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A B S T R A C T 

The Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is an optical interferometric imaging 

device that aims to offer an alternative to the large space telescope designs of today with reduced size, weight, and power 
consumption. This is achieved through interferometric imaging. State-of-the-art methods for reconstructing images from 

interferometric measurements adopt proximal optimization techniques, which are computationally e xpensiv e and require 
handcrafted priors. In this work, we present two data-driven approaches for reconstructing images from measurements made 
by the SPIDER instrument. These approaches use deep learning to learn prior information from training data, increasing the 
reconstruction quality, and significantly reducing the computation time required to reco v er images by orders of magnitude. 
Reconstruction time is reduced to ∼10 ms, opening up the possibility of real-time imaging with SPIDER for the first time. 
Furthermore, we show that these methods can also be applied in domains where training data are scarce, such as astronomical 
imaging, by leveraging transfer learning from domains where plenty of training data are available. 

Key words: machine learning – image processing – interferometric imaging. 
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.  I N T RO D U C T I O N  

he Segmented Planar Imaging Detector for Electro-Optical Re-
onnaissance (SPIDER, Kendrick et al. 2013 ; Duncan et al. 2015 )
nstrument is an alternative electro-optical imaging device to current
pace telescopes like the Hubble Space Telescope or the JWST . While
raditional electro-optical telescopes require large optics, housings,
nd thermal controls for the optics to attain precise measurements,
PIDER aims to decrease the volume, mass, and cost of electro-
ptical imagers by replacing the traditional mirrors with arrays of
enslets to gather interferometric measurements. The light captured
y these lenslets is processed using photonic integrated circuit (PIC)
hips into interferometric measurements. Typical interferometers
till require large components to make measurements; yet by pro-
essing the light from the lenslets on an integrated chip, the size of
he instrument can be reduced significantly. The SPIDER instrument
s designed to be a cheaper and lighter alternative for instruments that
an be used for both Earth observation and astronomical research. 

The concept design for the SPIDER instrument proposed by
endrick et al. ( 2013 ) and Duncan et al. ( 2015 ) uses 37 PICs
ounted at different angles to form a planar disc. Interferometric
easurements are acquired on each of the PICs, and by combining

he measurements taken at each of the different angles, the telescope
reates a large synthetic aperture with the diameter of the aperture
qual to the largest spacing of lenslets on the PIC. A diagram of their
esign can be found in Fig. 1 . 
Beyond the initial concept, more efficient designs that make

etter use of the baselines (Liu, Wen & Song 2018 ; Liu et al.
 E-mail: matthijs.mars97@gmail.com 
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Commons Attribution License ( http:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
019 ) and impro v ed lenslet arrangements to increase reconstructions
uality (Lv et al. 2020 ; Hu et al. 2021 ) have been investigated.
urthermore, the PIC reconstruction capabilities were found to match

he theoretical predictions of the concept design well (Chu et al.
017 ). Tests of the PICs show that it is possible to measure both
he amplitude and phase of the incoming light as predicted (Su
t al. 2017 ) and that these measurements can be used for image
econstruction (Badham et al. 2017 ; Su et al. 2018 ). 

Since SPIDER measures both the phase and the amplitude of the
nterferometric signals, the measurement process is analogous to that
f radio interferometers. Interferometric imaging techniques devel-
ped for radio interferometry can thus be adapted and repurposed to
eco v er images from the raw data acquired by the SPIDER instru-
ent (Pratley & Mcewen 2021 ). Radio interferometry and aperture

ynthesis have played an important role in pushing the boundaries of
stronomical research in the radio frequency regime, where acquiring
igh-resolution images is otherwise difficult because of the relatively
arge wavelengths considered. By combining measurements from
airs of radio telescopes, spatial frequency information can be
etrieved from the observed sky. Each pair of telescopes forms
 baseline and measures a so-called visibility corresponding to a
ourier coefficient of the sky brightness distribution. By sampling

he Fourier plane with these measurements, an observation with a
niform aperture is approximated using aperture synthesis. Since
he telescope acquires only a finite number of measurements and
ince the Fourier plane is not sampled uniformly, the problem is
ll-posed and an accurate image cannot be reconstructed simply
y inverting the Fourier transform. Instead, when inverting the
easuring process directly as described a so-called dirty image is

btained: a reconstruction of the sky brightness convolved with the
© 2023 The Author(s) 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Learned interferometric imaging for SPIDER 761 

Figure 1. A diagram of a SPIDER instrument design proposed with 37 PICs 
with lenslets attached to them. Image credit: Kendrick et al. ( 2013 ). 
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oint spread function (PSF) of the telescope configuration. In order 
o reco v er an accurate image of the sky brightness, techniques to
e gularized inv erse problems are typically considered. 

One method for solving this inverse problem is variational reg- 
larization. Variational regularization techniques combine a data 
delity component relative to a forward model with a regularizer 

n order to constrain and stabilize the problem. Regularizers for 
hese algorithms encode prior information about the images. An 
xample of modern model-based iterative methods applied to radio 
nterferometry can be found in Pratley et al. ( 2018 ), which adopt
onv e x optimization techniques to solve the variational regularization 
ptimization problem. An application of these techniques to SPIDER 

maging can be found in Pratley & Mcewen ( 2021 ). While these
echniques can be distributed to reduce the reconstruction time 
Pratley et al. 2019 ), they are computationally expensive as they 
 v aluate the measurement operator that models the instrument at 
ach iteration of the optimization process. Besides the computational 
ost of these algorithms, they also adopt handcrafted priors (e.g. 
 1 sparsity in a wavelet representation) that, while general, are not 
ailored to the images of interest. 

An alternative to model-based algorithms, such as variational regu- 
arization, are data-driven algorithms that learn the prior information 
rom training data. Since the prior is implicitly specified by the 
raining data, data-driven methods are typically able to achieve higher 
econstruction quality than by using handcrafted priors, provided the 
raining distribution matches the target distribution well. Learned 

ethods that are completely independent of the measurement oper- 
tor and attempt to learn a direct mapping from measurements to 
arget image, ho we ver, are generally not ef fecti ve. Thus, learned

ethods typically combine some model-based information, like 
he measurement operator, with prior information learned from 

raining data. Learned data-driven approaches broadly fall into three 
ategories, differentiated by the degree to which model-based infor- 
ation such as the measurement operator is encoded or leveraged. 
earned regularization methods (e.g. Lunz, Öktem & Sch ̈onlieb 
018 ; Li et al. 2020 ) are iterative in nature and make full use of the
easurement operator in each iteration; consequently, they achieve 

xcellent reconstruction quality by exploiting full knowledge of the 
easurement operator, along with learned prior information, but are 

enerally highly computationally demanding. Learned sequential 
ethods (e.g. Jin et al. 2017 ), on the other hand, simply pre- and/or
ost-process data with learned models in observation and/or image 
pace; consequently, while the y nev ertheless pro vide good quality 
econstructions they are limited by the fact that they only e v aluate
he measurement operator very few times (sometimes just once). 
his ho we ver does make these methods substantially more efficient
omputationally. Learned iterative methods (e.g. Adler & Öktem 

017 ), also called unrolled methods, provide a balance by designing
 learned model that attempts to unroll a small number of iterations
f iterative approaches, encoding the measurement operator into the 
odel; consequently, the y typically achiev e superior reconstruction 

uality to learned sequential methods exploiting greater knowledge 
f the measurement operator and are more computationally efficient 
han learned regularization methods. 

