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Abstract— Leveraging continuous glucose monitoring
(CGM) systems, real-time blood glucose (BG) forecasting
is essential for proactive interventions, playing a crucial
role in enhancing the management of type 1 diabetes (T1D)
and type 2 diabetes (T2D). However, developing a model
generalized to a population and subsequently embedding
it within a microchip of a wearable device presents sig-
nificant technical challenges. Furthermore, the domain of
BG prediction in T2D remains under-explored in the lit-
erature. In light of this, we propose a population-specific
BG prediction model, leveraging the capabilities of the
temporal fusion Transformer (TFT) to adjust predictions
based on personal demographic data. Then the trained
model is embedded within a system-on-chip, integral to
our low-power and low-cost customized wearable device.
This device seamlessly communicates with CGM systems
through Bluetooth and provides timely BG predictions
using edge computing. When evaluated on two publicly
available clinical datasets with a total of 124 participants
with T1D or T2D, the embedded TFT model consistently
demonstrated superior performance, achieving the lowest
prediction errors when compared with a range of machine
learning baseline methods. Executing the TFT model on
our wearable device requires minimal memory and power
consumption, enabling continuous decision support for
more than 51 days on a single Li-Poly battery charge.
These findings demonstrate the significant potential of the
proposed TFT model and wearable device in enhancing
the quality of life for people with diabetes and effectively
addressing real-world challenges.

Index Terms— Artificial intelligence, deep learning, di-
abetes, edge computing, glucose prediction, low power
wearable device, Transformer.
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ACCORDING to the International Diabetes Federation, the
estimated global prevalence of diabetes has surpassed

half a billion [1]. Type 1 diabetes (T1D), accounting for
around 10% of all cases, is an autoimmune condition wherein
the immune system erroneously targets and annihilates the
pancreatic β-cells [2]. People with T1D are dependent on
exogenous insulin and necessitate consistent blood glucose
(BG) monitoring and daily management [3]. Type 2 diabetes
(T2D), representing over 90% of all cases, primarily arises due
to a combination of deteriorating insulin secretion and insulin
resistance, or either condition in isolation [4].

To enhance the tracking of BG trends and gain insights into
glucose variability, real-time continuous glucose monitoring
(CGM) systems have been introduced in recent years, and the
technology has been swiftly evolving. These systems have
been demonstrated significantly improved glycemic control
in T1D [5]–[7] and T2D care [8], [9]. CGM sensors typi-
cally measure glucose concentration in the interstitial fluid
and subsequently convert these measurements to BG levels
through built-in algorithms. This process inevitably introduces
the time delay between the CGM readings and the actual
BG levels [10], thereby emphasizing the importance of BG
prediction. Accurate prediction of BG levels is pivotal in
both T1D and T2D for initiating timely medical interven-
tions. This proactive strategy holds significant promise for
effectively minimizing the risks associated with hyperglycemia
and hypoglycemia [11]. Hence, it has the potential to mitigate
the severity and incidence of diabetes-related complications,
such as cardiovascular disease, kidney disease, retinopathy
and diabetic ketoacidosis [12]. These complications not only
damage multiple physiological systems but could also lead to
life-threatening events if left unaddressed.

By continuously providing BG readings at frequent inter-
vals, CGM generates high-resolution time series data that
are valuable for developing machine learning algorithms. In
this context, deep learning algorithms, have emerged as the
state-of-the-art approaches across various tasks in diabetes
care [13], especially in BG prediction [14], [15]. The complex
architectures of deep neural networks are particularly well-
suited for capturing the nonlinear relationships and temporal
dependencies present in raw CGM data while minimizing
the need for extensive feature engineering work [16]. Re-
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Fig. 1: Architecture of the proposed population-specific diabetes management system that integrates real-time CGM
measurements and static metadata, utilizing a temporal fusion Transformer (TFT) for real-time BG predictions. The encoder
of TFT processes the past known and observed features, while the decoder focuses on future known features. The model is
subsequently embedded on a system-on-a-chip (SoC) of a customized printed circuit board (PCB), enabling seamless interaction
with CGM and real-time decision support for a cohort of people with diabetes.

lying on their capacity to maintain internal states for cap-
turing hidden sequential patterns, recurrent neural networks
(RNNs) have been widely employed as many-to-one models
for single-horizon BG prediction. Specifically, long short-term
memory (LSTM) [14], [15], [17] and gated recurrent units
(GRUs) [18]–[20] are frequently utilized, as they address some
of the limitations of vanilla RNNs, such as the vanishing and
exploding gradient problems.

Aiming to further improve predictive performance, recent
efforts have focused on the integration of RNNs with con-
ventional attention mechanisms to harness important state
information [21], [22]. Emerging studies have adopted meta-
learning for personalizing BG prediction models from a pop-
ulation model [22], [23]. Despite this advancement, such
approaches typically necessitate separate models catering to
different subjects or prediction horizons (PHs). The major-
ity of existing research has concentrated on patient-specific
and single-horizon models, predominantly utilizing conven-
tional deep neural networks for T1D management without
consideration for hardware deployment [13]. This leaves a
significant gap when it comes to the actual application in
real-world healthcare systems for broader applications and
for the majority of people with diabetes, i.e., T2D. Our
work diverges from this trend by employing a unified model
that accommodates multiple PHs and both T1D and T2D
subjects, thus streamlining model complexity and facilitating
deployment.

