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ABSTRACT: 

 

Air pollution is a major environmental issue in urban areas, and accurate forecasting of particles 10 µm or smaller (PM10) level is 

essential for smart public health policies and environmental management in Tehran, Iran. In this study, we evaluated the performance 

and uncertainty of long short-term memory (LSTM) model, along with two spatial interpolation methods including ordinary kriging 

(OK) and inverse distance weighting (IDW) for mapping the forecasted daily air pollution in Tehran. We used root mean square error 

(RMSE) and mean square error (MSE) to evaluate the prediction power of the LSTM model. In addition, prediction intervals (PIs), 

and Mean and standard deviation (STD) were employed to assess the uncertainty of the process. For this research, the air pollution 

data in 19 Tehran air pollution monitoring stations and temperature, humidity, wind speed and direction as influential factors were 

taken into account. The results showed that the OK had better RMSE and STD in the test (32.48 ± 9.8 µg/m³) and predicted data (56.6 

± 13.3  µg/m³) compared with those of the IDW in the test (47.7 ± 22.43 µg/m³) and predicted set (62.18 ± 26.1 µg/m³). However, in 

PIs, IDW ([0, 0.7] µg/m³) compared with the OK ([0, 0.5] µg/m³) had better performance. The LSTM model achieved in the predicted 

values an RMSE of 8.6 µg/m³ and a standard deviation of 9.8 µg/m³ and PIs between [2.7 ± 4.8, 14.9 ± 15] µg/m³. 

 

 

1. INTRODUCTION 

Since the beginning of the 20th century, people have faced new 

problems and one of the most common health and environmental 

problems in developing and in some of the developed countries 

is the air pollution. Tehran, the capital of Iran, is one of the air-

polluted cities in the world. Tehran is a large and rapidly growing 

metropolis (Statistical Center of Iran, 2021). In 2022, Tehran had 

just three days of clean air and had only 63 days of clean air 

during the last 3 years. The average annual concentration of 

particulate materials in the formation of fine particles 10 µm or 

smaller (PM10) in Tehran has frequently exceeded the national 

and international air quality recommended limits (Tehran 

Municipality, 2023; Iran Ministry of Health, 2023). High levels 

of air pollution have posed a serious threat to public health. 

World Health Organization (WHO) data show that a significant 

rate of the global population breathes air that exceeds WHO 

guideline limits and contains high levels of pollutants, with low- 

and middle-income countries suffering from the highest 

exposures (WHO, 2023). 

PM10 which is also called particle pollution, is a mixture of solid 

particles and liquid droplets found in the air. The source of 

particulate matter can vary, some particles are emitted directly 

from a source, such as construction sites, unpaved roads, fields, 

smokestacks or fires and most form in the atmosphere as a result 

of complex reactions of chemicals such as sulphur dioxide and 
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nitrogen oxides, which are pollutants emitted from power plants, 

industries and automobiles (EPA, 2023). Particulate matters are 

an especially important source of health risks, as these very small 

particles that can penetrate deep into the lungs, enter the 

bloodstream, and travel to organs causing systemic damages to 

tissues and cells (WHO, 2023). In addition, the effect of 

particulate matter (PM10) on human health has been well-

documented as one of the most harmful air pollutants with long-

term exposure, as they can cause pneumoconiosis, respiratory 

disease, cardiovascular disease, gestational diabetes mellitus and 

cause higher numbers of lung cancer (Ferreira et al., 2022; Prinz 

et al., 2022; Sun et al., 2022; So et al., 2022; Hvidtfeldt et al., 

2021). 

One way for protecting public health is to adopt smart 

environmental management policies through accurate monitoring 

and forecasting PM level. There are different types of air 

pollution monitoring, one of them is ‘ambient air monitoring’. 

Ambient air monitoring typically uses fixed-location ground-

based monitoring stations as geo-sensor networks (GSN). These 

stations use particulate monitor sensors which can continuously 

monitor PM at specific time intervals (EEA, 2020; Clements et 

al., 2022). Forecasting models are often classified into two 

categories including statistical and numerical models. Numerical 

models consider meteorological principles and mathematical 

methods which are based on atmospheric physical and chemical 

processes to simulate the air quality in vertical and horizontal 
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dimensions at a large scale (An et al., 2001). Statistical air quality 

prediction models are data-driven models which do not use 

explicitly atmospheric processes (Yan et al., 2021). Researchers 

have frequently employed air pollution forecasting based on 

monitoring acquired data as time series (Andrii, 2022). 

