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We propose a multi-metric flexible Bayesian framework to support efficient
interim decision-making in multi-arm multi-stage phase II clinical trials.
Multi-arm multi-stage phase II studies increase the efficiency of drug develop-
ment, but early decisions regarding the futility or desirability of a given arm carry
considerable risk since sample sizes are often low and follow-up periods may be
short. Further, since intermediate outcomes based on biomarkers of treatment
response are rarely perfect surrogates for the primary outcome and different trial
stakeholders may have different levels of risk tolerance, a single hypothesis test
is insufficient for comprehensively summarizing the state of the collected evi-
dence. We present a Bayesian framework comprised of multiple metrics based on
point estimates, uncertainty, and evidence towards desired thresholds (a Target
Product Profile) for (1) ranking of arms and (2) comparison of each arm against
an internal control. Using a large public-private partnership targeting novel TB
arms as a motivating example, we find via simulation study that our multi-metric
framework provides sufficient confidence for decision-making with sample sizes
as low as 30 patients per arm, even when intermediate outcomes have only mod-
erate correlation with the primary outcome. Our reframing of trial design and
the decision-making procedure has been well-received by research partners and
is a practical approach to more efficient assessment of novel therapeutics.
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1 INTRODUCTION

Decision-making in phase II clinical trials carries risk and is far from straightforward. While only 18% of phase II studies
establish sufficient evidence to advance a drug into phase III, it seems the wrong drug is often advanced resulting in a
failure rate of 50% of phase III studies.1 Current approaches are inefficient at differentiating good from poor regimens
under phase II settings. Sample sizes tend to be considerably smaller in phase II trials than in phase III. Further, adaptive
phase II trials tend to rely on intermediate outcomes for decision-making at interim analyses. While in some disease
areas, phase II outcomes are the same as those in phase III,2 it is common that alternative endpoints are used which
may not have perfect correspondence with the primary outcome of interest. In addition to the complications of phase
II designs, the typical estimands for decision-making are often suboptimal. Standard approaches in multiarm studies
include selecting the k best performing arm(s) or more broadly advancing any arms “close” to the best performing arm.1
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A recent extension of network meta-analysis highlighted the pitfalls of basing selection on ranking alone and authors
provided recommendations for best practices that “[consider] not only the magnitude of relative effects but also their
uncertainty and overlap of their confidence/credible intervals.”3 An additional factor for regimen selection in phase II
studies is ensuring sufficient evidence has been collected to have confidence that the regimen credibly meets a target
product profile with respect to safety, efficacy, and general desirability. Frequentist approaches, such as significance testing
and group sequential methods, can advance regimens where there is little to no potential to meet the target product
profile.4-6 Bayesian frameworks, using a single or a multilevel framework,5,6 have recently been proposed to more directly
address the critical question: “How likely is it that the [target product profile] is [fulfilled] based on my observed data?”6

The aim of this article is to present a Bayesian-supported decision framework which we have developed in the context
of a phase II trial with an intermediate endpoint that is not a perfect surrogate and with limited outcome data. We propose
a multi-metric approach for (1) ranking of arms and (2) comparison of each arm against a control, using a two-level target
product profile. We demonstrate via simulations the potential for de-risking decision-making at interim analyses under a
flexible decision framework comprised of metrics incorporating point estimates, estimate variability, and evidence toward
desired performance thresholds (ie, a target product profile).

2 PROPOSED FRAMEWORK

2.1 Motivating example

This decision-making framework is motivated by UNITE4TB, a global public–private partnership with the objective of
identifying, in phase IIb trials, new combinations of novel and existing compounds that perform better than the six-month
standard of care, HRZE, for the treatment of tuberculosis (TB) when given for 4 months, thereby supporting evalua-
tion of even shorter durations in a phase IIc trial.7 The primary clinical outcome in UNITE4TB’s PARADIGM4TB-01
trial is the number of unfavorable outcomes (treatment failure, relapse, or re-treatment) occurring within 52 weeks of
follow-up. In addition, weekly sputum samples will be collected for 12 weeks post-randomization to monitor the change
in time-to-positivity (TTP), defined as “the time [from inoculation in culture media] it takes for a given sputum sample
to yield a positive mycobacteria growth indicator tube culture.”8 This biomarker, while by no means a validated surro-
gate endpoint, is available much sooner than the primary endpoint, reflects the potency of the regimen in killing off
drug-susceptible TB bacterium,9 and is associated with the primary clinical endpoint such that a more potent regimen
(one with a steeper change in TTP) is expected to have a lower rate of unfavorable outcomes than a less potent regimen.8,10

We do not assume either formal individual-level or trial-level surrogacy but instead rely on TTP as a biomarker reflective
of trial-level bactericidal behavior.