Recently, the spotlight in deep learning has been captured
by Transformers that are fundamentally built on self-attention

mechanisms [24]. The Transformer-based models have served
as the foundational architecture for a range of large language
models, including BERT [25] and GPT [26]. These models
have reached a level of performance comparable to human
expertise in the field of natural language processing [27],
which are regarded as early-stage manifestations of artificial
general intelligence [28]. Given their broad applicability and
proficiency across multiple tasks and domains, particularly in
sequence processing, a variety of Transformer variants focused
on time series forecasting have been proposed in recent
literature [29], such as Informer [30], FEDformer [31], and
Crossformer [32]. In BG prediction, the available data extends
beyond merely time series CGM readings. Additional informa-
tion, such as demographics in the form of static data, is also
accessible, which can offer a more comprehensive approach
to model personalized glucose dynamics. In this scenario,
the temporal fusion Transformer (TFT) offers a specialized
solution for processing multi-modal data by employing gating
mechanisms [33]. This encompasses observed data features,
future known information, and static features, making it highly
applicable for BG prediction that involves diverse data sources.

Pioneering studies have deployed trained deep learning
models on software based computation platforms, such as
smartphones with iOS or Android operating systems [19], [20],
[22], using existing software libraries, such as TensorFlow
Lite. However, Smartphones and smartwatches, given their
multifunctional nature, encounter several challenges. Frequent
software updates can disrupt service continuity and lead to
erroneous medical interpretation [34]. Battery life is another
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critical issue; devices often cannot sustain the demands of real-
time algorithms and continuous Bluetooth connectivity without
frequent recharging [35]. Furthermore, data privacy emerges
as a paramount concern, with the potential for unauthorized
data access deterring users from adopting medical apps [35].
In light of these issues, the need for a dedicated, low-power,
and low-cost wearable wristband in diabetes management
becomes evident. Such a device would alleviate the afore-
mentioned concerns and has precedent in the success of
dedicated handheld devices, which have demonstrated their
efficacy in large-scale clinical trials [36], [37]. Meanwhile, it
is challenging to implement deep learning models in wearable
medical devices with intensive computational resources and
memory constraints [18], [38], [39]. This challenge is further
magnified if the device is designed to host multiple person-
alized models for population-level prediction. Therefore, the
urgent need arises for edge computing-enabled Transformer
models that can operate on systems on a chip (SoCs), since
these models are typically characterized by a large number of
model parameters and complex architectures.

In an effort to tackle these challenges, we propose a
population-specific mutli-horizon BG prediction model based
on the TFT architecture, as shown in Fig. 1. Additionally,
we propose a hardware framework designed for the imple-
mentation of the trained models on SoCs, which enables real-
time communication with CGM systems via Bluetooth and
facilitates predictive decision support tailored for a cohort of
individuals with diabetes through edge computing. The pro-
posed methodology was evaluated on two publicly available
CGM datasets and achieved the best prediction accuracy when
compared against a set of machine learning baseline methods.
The preliminary results focusing on 12 T1D subjects of the
OhioT1DM dataset have been previously published in the
2023 IEEE International Symposium on Circuits and Systems
(ISCAS) [40]. In the present work, we have expanded the
scope to include scenarios involving T2D care and developed
the model on 24 T1D subjects and 100 T2D subjects by
incorporating additional static data features. Moreover, we
have upgraded the wearable device with a new design for a
more compact printed circuit board (PCB). The shift to a Li-
Poly battery from the earlier coin cell battery, coupled with a
vibration motor, has considerably improved its usability and
portability.

II. METHODOLOGY

A. Problem Formulation
Given the current timestep t and the target scalar BG time

series represented as y, the objective of multi-horizon BG
prediction with a specified PH of τ is to forecast the future
BG time series yt:t+τ . To facilitate this prediction, various data
features can be utilized. These include a sequence of historical
BG levels, observed inputs, known inputs, and static features,
such as the age and gender of an individual.

B. Temporal Fusion Transformers in Glucose Prediction
Traditional deep learning models are generally limited to

utilizing historical BG levels and observed inputs through a

multivariate input. To effectively manage multi-modal data,
TFT incorporates two novel modules: gated residual networks
(GRNs) and variable selection networks (VSNs), built upon
a gate mechanism known as gated linear units (GLUs) [41],
as shown in Fig. 2. By leveraging these modules, the TFT
aims to appropriately weigh and integrate the diverse types
of input data. Specifically, the GLU provides the flexibility to
modulate nonlinear contributions by merging a linear feature
transformation with a gated layer that employs a Sigmoid
activation function σ, which is denoted as

GLU(z) = σ(Wgz+ bg)⊙ (Wlz+ bl), (1)

where z is the input data; ⊙ is the element-wise product; W
and b are the weights and biases. By integrating the GLU with
residual connections and layer normalization LN , the GRN is
designed to determine the relationship between primary input
p and optional exogenous inputs e, which is formulated as