Many such methods were originally proposed in the medical 
maging context (e.g. computed tomography [CT], magnetic reso- 
ance imaging [MRI], photoacoustic tomography [PAT]) and are 
ased on deep learning approaches (e.g. Adler & Öktem 2017 ,
018 ; Arridge et al. 2019 ). In the field of radio astronomy, learned
mage reconstruction techniques were first considered by McEwen 
 Allam, Jr (Allam 2016 ), where superresolution convolutional 

eural networks (CNNs, Dong et al. 2016 ) were applied to post-
rocess dirty radio interferometric images. These networks were 
onsidered for cases where the exact telescope PSF is known, as
ell as for the PSF-unaware case, highlighting the potential of 

earning a generalized network that works with unseen telescope 
onfigurations. Although, performance was relatively poor for this 
udimentary approach. More recent applications of learned post- 
rocessing methods in radio astronomy have been considered using 
earned denoisers (Terris et al. 2019 ), convolutional autoencoders 
Gheller & Vazza 2021 ), and superresolution networks (Connor et al.
022 ). The use of plug-and-play (PnP, Venkatakrishnan, Bouman & 

ohlberg 2013 ) denoisers within iterative reconstruction methods 
as also been considered for radio interferometric imaging (Terris 
t al. 2022 ), although such approaches still require many e v aluations
f the measurement operator during imaging. 
While we draw inspiration from these prior works on learned 

maging for interferometry, in this paper we develop new learned 
maging techniques, specifically targeting the SPIDER instrument. 
ur primary goal is reducing computational cost, while of course still

nsuring high-quality reconstructions. Reducing the computational 
ost of reco v ering images from raw SPIDER measurements would
pen up the possibility of real-time imaging with SPIDER, which 
ould afford numerous new applications. Consequently, we develop 
 learned sequential method that requires only a single e v aluation
f the measurement operator. While reconstruction quality for this 
ethod is similar to current state-of-the-art variational regulariza- 

ion techniques, computational time is orders of magnitude faster. 
e also develop a learned iterative method, trading off a small

ncrease in computational time compared with the learned sequential 
ethod, but that nevertheless remains orders of magnitude faster 

han traditional approaches, while achieving a further impro v ement 
n reconstruction quality. 

The remainder of the paper is structured as follows. Section 2
ntroduces the measurement process of interferometric imagers and 
he particular imaging configuration of the SPIDER instrument, as 
ell as discussing the inverse imaging problem. Variational and 

earned approaches for the inverse imaging problems are re vie wed
n Section 3 . In Section 4 , we present two approaches to model
he SPIDER instrument: alongside the standard non-uniform Fourier 
ransform approach considered previously (Pratley & Mcewen 2021 ), 
e also introduce a new modelling approach for SPIDER based on

he Radon transform. In Section 5 , we propose our learned methods
or reconstruction from interferometric measurements. Section 6 
 v aluates the performance of the reconstruction methods when 
pplied to natural images, their robustness to additional noise, and 
RASTAI 2, 760–778 (2023) 
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R

Table 1. The parameters of the SPIDER concept design 
proposed in Kendrick et al. ( 2013 ). 

Parameter Value 

Spectral range 500–900 nm 

Lenslet diameter 8.75 mm 

Longest baseline 0.5 m 

Number of lenslets per PIC card 24 
Number of PIC cards 37 
Number of spectral bins 10 
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Figure 2. Left panel: The physical locations of the lenslets of the 2D 

interferometer as detailed in the design proposed in Kendrick et al. ( 2013 ). 
The lenslets on each of the radial spokes are mounted to their respective PIC. 
Right panel: The measured baselines of the interferometric measurements 
between pairs of lenslets on the PICs of the SPIDER instrument. The amount 
of baselines is increased by measuring at different spectral frequencies. Note 
that the measurements all lie in the same direction as the directions of the 
spokes, since measurements are only made using pairs of lenslets on 1 PIC. 
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eneralization potential of these methods to smaller data sets of
alaxy or satellite images. Finally, concluding remarks are made in
ection 7 . 

.  SPIDER  INSTRU MENT  

he SPIDER instrument measures incoming light through pairs of
eparated lenses and combines it in wav e guides on a PIC chip
o form interferometric baselines. All the operations to make the
nterferometric measurements are performed on the chip, resulting
n a small form-factor for the system. The concept design introduced
n Kendrick et al. ( 2013 ) uses a linear array of lenslets attached to
ne PIC chip to measure several baselines using a one-dimensional
1D) interferometer. Several of these so-called spokes are then
ounted radially resulting in a 2D sampling pattern. While in typical

nterferometers the information of all receivers can be combined into
nterferometric measurements, resulting in a total of N ( N − 1)/2
easurements for N lenslets, in the SPIDER design lenslets can only

e combined within one PIC chip, resulting N /2 baselines per PIC
odule. To increase the number of baselines gathered from one PIC

ard, different wavelengths of light are measured. Because the spatial
requency measured depends on the separation of the lenslets and the
avelength of the light, the number of baselines is multiplied by the
umber of wavelength bins observed. The technique of incorporating
pectral information from measurements at different wavelengths
n a single reconstruction is called multifrequency synthesis and is
ommon in radio interferometry (Sault & Conway 1999 ). 

By mounting multiple PIC chips as radial spokes on a disc, a 2D
nterferometer is created. In doing so a radial sampling profile is
reated for the uv -plane. In the concept of Kendrick et al. ( 2013 ), 37
pokes of PICs with 24 lenslets each are used. The measured light
requency spectrum is from 500 to 900 nm with 10 spectral bins.
his results in 120 baselines per spoke and a total of 4440 measured
ourier components. The parameters for the configuration used by
endrick et al. ( 2013 ) can be found in Table 1 and the lenslet layout

nd the uv -sampling are shown in Fig. 2 . 
The interferometric measurements at the baseline (spatial) fre-

uency ξ = ( u, v) represent samples of the 2D Fourier transform
f the image f ( χ), with spatial coordinate χ , as given by the van
ittert–Zernike theorem (Zernike 1938 ): 

ˆ 
 ( ξ ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

f ( χ) e −i 2 πχ ·ξ d χ , (1) 

hich is a continuous unitary Fourier transform of the signal. The
aselines are determined by the spatial distance between the lenslets
n the PIC with respect to the observed wavelength of the light.
o reco v er an image from the F ourier measurements one needs the

nverse of equation ( 1 ), 

 ( χ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

ˆ f ( ξ ) e i 2 πχ ·ξ d ξ , (2) 
ASTAI 2, 760–778 (2023) 
hich is only possible in theory when one has complete knowledge
f the continuous Fourier representation ˆ f ( ξ ). In practice this is not
he case. 

The approaches for modelling the SPIDER instrument introduced
n Section 4 require an (upsampled) discrete Fourier transform
DFT). The unitary DFT for an N 1 × N 2 image is an operator
apping from R 

N 1 ×N 2 → C 

M 1 ×M 2 , we henceforth use the same f̂ 
otation for the continuous and DFT as the meaning will be clear
rom the context. The unitary DFT is defined by 

ˆ 
 ( ξ kl ) = 

1 √ 

N 1 N 2 

N 1 ∑ 

i= 1 

N 2 ∑ 

j= 1 

f ( χ ij ) e 
−i χ ij ·ξkl , (3) 

nd the unitary inverse DFT by 

 ( χ ij ) = 

1 √ 

M 1 M 2 

M 1 ∑ 

k= 1 

M 2 ∑ 

l= 1 

ˆ f ( ξ kl ) e 
i χ ij ·ξkl . (4) 

The interferometric measurement process (equation 1 ) can be
ritten in the compact, discretized form 

y = � x + n , (5) 

here the linear measurement operator � : X → Y , maps the un-
nown image x ∈ X ⊂ R 

N to the set of noisy measurements y ∈ Y ⊂
 

M (here Fourier components of the weighted sky-brightness), with
n ∈ Y ⊂ C 

M some type of measurement noise. The interferometric
easurement operator corresponds to a non-uniformly sampled
ourier transform. 
The limited number of lenslets of the telescope results in a limited

ampling of the uv -plane. Since the Fourier domain is sampled
ncompletely, the measurement operator is ill-posed, and it cannot
imply be inverted to find a solution to the inverse problem. Because
f the ill-posedness of the operator, prior information on the solution
s needed to regularize the inversion. Therefore, approaches such as
parse regularization are needed to stably reco v er a solution for the
econstruction. Underlying the sparse regularization is the idea that
atural signals (e.g. astronomical images) are sparse or compressible
n a suitable basis or frame (e.g. wavelet bases). 

