of 2 or
higher was associated with progression from aMCI to dementia [24,33,34], MTA variables
were classified as presence or absence of MTA on the basis of aVRS of 2. The kappa value
for intra-rater reliability of MTA aVRS was 0.820 (95% confidence interval (CI) 0.779–0.862)
and inter-rater reliability was 0.752 (95% CI 0.651–0.845).

2.4. MRI and PET Imaging Acquisition

MRI scans were obtained using 1.5-Tesla (T) MRI (Siemens Magnetom Avanto, Siemens,
Erlangen, Germany), 3.0-T MRI (Philips Achieva, Philips, Best, The Netherlands), 3.0-T MRI
(Siemens Magnetom VIDA, Siemens, Erlangen, Germany), 3.0-T MRI (GE Signa Architect,
Waukesha, WI, USA), 3.0-T MRI (Philips Ingenia, Philips, Best, The Netherlands), or 3.0-T
MRI (Verio, Siemens with a Siemens matrix coil, Erlangen, Germany) machines at six differ-
ent memory clinics. All MR images included T1-weighted axial, T2-weighted axial, and
fluid attenuated inversion recovery (FLAIR) axial images. For axial MR images, the images
were taken parallel to the line from the anterior commissure to the posterior commissure.

All participants underwent one of the following two amyloid PET tests: 11C-Pittsburgh
compound B ([11C] PiB) or 18F-florbetaben ([18F] FBB). Nine subjects underwent [11C] PiB
PET (Siemens) and 138 subjects underwent [18F] FBB PET (Biograph mCT, Siemens) scans.
The standard uptake value ratio (SUVR) was obtained for [11C] PiB images to determine
amyloid PET positivity [35]. [18F] FBB PET was evaluated visually by a trained nuclear
medicine specialist in each center using brain amyloid plaque load (BAPL) score.

2.5. Validation of the Predictive Scale

For the validation cohort, 98 aMCI subjects were recruited from the Inha University
hospital in South Korea. The inclusion criteria of the validation cohort were the same as
those of the original group. To validate the new predictive scale of amyloid PET positivity,
the scale was applied to the validation cohort set. Receiver operating characteristic (ROC)
curve analysis was performed to evaluate the predictive performance. Area under the
curve (AUC) value, sensitivity, and specificity were calculated at the optimal cutoff score of
the newly developed scale.
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2.6. Statistical Analyses

In this cross-sectional study, Student’s t-test was used to analyze the continuous
variables, while the chi-square test was used for the dichotomous variables. Based on
the results of the comparison between Aβ+ and Aβ− subjects, potential predictors were
selected. Pearson’s correlation analysis was conducted to determine the association between
the potential predictors as well as to exclude the correlates.

The selected significant continuous variables were converted to categorical variables
to maximize their utility in clinical practice. Since the two groups of Aβ+ and Aβ− subjects
were divided based on the average age of 70 years, 1 point was given to those aged 70 or
older and 0 point to those under the age of 70. For SNSB, subjects with higher than −1.0 SD
were scored as 0, while subjects with lower than −1.0 SD were scored as 1. The presence of
MTA was determined and scored as 1 if MTA aVRS was ≥2. If the subject was an APOE-ε4
carrier, a score of 1 was given, while if the subject was an APOE-ε4 noncarrier, a score of 0
was given.

Univariate logistic regression analysis was applied to predict amyloid PET positivity
with each potential predictor. Subsequently, these predictors were combined to develop
several models using multivariate logistic regression analysis. The ROC curves for all mod-
els were analyzed to assess their predictive ability for amyloid PET positivity. The model
with the highest AUC value was selected as the most appropriate model for predicting
amyloid PET positivity. To detect multicollinearity between the predictors in the model,
variance inflation factor (VIF) statistics were calculated. The calibration of each prediction
model was assessed using the Hosmer–Lemeshow goodness-of-fit test.

The most appropriate model could generate a new predictive scale based on the
regressionβ coefficients from the multivariate logistic regression analysis. Theβ coefficients
values were adjusted to the nearest integer to develop a simple integer-based modeling
scale. ROC curves were constructed to determine the diagnostic ability of the scale. The
optimal cutoff score of the scale was calculated using the Youden’s index.

