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ABSTRACT: 
 
Groundwater is one of the most important sources of regional water supply for humans. In recent years, several factors have contributed 
to a significant decline in groundwater levels (GWL) in certain regions. As a result of climate change, such as temperature increase, 
rainfall decrease, and changes in relative humidity, it is necessary to investigate and model the effects of these factors on GWL. 
Although a number of researches have been conducted on GWL modeling with machine learning (ML) and deep learning (DL) 
algorithms, only a limited number of studies have reported model uncertainty. In this paper, GWL modeling of some piezometric wells 
has been conducted by considering the effects of the meteorological parameters with Long-Short Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) algorithms. The models were trained on one piezometric well data and predictions were executed on six other 
wells. To perform an uncertainty assessment, the models were run 10 times and their means were calculated. Subsequently, their 
standard deviations were considered to evaluate the outcomes. In addition, the prediction power of the models was validated using 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and R-Squared (R2).  
Finally, for all the six wells that did not participate in the training phase, the prediction functions of the trained models were run 10 
times and their accuracy was assessed. The results indicate that LSTM (R2=95.6895, RMSE=0.4744 m, NRMSE=0.0558, 
MAE=0.3383 m) had a better performance compared to that of GRU (R2=95.2433, RMSE=0.4984 m, NRMSE=0.0586, MAE=0.3658 
m) on the GWL modeling.  
  
 

1. INTRODUCTION 

Groundwater plays an important role in providing humans with 
freshwater demand. Due to population growth, the water demand 
for domestic, industrial, and agricultural purposes has increased 
widely (Dalin et al., 2017; Wada et al., 2010). Faced with the 
growing demand for freshwater, the groundwater level (GWL) 
has been decreased in many parts of the world including Iran 
(Foroughnia et al., 2019; Mohammady et al., 2019). In addition, 
in recent decades, climate change has greatly affected all human 
lives (McMichael et al., Seyed Mousavi et al., 2022). Observed 
the climate changes such as temperature increase and changes in 
the trend of rainfall, relative humidity, soil moisture, as well as 
evaporation and transpiration have led to significant changes in 
groundwater sources, especially in arid and semi-arid areas 
(Afrifa et al., 2022; Gaffoor et al., 2022; Wunsch et al., 2022; 
Yifru et al., 2021). Hence, appropriate and effective models can 
be necessary tools to make informed decisions about the status of    
groundwater sources and their environmental effects. 
Recently, many researchers have used different methods in order 
to model GWL and investigate the effects of environmental 
parameters. Among the employed methods, machine learning 
(ML) (Basant Yadav et al., 2017; Kouziokas et al., 2018) and 
deep learning (DL) (Bowes et al., 2019; Wunsch et al., 2022) 
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algorithms have been very popular due to their capacity to handle 
complex real-world problems and their high accuracy and 
efficiency. ML and DL are used in various fields of earth and 
environmental sciences (Eghrari et al., 2023; Izanlou et al., 2023; 
Mousavi and Akhoondzadeh, 2023). Various climate parameters 
have been used to model GWL, for example Wunsch et al. (2022) 
used precipitation, temperature, and relative humidity parameters 
to model the GWL using a convolutional neural network (CNN), 
nonlinear autoregressive network with exogenous inputs 
(NARX) and Long-Short Term Memory (LSTM) models at 17 
groundwater wells within the Upper Rhine Graben (URG) area. 
Pham et al. (2022)  used seven different ML models including 
random tree (RT), random forest (RF), decision stump, M5P, 
support vector machine (SVM), locally weighted linear 
regression (LWLR), and reduce error pruning tree (REP Tree) to 
model GWL using mean temperature, rainfall, and relative 
humidity dataset. Ghazi et al. (2021) used an artificial neural 
network (ANN), least square support vector machine (LSSVM), 
and NARX models for predicting GWL fluctuations under 
climate change scenarios for Tasuj plain, Iran. Recently, 
Recurrent Neural Networks (RNNs) have been widely used to 
model and predict GWL changes (Chu et al., 2022; Jeong and 
Park, 2019; Shin et al., 2020; Vu et al., 2021; Wunsch et al., 
2022).  
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Although a number of studies have been conducted on GWL 
modeling with ML and DL algorithms, a few studies have 
reported model uncertainty. Moreover, given that changes in 
GWLs are time-dependent, it is essential to use models with long-
term memory for accurate predictions. LSTM and Gated 
Recurrent Unit (GRU) are two popular types of RNNs that excel 
at addressing the vanishing gradient problem, enabling them to 
better handle long-term dependencies in time series data.  
In this research, the meteorological data including temperature, 
precipitation, relative humidity, soil moisture, as well as 
evaporation and transpiration were acquired from Iran 
Meteorological Organization (IMO), and the water level data of 
seven piezometric wells acquired through Isfahan Regional 
Water Company. By using this integrated dataset, we were able 
to develop the GWL model using LSTM and GRU. The models 
were trained on one piezometric well data and predictions were 
conducted on six other wells. The models were then assessed for 
uncertainty by calculating the mean and standard deviation. The 
prediction power of the models was validated through various 
metrics, including Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), Normalized Root Mean Square Error 
(NRMSE), and R-Squared (R2). Additionally, to evaluate the 
accuracy of the trained models, the prediction functions were 
executed 10 times for all six wells that were not part of the 
training phase. The research includes five sections. Section 2 has 
concentrated on the description of study area.  In the third section, 
at first data pre-processing has been performed. Then, GWL 
modeling has been undertaken with LSTM and GRU algorithms. 
In the fourth section, the prediction uncertainty of the employed 
models has been examined. Then, the error analysis of the test 
data, and the prediction of the models with geometric parameters 
have been done. Finally, in the fifth section, conclusions and 
directions for future research have been elaborated, respectively. 
 