GRN(p, e) = LN(p+ GLU(Wga+ bg))), (2)
a = ELU(Wpp+Wee+ ba), (3)

where a represents the activated output, which is obtained
through exponential linear unit (ELU) activation function that
is robust to reduce the impact of outliers or noise in time
series data. It is noted that z, p, e in Equations (1)-(3) can
represent various data types, including temporal input, static
features, or sub-layer outputs, given the extensive application
of GRN and GLU within the TFT model. By integrating
GRNs with a Softmax layer, the VSN is configured to generate
variable selection weights across the feature dimension for
each timestep. These weights are then used to merge the input
features, thereby optimizing the model’s focus on the most
relevant features. Similarly, the covariate encoder in Fig. 2 also
employs GRNs to produce distinct context vectors for different
functional modules within TFT, including VSN, initial states
of LSTM encoder, and the static enrichment layer. The state of
LSTM decoder is initialized by the output of LSTM encoder.

In addition to optimizing at the feature level, TFT also
incorporates a multi-head self-attention (MHSA) layer [24] to
learn long-term dependencies across timesteps while enhanc-
ing temporal interpretability by aggregating the outputs of the
heads, which is formulated as follows:

MHSA(Q,K,V) = [
1

N

N∑
i=1

Hi]WO, (4)

Hi = A(QWQ,KWK ,VWV ), (5)

A(Q̂, K̂, V̂) = Softmax(
Q̂K̂T

√
Dk

)V̂, (6)

where A the self-attention mechanism; Q, K, V stand for
queries, keys, values, respectively, and Q̂, K̂, V̂ are queries,
keys, values combined with head-specific weights, as defined
in Equation (5); Dk denotes the dimension of the keys. Here
Q, K, and V represent the outputs derived from the GRN-
based static enrichment layer, integrating insights from static
as well as temporal features. The output from the i-th head
is symbolized by Hi. In the point-wise feed-forward layer,
GRN is further utilized to extract non-linear patterns from
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Fig. 2: Diagram of the proposed temporal fusion Transformer.
Static demographic data serves as the input for the covariate
encoder. The LSTM encoder handles both observed and past
known features, while the LSTM decoder solely focuses on
future known inputs. Modules with gated mechanisms are
employed to learn non-linear relationships from multi-modal
data. The predictions of future BG levels are simultaneously
generated through a direct approach.

the outputs of MHSA. It is worth noting that GLU and
residual connections are implemented to potentially skip over
LSTM modules, MHSA, and whole Transformer block. Theses
direct paths provide model with the flexibility to bypass these
modules if a less complex model proves more effective.

The TFT model leverages a direct approach to generate
the predicted sequence in a single forward step. This method
predicts all future BG values simultaneously, enhancing com-
putational speed and minimizing the propagation of errors that
typically occur in recursive approaches. In contrast to tradi-
tional BG prediction models, the proposed model leverages a
quantile loss [42] to obtain lower and upper bounds for each
predictive value. This not only provides a richer informational
context but also grants the flexibility to adjust the sensitivity
of predictive warnings and to align the model closely with
real-world preferences. This adaptability was underscored as a
desirable feature requested by individuals with diabetes in one
of our previous clinical focus groups [20]. Given a prediction
vector ŷt:t+τ , the loss function L is given by

L =
1

τ

t+τ∑
i=t

∑
ql∈R

(1− ql)(ŷi − yi)
+ + ql(yi − ŷi)

+, (7)

where ŷi and yi is i-th element in target BG time
series and the prediction vector, respectively; R =
{0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98}, representing the range of
considered quantiles; and ()+ denotes the ramp function.
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Fig. 3: Block diagram of the optimized device powered
by a Li-Poly battery. To further enhance user notification,
a vibration motor can be integrated to provide flexibility
for individuals, including those with hearing impairments. A
power-gating circuit, including a timer and a voltage regulator,
is employed to maintain ultra-low power when the device is
idle.

C. Wearable Device for Edge Computing

To offer more reliable real-time monitoring services that will
not be limited by inconsistent Internet connectivity, as well as
low-latency decision-making for patients, a wearable device
that employs a Bluetooth low energy (BLE) SoC (Nordic
nRF52832) for wireless communication and edge computing
is developed. This device is miniaturized into a dimension of
32 mm x 24 mm x 9 mm, as shown in Fig. 3, where a Li-Poly
battery is attached to the back side of the PCB with a capacity
of 200 mAh to power the device.

Benefiting from the advancement in Li-Poly batteries, the
device now supports different capacities of battery life at
the cost of increasing in volume, such as 2 mm thicker for
another 100 mAh capacity. Given that the nominal voltage of
the Li-Poly battery is 3.7 V, a 3 V low-dropout (LDO) regulator
is used for voltage regulation. As a result, the generated
voltage will be more stable compared to a standalone DC-DC
converter which is used for voltage ramping up when using
the coin battery. In addition, to cater to a broader range of
users, especially those with hearing impairments, we provide
an option to select between a coreless vibration motor haptic
feedback or a buzzer for low-power sound alerts. Various
buzzer modes, vibration patterns, and LED flash modes are
designed to alert users of adverse glycemic events, such as
hypoglycemia and hyperglycemia. These notifications can be
customized according to user preferences. In the end, the
device is packed into a 3D-printed case with strips so that
it can be wearable.