For statistical analysis, Statistical Package for the Social Sciences was used (version 25.0,
IBM Corp., Armonk, NY, USA). Statistical significance was defined as a probability value
of p < 0.05.

3. Results
3.1. Participants’ Characteristics

The average age of the 161 subjects was 69.88 ± 7.23 years (mean ± SD). Of the
subjects, 90 (55.9%) were women and 71 (44.1%) were men; also, the subjects consisted of
70 APOE-ε4 carriers (43.5%). A total of 78 participants (48.4%) showed Aβ positivity in
amyloid PET.

Table 1 shows the demographic findings of the subjects according to the amyloid
status. There was a significant difference in the age (p = 0.034), but not in sex (p = 0.086)
and education (p = 0.685) between the Aβ+ and Aβ− groups. However, there were no
significant differences in the cardiovascular risk factors, such as hypertension, diabetes
mellitus, hyperlipidemia, and heart disease, as well as stroke and cancer.

Table 2 demonstrates the clinical characteristics such as the cognition status, MTA
aVRS, and APOE genotypes of the subjects according to the amyloid status. Among
neuropsychological tests, Aβ+ subjects showed significantly lower z-scores of SVLT-DR,
RCFT-DR, and K-BNT than Aβ− subjects (SVLT-DR: p < 0.001; RCFT-DR: p < 0.001; K-BNT:
p = 0.029). Compared to the Aβ− group, the Aβ+ group was more likely to have both
verbal and visual memory impairments rather than either visual or verbal memory alone
(p < 0.001). The K-MMSE score of the Aβ+ group was lower than that of the Aβ− group
(p < 0.001). Aβ+ subjects had higher global CDR and CDR-SB scores than Aβ− subjects
(p = 0.002; p < 0.001). Aβ+ subjects had lower MTA aVRS than Aβ− subjects (p < 0.001).
The proportion of APOE-ε4 carriers among Aβ+ subjects was significantly higher than that
among Aβ− subjects (p < 0.001).
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Table 1. Participants’ demographic findings according to the amyloid status.

Total
(n = 161)

Aβ−
(n = 83)

Aβ+
(n = 78) p-Value

Age (years) 69.88 ± 7.23 68.71 ± 7.57 71.12 ± 6.67 0.034
Sex (men:women) 71:90 42:41 29:49 0.086
Education (years) 11.09 ± 4.36 11.23 ± 4.38 10.95 ± 4.36 0.685
Family history of dementia 48/153 (31.4%) 27/81 (33.3%) 21/72 (29.2%) 0.579
Hypertension 74/152 (49.0%) 40/76 (53.3%) 34/76 (44.7%) 0.291
Diabetes mellitus 33/152 (21.9%) 20/76 (26.7%) 13/76 (17.1%) 0.155
Hyperlipidemia 63/152 (41.4%) 34/76 (44.7%) 29/76 (38.2%) 0.410
Heart disease 4/151 (2.6%) 3/75 (4.0%) 1/76 (1.3%) 0.367
Stroke 2/151 (1.3%) 2/75 (2.7%) 0/76 (0.0%) 0.245
Cancer 13/137 (9.5%) 3/65 (4.6%) 10/72 (13.9%) 0.064

Abbreviations: Aβ, amyloid-β; Aβ−, amyloid PET negative, Aβ+, amyloid PET positive.

Table 2. Participants’ cognition, MTA, and APOE-ε4 according to the amyloid status.