.  I NVERSE  I MAG I NG  APPROACHES  

e briefly recall the state-of-the-art variational techniques that are
pplied to solve the interferometric imaging problem and how these
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ethods can be enhanced or replaced by using learned approaches 
hat make use of deep learning. 

.1 Variational regularization 

o reco v er a solution to the inv erse problem stated in equation ( 5 ), we
nd a solution for x that trades off matching the data and the prior

nformation encoded in the regularizer. Variational regularization 
pproaches do this by posing an appropriate optimization problem, 
hich is then often solved by proximal optimization algorithms. 

.1.1 Optimization problems 

rading off data fidelity and prior information can be achieved by 
btaining a solution to the following minimization problem: 

x � = arg min 
x ∈ X 

L ( � x , y ) + λS( x ) , (6) 

here λ is the regularization parameter, and L ( � x , y ) and S( x ) are
 data fidelity and regularization functional, respectively. 

A common optimization strategy is to use a regularizer that 
romotes sparsity in a particular frame. The signal x ∈ R 

N can be 
epresented in a dictionary � ∈ R 

N×D by x = � α, where α ∈ R 

D . 
atural signals typically exhibit stronger sparsity if the dictionary 

s redundant, i.e. D > N (Gribonval & Nielsen 2003 ; Bobin et al.
007 ; Starck, Murtagh & Fadili 2010 ). It is therefore often beneficial
o use dictionaries which are a concatenation of different basis of
rames, e.g. Dirac and Daubechies wavelets (Carrillo, McEwen & 

iaux 2012 ; Carrillo et al. 2013 ). 
The minimization problem can be expressed in the synthesis 

ormulation, where the image x � is synthesized from dictionary 
lements by x � = � α� . Alternatively, the problem is expressed in the 
o-called analysis setting where the image x � is reco v ered directly 
hile promoting the sparsity of � 

∗x � . If � is a tight frame, the
djoint � 

∗ is equal to the self-inverse � 

† and the two formulations 
re equi v alent. Ho we v er, in a general o v ercomplete dictionary (such
s a concatenation of two bases) the analysis formulation is often 
ound to yield superior reconstruction quality (e.g. Carrillo et al. 
012 , 2013 ). 
The data fidelity term is typically the � 2 -norm of the residuals

which can also be interpreted as the log-likelihood for the case of
aussian noise). The optimization functional in the unconstrained, 

nalysis setting then reads 

x � = arg min 
x ∈ X 

‖ � x − y ‖ 2 � 2 + λ‖ � 

† x ‖ � 1 , (7) 

ssuming identity covariance (typically measurements are weighted 
o have unit variance; as discussed in Section 4.1 ). 

In the unconstrained setting, the optimization depends on a good 
hoice of the hyperparameter λ to find a good balance between the 
ata fidelity and the sparsity of the signal. The problem can also be
ormulated as a constrained optimization problem 

x � = arg min 
x ∈ X 

‖ � 

† x ‖ � 1 , s.t. ‖ � x − y ‖ � 2 < ε, (8) 

here we seek the most sparse � 

† x that satisfies the constraint with 
ome ε > 0 on the data misfit. The hyperparameter ε can be estimated
rom an estate of the noise level (Pratley et al. 2018 ). 

.1.2 Proximal optimization algorithms 

he optimization problems described in the previous subsection can 
ften be solved by proximal optimization algorithms that leverage 
 proximity (or proximal) operator. The proximity operator of a 
proper , semi-continuous) con v e x function λh (with λ > 0) maps
 ∈ R 

N to a unique solution to the (strongly conv e x) minimization
roblem 

rox λh ( v ) = argmin 
x ∈ X 

λh ( x ) + 

1 

2 
‖ x − v ‖ 2 � 2 . (9) 

he parameter λ sets the balance between the squared � 2 -distance 
o v and the value of h . Many common proximal operators admit
n analytical solution or at least a linear time iterative solution. The
xed point of a proximal operator is the global minimum of h (Boyd
 Vandenberghe 2004 ; Combettes & Pesquet 2011 ). 
Proximal splitting methods use proximal operators to estimate the 

olution to the inverse problem by splitting the objective function in
eparate steps for the different optimization functionals. A review 

f different proximal splitting methods can be found in Combettes 
 Pesquet ( 2011 ). The simplest proximal splitting algorithm is the

roximal gradient method, which consists of a gradient update step, 
ollowed a proximal update step: 

x i+ 1 = prox λS ( x i − ∇L ( � x i ) ) . (10) 

n this manner, sparsity-promoting priors S( x ) that are not differen-
iable can be supported (e.g. � 1 sparsity in a wavelet basis). 

Proximal splitting methods have found numerous applications 
o radio interferometric imaging problems in astronomy: Douglas–
achford splitting (e.g. Carrillo et al. 2012 , 2013 ), simultaneous-
irection method of multipliers (e.g. Carrillo, McEwen & Wiaux 
014 ), alternating direction method of multipliers (e.g. Pratley et al.
018 ; Pratley & Mcewen 2021 ), and the proximal gradient method
Cai, Pereyra & McEwen 2018a , b ; Cai, Pratley & McEwen 2019 ).
esides reconstruction, proximal methods have also been developed 

o perform uncertainty quantification for radio interferometric imag- 
ng (Cai et al. 2018a , b ; Cai, McEwen & Pereyra 2022 ). 

In this paper, we compare our new learned methods with a primal
ual hybrid gradient (Chambolle & Pock 2011 ) method for finding a
olution to the constrained analysis problem (equation 8 ) as described 
n Onose et al. ( 2016 ). For the dictionary representation of our signal
e chose a representation similar to the one used in the sparsity

veraging reweighted analyis (SARA; Carillo et al. 2012) , i.e. a
ombination of the Dirac basis as well as the first eight Daubechies
avelets, Db1–Db8 (Daubechies 1992 ), which was shown to work 
ell for astronomical reconstruction (Carrillo et al. 2012 , 2013 ). 

.2 Learned methods 

raditional approaches handle the ill-posedness of the inverse prob- 
ems by using prior information through the use of handcrafted regu-
arizers that, while general, fail to capture detailed prior information 
f real data. Learned methods attempt to o v ercome this by instead
nforcing the prior information implicitly specified by training data, 
nsuring that the prior information promotes images which are in 
ome sense similar to the training data. 

Since learned methods rely on learning the prior information for 
he imaging problem from the data they are provided, reconstructive 
ower depends on the quality and quantity of the training data
rovided. Furthermore, learned methods have to be trained before 
 v aluation can take place, a process that may take some time, yet
nly has to be performed once. Once training is done, imaging can
hen be performed rapidly. If training data in the form of input-
utput pairs are available, the network can be trained in a supervised
pproach, with the network receiving the input measurements and 
heir respective targets. When input-output pairs are not available, 
RASTAI 2, 760–778 (2023) 
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he networks can be learned adversarially, where the network is
rained using a distribution of measurements to fit an independent
istribution of target outputs, which is sometimes interpreted as semi-
upervised learning. If no training outputs are available the methods
eed to be learned in a self-supervised way. 