III. EXPERIMENTS
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A. Clinical Datasets

We employed two publicly available CGM datasets:
OhioT1DM [43] and ShanghaiDM [44]. These datasets were
specifically curated to promote data-driven algorithms in di-
abetes research, which encompass diverse populations and
clinical scenarios.

1) OhioT1DM: This dataset was collected over an eight-
week clinical trial period, which contains the data of 12 T1D
individuals. These participants were equipped with Medtronic
Enlite real-time CGM and Medtronic insulin pumps. BG
levels were systematically recorded at five-minute intervals,
alongside the data of insulin dosages from the pumps. Self-
reported events, such as meal content and exercise, were
logged via a custom smartphone app.

2) ShanghaiDM: This is a recently released dataset that
encompasses data of 12 T1D individuals and 100 T2D individ-
uals. These participants were equipped with Abbott FreeStyle
Libre flash CGM, which consistently recorded BG levels every
15 minutes. Dietary information and insulin dosages were also
self-reported by the participants. This clinical trial spanned
14 days. Each participant underwent a physical examination,
responded to a standardized questionnaire, and provided labo-
ratory measurements from medical records, which contributed
to a rich set of clinical characteristics.

B. Experimental Setup

1) Data Preprocessing: In this research, we developed two
population-specific models: one targeting the OhioT1DM co-
hort and the other for ShanghaiDM. The OhioT1DM dataset
provides a training set and a testing set separately for each
participant, spanning approximately six and two weeks of data,
respectively. For each individual in the ShanghaiDM dataset,
we performed a 80/20 data split, where the initial 80% of data
was used for a training set and the latter 20% for a testing set.
For both OhioT1DM and ShanghaiDM datasets, the final 25%
of each training set was employed as a validation set. This two-
step data split is widely used in the existing work on machine
learning-based BG prediction [19]–[22].

By aggregating individual data sets, we generated com-
prehensive population-level training, validation, and testing
sets for both two datasets. CGM measurements occasionally
present missing values, especially in the OhioT1DM dataset,
which arise from factors such as sensor calibrations and
occurrence of artifacts. To fill these gaps without drawing on
future information, we adopted a linear extrapolation approach
and ensured the values adhere to the sensor’s functional range
of 40-400 mg/dL. The timestamp spanning 24 hours was
normalized to the range [0,1], and standard normalization is
applied to all the other data features.

2) Model Development: Through the use of a look-back
sliding window, we merge observed features from the last
120 minutes, known features, and static demographic data,
with the objective of forecasting the subsequent 60-minute BG
levels. This is a standard PH in existing literature that aids
in proactive interventions [13]. Consequently, we generated
mini-batches that encompass both the model’s input data and
the corresponding target values. Once the data is fed into the
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Fig. 4: Feature importance scores derived from the variable
selection weights of the VSN in the LSTM encoder [40].
Features represented by green bars were selected for inclusion
in the final TFT model.

TFT model, the parameters are automatically updated through
back-propagation, utilizing the Adam optimizer to minimize
the quantile loss. To mitigate overfitting, we implement an
early stopping mechanism, setting a patience level of 20 across
200 training epochs.

On the OhioT1DM dataset, we first trained a TFT model
with all the available exogenous features. Subsequently, we
undertook feature selection based on variable selection weights
within the encoder’s VSN, which acted as a post-hoc interpre-
tation technique. As depicted in Fig. 4, CGM and timestamp
contribute to 93.9% of the overall selection weights. Given
their significance, we opted to retain only these two features
and proceeded with retraining the model on the OhioT1DM
dataset. One notable benefit of exclusively utilizing CGM
and timestamp is the feasibility of implementing the model
on SoCs, such as the BLE SoC within CGM transmitters
or other wearable devices, eliminating the need for manual
input. In light of this advantage, we persisted with this setup
while training the TFT model on the ShanghaiDM dataset.
Hence, in the present study, the observed input data consisted
of CGM readings, while the known input data were the
timestamps. However, the static demographic features varied
between the two datasets based on their availability. For the
OhioT1DM model, gender and age were considered, while
the ShanghaiDM model extended to gender, age, body mass
index, and specific diabetes types. The hyperparameters of
each model were fine-tuned using the corresponding validation
set and the HyperBand tuner [45].

3) Model Implementation: The TFT architecture was ini-
tially developed in Python and then translated into C models.
These C models leverage the CMSIS-DSP library that pro-
vides high-performance APIs for mathematical functions. The
firmware development was carried out using the nRF5 SDK
v17.0.2. Parameters from the PyTorch model were allocated in
the SoC’s FLASH memory, formatted as 32-bit floats, ensuring
the fidelity of model inference [18] and achieving a negligible
difference of less than 10−3 mg/dL between the Python and C
models on both datasets. These efforts finally resulted in the
embedded population-specific TFT (EPS-TFT). We assessed
the BG prediction performance of EPS-TFT by feeding CGM
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readings into the SoC and retrieving predictions through a
universal asynchronous receiver-transmitter. This was intended
to emulate the practical application of the proposed wearable
device. When evaluating the power efficiency and the system
behaviour, a CGM emulator was employed to transmit real-
time CGM measurements to the wearable device through
Bluetooth.