2.2 Framework components

The proposed framework is designed for decision-making during the interim analysis of a multi-stage multi-arm trial
and evaluates clinical trial arms comprised of therapeutic regimens based on three critical components described in more
detail below: (1) an arm-wise lack of benefit assessment based on the early accumulation of occurrences of the primary
endpoint (number of unfavourable outcomes), (2) arm-wise performance based on the recommended decision from the
application of the Bayesian multilevel target product profile framework proposed by Pulkstenis, Patra, and Zhang6 as
applied to the readily available intermediate endpoint (change in TTP), and (3) the arm-wise relative ranking based on esti-
mation from an appropriate Bayesian model of the intermediate endpoint. Table 1 displays the specific proposed decision
objectives, their triggers, and statistical estimands.

We propose a sequential application of the framework, as it is intuitive and better reflects natural decision-making in
terms of predetermined hierarchies of risk tolerance. Figure 1 demonstrates such a stepwise decision-making framework.

2.2.1 Arm-wise lack of benefit

Our first objective is to identify and deprioritize sub-optimal arms early. Arms will be flagged for lack of benefit based
on whether the number of observed unfavorable outcomes exceeds a set threshold, M. While unfavorable outcomes are
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DUFAULT et al. 503

T A B L E 1 Proposed quantities for the multi-metric decision-making framework.

Objective Trigger Statistical Estimand

1. Arm-wise lack of benefit High number of observed unfavorable outcomes No. of unfavorable outcomes ≥ M

2. Arm-wise performance NO-GO: Low probability that target value is met Pr𝜃(𝜃k ≥ 𝜃TV |X) ≤ 𝜏TV

Continue: Neither “NO-GO” nor “GO” conditions met Pr𝜃(𝜃k ≥ 𝜃TV |X) > 𝜏TV and
Pr𝜃(𝜃k > 𝜃MAV |X) ≤ 1 − 𝜏MAV

GO: High probability that minimum acceptable value is
exceeded and at least modest probability that target
value might be exceeded

Pr𝜃(𝜃k ≥ 𝜃TV |X) > 𝜏TV and
Pr𝜃(𝜃k > 𝜃MAV |X) > 1 − 𝜏MAV

3. Arm-wise relative ranking Confidence arm slope is steeper than control Pr𝜃(𝜃k > 𝜃1|X)

Confidence arm has steepest slope Pr𝜃(𝜃k = 𝜃(1)|X)

Confidence arm is in top 2 steepest slopes Pr𝜃(𝜃k ∈ {𝜃(1), 𝜃(2)}|X)

F I G U R E 1 Example flowchart of the decision-making framework applied in a sequential manner. The third component (Does it rank
well?) is in a dashed-line box as it is only relevant when more than one arm has successfully advanced through the first two decision-making
steps.

a definitive clinical outcome and typically used as the primary outcome in phase III studies, they tend to occur after
treatment completion.11 As such, there are likely to be very few observed at the time of the interim analysis, thereby
limiting our ability to perform statistical analysis. Instead, this can be thought of as an early screening for removal of arms
with larger than acceptable anticipated unfavorable event rates. The remaining metrics rely on the intermediate outcome,
TTP, as all patients will have TTP data by the time of the interim analysis.

2.2.2 Arm-wise performance

Arms are then assessed according to a pre-specified two-level target product profile based on the change in log10(TTP)
slope relative to the control slope (𝜃, expressed as a percentage change). The quantities that must be pre-specified for
the target product profile include the “target value” or level of efficacy corresponding to solid competitiveness, 𝜃TV , the
“minimum acceptable value” or minimal level of acceptable efficacy, 𝜃MAV , the maximum allowable risk that an arm is
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504 DUFAULT et al.

issued a NO-GO decision when it has an unequivocal improvement in efficacy, 𝜏TV , and the maximum allowable risk that
an arm is advanced that does not reach the minimal level of acceptable efficacy, 𝜏MAV .