Learned methods that are completely independent of the mea-
urement operator and learn a direct mapping from measurements
o target are generally not ef fecti v e since the y are difficult to train
nd require huge volumes of training data (Adler & Öktem 2017 ).
herefore, most learned approaches incorporate the measurement
perator in some capacity to encode or leverage the mapping from the
easurement to the reconstruction space. The learned network is then

onstructed around that. As briefly o v erviewed in Section 1 , learned
ata-driven imaging approaches broadly fall into three categories,
ifferentiated by the degree to which model-based information such
s the measurement operator is encoded or leveraged. By making
reater use of the measurement operator superior performance can
ften be achieved but at the cost of increased computational time.
e subsequently re vie w each of these three classes of approach. 

.2.1 Learned regularization 

ne method for learning the prior information from training data
s by using a learned regularizer in conjunction with traditional
ptimization schemes. These algorithms aim to replace the regu-
arizer S in equation ( 6 ) with a learned regularizer, encoding the
rior information in the training data. 
A common approach is to replace the application of the proximal

perators with a learned map to compute the update. These methods
ypically adopt PnP denoisers that are used instead of a proximal
pdate step (Venkatakrishnan et al. 2013 ; Ryu et al. 2019 ). A variant
f a PnP denoiser was applied to radio interferometry by Terris et al.
 2022 ). 

Various other pioneering approaches to learned regularization have
lso been considered. The regularizer can be formed as the norm of a
earned dictionary that translates to a sparse representation of the data
Xu et al. 2012 ) or by using a constraint based on a learned scattering
ransform (Dokmani ́c et al. 2016 ) in place of a traditional regularizer.
lternatively, methods are used that implement deep neural networks

o act as regularizers (e.g. Kobler et al. 2020 ; Li et al. 2020 ) as well as
ethods that train adversarially learned neural networks (e.g. Lunz

t al. 2018 ; Mukherjee et al. 2020 ). 
While learned regularization approaches often achieve excellent

econstruction quality since they make full use of the measurement
perator, along with learned prior information, they are computa-
ionally demanding since the full measurement operated must be
 v aluated for each iteration. 

.2.2 Learned sequential methods 

n alternative approach is to consider a model that is split up into
 sequence of operations. Sequential models are a composition of a
earned operator acting in the data space C θ : Y → Y , an adjoint or
seudo-inverse mapping from the data to the reconstruction space,

A : Y → X, and a learned operator acting in the image space B θ :
 → X, where learned operators depend on the parameters θ (e.g.
heng et al. 2020 ): 

 

† 
θ = B θ ◦ A ◦ C θ . (11) 

When either the operator in the reconstruction domain, B θ , or
n the data domain, C θ , is set to be the identity operator, we
ASTAI 2, 760–778 (2023) 
eco v er learned pre-processing or learned post-processing methods,
espectively. Most sequential methods are of the post-processing
ype since they are relatively easy to train as learning of the network
s decoupled from the mapping from measurement to reconstruction
pace; the post-processing network can thus be trained independently,
educing training time substantially (e.g. Chen et al. 2017 ; Jin
t al. 2017 ; Yi & Babyn 2018 ). Post-processing methods have been
sed in astronomy using superresolution networks (Allam 2016 ;
onnor et al. 2022 ), denoisers (Terris et al. 2019 ), and convolutional
utoencoders (Gheller & Vazza 2021 ). 

Post-processing methods only apply the adjoint or pseudo-inverse
f the measurement operator once and so are highly computationally
f ficient. Ho we ver, since the measurement operator is not contin-
ally leveraged, reconstruction quality suffers as a consequence.
o compensate sequential models typically employ more elaborate
etwork architectures (such as U-Nets; Ronneberger, Fischer & Brox
015 ) than those adopted in learned iterative methods. Neverthe-
ess, learned post-processing approaches can sometimes struggle to
chieve the reconstruction quality of learned iterative approaches. 

.2.3 Learned iterative methods 

earned iterative methods unroll a small, fixed number of iterations
f an iterative solver, e.g. proximal gradient method, and replace
he proximal operators with learned CNNs (Gregor & LeCun 2010 ).
he CNNs used are typically small feed-forward networks with just
 few convolutional layers (e.g. Adler & Öktem 2017 ; Putzky &
elling 2017 ; Yang et al. 2017 ), in contrast to the architectures

sed in sequential models. To turn the proximal gradient method
f equation ( 10 ) into a learned method, we replace the proximal
perator with a learned network � θ,i : 

x i+ 1 = � θ,i ( x i − ∇L ( � x i ) ) , (12) 

here � θ,i can be a different network for each iteration k or
ne network, � θ,i = � θ . The latter scenario results in learning an
pproximation to the proximal operator. 

Hauptmann et al. ( 2020 ) propose e v aluating the operator at
ifferent, increasingly finer resolutions/scales such that the full
esolution operator only needs to be e v aluated once. Combining this
ith a multiscale neural net like the U-Net (Ronneberger et al. 2015 )

uts down evaluation time (and thus training time) significantly,
hile also reducing memory requirements. Other advancements are

onsidered by learning adversarially trained versions of existing
odels (Mukherjee, Öktem & Sch ̈onlieb 2021b ). Also, combining

pproaches using learned regularizers with learned iterative methods,
rovides algorithms that are closer to the traditional optimization
ethods and allow proving rigorous convergence results (Mukherjee

t al. 2021a ). Finally, the inclusion of the explicit measurement
perator in the learned iterative models impro v es the robustness
nd generalizability (Boink, Manohar & Brune 2020 ), while at the
ame time reducing the number of trainable parameters and hence
educing the requirement of large training data volumes. 

Since learned iterative methods only unroll a small number of
terations, the measurement operator is only e v aluated sparingly,
aking the learned iterative approaches typically faster than the

terativ e solv ers on which they are based. While the integration of
he measurement operator in the network does require its e v aluation
uring training, resulting in considerably longer training times than
or the sequential models, encoding the measurement operator in the
odel typically results in superior performance to learned sequential
ethods, for only a modest increase in computational time. 
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.  M O D E L L I N G  T H E  SPIDER  INSTRU MENT  

n order to reconstruct an image from interferometric measurements, 
e need a model for our measurement process in the form of a
easurement operator. The accuracy of the measurement operator is 
 critical factor for the accuracy of the reconstruction and its com-
utational complexity is reflected in both training and reconstruction 
ime. 

For interferometric imaging, the measurement process is given by 
quation ( 1 ). In a discretized version of equation ( 1 ), following the
otation of equation ( 5 ), the measurement operator � : R 

N → C 

M 

s a non-uniform discrete Fourier transform (NUDFT) mapping an 
mage in R 

N to M non-uniformly distributed Fourier measurements. 
For an image x = f ( χ), with spatial pixel coordinates χ ij at the

 th and j th pixels of the image, and Fourier measurements y = 

ˆ f ( ξ )
t non-uniformly distributed Fourier coordinates ξ k = ( u k , v k ) (in
ontrast to equations 3 and 4 ), the unitary NUDFT can be expressed
s 

ˆ 
 ( ξ k ) = 

1 √ 

N 

N 1 ∑ 

i= 1 

N 2 ∑ 

j= 1 

f ( χ ij ) e 
−i χ ij ·ξk , (13) 

hich is a finite sum o v er all pix els ( i , j ) of an N 1 × N 2 image with
 total number of N = N 1 × N 2 pixels. 