2. DESCRIPTION OF THE STUDY AREA 

Kashan Plain as the study area covers an area of more than 
1730.03 Km2 is located in the north of the Isfahan Province in the 
Kashan city, Iran between Longitudes of 51.10 and 52.01 degrees 
and Latitudes of 33.81 and 34.50 degrees (Figure (1)). Kashan 
Plain is one of the least rainfall regions of Iran which has two 
classes of arid and semi-arid climates. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. METHODOLOGY 

The research methodology consists of 4 steps as illustrated in 
Figure (2).  

 

 
 

Figure 2. Flowchart of the research methodology. 
 
 

3.1 Data Pre-Processing 

We have used the GWL dataset of 7 piezometric wells, which 
were reported monthly from Nov. 1, 2002 to Jun. 1, 2022 by 
Isfahan Regional Water Company. Data redundancy was 
checked and resolved. Five meteorological parameters including 
temperature, precipitation, relative humidity, soil moisture, as 
well as evaporation and transpiration have been used. The 
statistical report of the groundwater wells is presented in Table 
(1).  
 
 

ID Lat. 
(degree) 

Long. 
(degree) 

Max 
(m) 

Min 
(m) 

Mean 
(m) 𝜎𝜎 (m) 

W0 34.3779 51.2803 817.09 808.52 813.13 0.2469 

W1 34.2969 51.3263 800.61 796.13 798.39 0.1198 

W2 34.3244 51.3153 805.89 802.32 804.15 0.0868 

W3 33.941 51.634 900.33 885.62 891.79 0.4626 

W4 34.2655 51.3590 803.87 798.76 801.17 0.1502 

W5 34.1191 51.3668 809.07 797.99 802.25 0.3452 

W6 34.2285 51.3517 802.79 797.74 800.13 0.1413 
 

Table 1. Statistics of the observed GWLs for all the wells  
 
 
3.2   GWL Modeling 

This section provides an explanation of two deep learning 
algorithms, namely LSTM and GRU, which have been utilized 
for GWL modeling. Seven piezometric wells were considered 
and their spatial distribution is shown in Figure (1). The data from 
W0 was used to train the models, with 80% of the data allocated 
as training data and 20% as test data. Subsequently, the prediction 
function of the trained model was applied to six other wells. Figure 1. The study area and location of the piezometric wells. 
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3.2.1   LSTM 