Total
(n = 161)

Aβ−
(n = 83)

Aβ+
(n = 78) p-Value

SVLT-DR z-score −1.51 ± 1.06 −1.18 ± 0.96 −1.86 ± 1.06 <0.001
RCFT-DR z-score −1.19 ± 1.02 −0.78 ± 1.03 −1.63 ± 0.82 <0.001
DST-forward z-score 0.03 ± 1.05 0.17 ± 1.12 −0.12 ± 0.96 0.090
K-BNT z-score −0.39 ± 1.22 −0.18 ± 1.27 −0.12 ± 0.96 0.029
RCFT-copy −0.65 ± 1.65 −0.58 ± 1.35 −0.72 ± 1.93 0.576
COWAT-phonemic z-score −0.29 ± 0.82 −0.23 ± 0.84 −0.35 ± 0.79 0.341
K-CWST-CR z-score −0.41 ± 1.11 −0.33 ± 1.01 −0.49 ± 1.22 0.366
DSC z-score 0.09 ± 0.98 0.10 ± 1.01 0.08 ± 0.96 0.930
K-TMT-B z-score −0.63 ± 1.84 −0.54 ± 1.78 −0.75 ± 1.92 0.493
Visual aMCI 38 (23.6%) 28 (33.7%) 10 (12.8%)

<0.001Verbal aMCI 50 (31.1%) 36 (43.4%) 14 (17.9%)
Both aMCI 73 (45.3%) 19 (22.9%) 54 (69.2%)
K-MMSE 25.80 ± 2.79 26.88 ± 2.20 24.64 ± 2.90 <0.001
Global CDR 0.42 ± 0.25 0.36 ± 0.24 0.48 ± 0.25 0.002
CDR-SB 1.76 ± 1.50 1.31 ± 1.24 2.22 ± 1.61 <0.001
MTA aVRS ≥ 2 81 (50.3%) 29 (34.9%) 52 (66.7%) <0.001
APOE-ε4 carrier (%) 70 (43.5%) 14 (16.9%) 56 (71.8%) <0.001

Abbreviations: Aβ, amyloid-β; Aβ−, amyloid PET negative, Aβ+, amyloid PET positive; SVLT-DR, Seoul
Verbal Learning Test-delayed recall; RCFT-DR, Rey Complex Figure Test-delayed recall; DST-forward, Digit
Span Test-forward; K-BNT, Korean-Boston Naming Test; COWAT-phonemic, Controlled Oral Word Association
Test-phonemic; K-CWST-CR, Korean-Color Word Stroop Test-color reading; DSC, Digit Symbol Coding; K-TMT-B,
Korean-Trail Making Test-part B; aMCI, amnestic mild cognitive impairment; K-MMSE, Korean version-Mini-
Mental State Examination; CDR, Clinical Dementia Rating scale; CDR-SB, sum of boxes of CDR; MTA, medial
temporal lobe atrophy; aVRS, axial visual rating scale; APOE, apolipoprotein E.

3.2. Development of a New Predictive Scale for Amyloid PET Positivity

Potential predictors that showed significant differences between the Aβ+ and Aβ−groups
were extracted, including SVLT-DR, RCFT-DR, K-BNT, K-MMSE, global CDR, CDR-SB,
MTA aVRS, APOE genotype, and age. Correlation analysis of the variables demonstrated
that K-MMSE had a correlation with SVLT-DR (p < 0.001), RCFT-DR (p < 0.001), K-BNT
(p = 0.030), global CDR (p < 0.001), and CDR-SB (p < 0.001). Global CDR and CDR-SB
also showed significant correlation with SVLT-DR, RCFT-DR, K-BNT, and K-MMSE. Thus,
K-MMSE, global CDR, and CDR-SB were excluded when constructing the models.

Table 3 shows the results of univariate logistic regression analyses to assess the asso-
ciation between each potential predictor and amyloid PET positivity after adjusting for
age. SVLT-DR (adjusted odds ratio (aOR) 3.237, 95% CI 1.407–7.448), RCFT-DR (aOR 2.997,
95% CI 1.414–6.351), MTA aVRS (aOR 3.301, 95% CI 1.611–6.766), APOE-ε4 carriers (aOR
12.253, 95% CI 5.410–27.753), and age (odds ratio (OR) 2.340, 95% CI 1.207–4.538) were
associated with amyloid PET positivity. However, K-BNT (p = 0.207) did not demonstrate
significance in the univariate analysis. Since all aMCI patients subjects already had either
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impaired visual or verbal memory, the aOR of both aMCI with both visual and verbal
memory impairment was calculated and compared to single aMCI with only visual or
verbal memory impairment (aOR 7.579, 95% CI 3.754–15.299).