For each arm k, we can then issue a GO, NO-GO, or CONTINUE decision based on the posterior distribution of 𝜃k.
We issue a NO-GO decision if the probability that 𝜃k exceeds the target value is sufficiently low (Pr𝜃(𝜃k ≥ 𝜃TV |X) ≤ 𝜏TV ).
We issue a GO decision if the probability that 𝜃k exceeds our minimum acceptable value is sufficiently high (Pr𝜃(𝜃k >

𝜃MAV |X) > 1 − 𝜏MAV ) and the probability that 𝜃k exceeds our target value is not too low (Pr𝜃(𝜃k ≥ 𝜃TV |X) > 𝜏TV ). If neither
of these conditions is met, then a CONTINUE decision will be issued. Pulkstenis, Patra, and Zhang6 point out that “there is
no universal way to characterize the desired efficacy in the [target product profile]”, and so we refrain from offering general
guidance as to specifying the risk and desired parameter values here and instead encourage stakeholders to identify what
is appropriate based on historical data and knowledge of the disease area.

2.2.3 Arm-wise relative ranking

Finally, arms are ranked based on a suite of posterior probability estimands targeting their relative ranking and compar-
ison with the control. We also report a credible estimate (median of the Bayesian posterior distribution) for the relative
percent-change in log10(TTP) slope as compared to the control, along with a credible interval (confidence level: 1 − 𝛼).

3 SIMULATION STUDY METHODS

We describe our simulation study using the the aims, data generation, estimand, methods, and performance measures
(ADEMP) framework outlined by Morris et al.11

3.1 Aims

Our overall aim is to evaluate how well the proposed framework can de-risk decision-making around arm selection for
multi-arm phase II trials.

3.2 Data-generating mechanism

3.2.1 Time-to-positivity

The weekly individual-level TTP data are simulated from a parametric linear mixed effects model using the approach
described by Arnold et al.12 Analysis of longitudinal TTP data from the REMoxTB phase III trial13 motivated our choice.
For individual i and visit j, let Tij denote the weeks since randomization at visit j. Let Xi denote the assigned treatment arm
for individual i, Xi = 1, … ,K where X = 1 denotes the control arm. Equation (1) allows for flexibility in individual-level
intercepts and slopes.

log10(TTPij) = 𝛽0i + 𝛽1iTij +
K∑

k=2
𝛽kI{Xi = k}Tij + eij. (1)

We prespecify the random intercept 𝛽0i ∼ N(𝛽0, 𝜎
2
g1
), the random slope 𝛽1i ∼ N(𝛽1, 𝜎

2
g2
), the correlation between the

random effects 𝜌 = Cor(𝛽0i, 𝛽1i) and the residual error eij ∼ N(0, 𝜎2
e ). I{} is an indicator function, returning 1 when the

condition is true and 0 otherwise. The parameter values used for data-generation are defined in Section A.1 of the
supplemental material.

3.2.2 Unfavorable outcomes

Individual-level time to unfavorable outcomes, ti, measured from end of treatment, is simulated using a two param-
eter Weibull proportional hazards model (Equation 2). All individuals are assumed to complete treatment. Assuming
there is no loss to follow-up, event times are censored at the end of 52 weeks of post-randomization follow-up if an
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DUFAULT et al. 505

unfavorable outcome does not occur before. We assume that an individual’s hazard of unfavorable outcome depends only
on their intervention assignment, not on their individual-level TTP trajectory; correlation between intermediate and final
outcomes is therefore induced only at the level of allocated treatment arm.

ln h(ti) = ln
(

ptp−1) + 𝛾0 +
K∑

k=1
𝛾kI{Xi = k} + 𝜖i. (2)

The Weibull parameters are tuned such that approximately 75% of unfavorable outcomes occur within the first 13
weeks of post-intervention follow-up14 (setting scale parameter p = 0.425) and such that unfavorable outcomes by the
end of follow-up occur according to pre-specified rates.

3.2.3 Interim

Enrolment dates are randomly assigned such that a rate of ten patients are enrolled per week and randomized to one of
five different arms. The first interim analysis occurs one week after complete TTP results are available for the sample size
of interest and uses the full TTP data as well as any unfavorable outcome data accumulated up to that point in time. This
simulation study only considers the operating characteristics at the first interim analysis.