LSTM is a special type of RNNs that solves the long-term 
memory problem of RNNs (Hochreiter and Schmidhuber, 1997). 
The LSTM network has internal mechanisms called gates. They 
control the flow of information. It also determines the 
information in the sequence which are important and should be 
kept and the information which should be eliminated. In this way, 
it passes the important information along the sequence networks 
to get the desired output (Equations 1, 2, 3, 4, 5, and 6) 
(Hochreiter and Schmidhuber, 1997). Figure (3) illustrates a 
hidden layer block with an LSTM cell unit. 
 

ft =  σ (Wf[ht−1. xt] + bf) 
 

it =  σ (Wi[ht−1. xt] + bi) 
 

ot =  σ (Wo[ht−1. xt] +  bo) 
 

C�t = tanh (Wc[ht−1. xt] +  bc) 
 

Ct =  ft ⨀ Ct−1 + it ⨀ C�t 
 

ht =  ot ⨀ Fa (Ct) 
 

where,  ft = forget gate 
             it = input gate 
             ot= output gate 
             C�t = candidate gate 
             Ct = memory cell 
             ht−1 = hidden state 
             tanh = Activation function 
             Wf, Wi, Wo, Wc, are weight matrices and bf, bi, bo, bc  
             are biases for the input. 
 

  
Figure 3. LSTM architecture 

 
3.2.2   GRU 

The neural network of the GRU is very similar to the LSTM 
network (Figure (4)), except that instead of three gates it has only 
two reset gates (Reset Gate) and an update gate (Update Gate). In 
addition, the GRU network does not have a cell state and uses a 
hidden state to transmit information (Guo et al., 2018) (Equations 
(7-10)).  
 

zt =  σ (Wz[ht−1. xt] +  bz) 
 

rt =  σ (Wr[ht−1. xt] + br) 
 

h�t = tanh (Wh[rt ⨀ ht−1. xt] + bh) 
 

ht = zt⨀ ht−1 + (1 − zt)  ⨀ h�t 
 
where, xt = input 
           ht = output 

           ht−1= hidden state 
           tanh = Activation function 
           Wz , Wr , Wh are weight matrices and 
           bz, br, bh are biases for the input. 

 

Figure 4. GRU architecture 
 

3.3   Employed Uncertainty Evaluation Method 

To assess the uncertainty, both models were run 10 times, their 
means were calculated and their standard deviations (Equation 
(11)) were considered in assessing the results. 
 

σ = �∑(xi − µ)2

N  

 
where,  
                     σ =    standard deviation 
                     N = the size of the point data 
                      xi = point data 
                     µ = mean 
 
3.4   Models Evaluation 

To evaluate the prediction power of the models, MAE, RMSE, 
NRMSE and R2 have been used (Equations (12-15)).  
 
MAE is the difference between the actual value and the predicted 
value over all training samples, while for n test samples, and for 
each actual value of y and predicted value of 𝑦𝑦� , it is calculated 
using Equation (12) (Willmott and Matsuura, 2005).  
 

MAE =  
∑ |y�i − yi|n
i=1

n  

 
RMSE is calculated from the mean squared error using Equation 
(13) (Barnston, 1992): 
 

RMSE =  
1
n
� (yi −  y�i)2

n

i=1
 

 
NRMSE criterion is the result of dividing the square root of the 
average error by the interval of the target feature (Equation (14)) 
(Hyndman and Koehler, 2006). 
 

NRMSE =  
RMSE

ymax −  ymin
 

 
R2, coefficient of determination, is equal to or smaller than 1 
(Equation (15)) (Cameron and Windmeijer, 1997). The 
coefficient of determination is used to compare models and report 
the results. Considering that the variance of the numerical data 
set is constant, with the increase of the mean squared error, the 
coefficient of determination decreases. 