To construct the dirty image f D 

( χ), the adjoint of the measurement
perator is applied, which maps from the non-uniformly distributed 
ourier measurements to a uniformly sampled image 

 D 

( χ ij ) = 

1 √ 

N 

M ∑ 

k= 1 

ˆ f ( ξ k ) e 
i χ ij ·ξk . (14) 

We can approximate the inverse Fourier transform (equation 2 ) 
y e v aluating a weighted, finite Fourier series at the non-uniformly
istributed Fourier coordinates. The accuracy of the resulting pseudo- 
nverse DFT is determined by the choice of sampling ξ k and the 
orresponding measurement weights w( ξ k ) and is given by 

 ( χ ij ) ≈
M ∑ 

k= 1 

w( ξ k ) ˆ f ( ξ k ) e 
i χ ij ·ξk . (15) 

The complexity of a naive realization of equations ( 13 ), ( 14 ),
nd ( 15 ) would be O( NM); ho we ver, ef ficient numerical NUDFT
chemes make use of interpolation to map the non-uniformly 
istributed measurements to a uniformly sampled grid and take 
dvantage of the fast Fourier transform (FFT) to reduce complexity. 

In this section, we introduce two efficient methods for modelling 
he measurement operator of the SPIDER instrument. First, we 
onsider the non-uniform fast Fourier transform (NUFFT, Duijndam 

 Schonewille 1997 ), which can be used for arbitrary sampling 
istributions. Second, we present a new approach that exploits the 
pecific sampling distribution of the SPIDER instrument, making use 
f similarities of the problem to that of parallel Radon transform of
-ray tomography. 

.1 Non-uniform fast Fourier transform 

sing FFTs with a (de)gridding interpolation operator to approxi- 
ate the non-uniformly distributed Fourier measurements lowers the 

omputational cost significantly. The standard operator used in radio 
nterferometry can be expressed as a composition of operators (e.g. 
ratley et al. 2018 ): 

 = G F Z D , (16) 

here D : R 

N → R 

N is an operator that corrects for the gridding 
peration (discussed further below), Z : R 

N → R 

α2 N is a zero- 
adding operator that zero pads the image in the spatial dimension
o provide oversampling of a factor α in each direction in the
ourier domain, F : C 

α2 N → C 

α2 N is a 2D unitary FFT operator, 
nd G : C 

α2 N → C 

M is the degridding operator that interpolates the 
easurements off of the uniform Fourier grid via convolution with 
 spreading kernel centred at the irregularly spaced measurements 
oints in the Fourier domain. The operator D corrects for the 
onvolution with this spreading kernel by a pointwise division of 
he image with the Fourier transform of the spreading kernel. 

Equation ( 16 ) describes the measurement process, going from the
bservable to the measurement space. The adjoint of this operation, 
 

∗ : C 

M → R 

N is readily obtained as 

 

∗ = D Z 

∗ F 

† G 

∗, (17) 

here we made use of the self-adjointness of the convolution correc-
ion operator ( D 

∗ = D ). The gridding operation G 

∗ : C 

M → C 

α2 N 

onvolves the non-uniformly distributed measurements with the 
preading kernel to grid them on a uniformly sampled mesh, on
hich the inverse FFT, F 

† : C 

α2 N → C 

α2 N , is applied to obtain an
mage, which is restricted to R 

N via symmetric cropping through the 
perator Z 

∗ : R 

α2 N → R 

N , and deconvolved via pointwise division 
ith the Fourier inverse of the spreading kernel, using the operator D ,

o correct for the gridding operation. 
The efficiency of the NUFFT schemes hinges upon a suitable 

hoice of the spreading kernel, in particular its localization in the
patial and frequency domains and the ease of computing the Fourier
ransform of the kernel for deconvolution. The kernel needs to have a
mall support in frequency space to be computationally inexpensive, 
hile also having a small support in the image domain as to minimize

he effects of aliasing. Here, we adopt the Kaiser–Bessel (KB) 
ernel (Jackson et al. 1991 ; Fessler & Sutton 2003 ). The kernel
s truncated in the Fourier domain to limit its support and therefore
ts computational cost. Since these kernels are linearly separable, i.e. 
he kernel can be written ˆ c ( u, v) = ˆ c ( u ) ̂ c ( v), we consider the kernel
n only one dimension: 

ˆ  ( u ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
J 

I 0 

( 

β

√ 

1 −
(

2 u 
J 

)2 
) 

I 0 ( β) for | u | ≤ J / 2 , 

0 for | u | > J / 2 , 

(18) 

here I 0 is the zeroth-order modified KB function, β determines the 
hape of the kernel, and J the support of the kernel. The correction
or applying this convolutional kernel can be calculated analytically 
y taking the inverse Fourier transform of the kernel to get (Jackson
t al. 1991 ; Fessler & Sutton 2003 ) 

( x) = 

⎡ 

⎣ 

sin 
(√ 

π2 x 2 J 2 − β2 
)

√ 

π2 x 2 J 2 − β2 

⎤ 

⎦ 

−1 

. (19) 

he correction operator can then be found by calculating 

( χ ij ) = c 

(
i 

N 1 
− 1 

2 

)
c 

(
j 

N 2 
− 1 

2 

)
. (20) 

Using β = 2.34 J for the spread of this KB kernel gives similar
erformance to the optimal min–max interpolation kernel proposed 
y Fessler & Sutton ( 2003 ). 
The pseudo-inverse of the NUFFT is obtained by including the 
easurement weights in the Fourier sum: 

 

† = � 

∗W = D Z 

∗ F G 

∗W , (21) 

here W is a diagonal matrix with elements W kk = w( ξ k ) given by
he weight for each of the measurements. 
RASTAI 2, 760–778 (2023) 
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In radio astronomy, interferometric measurements are typically
eighted according to one of three weighting schemes: natural,
niform, or robust weighting (Taylor et al. 1999 ). Natural weighting
aximizes the sensitivity of the observation and weights each

isibility by the uncertainty on the measurement W 

Natural 
k,k = σ−2 

k ,
ith σ k the uncertainty on the measured visibility y k . Natural
eighting is akin to statistical whitening of data and ensures unit
ariance of the uncertainty on the measurements and gives the highest
ignal-to-noise ratio for detecting weak sources. 

Since there is typically a higher density of samples near the ( u ,
 ) origin in radio interferometry, natural weighting emphasizes
ow-frequency measurements, which can be undesirable when
maging sources with both large- and small-scale structure. Uniform
eighting is an alternative weighting scheme that accounts for

his by weighting the density of the sampling distribution by
W 

Uniform 

k,k = σ−2 
k N 

−1 
s ( k), where N s ( k ) is typically the number of

easurements in a symmetrical region (either square or circular)
ith width s around the measurement y k . If the measurement
ncertainties are varying this can be replaced by the sum of the
eliability weights in this region N s = 

∑ 

k ′ σ
−2 
k ′ , where k ′ are the

ndices of the measurements in the local region around measurement
 . The width s of the region is typically chosen to be the size of the
ize of the elements of the Fourier grid. 

Lastly, robust weighting considers a trade-off between natural
nd uniform weighting, controlled by a robustness parameter. In
his paper, we use uniform weighting and weight the measurements
ccording to the density of the sampling distribution as well as their
ncertainties. 