All simulated datasets consist of one control and four novel arms. TTP and unfavorable outcomes were simulated
according to the parameterizations in Table 2. Contrary to PARADIGM4TB’s 12-week TTP collection plan, the sim-
ulated datasets only consist of TTP for 8 weeks post-randomization. This difference is due to changes made to the
PARADIGM4TB study design after initial simulations were performed. We consider four settings for TTP slopes repre-
senting a null setting (“No Winners”) where all TTP slopes are equivalent, evenly spaced slopes with a clear winner (“One
Winner”), a mixture of steep and shallow slopes (“Two Winners”), and a setting were all four arms have similarly steep
slopes (“Four Winners”). We also consider four settings for unfavorable outcome rates whereby 2.5% unfavorable out-
come is considered desirable, 5% is considered minimal and 10% is considered sub-optimal for treatment shortening in the
context of a 4-month regimen. All possible combinations of TTP and unfavorable outcome were simulated for each possi-
ble sample size in 1000 simulated datasets. This results in settings where the intermediate and final outcomes were well
correlated (steep slopes and low unfavorable outcome rates correspond) and where they were poorly correlated (shallow
slopes and low unfavorable outcome rates correspond, and vice versa). Results for any combinations not described here
are available in the Supplemental Material and GitHub repository (https://github.com/sdufault15/tb-seamless-design).

3.3 Targets of analysis

The targets of analysis are the arm decision objectives as supported by the framework metrics (Table 1). Specifically, we
aim to determine whether the framework, when used with standard phase II sample sizes, is sufficient to determine the
appropriate arm(s) to flag for lack of benefit or progress, with an acceptable level of risk.

T A B L E 2 Simulation settings for relative percent change in log10(TTP) slope and unfavorable outcome rate. Note, k = 1 is the control
arm and is used as the comparator.

Endpoint Setting Conditions (arm k = 2,3,4, and 5)

Relative % TTP slope (control:
𝜃1 = 0%) 𝜃2, 𝜃3, 𝜃4, 𝜃5

No winners (null) 0%, 0%, 0%, and 0%

One winner 10%, 20%, 30%, and 40%

Two winners −10%, 10%, 35%, and 40%

Four winners 35%, 37%, 39%, and 41%

Unfavorable outcome rates
(Control: 5%)

All minimal (null) 5%, 5%, 5%, and 5%

All desirable 2.5%, 2.5%, 2.5%, and 2.5%

All suboptimal 10%, 10%, 10%, and 10%

Mixed 10%, 5%, 5%, and 2.5%
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506 DUFAULT et al.

3.4 Analysis methods

The weekly log10(TTP) data are analyzed using a Bayesian linear mixed effects model with random intercept and random
slope specified at the level of the individual and weakly informative priors. The model formula is reported in the Sup-
plemental Material appendix (Equation A.1), but echoes that used for data-generation (Eq. 1). Bayesian methods were
chosen since they lend themselves to direct probability statements addressing the likelihood of arm success that better
facilitate complex decision-making involving non-statisticians.4,15,16 Additionally, in this setting, Bayesian methods are
desirable because of their ability to handle limit-censoring of the outcome variable.17 The maximum recommended MGIT
incubation time for a sputum sample is 42 days, resulting in a maximum observable TTP value of 42 days and right cen-
soring of TTP values above this limit.8 While alternative approaches exist to handling right censored outcome variables,
likelihood-based approaches have been integrated into standard Bayesian statistical software and are readily available in
the setting of non-linear mixed effects models.

Unfavorable outcomes are counted at the arm level and compared against count-based thresholds as described in
Table 1.

Simulations and analyses are performed using R version 4.1.2 (2021-11-01) “Bird Hippie.”18 All code necessary to
simulate the data, perform the analyses, and recreate the figures presented in this manuscript is available in a GitHub
repository maintained by the first author (https://github.com/sdufault15/tb-seamless-design). Bayesian estimation was
performed with the brms package.17,19

3.5 Performance measures

To assess the performance of the proposed multi-metric framework (Table 1), we examine how each of these metrics can
contribute to decision-making when used simultaneously. While a common-sense approach should be taken to guide
decision-making, considering all available data including safety data, these results are generated under a series of hypo-
thetical, rigid decision-criteria in order to gain intuition into the operating characteristics of the framework. Because the
relationship between TTP and unfavorable outcomes is not well understood, we additionally assess the performance of
the framework as the correspondence between TTP slope and unfavorable outcomes becomes less well correlated.