Table 3. Univariate models to predict for amyloid PET positivity.

Variables OR (95% CI) p-Value

SVLT-DR (Ref. > −1 SD) * 3.652 (1.637–8.149) 0.002
RCFT-DR (Ref. > −1 SD) * 3.333 (1.616–6.876) 0.001
Both aMCI
(Ref. single aMCI) 7.579 (3.754–15.299) <0.001

K-BNT (Ref. > −1 SD) * 1.684 (0.840–3.377) 0.142
MTA aVRS (Ref. < 2) * 3.724 (1.940–7.149) <0.001
APOE-ε4 carrier (Ref. noncarrier) * 12.545 (5.884–26.749) <0.001
Age (Ref. < 70) 1.916 (1.022–3.594) 0.043

* Age-adjusted; Abbreviations: OR, odds ratio; CI, confidence interval; SVLT-DR, Seoul Verbal Learning Test-
delayed recall; SD, standard deviation; RCFT-DR, Rey Complex Figure Test-delayed recall; aMCI, amnestic mild
cognitive impairment; DST-forward, Digit Span Test-forward; K-BNT, Korean-Boston Naming Test; MTA, medial
temporal lobe atrophy; aVRS, axial visual rating scale; APOE, apolipoprotein E.

Both aMCI with both visual and verbal memory impairment, MTA aVRS, and APOE
genotype were included in the multivariate analyses after adjustment for age. These
predictors were combined to develop the following models:

Model 1: included age, both aMCI.
Model 2: included age, both aMCI, MTA aVRS.
Model 3: included age, both aMCI, APOE genotype.
Model 4: included age, both aMCI, MTA aVRS, APOE genotype.

Multivariate analyses showed that predictors in all models had significant ORs
(Table 4).

Table 4. Multivariate analyses of models combining predictors for amyloid PET positivity.

Model 1
OR (95% CI)

Model 2
OR (95% CI)

Model 3
OR (95% CI)

Model 4
OR (95% CI)

Both aMCI
(Ref. single aMCI)

7.368 ***
(3.633–14.943)

6.348 ***
(3.080–13.083)

4.114 **
(1.850–9.150)

3.485 **
(1.530–7.940)

MTA aVRS
(Ref. < 2) NI 2.533 *

(1.177–5.449) NI 2.668 *
(1.106–6.436)

APOE-ε4 carrier
(Ref. noncarrier) NI NI 9.090 ***

(3.988–20.722)
9.254 ***

(3.971–21.566)
Age
(Ref. < 70)

1.684
(0.833–3.405)

1.228
(0.571–2.638)

2.082
(0.933–4.645)

1.443
(0.600–3.473)

* p < 0.05, ** p < 0.01, *** p < 0.001, difference between Aβ+ and Aβ−; Abbreviations: OR, odds ratio; CI, confidence
interval; aMCI, amnestic mild cognitive impairment; MTA, medial temporal lobe atrophy; aVRS, axial visual
rating scale; APOE, apolipoprotein E; NI, not included.

Figure 1 shows the ROC curves and AUC values of the four models. Among the
models, model 4 had the highest AUC value (0.856, 95% CI 0.796–0.917) and could be
selected as the most appropriate model for predicting amyloid PET positivity (sensitivity:
73.1%, specificity: 86.7%). Model 4 included the following predictors: (1) age older than
70 years (aOR 1.443, 95% CI 0.600–3.473); (2) both aMCI compared to single aMCI (aOR
3.485, 95% CI 1.530–7.940); (3) MTA aVRS value greater than or equal to 2 (aOR 2.668,
95% CI 1.106–6.436); and (5) APOE-ε4 carrier (aOR 9.254, 95% CI 3.971–21.566). VIF
values of all variables were <4 (age: 1.293; both aMCI: 1.305; MTA aVRS: 1.381; APOE
genotype: 1.241), indicating that there was no multicollinearity among the predictors. The
Hosmer−Lemeshow test for model 4 verified that the model fitted well with the data
(χ2 = 4.787, p-value = 0.686).
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Figure 1. Receiver operating characteristic (ROC) curves of the models to predict amyloid positron
emission tomography (PET) positivity. The ROC curves and the corresponding area under the curve
(AUC) with 95% confidence interval (CI), sensitivity (SN), and specificity (SP) are shown for all the
models. Among the four models, model 4 demonstrates the highest AUC value of 0.856, along with a
sensitivity of 73.1% and specificity of 86.7%.