.2 Sub-scale operators 

n approach to reduce the computational cost of the measurement
perator is to e v aluate it at a lower resolution and restricted Fourier
pace. The forward and adjoint of the measurement operator can
e e v aluated at a series of scales by applying a filter bank of low
ass and high pass partition of unity filters; see Pan & Betcke
 2022 ) for the details of such filter banks. Instead of using smooth
artition of unity filters as used in Cand ̀es et al. ( 2006 ) and Pan &
etcke ( 2022 ), we use binary 0–1 partition of unity filters. Since the
UFFT e v aluates the FFT on an upsampled grid by zero-padding the

mage, the periodicity in the image domain and the corresponding
ecay of the Fourier coefficients are reinstated. We refer to
hese sub-scale measurement operators as � i : R 

N i → C 

M i , its
djoint � 

∗
i : C 

M i → R 

N i , and its pseudo-inverse � 

† 
i : C 

M i → R 

N i ,
perating on the reduced image scale N i and the number of
easurements restricted to the reduced Fourier space, M i . Since

hese sub-scale operators are e v aluated on a smaller image scale
s well as a restricted Fourier space, they are considerably more
omputationally efficient than the full-scale measurement operators.

.3 NU-Radon method 

or the NUFFT, the measurement weights are determined by consid-
ring the 2D sampling density of the instrument. In this section, we
ropose an alternate, principled approach to derive these weights
ased on the similarities of the SPIDER sampling to the sampling
nduced by the 2D Radon transform. 

The Radon transform, 

R f ( r, φ) = R φf ( r) = 

∫ 
x·φ= r 

f ( x )d x , (22) 

odels the linear attenuation of photons passing through an object.
t maps the attenuation to a family of integrals along parallel lines,
ASTAI 2, 760–778 (2023) 
arametrized in polar coordinates φ, the angle of the projection, and
 the radial distance from the origin along that line. The Fourier slice
heorem 

ˆ R φf ( ρ) = 

ˆ f ( ρ, φ) , (23) 

xpresses the equi v alence of the 2D Fourier transform in polar coor-
inates and the 1D Fourier transform along the detector coordinate of
he Radon transform, where ρ is the distance in the Fourier domain
long the radial spoke at angle φ. 

The adjoint operation of the Radon transform is the back-
rojection which can be used to reco v er the dirty reconstruction
hrough 

 D 

( r, φ) = 

∫ π

0 

∫ ∞ 

−∞ 

ˆ R φf ( ρ) e i 2 πrρ d ρ d φ. (24) 

he inverse of the radon transform is the filtered back-projection and
ncludes a ramp filter | ρ| , which corresponds to the Jacobian of the
hange from Cartesian to polar coordinates and which boosts the
ower of high-frequency measurements: 

 ( r, φ) = 

∫ π

0 

∫ ∞ 

−∞ 

ˆ R φf ( ρ) e i 2 πrρ | ρ| d ρ d φ. (25) 

Using the Fourier slice theorem, we can express the NUDFT (equa-
ion 13 ) in terms of the Radon transform, and in polar coordinates,
y 

ˆ 
 ( ξ k ) = 

ˆ f ( ρk , φk ) = 

1 
4 
√ 

N 

√ 

N ∑ 

i= 1 

R φk 
f ( r i ) e 

−i r i ρk , (26) 

here the measurements are gathered by taking a 1D NUDFT of the
adon transform of the signal along a spoke at angle φk and 

√ 

N 

orresponds to the diameter of the circle inscribed into the square
mage. Similarly, we discretize the back-projection (equation 24 ) to
btain the dirty reconstruction 

 D 

( χ) = 

1 
4 
√ 

N 

P ∑ 

p= 1 

Q ∑ 

q= 1 

ˆ R φp 
f ( ρq ) e 

i ρq χ ·φp , (27) 

here we Fourier transform the Q non-uniformly distributed Fourier
easurements at radial distances ρq for each of the spokes, followed

y back-projecting the signals for each of the P projection angles φp .
Both the forward and adjoint operations of the measurement

perator use a 1D NUDFT which can be accelerated by using
de)gridding in the form of a 1D NUFFT. The combined method
f using the Radon transform and the NUFFT can be described as 

 = N R , (28) 

here R : R 

N → R 

P 
√ 

N is the Radon transform, and N : C 

M →
 

P 
√ 

N is the 1D NUFFT. Similarly, the adjoint operation is given
y 

 

∗ = R 

∗ N 

∗, (29) 

here R 

∗ : R 

P 
√ 

N → R 

N is the back-projection operation, and N 

∗ :
 

M → C 

N is the 1D adjoint NUFFT. 
To obtain the pseudo-inverse of the measurement operator, part

f the measurement weights are now informed by the ramp filter in
he inverse of the Radon transform (equation 25 ). The ramp filter
or our non-uniformly distributed measurements is calculated as
 Radon ( ξ ) = ‖ ξ‖ � 2 . The pseudo-inverse of the measurement operator

s then defined as 

 

† = R 

† N 

† , (30) 

here R 

† : R 

P 
√ 

N → R 

N is the filtered back-projection (with weights
 Radon ( ξ )), and N 

† : C 

M → C 

N is the 1D inverse NUFFT with
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Table 2. The computational complexity of the different methods for modelling the measurement operator of the SPIDER 

instrument in terms of the number of pixels N , the number of measurements M , the number of projection angles P , and 
the support of the gridding kernels in pixels J . 

Fourier transform Gridding Radon transform Total 

NUDFT O( NM) – – O( NM) 
NUFFT O( N log N ) O( MJ 2 ) – O( N log N + MJ 2 ) 
NU-Radon O( 

√ 

N log 
√ 

N ) O( MJ ) O( NP ) O( 
√ 

N log 
√ 

N + MJ + NP ) 

Figure 3. Generating a dirty reconstruction by applying the adjoint of the measurement operator, using the NUDFT, to interferometric measurements of 
the SPIDER instrument (left panel), compared with accelerated methods for approximation of the adjoint operation using the NUFFT (centre panel) and the 
NU-Radon (right panel) approaches as detailed in Sections 4.1 and 4.3 , respectively. The MSE of the two accelerated approaches compared with the NUDFT is 
shown, where the error is only calculated inside the circular aperture that limits the NU-Radon method. 
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easurements weights based on the sampling density of the lenslets 
long one spoke. 

.4 Comparison 

e implement both the NUFFT and NU-Radon methods in our 
EIA 

1 code. The NUFFT approach is implemented on the CPU using
UMPY 

2 as a backend, as well as with GPU acceleration implemented 
n TENSORFLOW . 3 The NU-Radon method is implemented by using 
 modified version of the SCIKIT-IMAGE 4 Radon transform. 

An o v erview of the computational comple xity of the algorithms
an be found in Table 2 , where the complexity is split into three
perations: calculating the Fourier transform, (de)gridding non- 
niformly distributed measurements, and computing the Radon 
ransform (when rele v ant). 5 The NUDFT is computationally the 

ost e xpensiv e approach, since the e v aluation of the DFT takes
( NM) operations. Both the NUFFT and NU-Radon reduce the 

omputational complexity by utilizing the FFT for calculating the 
ourier transform, though these gains are offset by the computational 
ost for the gridding of the measurements and/or the calculation of
he (inverse) Radon transform. 

For the particular SPIDER configuration considered ( N = 256 ×
56, M = 4440, and P = 37), the NUFFT is the best approach in
erms of computational complexity. It might be beneficial to use the 
U-Radon method when the number of measurements is large (and 
 https:// github.com/ astro-informatics/ LeIA 

 https:// numpy.org/ 
 https://www .tensorflow .org/
 https:// scikit-image.org/ 
 Recall N denotes the number of image pixels, M the number of measure- 
ents, J the support of the spreading kernel, and P the number of spokes of 

he SPIDER instrument. 