We then investigate the performance of each framework component individually. For arm-wise lack of benefit, we
examine the rates of deprioritization for desirable, minimal, and sub-optimal arms when the unfavorable outcome thresh-
old is set at fewer than one, two or three unfavorable outcomes by the time of the first interim analysis. Arm-wise
performance is evaluated by the proportion of simulations returning “GO,” “NO-GO,” and “Continue” decisions for
an array of the log10(TTP) slopes and sample sizes. For arm-wise ranking, we focus on the proportion of simulations
returning posterior probability estimates that favor the arm with the true steepest slope (𝜃(1)) over the arm with the true
second steepest slope (𝜃(2)), Pr𝜃(�̂�(1) = 𝜃(1)|X) − Pr𝜃(�̂�(2) = 𝜃(1)|X), in order to identify our ability to differentiate between
top performers as the gap in their performance decreases from 10% to 2%.

4 RESULTS

We first present results from a single simulated trial to illustrate how the framework is implemented (Section 4.1). Next,
we report the performance results from the simulation study for the overall decision-making framework (Section 4.2).
Finally, we report the performance of each framework component separately (Section 4.3).

4.1 Demonstration in a single simulated trial

To demonstrate what this framework will look like in practice, we provide the estimated framework metrics for a single
simulated trial (Table 3) where TTP has been simulated according to the “1 Winner” setting and unfavorable outcomes
were simulated according to the “Mixed” setting (Table 2). As such, for Arm 5 the true relative improvement in TTP slope
compared to Arm 1 is 40% and the true unfavorable outcome rate is a desirable 2.5%. As expected, in the simulated data
very few unfavorable outcomes have accrued, suggesting there is not sufficient evidence of lack of benefit to stop any of
the arms at this point. Evidence is accumulating that Arm 4 and Arm 5 will meet the target product profile set for TTP;
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T A B L E 3 Interim results from a single simulated phase IIb study with thirty patients per arm. The target product profile assumes
𝜃MAV = 0%, 𝜃TV = 20%, 𝜏MAV = 𝜏TV = 0.025.

Interim 1

Arm Duration
No.
patients

No.
unfavorable
outcomes ̂

𝜽0.5 (95% CI) Pr
𝜽

(𝜽k > 𝜽MAV |X) Pr
𝜽

(𝜽k ≥ 𝜽TV |X)
TPP
decision �̂�1 �̂�2 �̂�3

1 26 30 0 – – – – – 0.00 0.02

2 16 30 1 11.1% (-12.9%, 42.2%) 0.81 0.26 Continue 0.81 0.00 0.03

3 16 30 0 23.3% (-1.2%, 56.9%) 0.97 0.59 Continue 0.97 0.00 0.24

4 16 30 0 31.9% (0.54%, 68.8%) 0.99 0.79 Go 0.99 0.05 0.71

5 16 30 0 55.6% (25.7%, 95.0%) 1.00 0.99 Go 1.00 0.95 1.00

Note: Pr𝜃(𝜃k > 𝜃MAV |X) = �̂�1 in this setting because 𝜃k > (𝜃MAV = 0%) is equivalent to 𝜃k > 𝜃1. When 𝜃MAV ≠ 0%, these metrics will no longer be equivalent.
�̂�0.5: median estimate of the posterior distribution on the relative % change in log10(TTP) slope.
�̂�1 = Pr𝜃(𝜃k > 𝜃1|X), that is, probability TTP slope for arm k is steeper than control.
�̂�2 = Pr𝜃(𝜃k = 𝜃(1)|X), that is, probability TTP slope for arm k is the steepest slope.
�̂�3 = Pr𝜃(𝜃k ∈ {𝜃(1), 𝜃(2)}|X), that is, probability TTP slope for arm k is one of the two steepest slopes.

at a sample size of 30 per arm, there is sufficient evidence that these arms are at least as good as the control in terms of
their TTP slopes (Pr𝜃(𝜃k > 𝜃MAV |X) > 99.1%) and a strong posterior probability that the slopes are at least 20% better than
the control (Pr𝜃(𝜃k ≥ 𝜃TV |X) > 79.0%). Arm 2 and Arm 3 do not yet have the same strength of evidence suggesting their
(in)ability to meet the target product profile. While it is likely that these arms have steeper slopes than control (𝜓1), they
rank consistently lower than Arm 4 and Arm 5 (𝜓2, 𝜓3). If resources are available, then it would be prudent to continue
enrolling participants on these arms and collect more evidence. If resources are not available, then the metrics provided
by this framework will contribute to the thoughtful evaluation of which arms to continue and which to stop.