Recently, deep learning models have been applied to time series 

to forecast future air pollution levels. The results have confirmed 

reliable performance of air pollution forecasting in this type of 

data (Espinosa, 2022; Yan et al., 2021). Long Short-Term 

Memory (LSTM) model is one of the deep learning methods that 

has been regularly used. Some studies showed that this method is 

superior to traditional machine learning algorithms including 

support vector regression (SVR), gradient boosted tree regression 

(GBTR) and other traditional statistical models such as ARIMA 

(Autoregressive integrated moving average) (Yan et al., 2021; 

Hvidtfeldt et al., 2021; Jiang et al., 2020; Ma et al., 2019; Li, et 

al., 2017). 

Sensors at monitoring sites sporadically cannot get concentration 

at random or specific times, and they do not save data because of 

device failure, broken sensors and other issues (Jangho et al., 

2022; Laencina, 2009). Often spatially continuous data are 

required for environmental sciences and management. Therefore, 

scientists usually use spatial interpolation methods (SIM) to 

generate spatially continuous data retrieved from district 

monitoring stations (Ma et al., 2019). For this purpose, some 

studies have used inverse distance weighting (IDW) and ordinary 

kriging (OK) (Aldegunde, 2022; Bao et al., 2022; Ma et al., 2019; 

Zhao et al, 2018;). Air pollution spatial variability constitutes a 

significant source of uncertainty for environmental modeling. 

Assessing air pollution models has an important role in 

developing statistical models of climate change, agricultural and 

water resources management, and air dynamics (Bayat et al., 

2021; Bui et al., 2018; Bui et al., 2023). 

Quantifying the uncertainty associated with these predictions can 

assist the concerned decision-making processes and provide 

insights into the limitations of the employed models. Uncertainty 

analysis is a critical component in many fields of research, 

particularly those involving predictions and modeling 

(Gawlikowski et al., 2021; Psaros et al., 2023). 

In the previous studies, the uncertainty assessment of the spatial 

interpolation for air pollution forecasting has been rarely reported 

(Ribeiro et al., 2016), seems researches not focused on impact of 

forecast on performance of SIM in the context of air pollution 

modeling and forecasting. Therefore it is vital to study the effect 

of forecasting on the interpolation models for better air pollution 

management, modeling and forecasting. 

In this research, based on the type of data and previous studies 

we employed LSTM model for forecasting air pollution and 

investigated different interpolation methods performance in 

terms of uncertainty analyses in the spatial interpolation and how 

well uncertainty analyses can assist in assessing the implemented 

methods and forecasting models. The remaining parts of the 

paper is as follows. Section 2 focuses on the materials and the 

research methodology. Section 3 elaborates the research results. 

Finally, section 4 concludes the paper and suggests some 

directions for future research. 

 

 

2. MATERIALS AND METHODS 

In this section, the study area, employed data, LSTM model as 

the implemented deep learning model, as well as IDW and OK 

as SIM are discussed. 

 

2.1 Data sources 

The data used in this study consists of climatology data acquired 

every three hours and hourly PM10 air pollution concentration 

data obtained from January 2017 to June 2022. The climatology 

data was collected from 4 meteorological stations operated by 

Iran Meteorological Organization, located throughout the study 

area, and includes information on temperature, humidity, wind 

speed and direction as meteorological parameters 

(https://data.irimo.ir/). The hourly PM10 concentrations data was 

obtained from 19 ground-based monitoring stations operated by 

the Air Quality Control Company of Municipality of Tehran 

(http://air.tehran.ir/). Figure )1( illustrates the locations of the 

climatological and monitoring stations as well as Tehran 

megacity urban districts. 

 

2.2 Study area 

Tehran, the capital of Iran is divided into 22 urban districts. 