5
F

I  

S
i
o
a

herefore the computation time is dominated by the (de)gridding 
perations) or when the number of image pixels is large and the
umber of spokes is modest ( P ≤ log N ). 
Fig. 3 shows the effect of reconstructing a dirty image using the

djoint of the measurement operator applied to a set of simulated
ourier measurements taken with the SPIDER instrument. For the 
onfiguration of the SPIDER instrument, it appears that the NUFFT 

s a more accurate approximation to the NUDFT. 
Fig. 3 indicates that the dirty reconstructions are mostly dominated 

y low-frequency structures. The measurement weights used in 
he pseudo-inverse operations boost the power of high-frequency 

easurements by weighting the measurements based on the 2D 

ampling density for the NUFFT and the 1D sampling density along
ach spoke for the NU-Radon approach (which also includes the 
eights of the filtered back-projection). 
Fig. 4 compares the different pseudo-inverse implementations. 

he figure indicates that the pseudo-inv erse NUFFT pro vides a good
rade-off between introducing high-frequency information and not 
aving strong high-frequency artefacts. The pseudo-inverse NU- 
adon implementation provides sharper features, yet also includes 
ore high-frequency artefacts. In the remainder of the paper, we 

se the NUFFT approach for our experiments due to the lower
omputational cost of its implementation and its generalizability to 
ny sampling distribution for future applications. 

.  LEARNED  I NTERFERO METRI C  I MAG ING  

O R  SPIDER  

n this section, we present our two learned approaches for the
PIDER imaging problem. Both approaches reconstruct images from 

nterferometric measurements and use the adjoint or pseudo-inverse 
f the measurement operator to create an initial reconstruction. Our 
pproaches fit within the exiting learned post-processing framework 
RASTAI 2, 760–778 (2023) 
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Figure 4. Measurements are simulated from the original image from the COCO data set of natural images shown in the left-most image, using a NUFFT 

with the SPIDER sampling pattern. Generating images by applying adjoint NUFFT operation, the pseudo-inverse NUFFT operation, and the pseudo-inverse 
NU-Radon operation are shown, respectively, from left to right. 
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Figure 5. The learned post-processing approach takes the interferometric 
measurements and uses the telescope model to create an initial reconstruction, 
in our case the dirty image. This is then passed through the learned post- 
processing network to create the final reconstruction. 
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e.g. Jin et al. 2017 ), with the second method introducing a no v el
ost-processing architecture. 
The first method is a post-processing learned sequential method to

mpro v e the initial reconstruction estimated by the pseudo-inverse
nd remo v e artefacts. This approach is highly computationally
fficient, requiring only one application of the pseudo-inverse of
he measurement operator to compute the initial reconstruction. We
xpect final reconstruction quality to be good but limited since no
urther knowledge of the measurement operator is exploited beyond
he initial reconstruction. 

The second approach is a learned iterative method and differs
o the former by including updates to the reconstruction that utilize
nowledge of the measurement operator. Since additional application
f the measurement operator is required this results in a modest
ncrease in computational time compared with our post-processing
ethod. Ho we v er, we e xpect this to be offset by an increase in

econstruction quality due to further exploitation of the measurement
perator. 
We do not consider learned regularization approaches further since

he iterative nature of such approaches would result in a significant
ncrease in computational time, and our primary objective is a very
ow computational cost during imaging in order to facilitate real-time
maging with SPIDER. 

.1 Learned post-processing (U-Net) 

earned post-processing methods are a special case of the sequential
ethods discussed in Section 3.2.2 , where the learned operator

pplied in the data domain, C θ , is replaced with an identity operator.
his makes the networks easier to train as the training is performed

n the image domain without the need to invoke the measurement
perator, speeding up the training process. Our method only post-
rocesses an initial reconstruction and is in this sense similar to a
enoiser. The solution can be written as 

x � = � 

† 
θ y = � θ� 

† y , (31) 

ith � θ the learned network, and � 

† the pseudo-inverse of the
easurement operator. Fig. 5 shows a schematic representation of

his approach. 
The architecture of our network is based on the U-Net (Ron-

eberger et al. 2015 ) network architecture, which was originally
esigned for biomedical image segmentation. U-Nets can also be
sed for denoising problems by replacing the two segmentation
pecific output layers with a single output layer returning the denoised
mage. In this form, U-Net is a convolutional autoencoder with skip
ASTAI 2, 760–778 (2023) 
onnections at each of the scales. Our network includes blocks of
D convolutions with batch normalization and rectified linear unit
ReLU) acti v ation functions at each scale, followed by MaxPool
ayers to sub-sample on a downward branch. In the decoder branch,
he upsampling is achieved by transposed convolution layers. A
chematic representation of the architecture can be found in Fig. 7 . 

Our learned post-processing is computationally efficient as it
nly e v aluates the measurement operator once per image for both
 v aluation and training. Ho we v er, this also limits the e xtent to which
he network can utilize the measurement model. 

.2 Learned iterati v e method (gradient U-Net) 

n alternative approach is to apply learned iterative methods that
 v aluate the measurement operator several times to impro v e the
econstruction quality by including measurement information at
everal stages of the reconstruction process. While some methods
n this category closely mimic optimization methods, the method we
ropose takes inspiration from multiscale methods. Our approach,
he gradient U-Net (GU-Net), expands on the U-Net architecture by
alculating the gradient of the data fidelity after every downsampling
nd after every upsampling operation, as well as after the input
ayer, to incorporate measurement information at every scale of the
etwork. Fig. 6 shows a diagram summarizing the learned iterative
econstruction process. How we implement the network is described
elow and a schematic representation of the network can be found
n Fig. 7 . 

In order to add this measurement information at different scales
f the network, we use sub-scale operators, � i : R 

N i → C 

M i (see
ection 4.2 ), where the size of the image space N i decreases by
owers of four (the images are halved in each direction; N i = N /4 i ),
nd the size of the measurement space M i is determined by applying
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Figure 6. For the learned iterative approach, the interferometric measure- 
ments are used to create an initial reconstruction using the telescope model, in 
our case this results in the dirty image. This is then used as input for the learned 
iterative network. At several stages of the network, the telescope model is 
used together with the original measurements to provide model-based updates 
to the reconstruction. 
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 low-pass filter that restricts the measurements to { ( u , v ): u ≤
 max /2 i ∧ v ≤ v max /2 i } , where u max and v max are the longest baselines
bserved in each direction. 
The first method to incorporate the measurement operator into the 

econstruction process is to calculate the gradient of the data fidelity 
t each scale of the network: L ( � i x i , y i ) = 

1 
2 ‖ � i x i − y i ‖ 2 � 2 . This is

iven by 

 x i L ( � i x i , y i ) ∝ � 

∗
i ( � i x i − y i ) , (32) 

here x i ∈ R 

N i is the first channel of the current iterate at scale i
f the network and y i ∈ C 

M i is the low-pass filtered measurement 
ector of visibilities. 

By analogy to the Radon transform, the gradient does not contain 
he high-frequency features which are reinstated via the ramp filter 
n the filtered back-projection. Therefore, we also include the filtered 
radient where the high-frequency features are boosted using a 
ampling density based filter. This is analogous to taking the gradient 
f a weighted least-squares norm with the measurement weights the 
ame as the uniform weights described in Section 4.1 : 

 

f 
x i 
L ( � i x i , y i ) ∝ � 

∗
i ( W 

Uniform 

i ( � i x i − y i )) , (33) 

here W 

Uniform 

i ∈ R 

M i ×M i is a diagonal matrix with the measurement 
eights for the sub-selected measurements as the diagonal elements. 
In addition to the gradient information, we also add the scale- 

estricted dirty reconstruction (adjoint of the measurement operator 
pplied to the noisy measurements): 

x i, dirty = � 

∗
i y i . (34) 

n doing so, the network can learn an update between the dirty
econstruction, the current iterate passed down by the network, and 
he gradient and filtered gradient information based on the current 
terate. 