To develop a new predictive scale based on a simple integer scoring system, the regres-
sion β coefficients generated from the multivariable analysis of model 4 were simplified.
The β coefficients were divided by the β coefficient of MTA aVRS, which was the lowest
at 0.981 among all predictors. They were rounded to the nearest integer for the scoring
system. Table 5 demonstrates the new predictive scale, configured to score 1 point each for
age 70 or older, both aMCI compared to single aMCI, MTA aVRS above 2, and 2 points for
APOE-ε4 carrier, based on the value of the β coefficients. In the scale, a higher score had a
higher probability of Aβ positivity (score range: 0–5).

ROC curve analysis (Figure 2) shows the performance of the β coefficient-based
scoring modeling score to differentiate Aβ+ from Aβ− with an AUC value of 0.848 (95%
CI 0.786–0.909). The optimal cutoff point of the modeling score was ≥3 according to the
highest Youden’s index with a sensitivity of 72.1% and specificity of 84.3%.
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Table 5. A new predictive scale for predicting amyloid PET positivity.

Predictors β Coefficient Scoring System

Age <70 0 0
≥70 0.367 1

Memory impairment Single (verbal or visual) 0 0
Both (verbal and visual) 1.249 1

MTA aVRS
<2 0 0
≥2 0.981 1

APOE-ε4 allele
Noncarrier 0 0
Carrier 2.225 2

Total 0~5
Abbreviations: SVLT-DR, Seoul Verbal Learning Test-delayed recall; RCFT-DR, Rey Complex Figure Test-delayed
recall; MTA, medial temporal lobe atrophy; aVRS, axial visual rating scale; APOE, apolipoprotein E.
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Figure 2. Receiver operating characteristic (ROC) curve of the new predictive scale for amyloid PET
positivity. The ROC curve and corresponding area under the curve (AUC) with 95% confidence
interval (CI), sensitivity (SN), and specificity (SP) are shown. The AUC value of the scale was high at
0.847, and the sensitivity and specificity were also high at 72.1% and 84.3%, respectively.

3.3. Validation Analysis

Among the 98 aMCI patients subjects in the validation cohort, 34 (34.7%) were amyloid
PET positive. Figure 3 shows the prediction performance of the newly developed scale
in the validation cohort with an AUC value of 0.835 (95% CI 0.752–0.917). At the optimal
cutoff point of the scale, which was ≥3, sensitivity was 82.4% and specificity was 62.5%.
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Figure 3. Receiver operating characteristic (ROC) curve of the new predictive scale in the validation
cohort. The ROC curve and the corresponding area under the curve (AUC) with 95% confidence
interval (CI), sensitivity (SN), and specificity (SP) are shown. In the validation cohort, the AUC value
was as high as 0.835, and the sensitivity and specificity were 82.4% and 62.5%, respectively.

4. Discussion

Our study developed a new predictive scale for detecting amyloid PET positivity with
easily accessible variables in aMCI subjects. To our knowledge, this is the first predictive
scale consisting of integers to identify Aβ+ aMCI subjects by using a combination of the
neuropsychological memory domain, APOE genotype, and the neurodegenerative marker
of MTA VRS. As the prevalence of MCI due to AD increases, this practical scale will be
valuable for recognizing Aβ positivity in the prodromal stage.