According to the 2021 census data, Tehran contains over 9 

million urban residents (Statistical Center of Iran, 2021), and 10 

million population related to daily immigrant (Amini et al., 

2014). Climatologically, Tehran has a semi-arid climate, with hot 

summers and cold winters. Geographically, the city is situated at 

an altitude of 1200 meters above mean sea level, spreads from 

Latitude 35°35’ N to 35°48’ N and Longitude 51°17’ E to 51°33’ 

E. The city, surrounded by the Alborz mountain range to the 

north and desert areas to the south, and Jajroud road in the east. 

 

 

Figure 1. Study area and location of the climatological and air pollution monitoring stations and Tehran districts 
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2.3 Long-Short Term Memory Model 

LSTM model has shown promising results in predicting air 

quality levels based on historical data (Ma et al., 2019; Jiang et 

al., 2020). By utilizing historical air quality data and 

meteorological variables such as temperature, humidity, and 

wind speed, LSTM models can learn patterns and trends in the 

data and make reliable predictions for future time steps (Yan et 

al., 2021; Hvidtfeldt et al., 2021; Jiang et al., 2020;). LSTM 

model is a type of recurrent neural network (RNN) introduced by 

Hochreiter and Schmidhuber (1997) which has been successfully 

employed in modeling and forecasting time series data. LSTM 

models were specifically designed to overcome the limitations of 

traditional RNNs, such as the vanishing gradient problem, which 

occurs when the gradients used to update the network weights 

during training become too small, causing the network to stop the 

learning process. LSTM models were specifically designed to 

overcome this problem by introducing a memory cell that can 

selectively forget or remember information over time (Hochreiter 

et al, 1997; Nagabushanam et al, 2020). Activation function is a 

mathematical function applied to the weighted sum of the inputs 

to a neuron to determine its output in neural networks, which 

helps to determine whether the neuron should be activated or not 

(Han and Moraga, 1995; Vijayaprabakaran and Sathiyamurthy, 

2022). 

Figure (2) presents a LSTM network, every time step LSTM cells 

get time series data and can selectively forget or remember 

information over time. LSTM uses hidden and current states in 

the forecasting process. These cells are composed of three gates 

including input gate, forget gate, and output gate that control the 

flow of information into and out of the memory cell. The input 

gate determines the information to let into the cell, the forget gate 

decides the information to forget, and the output gate determines 

the information to output from the cell. The gates use sigmoid 

activation functions to control the flow of information, and a 

hyperbolic tangent activation function (tanh) to transform the cell 

state (Hochreiter et al, 1997; Sak et al, 2014; Nagabushanam et 

al, 2020). 

The sigmoid activation function formulated as Eq. (1) (Fathi and 

Maleki Shoja, 2018) and hyperbolic tangent formulated as Eq. 

(2) (Fathi and Maleki Shoja, 2018): 

 

f(z) = 𝜎(𝑧) =
1

1+𝑒−𝑧   (1) 

 

tanh(𝑧) =
2

1+𝑒−2𝑧 − 1 = 2𝜎(2𝑧)   (2) 

 

where z, is the value of input. 

 

2.4 Spatial Interpolation Methods  

Spatial interpolation is a method used to estimate unknown 

values at a particular location based on the values observed at 

known locations. There are two broad categories of spatial 

interpolation methods including deterministic and stochastic 

methods, while deterministic interpolation methods assume a 

deterministic relationship between the known and unknown 

points, stochastic methods take into account the statistical 

distribution and spatial correlation of the data being interpolated 

(Tan and Xu, 2014; Zhao et al, 2018;). In this study, we have 

employed two popular interpolation methods to produce PM10 

maps based on the forecasted data retrieved from the LSTM 

model using the acquired data at each Tehran Municipality air 

pollution monitoring stations. We employed Inverse Distance 

Weighting (IDW) and Ordinary Kriging (OK) methods based on 

the results achieved in some previous research (Tan and Xu, 

2014; Roberts et al., 2004; Ma et al, 2019; Oliver and Webster, 

2014; Ding et al., 2018).  