4.2 Evaluation of the proposed metrics as an overall package

Figure 2 demonstrates the strength of using each component of the framework in concert to inform decision-making at
the time of the interim analysis. This figure only reflects the “2 Winners” TTP simulation setting. The other settings can
be observed in the supplemental material (Figures A.3–A.5).

Firstly, we examine the operating characteristics for the simulated data where the TTP slope and the unfavorable
outcome rate are in correspondence with each other. When the arms have sub-optimal (10%) unfavorable outcome rates
and poor TTP slopes (Figure 2A, Panel: -10%), there is a 45.3% probability of correctly flagging the arm for a “NO-GO”
decision (nk=20); the probability of correctly flagging these sub-optimal arms increases as sample size increases. Further,
none of the suboptimal arms received an erroneous “GO” decision, resulting in a false-go rate of 0% in this setting. When
the arms have desirable (2.5%) unfavorable outcome rates and true TTP slopes above the target product profile target value
(𝜃TV=20%) (Figure 2C, Panels: 35%, 40%), the probability of a “NO-GO” decision is relatively rare. For example, when the
TTP slope is 40% better than control (Figure 2C, Panel: 40%), the probability of an erroneous “NO-GO” decision is less
than 7.5% (nk = 40) while the probability of correctly flagging an arm for a “GO” decision is at least 88.9% (nk=40). In
other words, if the TTP slope observed at the interim analysis corresponds well with the arm-level unfavorable outcome
rates, then the framework correctly classifies arm decisions with a level of efficiency not accessible through traditional
single-metric means while simultaneously maintaining low error rates in terms of “false-go” and “false-no-go” rates.

When the correspondence between TTP slope and the primary endpoint diminishes, the effectiveness of the frame-
work diminishes, but does not completely disappear. For example, if TTP slope is a relatively uninformative proxy for the
primary endpoint, then the framework will reliably flag arms with a “Continue” decision (Figure 2, Panels: 10%). This
allows decision-makers to continue enrolling participants, hopefully to the point where the primary endpoint will have
sufficient power for decision-making. If TTP slope has a negative correspondence with the primary endpoint, such that
an arm with a sub-optimal unfavorable outcome rate (10%) returns a relative TTP slope of 40% at the interim analysis,
then the risk of making a false-go decision increases to 69.6% (Figure 2A, Panel: 40%, nk=30). Alternatively, if the arm
has a desirable unfavorable outcome rate (2.5%) and a poor relative TTP slope (-10%), the false-no-go rate increases to the
similarly high level of 73.7% (Figure 2C, Panel: -10%, nk=40). However, such extremes are exceptionally unlikely.
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508 DUFAULT et al.

F I G U R E 2 Interim analysis decision probabilities for simulated arms with TTP slope relative to the control as specified in the panels
(all corresponding to the “2 Winners” simulation setting) and unfavorable outcome rates of (A) 10% (unfavorable), (B) 5% (minimal), and (C)
2.5% (desirable). Arms are flagged for a GO decision if they meet all the following conditions: fewer than two unfavorable outcomes, evidence
of meeting the target product profile, and a posterior probability greater than 50% of ranking in the top two arms. A pattern is applied to
differentiate the criterion responsible for NO-GO decisions. Arms are flagged for a NO-GO decision if they experience any of the following
conditions: 2 or more unfavorable outcomes (stripes), do not have evidence of meeting the target product profile (dots), or meet both
conditions (plain). All arms that do not meet the criteria for a GO or NO-GO decision, receive a “Continue” designation. Results are based on
1,000 simulated datasets per setting.

4.3 Examining each framework component

4.3.1 Arm-wise lack of benefit

Figure 3 shows the impact of various count-based thresholds for flagging of lack of benefit during the interim analysis.
A good decision threshold should result in a high probability for flagging sub-optimal arms and a low probability for
desirable arms. It is immediately apparent that decision-makers must be sensitive to the sample sizes considered when
pre-specifying the threshold they will use. At a sample size of nk = 30 per arm, an unfavorable outcome threshold of 2 is
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DUFAULT et al. 509

F I G U R E 3 The proportion of simulations where an arm with a given unfavorable outcome rate (panels) would be flagged for
deprioritization on the basis of collected unfavorable outcome counts at the first interim analysis given varying sample sizes per arm (nk) and
pre-specified unfavorable outcome thresholds. The first interim analysis is triggered by the complete collection of 8 weeks of
post-randomization log10(TTP) data on nk patients per arm. Results are based on the evaluation of 1,000 simulated datasets.

associated with a 22% probability of correctly flagging a sub-optimal arm while maintaining a low risk (3%) of incorrectly
flagging a desirable arm for lack of benefit. If the sample size per arm can be increased to nk = 40, then the efficiency
in flagging sub-optimal arms based solely on early observation of unfavorable outcomes more than doubles (53%) while
maintaining a relatively low risk of flagging a desirable arm (7%) given the same threshold.