4) Baseline Methods: To rigorously evaluate prediction per-
formance, we benchmarked EPS-TFT against with a range
of established machine learning baseline methods. In partic-
ular, we incorporated conventional machine learnig models,
including support vector regression (SVR) [46], XGBoost [47],
and linear regression (LR) [48]. We also integrated advanced
deep learning models: LSTM [14], N-BEATS [49], and N-
HiTS [50]. Utilizing blocks of fully connected layers, N-
BEATS has demonstrated proficiency in handling various time-
series prediction tasks. Augmenting this approach, N-HiTS
introduces hierarchical interpolation and elements of multi-rate
sampling to further enhance forecasting accuracy [50]. In our
experimental setup, LSTM, DRNN, N-BEATS, and N-HiTS
were reconfigured to serve as multi-horizon predictors. SVR,
XGBoost, and LR require two separate models trained for
single-horizon prediction to address the 30 and 60-minute PHs.
All the deep neural network models were crafted using Python
3.9 and PyTorch 1.11. The training process was accelerated
using an NVIDIA GTX 1080 Ti.

5) Evaluation Metrics: The standard statistical metrics in
glucose prediction are root mean square error (RMSE) and
mean absolute error (MAE) [13], which are defined in Equa-
tion (8) and (9), respectively. However, given the variability
in BG levels across a diverse population, it becomes essential
to consider metrics that can account for individual scales.
To this end, we introduced the mean absolute percentage
error (MAPE), as defined in Equation (10), a percentage-
based metric that offers insights into relative prediction errors.
Further delving into the clinical implications of prediction er-
rors, we adopted the glucose-specific RMSE (gRMSE) [51], as
shown in Equation (11). Based on Clark error [52], this metric
implements penalties on predictions that could potentially lead
to harmful clinical events, thereby emphasizing the clinical
significance of prediction accuracy.

RMSE =

√√√√ 1

T

T∑
t=1

(ŷi
(t) − y

(t)
i )2, (8)

MAE =
1

T

T∑
t=1

|ŷi(t) − y
(t)
i |, (9)

MAPE =
100%

T

T∑
t=1

| (ŷi
(t) − y

(t)
i )

y
(t)
i

|, (10)

gRMSE =

√√√√ 1

T

T∑
t=1

P (ŷi
(t), y

(t)
i )(ŷi

(t) − y
(t)
i )2, (11)

where T stands for the total number of entries in BG time
series, and i represents i-th position in the predicted and
ground truth values, consistent with the PH.

TABLE I: Performance of the prediction methods evaluated on
the OhioT1DM dataset

Method RMSE (mg/dL) MAE (mg/dL) MAPE (%) gRMSE (mg/dL)
PH = 30 minutes

EPS-TFT 19.1± 2.5 13.1± 1.6 8.5± 1.6 23.3± 3.1
N-HiTS 19.6± 2.3 13.9± 1.6 9.5± 1.7 24.5± 2.8

N-BEATS 19.4± 2.3 13.4± 1.6 8.9± 1.6 23.8± 2.7
LSTM 20.2± 2.6 14.3± 1.7 9.7± 1.7 24.6± 3.3

XGBoost 22.1± 2.9 15.7± 1.9 10.6± 2.0 28.2± 3.9
SVR 23.5± 4.7 16.1± 2.3 10.6± 2.0 29.9± 6.7
LR 22.2± 2.8 15.9± 2.0 10.9± 2.1 27.7± 3.7

PH = 60 minutes
EPS-TFT 32.3± 3.8 23.2± 2.8 15.5± 2.8 40.1± 4.9
N-HiTS 33.0± 3.7 24.5± 2.9 17.3± 3.1 42.5± 4.6

N-BEATS 33.8± 3.9 24.4± 3.0 16.3± 3.0 43.0± 4.9
LSTM 34.4± 4.2 25.4± 3.1 17.6± 3.3 42.7± 5.4

XGBoost 35.6± 4.7 26.4± 3.4 18.1± 3.7 46.6± 6.6
SVR 37.0± 5.6 27.0± 3.9 18.0± 3.7 48.5± 8.0
LR 36.0± 4.6 27.0± 3.7 18.7± 3.9 46.5± 6.6

C. Performance

1) BG Prediction: The results (Mean±STD) of BG predic-
tion for the OhioT1DM dataset and the ShanghaiDM dataset
are detailed in Table I and II. Notably, EPS-TFT outperformed
all the considered baseline methods, registering the lowest
RMSE, MAE, MAPE, and gRMSE across both 30 and 60-
minute PHs for the two datasets. Such performance not only
highlights the model’s superior accuracy but also its promising
clinical relevance. In addition, the multi-horizon N-BEATS,
N-HiTS, and LSTM models demonstrated significant improve-
ments over traditional single-horizon XGBoost, SVR, and LR
models. Appendix A provides a detailed ablation study that
invesigates the influence of TFT’s submodules on the overall
prediction accuracy, offering insights into the contributions of
each component.