(1) 

(13) 

(14) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(12) 

(11) 
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R2 = 1 −  
∑ (yi −  y�i) 2n
i=1

∑ (yi −  y��i) 2n
i=1

 

 
where,  y�i =  vector of predicted dependent variables with n 

data points 
              yi =  vector of observed values of the variable being                          

predicted 
                 y�� =   mean of the observed dependent variables 
 
 

4. RESULTS 

4.1 Models Results 

The objective of this study is to model GWL changes in seven 
piezometric wells, taking into account the influence of various 
meteorological parameters including temperature, precipitation, 
relative humidity, soil moisture, as well as evaporation and 
transpiration, with LSTM and GRU algorithms. 
 
 

 

 
  
 
RMSE, NRMSE, R², and MAE were calculated for LSTM and 
GRU models. Table (2) demonstrates the comparison of RMSE, 
NRMSE, R², and MAE for the employed models.  The results 
indicate that LSTM (R2=95.6895, RMSE=0.4744 m, 
NRMSE=0.0558, MAE=0.3383 m) had a better performance 
than that of GRU (R2=95.2433, RMSE=0.4984 m, 

NRMSE=0.0586, MAE=0.3658 m) on the GWL modeling. 
Figures ((5), and (6)) demonstrate the compatibility between the 
real data and the predicted data for the test, train, and all data 
while implementing LSTM and GRU for the GWL modeling. As 
a result, the LSTM model has a higher prediction accuracy than 
that of the GRU model as presented in Table (2). 
 

Model Parameter All Train Test 

LSTM 
 

R2 95.6895 96.6089 93.4445 
RMSE (m) 0.4744 0.4431 0.5870 
NRMSE 0.0558 0.0520 0.0685 
MAE (m) 0.3383 0.3639 0.4618 

GRU 

R2 95.2433 96.3366 93.2057 
RMSE (m) 0.4984 0.4605 0.5519 
NRMSE 0.0586 0.0541 0.0644 
MAE (m) 0.3658 0.3785 0.4298 

 
Table 2. Comparison of RMSE, NRMSE, R², and MAE for the 
employed models. 

 

 
 
 
Figure (7) demonstrates the compatibility between the real data 
and the predicted data of time series GWL for All, Train, and Test 
data of the GRU and LSTM models. The performance of the 
models in predicting trend and seasonality has been exceptional, 
as evidenced by their high accuracy when evaluated against the 
test data. 

(15) 

Figure 6. Compatibility between the real data and the predicted data for All, Train, and Test data of the GRU model. 

Figure 5. Compatibility between the real data and the predicted data for All, Train, and Test data of the LSTM model. 
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4.2   The Uncertainty and Predictions Results  
 
To conduct a comprehensive uncertainty assessment, both the 
LSTM and GRU models were meticulously executed ten times. 
This ensured a robust evaluation of their performance. Following 
these iterations, the means of the model outputs were calculated, 
providing an aggregated measure of their predictive capabilities. 
Furthermore, to gain deeper insights into the reliability and 
consistency of the models predictions, their respective standard 
deviations were carefully considered. 
Serving as a visual representation, Figure (8) offers valuable 
insights into the predictive reliability of the models by 
showcasing their uncertainty. The distance observed between the 
two black lines within the figure holds significance as it acts as a 
meaningful indicator of the level of uncertainty present. It is 
important to note that the length of this distance directly 
correlates with the degree of uncertainty. Specifically, a greater 
distance indicates a higher level of uncertainty. 
Moreover, Figure (9) showcases the execution of prediction 
functions for the trained models, which were conducted 10 times  

 

 
for each of the six wells not included in the training phase. 
Subsequently, the accuracy of these predictions was evaluated 
and presented in Figure (10). Among the six wells analyzed, it 
was observed that well W3 obtained the highest R² value while 
using the LSTM model, whereas well W2 achieved the lowest R² 
value. On the other hand, for the GRU model, wells W5 and W2 
demonstrated the highest and lowest R² values respectively. It is 
worth noting that well W2 exhibited the lowest RMSE across 
both models. The key highlight is that, despite not being included 
in the model training phase, these six wells exhibit remarkable 
predictive capabilities when it comes to capturing trends and 
seasonality. This underscores the impressive performance of the 
models and reinforces their reliability in forecasting patterns. 
Over the past two decades, there has been a notable and 
unequivocal decline in GWL changes, which is evident. This 
downward trend can be attributed to a range of factors, with 
climate change playing a significant role. Empirical evidence 
from modeling results further substantiates the profound impact 
of this crucial parameter on GWL fluctuations. 