 

Inverse Distance Weighting: Inverse Distance Weighting 

(IDW) is a deterministic interpolation method. IDW estimates the 

value at a target location by assigning weights to the known data 

points based on their distance from the target location, assuming 

that the value at a target location is inversely proportional to its 

distance from the known data points (Ma et al, 2019; Roberts et 

al., 2004). Using IDW for spatial interpolation is supported by 

Tobler’s first law of geography which indicates that “everything 

is related to everything else, but near things are more related than 

distant things” (Tobler, 1970).  In IDW, 𝑍(𝑥0) is the estimated 

value at a target location (𝑥0). 𝑍(𝑥𝑖) is the known value at 

surrounding data points (𝑥𝑖). IDW can be calculated using Eq. (3) 

(Roberts et al., 2004), where 𝜆𝑖 is the weight assigned to the ith 

target location, which is quantified using Eq. (4) (Roberts et al., 

2004): 

 

𝑍(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1
 ,   (3) 

 

𝜆𝑖 = |𝑑(𝑥𝑖,𝑥0)|
𝑝

∑ |𝑑(𝑥𝑖,𝑥0)|
𝑝𝑛

𝑖=1
 ,   (4) 

 

where, 𝑑(𝑥𝑖,𝑥0) is Euclidian distance between the target location 

and the data point. The parameter 𝑝 determines the degree of 

influence of the surrounding data points on the estimated value at 

the target location (Roberts et al., 2004; Ma et al, 2019). 

 

2.4.1 Ordinary Kriging: Ordinary Kriging (OK) is a 

stochastic method used for spatial interpolation, which assumes 

that the underlying spatial structure of the data can be modeled 

by a spatial autocorrelation function (Ding et al., 2018). 

This geostatistical method uses a linear combination of the 

weighted values. The weights are determined by the spatial 

autocorrelation function and the covariance between the target 

location and the surrounding data points. This basic geostatistics 

assumption (Oliver and Webster, 2014) is formulated as Eq. (5): 

 

𝑍(𝑥) = 𝜇(𝑥)+ 𝜀(𝑥)                     (5)    

      

where, 𝑍(𝑥) is the woody cover variable (density, species), 

decomposed into a random autocorrelated variations form, ε(x), 

at location x and a deterministic trend, μ(x) (mean of the process). 

 

 

3.  RESULTS 

Our study confirmed that integrating spatial interpolation and 

LSTM forecasting model can be a useful method to produce a 

 
 

Figure 2. LSTM network adapted from Hamad et al. (2021) 
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map based on air pollution ground-based monitoring stations. 

IDW and OK were used on the interpolated data to predict air 

pollution concentration at unknown points. By completing the 

learning time series for each station and adding meteorological 

parameters as feature, LSTM model has been implemented by 

Python programming using Keras library as an interface for the 

TensorFlow library. We found that the LSTM model with two 

hidden layers of 256 units with batch size of 1000 and 5000 

epochs achieved the best performance. Statistical indices 

including Mean Absolute Error (MAE), Mean Square Error 

(MSE), Root Mean Square Error (RMSE) (Chai and Draxler, 

2014) and R-Squared (R2) (Weisberg, 2005) were calculated to 

evaluate the model in training of the monitoring stations 

according to Eqs. (6, 7, 8 and 9). 

 

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1
   (6) 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1
   (7) 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                    (8) 

 

𝑅2 =
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

                   (9) 

 

where, �̅�𝑖 is the mean of the observed data, n = number of 

observations, 𝑦𝑖 = actual value, and �̂�𝑖= predicted value. 

 

Date  MSE   (µg/m³) RMSE (µg/m³) 

2022-05-21 602.044 5.765 

2022-05-22 321.693 4.143 

2022-05-23 336.846 4.382 

2022-05-24 12722.429 27.207 

2022-05-25 6998.291 20.916 

2022-05-26 197.283 3.199 

2022-05-27 66.529 1.604 

2022-05-28 56.711 1.529 

Mean 2662.72 8.60 

STD 4701.69 9.80 

 

 

Figure (3.a) illustrates Aghdasieh air pollution station among the 

stations employed as an example of training LSTM model on the 

station where R2 has increased over time with increasing epochs 

in which MSE, RMSE, and MAE have decreased with the 

learning model. Figure (3.b) shows the predicted and main train 

data. In addition, we evaluated the uncertainty of the LSTM 

model using prediction intervals (PIs), Mean and Standard 

Deviation (STD). Prediction interval (PIs) (Eq. 10) is a place 

where is expected as a future value to fall (Tian et al., 2020). 