In Fig. 5, we present two-day glucose trajectories for
three indviduals from the two datasets, comparing actual BG
levels with the 60-minute EPS-TFT predictions. The dotted
blue and green lines stand for the upper and lower bounds,
sourced from the 25th and 75th percentiles of the quantile
forecasts. The large variability in glucose patterns among
the three selected participants is notable. Specifically, the
T1D subject from the OhioT1DM dataset experienced both
hyperglycemia and hypoglycemia, accompanied by significant
fluctuations and missing CGM data. On the other hand, the
T1D individual from the ShanghaiDM dataset encountered
solely hypoglycemia, whereas the T2D subject was predom-
inantly affected by hyperglycemia. In each of these cases,
the predictions exhibit a close alignment with the actual
CGM readings and the majority of adverse glycemic events
were successfully predicted by EPS-TFT. The quantile-based
upper and lower bounds played a crucial role in identifying
severe hypoglycemia and hyperglycemia events that the point
predictions overlooked. Such consistent performance across
diverse real-world clinical scenarios underscores the robust
generalization capabilities of the proposed model.

2) Memory Footprint: The final model is implemented and
deployed onto the target BLE SoC. It occupies a total of
282.4 KB in Flash space and requires 14.7 KB of RAM
memory for computation as indicated in Table III. To optimize
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TABLE II: Performance of the prediction methods evaluated
on the ShanghaiDM dataset for T1D and T2D subjects

Method RMSE (mg/dL) MAE (mg/dL) MAPE (%) gRMSE (mg/dL)
PH = 30 minutes

EPS-TFT 12.7± 3.8 8.8± 2.8 6.7± 2.3 14.8± 4.9
N-HiTS 13.4± 4.1 9.3± 3.1 7.1± 2.3 15.6± 5.3

N-BEATS 12.9± 4.0 9.0± 3.0 6.9± 2.2 15.1± 5.2
LSTM 13.1± 3.7 9.2± 2.7 7.1± 2.2 15.4± 5.0

XGBoost 17.2± 7.0 13.1± 6.2 11.5± 8.3 20.8± 9.3
SVR 18.3± 9.4 13.8± 8.3 11.9± 10.3 22.2± 12.5
LR 17.7± 14.3 12.4± 5.6 9.5± 4.5 20.3± 17.4

PH = 60 minutes
EPS-TFT 21.7± 6.9 15.1± 5.1 11.2± 4.1 26.2± 9.5
N-HiTS 22.5± 7.0 15.7± 5.3 11.8± 3.9 27.2± 9.5

N-BEATS 22.1± 7.0 15.4± 5.2 11.6± 3.7 26.9± 9.6
LSTM 22.5± 6.8 15.9± 5.0 12.0± 3.9 27.4± 9.4

XGBoost 27.1± 10.8 21.0± 9.9 18.0± 11.7 32.6± 13.6
SVR 26.3± 10.7 20.1± 9.6 16.9± 11.5 32.4± 14.4
LR 28.8± 16.4 21.0± 10.6 16.7± 7.6 34.1± 19.8

TABLE III: Details of Flash and SRAM Memory Footprint

Module Input Flash (B) SRAM (B) Time (ms)
Input Layer (2, 36) 0 288 N/A

Encoder VSN (2, 24) 11,448 14,976 142.8
Decoder VSN (1, 12) 5,592 6,384 34.5

LSTM (36, 48) 169,728 14,408 1520.6
Attention (36, 48) 24,576 13,824 273.6

Feed-Forward (12, 48) 76,416 9,600 419.2
Dense (12, 48) 1,380 2,640 7.4

Output Layer (12, 7) 0 336 N/A

computational efficiency, we precomputed the outputs of the
covariate encoder, specifically the context vectors, and stored
them in the memory. This approach eliminates the need to
recompute these vectors from demographic data during each
iteration. Hence, covariate encoder is not shown in Table III.
In this case, the computation of the model takes about 2.4
seconds in total.

The encoder VSN takes the 24 most recent CGM readouts
with timestamps as the input, while the decoder VSN handles
the subsequent 12 timestamps. To accommodate the output
generated by both the encoder and decoder layers as input for
the LSTM layer, and ensure sufficient room for all iterative
results, it is essential to allocate 13.5 KB of RAM space. This
allocation constitutes the predominant portion of RAM utiliza-
tion and is strongly advised to be pre-allocated statistically to
enhance system stability.