4.3.2 Arm-wise performance

Our second step in arm assessment is based on characterizing a two-level target product profile on the log10(TTP) slope.
Figure 4 displays the impact of assessing arm performance on the basis of the log10(TTP) slope against a multilevel target
product profile with the specifed values of 𝜃MAV = 0%, 𝜃TV = 20%, 𝜏MAV = 𝜏TV = 0.025. In this setting, an arm with a 10%
poorer slope than the control would be flagged for deprioritization (NO-GO) at least 44% of the time, even when the
sample size is as low as 20 per arm. The probability of advancing (GO) promising arms, those with a log10(TTP) slope
20% greater than the control, is at least 25% with a sample size of 20 per arm and increases with increasing sample size.
Notably, at a sample size of 40 patients per arm, a promising arm with a log10(TTP) slope 20% greater than the control is
rarely stopped (by design, this proportion hovers around 𝜏TV ) and is recommended for early advancement in nearly 50%
of simulations.
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510 DUFAULT et al.

F I G U R E 4 The proportion of trials where an arm with a given percent change in log10(TTP) slope relative to the control (panels)
would be assigned a particular decision at the first interim analysis given varying sample sizes per arm (nk). Results are based on the
evaluation of 1,000 simulated datasets and assume 𝜃MAV = 0%, 𝜃TV = 20%, 𝜏MAV = 𝜏TV = 0.025.

4.3.3 Arm-wise ranking

Figure 5 demonstrates that the ability to properly rank the arm with the true steepest slope depends on sample
size and competitiveness of the other arms. For clarity, we have restricted these figures to compare the arms with
the true steepest and second steepest slopes in log10(TTP). Each density curve corresponds to the distribution of
posterior probability estimates that a given arm is the steepest; ideally, the arm with the true steepest slope (𝜃(1),
blue curve) would have a posterior probability estimate of 1 in all simulations and the other arms would have pos-
terior probability estimates of 0. Despite uncertainty in estimation in small sample sizes, the posterior probability
estimates are often sufficiently higher for the arm with the true steepest slope than for its competitors (median, ver-
tical lines), resulting in a sufficient metric for decision-making. For example, when 𝜃(1) − 𝜃(2) ≥ 10% (“1 Winner,”
Figure 5A), a sample size of 30 per arm is sufficient to separate the posterior probability distributions in most simulated
datasets. The posterior probabilities associated with ranking are also reliably responsive to the setting of “0 Winners”
(Figure 5D), suggesting this metric will not return deceptive ranking results when arms are truly similar in terms
of TTP slope.

5 DISCUSSION

Decision-making at any point along the clinical trial pathway is an inherent challenge. We have proposed a flexible,
multi-metric framework to de-risk decision-making at interim analyses during phase II trials in TB and, with slight adap-
tation, other disease settings. Our framework combines innovation in both performance evaluation (multilevel target
product profile frameworks)6 and arm ranking, and couches all estimation in a readily interpretable Bayesian estima-
tion framework. Using a simulation study, we have demonstrated our proposed framework’s suitability to capture critical
elements of arm performance even when sample sizes are low. By examining increasingly discordant behavior between
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DUFAULT et al. 511

F I G U R E 5 Comparison of distributions of posterior probability estimates of whether a given arm has the steepest log10(TTP) slope,
Pr𝜃(𝜃k = 𝜃(1)) for the arms with the true steepest 𝜃(1) and second steepest 𝜃(2) slopes. Results are shown for differences (A) 10% (“1 Winner”),
(B) 5% (“2 Winners”), (C) 2% (“4 Winners”), and (D) 0%, or no difference between arms, (“0 Winners”). Results are based on 1,000 simulated
datasets for each sample size (row-wise panels, nk) and TTP condition (column-wise panels). Vertical lines mark the median of the
corresponding distributions of posterior probability estimates.

the intermediate endpoint used in decision-making and the primary endpoint, we have demonstrated how valuable a
multiple metric framework becomes for informed decision-making.