Figure 8.  Uncertainty assessment of the models: (a) LSTM, (b) GRU. 

Figure 7.  (a), (b), and (c) demonstrate the compatibility between the real data and the predicted data of time series GWL for All, 
Train, and Test data of the LSTM model respectively, and (d), (e), as well as (f) demonstrate the compatibility between the real data 
and the predicted data of time series GWL for All, Train and Test data of GRU model, respectively. 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

Groundwater is an essential source of regional water supply for 
communities. However, in recent years, some areas have 
experienced a significant reduction in GWLs due to various 
factors, including climate change. Consequently, GWL modeling 
has become a crucial issue in water resource management, 
serving as a valuable tool to provide insights into the status of 
groundwater sources and their environmental impact. This 
modeling can help decision-makers to make more informed 
decisions about how to manage and protect these essential 
resources. Despite the extensive research conducted on the 
utilization of ML and DL algorithms in GWL modeling, only a 
limited number of studies have prioritized addressing the aspect 
of reporting the uncertainty associated with these models.  
In this study, we used LSTM and GRU algorithms to model the 
GWL of piezometric wells in Kashan Plain, Isfahan Province, 
Iran. 
We have examined seven piezometric wells, with the findings 
indicating a significant downward trend in the GWL across all 
seven wells over the past two decades. This notable decline in 
GWL can lead to severe repercussions, including an increasing 
probability of land subsidence. 
As the results confirmed, the use of meteorological parameters 
including temperature, precipitation, relative humidity, soil 
moisture, as well as evaporation and transpiration have had a 
significant impact on modeling the GWL changes of the 
piezometric wells.  
To conduct uncertainty assessment, the study employed a process 
involving the execution of both LSTM and GRU models for 10  

 
 
 
 

 
 

 
 
 
 

 

iterations. The resulting measurements were averaged, and their 
standard deviations were subsequently calculated to evaluate the 
outcomes. Notably, the LSTM and GRU models consistently 
accurately modeled GWL. These models possessed a remarkable 
capability to effectively address low uncertainty, which is critical 
for predicting GWL variations. By proficiently capturing 
intricate temporal dependencies and patterns within the data, 
these models made substantial contributions to our 
comprehension of GWL dynamics and facilitated more precise 
forecasting of future water levels. 
The accuracy of the predictions for the GWL in six wells, which 
were not part of the training phase, was assessed by running the 
prediction functions ten times. Surprisingly, despite not being 
included in the training phase, the trained models exhibited a 
remarkable ability to accurately predict the GWL in these 
piezometric wells. 
In this research, our case study had two classes of arid and semi-
arid climates. Future researchers may consider assessing and 
comparing the performance of the deep recurrent neural networks 
across various climate classes to create the best global model. 
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Figure 9. (a), (b), (c), (d), (e), and (f) demonstrate the real data and 10 prediction results of the time series GWL for all the 6 wells 
that did not participate in the training phase with LSTM model. (g), (h), (i), (j), (k), and (l) illustrate the real data and 10 prediction 
results of the time series GWL for all the 6 wells that did not participate in the training phase with the GRU model. 

Figure 10. (a), and (c) present R2 of 10 runs of the GWL predictions for each of the six wells that did not participate in the training 
phase with LSTM and GRU models respectively. (b), and (d) demonstrate RMSE of 10 runs of the GWL predictions for each of 
the six wells that did not participate in the training phase with the LSTM and GRU models, respectively. 
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