3) Power Analysis: To measure the energy consumption of
the wearable device, a source meter Keithley 2606A is used
to supply the voltage and monitor the power in real time.
Fig. 6 presents the measurement result, where a complete
run cycle typically involves system startup (power gating),
BLE scanning and connection, CGM readout, external Flash
memory access, edge computation of the prediction model,
user notification, and device shutdown (power gating). Such a
single operation usually lasts for 15 seconds, depending on the
user’s response time, achieving an average power that is less
than 2 mW throughout the whole operation process. Thanks
to the implementation of a power-gating circuit, the power
consumption during idle periods is reduced to approximately
0.128 uW. It is noticeable that the most energy-intensive aspect
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Fig. 5: Two-day visualization of the results for three individ-
uals across two datasets. The black solid line depicts actual
CGM measurements, while the red line represents 60-minute
EPS-TFT predictions on the wearable device. The sky-blue
shaded region illustrates the interquantile range between the
lower and upper quantile bounds. Background zones in light
blue, green, and red stand for hyperglycemia, euglycemia, and
hypoglycemia, respectively.

of the process is the computation of the prediction model.
During this phase, the BLE SoC accesses extensive weight
data stored in its Flash memory and engages the on-chip
digital signal processors for massive floating-point arithmetic
operations, resulting in peak power consumption reaching
approximately 2.7 mW.

The Li-Poly battery boasts a capacity of 200 mAh, providing
the device with the capability to sustain continuous operation
for a minimum of 88,000 cycles with the buzzer. When lever-
aging the motor to produce vibrations for user notification,
it can still achieve 5,000 operation cycles. These projections
are based on the worst-case scenario where notification events
occur persistently, and each operation lasts for an average of
15 seconds. For individuals with T1D or T2D, they typically
spend approximately 30% of their time in hypoglycemia or
hyperglycemia range [53]. During these periods, they would
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Fig. 6: The entire process encompasses several stages, includ-
ing BLE scanning, sensor connection, data readout, external
memory access, model computation, and user notification.
Among these stages, edge computing primarily accounts for
the energy consumption when using the buzzer for sound
generation. In contrast, the utilization of the vibration motor
results in a higher power consumption, peaking at 117 mW, but
is typically required only for specific scenarios. On average,
when the device employs a buzzer for user notification, its
power consumption remains below 2 mW.

receive vibration notifications. In light of this, when paired
with a CGM sensor with a five-minute resolution, our wearable
device is capable of offering uninterrupted decision support for
a span of 51 days with the vibration motor and up to 305 days
when using the buzzer. For a CGM sensor with a 15-minute
sampling rate, these durations increase to 153 days and 915
days, respectively.

IV. DISCUSSION

In this study, we propose EPS-TFT, a population-specific
multi-horizon BG prediction model based on TFT and edge
computing. When evaluated on two publicly available clinical
datasets encompassing both T1D and T2D individuals, the
proposed model demonstrated superior performance. Subse-
quently, we embedded the trained model into a SoC within a
low-power and low-cost wearable device, enabling real-time
communication with CGMs and delivering decision support
to a cohort of patients. The computational requirements for
running the model on the edge are modest, necessitating
only 14.7 KB of RAM space and 282.4KB of Flash space.
Moreover, a single cycle of decision support consumes less
than 2 mW of power on average, underscoring the efficiency
of the system. In our prior study [18], we emphasized a
patient-specific and single-horizon model utilizing GRUs, with
the wearable device being powered by a coin cell battery.
Based on feedback from T1D users, in the present study,
we significantly downsized the device by introducing a new
PCB layout powered by a Li-Poly battery. This compact form
factor allows users to conveniently carry the device. The
inclusion of a new vibration module proves advantageous for

individuals with hearing impairments. Furthermore, the shift
to a rechargeable Li-Poly battery also promotes environmental
sustainability.

However, the distinctive nature of our approach, which
combines population-specific and multi-horizon settings, poses
challenges when attempting to draw direct comparisons with
results presented in traditional personalized BG prediction.
While population-specific and multi-horizon settings introduce
additional complexities in model development, they were ef-
fectively addressed by leveraging the Transformer architecture
and incorporating the gate mechanism to ensure model adapt-
ability on demographic data. The practical implications of this
model are profound, especially in real-world clinical scenarios.
For example, the wearable we proposed can actively monitor
and predict BG levels for a cohort of patients within a hospital
setting. This application has gained significant traction, espe-
cially in the context of CGM utilization with inpatient settings,
since the onset of the COVID-19 pandemic [54], [55].

Meanwhile, an observation from Fig. 4 is the limited feature
importance of exogenous events on the prediction. This can
possibly be attributed to the inherent inter-individual variabil-
ity in these daily events when considered at the population
level. Given the diverse patterns of meal consumption, insulin
intake, and exercise routines among individuals, the consis-
tency and reliability of these features could be compromised.
The absence of these features offers several advantages. Firstly,
it facilitates automatic closed-loop control without the need for
manual input, streamlining the process and reducing poten-
tial human errors. Secondly, it optimizes the computational
resources of the SoC, ensuring efficient performance and
potentially extending the device’s battery life.

In Table I and II, the RMSE differences between EPS-TFT
and N-BEATS, the next best method, are minor for the 30-
minute PH. To assess the significance of these differences, we
performed paired t-tests, preceded by Shapiro-Wilk tests to
confirm data normality. The results, indicating p < 0.05 for
both datasets and PHs, confirm that these improvements are
statistically significant. While the RMSE enhancement may
seem modest in some clinical scenarios, it is crucial for bolus
and basal insulin delivery systems, such as precision dosing
and artificial pancreases. Such improvements can impact real-
time insulin dosing decisions, thereby influencing overall
insulin administration and enhancing glycemic control. While
deep learning models significantly outperformed conventional
machine learning in reducing RMSE, simpler methods such
as linear regression, when used in conjunction with smart-
phone apps [48], are advantageous in specific scenarios. These
include situations where real-time decision-making is less
important, for users preferring an easy-to-use interface, and in
environments where data privacy concerns limit the training
of more complex algorithms.