Mean (Eq. 11) is the average of a set of values (Manikandan, 

2011) and Standard Deviation (STD) (Eq 12) is dispersion of a 

set of values (Batanero et al, 1994). 

 

𝑃𝐼 = �̂�𝑖  ± 𝑡 (
𝑎

2
, 𝑛 − 2) ∗ √𝑀𝑆𝐸(1 +

1

𝑛
+

(𝑦𝑖−�̅�𝑖)2

∑ (𝑦𝑖−�̅�𝑖)2
𝑛

𝑖=1

)  (10) 

 

𝑀𝑒𝑎𝑛 =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
                                                              (11) 

 

Standard Deviation (𝑆𝑇𝐷) = √
∑ (𝑦𝑖−�̅�𝑖)2

𝑛

𝑖=1

𝑛−1
                  (12) 

 

where, t(a/2, n-2) is the critical value of the t-distribution for a 

given significance level (α), degrees of freedom for the error 

assessment. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PIs were calculated using the quantile regression method 

with a 95% confidence level, the inclusion of PIs, STD and Mean 

is important for understanding the uncertainty associated with the 

model predictions and can be useful for the concerned decision-

making in practical applications. According to Tables (1, 2) and 

Figure (6), we developed a LSTM prediction air pollution deep 

learning model with a RMSE of 8.6 ± 9.7 µg/m³ and PIs between 

[2.7 ± 4.8, 14.9 ± 15] µg/m³ with 95% confidence level. Then, 

we performed spatial interpolation methods on the predicted and 

source data. For this purpose, we split data to train (70%) and test 

(30%) then calculated RMSE based on the two categorized data.  

Figure 3. (a) Accuracy of air pollution at Aghdasieh station, (b) predicted test values. 

 

 
Figure 4. MSE and RMSE of the air pollution prediction using LSTM 

during May 21-28, 2022 

Table 1. MSE and RMSE of the predicted PM10  
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Date  Upper band (µg/m³)   Lower band  (µg/m³) 

 2022-05-21 10.53 0.843 

2022-05-22 9.267 0 

2022-05-23 9.484 0 

2022-05-24 45.223 9.191 

2022-05-25 30.266 11.566 

2022-05-26 6.705 0 

2022-05-27 3.49 0 

2022-05-28 3.349 0 

Mean 14.80 2.70 

STD 14.96 4.80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Table (3), we used OK interpolation method with a 

RMSE of 32.48 ± 9.8 µg/m³ on test data, RMSE of 56.6 ± 13.3 

µg/m³ on the predicted data and according to Table (4), PIs of 

this method is [0, 0.5] µg/m³. 

 

Date  Test Data  (µg/m³) Predicted Data  (µg/m³) 

2022-05-21 25.276 48.931 

2022-05-22 30.336 45.824 

2022-05-23 22.668 41.988 

2022-05-24 31.383 67.55 

2022-05-25 20.562 80.261 

2022-05-26 45.511 63.181 

2022-05-27 45.361 59.094 

2022-05-28 38.666 46.042 

Mean 32.471 56.609 

STD 9.783 13.251 

 

 

 

Based on the results shown in Table (5) we used IDW 

interpolation method with a RMSE of 47.7 ± 22.43 µg/m³ on the 

test data, RMSE of 62.18 ± 26.1 µg/m³ on the predicted data and 

according to Table (4), PIs of this method is [0, 0.7] µg/m³.  

We visualized a continuous representation of the air pollution 

data using ArcMap 10.4.1, as illustrated in Figure (5). 

 

SIM Lower Band (µg/m³) Upper Band (µg/m³) 

OK 0 0.475 

IDW 0 0.662 

 

 

Table 2. PIs of the predicted PM10 over the 8 days. 

 

Figure 5. Air pollution map of mean of the 8 days on the test set using IDW (a), OK (b) and on the test set using IDW (c), OK (d) 

 
Figure 6. 95% confidence level shows with light blue color over the 8 

days between upper and lower bands of the PIs. 

Table 3. RMSEs of OK interpolation methods of the predicted PM10. 