This predictive scale has the following distinctive strong points. Firstly, the scale
can be applied quickly and cost-effectively in clinical practice where amyloid PET evalu-
ation is difficult to access as amyloid PET is a costly and uncommonly used equipment.
Several studies have attempted to predict amyloid PET positivity in aMCI participants.
These studies required advanced testing tools such as MRI volumetry [14,15,36–38] and
plasma-based markers [17,39,40], and they have not yet been implemented in clinical trials.
However, the predictive scale in the present study comprises readily obtainable variables
and is composed of integers. With this new scale, Aβ positivity among aMCI subjects can
be predicted easily in clinical settings.

Few studies have attempted to detect Aβ positivity among aMCI subjects with com-
monly available variables. Kim et al. developed a nomogram for predicting Aβ+ aMCI [41].
This nomogram helps precision medicine at the individual level. However, on the other
hand, our predictive scale has the advantage of less variation because each variable is
scored as an integer such as 1 or 2 points, regardless of the change in the research subject.
Another Aβ positivity prediction model proposed by Lee et al. requires a logit value for
each subject to screen, which is challenging to use intuitively in clinical practice [42]. In
addition, MTA VRS was not included in the above two studies, although MTA is a char-
acteristic neurodegenerative biomarker of AD [5]. Pekkala et al. also created a model by
combining the APOE genotype, cognitive status, and MTA [43]. However, their study ana-
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lyzed a small number of subjects at 48 and recruited not only aMCI but also non-amnestic
MCI (naMCI) subjects. The sensitivity and specificity of the model were not as high as the
one in the present study. Hence, the comprehensive predictive scale in our study, consisting
of integers, may be more useful and convenient for identifying Aβ positive aMCI patients
with a higher statistical power than previous studies.

Secondly, this new scale can predict amyloid PET positivity with high specificity in
aMCI patients. In the present study, the specificity was high at 86.7% for the optimal cutoff
value of the scale. This study was not intended to screen aMCI patients but to develop a
scale for predicting Aβ positivity among those diagnosed as aMCI. It will be helpful not
only for implementing clinical care but also in the research field. Studies on AD treatment
drugs have not been successful, probably due to the difficulty recruiting Aβ+ aMCI patients.
The proportion of Aβ+ patients among MCI patients is known to be only 40–60% [44,45];
the present study also had 47.6% amyloid PET-positive subjects in the entire study group.
This predictive scale with high specificity may be helpful in precisely selecting patients
with Aβ+ aMCI for future clinical studies.

Third, all subjects underwent amyloid PET scans in this study. There have been
several observational longitudinal studies on conversion from MCI to AD dementia, but
the subjects were diagnosed clinically with probable AD dementia [10,46–48]. The present
study differs from other studies since all participants were pathologically checked for Aβ
load in the brain by PET. Fourth, since this study was based on multi-centers, the results
are high generalizable.

Moreover, the results of this study suggest that all predictors in the scale influenced Aβ
accumulation independently of each other. Therefore, it is worth looking into each predictor
in this study, which is consistent with the results of previous studies. Above all, the APOE
ε4 allele was found to be an essential factor for the development of Aβ positivity, in line
with the results of previous studies [27,49,50]. The APOE genotype variable showed the
highest aOR in univariate and multivariate analyses (Tables 3 and 4). The APOE genotype
also had the highest regression β coefficient generated from model 4. It had twice the
points compared to other variables in the predictive scale (Table 5), suggesting that the
APOE ε4 allele is the most influential predictor of Aβ positivity.

In this study, memory domain impairment in neuropsychological tests was also
found to be related to Aβ positivity, concurrent with previous studies [11,20,51]. SVLT-DR
and RCFT-DR z-scores showed significant associations with amyloid PET positivity in
univariate analysis (Table 3), suggesting that verbal and visual memory impairment were
associated with amyloid PET positivity in patients with aMCI. Impairment of both verbal
and visual memory modalities was also significantly more predictive of Aβ positivity
than an impairment of either modality among the patients with aMCI, consistent with the
results of previous studies [41,47,52–55]. Thus, verbal and visual memory scores, especially
combined visual and verbal impaired features, can be considered major predictors of
Aβ positivity.