A limitation of this study is its restricted capacity to make
cross-population predictions - that is, training the model on
one population and evaluating it on another. This is mainly due
to the significant variability between populations, as illustrated
in Fig. 5, and the differences in the datasets, such as the CGM
resolutions (5 minutes vs 15 minutes). Despite this limitation,
we have taken initial steps to assess the model general-
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ization by conducting a five-fold cross-individual validation
on the ShanghaiDM dataset, with stratification according to
diabetes types. The model’s performance on five distinct,
previously unseen cohorts resulted in a mean RMSE of 14.7
and 23.5 mg/dL for 30 and 60-minute PHs, respectively. To
further explore and improve upon cross-individual and cross-
population prediction, our future work will incorporate domain
generalization strategies, such as meta-learning [22], which
are designed to mitigate domain shifts and enhance predictive
accuracy across diverse training and evaluation datasets. While
the present model was deployed on an external wristband,
we intentionally selected a SoC analogous to those found
in the majority of commercial CGM transmitters. Our future
work involves a collaboration with hardware manufacturers
to integrate the model directly into the CGM systems or
insulin pumps, thereby offering on-device decision support.
The decision support efficacy of our model and wearable
device has been initially validated through a hardware-in-
the-loop in silico trial, as detailed in Appendix B. To more
comprehensively establish clinical utility and effectiveness,
we are preparing to conduct real-world clinical trials, gather
expert reviews, perform user studies, and apply decision
matrix analysis. In managing potential missing CGM data,
our wristband will incorporate a dual-step protocol. Initially, a
real-time algorithm will monitor for CGM readings, triggering
sound alerts if they are not received within a specified interval.
Meanwhile, a retrospective algorithm will scan the historical
data to assess sequences with partial data loss. For gaps of
less than one hour, linear extrapolation will be utilized for
imputation. For longer absences, the wristband will suspend
predictions and issue both haptic and sound signals to alert
the user, ensuring consistent CGM connection and prompt
response to data discrepancies.

V. CONCLUSION

In this work, we propose EPS-TFT, a deep learning model
to provide population-specific BG prediction for a diverse
cohort of individuals living with diabetes. The model was
developed and evaluated on multifaceted clinical datasets, en-
compassing both T1D and T2D subjects. When compared with
five machine learning baseline methods, EPS-TFT achieved
smallest RMSE, MAE, MAPE, and gRMSE for both 30
and 60-minute PHs, which stands as a promising tool in
the accurate prediction of adverse glycemic events. When
deploying EPS-TFT on our customized wearable device using
edge computing, it consumes a mere 14.7 KB of RAM and
2 mW of power. This efficient setup allows for continuous
decision support spanning from 51 days to 915 days on a
single charge of the Li-Poly battery.

This research pioneers a population-level approach to BG
prediction and has established a robust framework for the ac-
tual implementation of these models in digital health systems
for real-world diabetes management.

APPENDIX
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Fig. 7: Outcomes of the ablation study that excludes key
submodules of the TFT model.

A. Ablation Study

In our ablation study, we evaluated the impact of excluding
key submodules of the TFT model, including the covari-
ate encoder and LSTM decoder. Fig. 7 presents the RMSE
distribution for the ShanghaiDM dataset and illustrates the
influence of the covariate encoder on a T1D individual’s
predictions. Notably, removing the covariate encoder results
in degraded accuracy, particularly in critical scenarios such as
hypoglycemia and hyperglycemia, highlighting its importance
in our model’s overall performance.

B. In Silico Trial

To assess the decision support capabilities of our wearable
device, we executed a 3-month hardware-in-the-loop in silico
trial, employing the UVA/Padova T1D simulator [56]. This
trial incorporated 10 virtual adult subjects to account for intra-
and inter-subject variability [57]. The simulator communicated
CGM readings to the wearable, which then transmitted 60-
minute BG predictions in a USB mode. Utilizing the predic-
tive low-glucose management (PLGM) algorithms, the insulin
pump suspended basal insulin delivery when predicted values
were equal to or dropped below the hypoglycemia threshold
of 70 mg/dL. Notably, when compared with open-loop sys-
tems, the decision support with the wearable device led to
a significant reduction in the time spent below the glucose
range (BG<70 mg/dL), decreasing from 5.3% to 1.9%, and a
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Fig. 8: Control-variability grid analysis to evaluate glucose
regulation effectiveness, where each dot represents the daily
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modest improvement in the time within the target range (70-
180 mg/dL), increasing from 74.6% to 75.2%. Fig. 8 illustrates
the control-variability grid analysis results for a virtual adult.
The comparative analysis suggested that the PLGM regimen
resulted in a higher proportion of dots within the desirable
A+B zone, increasing from 71% to 80%, and a 9% reduction
in the D+E zone, indicating enhanced glucose control.
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