 

Table 4. PIs of IDW and OK based on RMSE of the 

interpolated test and predicted data 
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Date time Test Data  (µg/m³) Predicted Data (µg/m³) 

2022-05-21 86.472 103.657 

2022-05-22 62.139 82.402 

2022-05-23 65.73 82.689 

2022-05-24 40.104 36.436 

2022-05-25 31.74 49.367 

2022-05-26 47.992 59.244 

2022-05-27 24.067 57.935 

2022-05-28 22.93 25.659 

Mean 47.647 62.174 

STD 22.429 26.015 

 

 

 
 

According to Figure (7) in initial days OK have better accuracy 

on the test and predicted data, however, later on OK provides 

better performance on the prediction in both test and predicted 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  CONCLUTIONS AND FUTURE DIRECTIONS 

 

 

WHO (2023) and some other studies (Ferreira et al., 2022; Prinz 

et al., 2022; Sun et al., 2022; So et al., 2022; Hvidtfeldt et al., 

2021) have emphasized that air pollution is a critical issue 

globally. Tehran Municipality and Iran Statistical Center data 

confirm that Tehran megacity and its inhabitants are suffering 

from the highest exposures to air pollution. On the other hand, 

PM10 is among the air pollutants that can lead to serious health 

issues. For these reasons, it is important to predict the level of air 

pollution to take precautionary measures and informed 

management policies for public health. Therefore, knowing the 

error and reliability of the air pollution prediction model should 

be considered in the Municipal environmental management 

policies. In this study, air pollution maps were produced by 

implementing a deep learning model, LSTM, based on the 

interpolated data using IDW and OK. In addition, the uncertainty 

of the methods was assessed using PIs, STD, RMSE and Mean.  

LSTM model has been also implemented for predicting the level 

of air pollution and producing air pollution maps using the SIM 

in previous studies (Bao et al., 2021; Ma et al., 2019; Yan et al. 

2019), however, assessing the uncertainty of the model have not 

yet been extensively reported in the previous research. In this 

research, we have considered the uncertainty assessment of the 

air pollution predictions. According to the achieved results in this 

study, the LSTM model has had better learned over time (Figure 

3). With the increased learning time, R-squared has been closer 

to 1 and MAE, MSE, as well as RMSE have been closer to 0. The 

predicted values had an RMSE of 8.6 and a standard deviation of 

9.8 µg/m³ and PIs between [2.7 ± 4.8, 14.9 ± 15] µg/m³, 

indicating some degree of uncertainty in the model predictions.  

OK have better RMSE and STD in the test (32.48 ± 9.8 µg/m³) 

and predicted data (56.6 ± 13.3) than those of IDW in the test 

(47.7 ± 22.43) and predict set (62.18 ± 26.1), however, in PIs 

IDW ([0, 0.7]) compared to those of the OK  ([0, 0.5]) has better 

performance.  

The reason behind the uncertainty of LSTM model can be limited 

training data which is essential for forecasting air pollution and 

model complexity can effect on generalization capability 

(Hochreiter et al, 1997; Sak et al, 2014; Nagabushanam et al, 

2020). Spatial variation and model assumptions which based on 

spatial covariance structure, the weights assigned to 

neighbouring data points and spatial stationarity can affect OK 

uncertainty model (Oliver and Webster, 2014; Ding et al., 2018). 

And data density and distribution and parameter selection can be 

some source of the uncertainty of the IDW model (Tobler, 1970; 

Roberts et al., 2004). 

Both of the employed interpolation methods presented a higher 

PM10 concentration in southwest and northeast of Tehran 

megacity in the air pollution map. 

The major strength of this research was using LSTM as a deep 

learning model for air pollution predicting and spatial 

interpolation using IDW and OK for modelling and uncertainty 

assessment. There were some limitations in this study such as the 

lack of comparison of the results with other deep learning models 

like gated recurrent units (GRUs). On the other hand for 

uncertainty assessing, we can use of other methods for example 

Monte Carlo simulation (Basil and Jamieson, 1999), and 

Bayesian inference (Oakley and O’Hagan, 2002)  for get other 

assessing test values. Also we can implementation of other 

interpolation methods such as inverse multiquadric (IMQ) and 

radial basis Function (RBF) (Ding et al., 2018; Jiang et al., 2020), 

which using these method can give us better view for answer the 

questions like what model could be better for forecasting air 

pollution time series, which model can have better performance 

in SIM and which one assess method is better for have good view 

of uncertainty of models, these questions will be considered in 

our future research. 
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