Lastly, MTA acted as a useful predictor in this study. MTA can be found not only in
normal aging [56], but also in other neurodegenerative diseases such as frontotemporal
dementia, hippocampal sclerosis, Lewy body-related pathology, and tau protein aggrega-
tion, including argyrophilic grain disease [57–59]. There has been a controversy regarding
whether the MTA can predict AD. Ten Kate et al. reported that MTA measured by quan-
titative MRI had a limited added value in detecting Aβ pathology in MCI groups [15].
However, as their study included aMCI and naMCI subjects, the result could be different
from those of other studies. In contrast, the present study showed that MTA was signifi-
cantly associated with Aβ+ aMCI (Tables 3 and 4). Although another study suggested no
significant difference in hippocampal volume atrophy between Alzheimer’s disease and
behavioral variant frontotemporal dementia [59], our results showed that MTA could be
an essential predictor of Aβ positivity in aMCI patients, if the clinical phenotypes such
as age, memory impairment, and the presence of APOE ε4 allele were combined for pre-
diction. Our results suggest that MTA as a neuronal injury biomarker of AD [5] can help
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to recognize amyloid PET positivity in aMCI subjects, consistent with those of previous
studies [23,60,61].

This study used a visual scale rather than quantitative analysis regarding MTA mea-
surement. VRS is known to be as accurate as quantitative analysis, and the intra-rater
reliability is high [24,43,62,63]. In addition, the aVRS proposed by Kim et al. was applied
because it has higher intra-rater reliability than coronal VRS and axial MR images are easier
to obtain in clinical settings [30]. Thus, the VRS based on axial MR images was used in this
study as it is readily applicable in clinical practice.

Our study has the following limitations. First, when this predictive scale was validated,
the specificity was not very high at 62.5%. It may be because the positive rate of amyloid
PET in the validation cohort was 34.7%, which is less than the commonly known 40–60%
among aMCI patients [44,45]. Nevertheless, the AUC was high at 0.835, indicating the high
predictive ability of this scale. Second, since this scale used the SNSB variable, it applies
only when SNSB is performed. Further research is required to assess if this scale can be
applied by using the z-score of other neuropsychological tests’ verbal and visual memory
tests. Third, subjects underwent MRI and PET scans with different equipment, reducing
the consistency of results. The MTA aVRS value could have been measured differently,
depending on whether it was 1.5-T MRI or 3.0-T MRI. Nevertheless, the fact that the six
centers used a variety of machines may be helpful to further generalize the results of this
study. Fourth, amyloid positive and negative results of [18F] FBB PET were evaluated by
visual interpretation, not by standardized uptake value-based quantification. However,
the diagnostic accuracy of BAPL and SUVR in [18F] FBB PET was relatively consistent in
previous studies [64,65]. A nuclear medicine specialist evaluated all [18F] FBB PET images
at each center. For these reasons, the accuracy of [18F] FBB PET results was expected to be
high. Furthermore, our additional analysis showed that the BAPL score was correlated with
the scores of the new predictive scale (Pearson’s correlation analysis: r = 0.678, p < 0.001).
Further study of the associations between the BAPL score and the scale score can be
investigated. Finally, although memory impairment in MCI is the most distinguishing
feature of Aβ positivity [20,66], Aβ positivity in aMCI patients is not necessarily associated
with AD. The presence of Aβ positivity reflects only Alzheimer’s pathologic change, and
the possibility of other comorbidities such as cerebrovascular disease, frontotemporal lobar
degeneration, or α-synucleinopathies cannot be excluded [67].

Despite these limitations, the advantages of this study are as follows: (1) both aMCI,
MTA aVRS, and APOE genotype were revealed as the critical predictors of Aβ positivity in
subjects with aMCI, and (2) the new predictive scale comprising these factors can be easily
applied in clinical practice.

5. Conclusions

This study shows that verbal and visual memory impairment, MTA, and the APOE
ε4 allele are associated with Aβ load in the brain of aMCI patients. Integration of these
predictors was used to develop a new predictive scale of integers to detect Aβ positivity in
aMCI patients with a cutoff score of ≥3. The scale can be used conveniently to predict AD
and prognosis of aMCI patients in clinical practice.
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