Middle-development TB clinical trials have relied on a handful of commonly used candidate biomarkers (eg, 14-day
EBA, colony forming unit counts, proportion culture negative at 2 months, time to stable culture conversion) as well
as novel biomarkers (eg, MBLA, RS Ratio, gene signature, PET-CT, and sputum LAM) to assess regimen efficacy. The
relative utility of the various endpoints remains a topic of debate.9,10,20-24 Our work is based on TTP as the intermediate
endpoint as it is the most commonly and readily available outcome in TB trials and appears somewhat promising in terms
of trial-level correlation with the primary endpoint. In this setting, we are not using TTP on an individual level to predict
or anticipate a single patient’s likelihood of cure. Instead, we are assuming that, at the trial-level, the intermediate TTP
slope and final outcomes are correlated and that the differences between arms that is observed on TTP is meaningfully
correlated with the differences expected in terms of arm performance for the primary endpoint. In the presence of a
positive individual level correlation (which may be a plausible assumption for existing drugs25 and perhaps also for new
drugs), we anticipate the operating characteristics of the framework to be even more favorable. As research progresses on
this endpoint, general learnings about the relevance of TTP for regimen development can be used to adjust the target and
minimum acceptable values. Our proposed framework, when applied with an appropriate model for the intermediate
endpoint, can be extended or adapted to alternative biomarkers, should another option (or the inclusion of additional
biomarkers) be of interest to decision-makers.

Bayesian methods for the evaluation of Phase II studies are growing in acceptability16 and have been approved by reg-
ulatory agencies as the primary method of analysis.26,27 One advantage of Bayesian estimation is the ability to explicitly
state and incorporate prior information into the estimation procedure. In the setting of TB studies, there is a wealth of
knowledge around the standard of care. Ignoring the decades of evidence that has been accumulated is inefficient and,
perhaps, unethical when phase II studies are required to keep sample sizes low for equipoise. Though not explored here,
the future research and applications of this framework should consider the effect of incorporating prior information for
the log10(TTP) slope for the standard of care. Following guidance generated by ongoing efforts to incorporate transla-
tional pre-clinical and clinical data to improve regimen evaluation (eg, ACTG RAD-TB), such data sources could also be
used to inform reasonable priors on novel regimens as well. Proper incorporation of informative priors should decrease
estimator variability in the log10(TTP) slopes, ultimately (1) strengthening the ability to compare novel regimens
against the standard of care, (2) improving confidence in ranking, particularly for novel regimens with small relative
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512 DUFAULT et al.

differences in slope, and (3) result in fewer “Continue” categorizations within the target product profile framework.
Each of these changes will improve efficiency in the evaluation of regimen performance. Further, it is straightforward to
perform sensitivity checks on the impact of the priors and can be an additional tool in guiding decision-makers.28

One concern with the use of Bayesian methods for the planning and analysis of clinical trials is its inability to strictly
control the type I error rate. This is further complicated by our recommendation that the multi-metric framework be
applied holistically, upon the close evaluation of all metrics to comprehensively evaluate a study arm’s performance and
promise. These concerns are worth investigating and future research will evaluate how more complex decision frame-
works, such as the one proposed here, can be properly evaluated to limit this risk. One key advantage of our multi-metric
framework includes a direct adaptability to decision-makers’ level of risk tolerance. Instead of focusing on a strict frequen-
tist type I error, we have shown that this framework has good operating characteristics for prioritizing arms with desirable
performance and de-prioritizing sub-optimal arms which directly addresses the objectives of middle-development clini-
cal trials. Further, strict control of the type I error rate may not be the driving determinant in study design for some trial
settings. In UNITE4TB-01, this framework can be used to identify which arms advance from phase IIb to phase IIc, a
period of further observation where the duration of the arm is also randomized. Evidence generated in this second phase
will help to further elucidate which arms (and durations) should be advanced into large, definitive phase III trials.

In summary, we propose a Bayesian decision framework, building on the two-level target product profile,6 for the
setting of multi-arm middle development clinical trials using intermediate endpoints that are not perfect surrogates. We
have shown that our flexible multi-metric framework has good operating characteristics and is a practical solution for
de-risking drug development.
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