The measurement information encoded in the (sub-scale) gradient 
nd filtered gradient, and the dirty reconstruction is added at 
ach scale of the U-Net architecture after downsampling and after 
psampling. The added measurement information at each scale of 
he network is given by 

˜ x i = � i,θ

(
x i , ∇ x i L ( � i x i , y i ) , ∇ 

f 
x i 
L ( � i x i , y i ) , � 

∗
i y i 

)
, (35) 

here � i,θ is the learned convolutional operator to combine the 
easurement operator information. At each scale of the network, the 
radient information is calculated for the first channel of the current
terate. The learned convolutional operator takes the three channels 
gradient, filtered gradient, and dirty reconstruction) representing 
he measurement information and convolves it with a number of 
lters matching the number of channels of the current iterate in the
etwork, so as not to dilute the measurement operator information 
hen combining it with the original channels. 
Evaluating the added measurement information in equation ( 35 ) 

esults in two e v aluations of the measurement operator (one each for
he gradient and filtered gradient) and three e v aluations of the adjoint
perator (one each for the gradient and filtered gradient and one
or the scale-restricted dirty reconstruction). Since the measurement 
nformation is added after down and upsampling, this results in four
ull-scale e v aluations of the forward and six full-scale e v aluations of
he adjoint of the measurement operator for the added measurement 
nformation. An additional e v aluation of a single full-scale pseudo-
nverse of the measurement operator is also required for the initial
econstruction. 

This method is computationally more e xpensiv e than the U-Net
ost-processing method because the measurement operator has to 
e e v aluated se veral times. Ho we ver, as most of the e v aluations
f the measurement operator are at reduced scales, the impact on
econstruction time is kept to a minimum. Furthermore, inclusion 
f multiple iterations with the (albeit downsampled) measurement 
perator enhances the impact of the model on the reconstruction, 
mproving robustness and generalizability of the model. Similar 
pproaches that leverage multiscale evaluation of the forward/adjoint 
perators to reduce computational cost with application in X-ray CT 

maging were proposed in Hauptmann et al. ( 2020 ) and Trent ( 2020 ).

.  EXPERI MENTS  A N D  RESULTS  

n order to e v aluate the reconstruction performance and computa-
ional cost of the learned imaging methods proposed we perform 

econstructions on simulated measurements and compare the re- 
onstructions the ground truths. To assess reconstruction quality, 
e compute the peak signal-to-noise ratio (PSNR) to measure how 

ell the reconstruction matches the measurements and the structural 
imilarity index measure (SSIM, Wang et al. 2004 ) to assess the
tructural similarity of the reconstructions. We compare the two 
earned approaches described in Section 5 to using a reconstruction 
btained with the pseudo-inverse (equation 21 ) and a primal-dual 
ethod as described in Section 3.1.2 (the implementation uses 
ptimusPrimal 6 and runs for 300 iterations), which produces results 
n par with the current state-of-the-art in astronomical interfero- 
etric reconstruction. Specifically, we discuss the different data 

ets used, the measurement simulation process, network training, 
nd reconstruction results. Besides assessing the computational cost 
nd the reconstruction quality of the different approaches, we also 
 v aluate the robustness of the methods proposed to additional noise
nd generalizability to other smaller data sets through transfer 
earning. 

Implementations for the measurement operators, the learned 
maging techniques and the routines used to simulate interferometric 

easurements and train the neural networks can be found in our
EIA 

7 codebase. 
RASTAI 2, 760–778 (2023) 
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Figure 7. Left panel: The neural network architecture for the U-Net model used for learned post-processing of the initial reconstruction estimated by the 
pseudo-inverse of the measurement operator applied to the noisy measurements. Right panel: The neural network architecture for the GU-Net model for the 
learned iterative approach used to reconstruct an image from interferometric measurements. The input image of the network is the pseudo-inverse of the 
measurement operator applied to the noisy measurements. The model-based operation in this network takes the first channel on each of the scales and calculates 
the gradient (equation 32 ) and filtered gradient (equation 33 ) of the data fidelity, as well as a scale-restricted dirty image (equation 34 ). These are combined 
using a CNN layer (equation 35 ), concatenated to the original channels, and passed on through the rest of the network. 

Table 3. Number of full-scale measurement operator calls, reconstruction time averaged over 1000 images of the COCO data set 
and training time, for the pseudo-inverse, our learned methods, and a variational regularization approach. The reconstruction times 
for our learned methods are sufficiently low to enable real-time imaging for the SPIDER instrument. 

Name Operator e v aluations Average reconstruction time (ms) Training time (min) 

Pseudo-inverse (1 GPU) 1 5.50 –
U-Net (1 GPU) 1 10.7 ∼30 
GU-Net (1 GPU) 11 a 42.1 ∼100 
Primal-dual (300 its, 1 CPU) 600 4.7 × 10 4 –

Note . 
a Refers to operator e v aluation at the finest scale, which dominates the computational time of the GU-Net. 
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.1 Data sets 

e consider three data sets with different characteristics to e v al-
ate the reconstruction performance of the imaging methods. The
hree data sets co v er different potential use cases of the SPIDER
nstrument, including standard imaging, astronomical imaging, and
arth observation. All images are converted to greyscale and cropped

o a size of 256 × 256. For each epoch of training the images
re rotated and flipped randomly, and measurements are simulated
nd contaminated with random Gaussian noise as described in
ection 6.2 . Note that the networks could also be trained at larger

mage sizes; ho we ver, since the SPIDER instrument only sparsely
amples the Fourier domain (SPIDER acquires at a sparsity of

4440 
256 ×256 ≈ 7 per cent ), reconstructing at a larger image size would
e challenging. 
Since these methods are fully convolutional networks they can be

dapted to reconstruct at larger image sizes, if the measurement
perator is adapted accordingly. Note ho we ver that the SPIDER
nstrument only sparsely samples the Fourier domain (SPIDER
cquires at a sparsity of 4440 

256 ×256 ≈ 7 per cent ), because of this sparsity
econstructing at a larger image size will not necessarily yield
econstructions at higher resolution. 
ASTAI 2, 760–778 (2023) 

u  
The Common Objects in COntext (COCO, Lin et al. 2014 ) data set
s a large and diverse set of natural images. We selected a subset of
000 images split into 2000 training and 1000 test images. This
ata set provides a large and diverse data set of natural images
or training the networks. Instruments similar to SPIDER could
n future be considered as standard imaging devices for natural
mages. Furthermore, large data sets of readily available natural
mages such as this can be used for transfer learning, as considered
ubsequently. This data set is initially used to demonstrate the general
econstruction performance of the reconstruction methods when
rained on a large set of diverse images. All the images in this data
et have dimensions larger than our network input size, and during
raining, a random region of 256 × 256 is cropped out of the images
t every epoch. 

Next, we consider a small domain-specific data set of 450 sim-
lated galaxy images, split into 300 training and 150 test images.
he galaxy images are obtained from the IllustrisTNG simulations

Nelson et al. 2019b ). The H-alpha column densities from the TNG50
imulation of the IllustrisTNG project (Nelson et al. 2019a ; Pillepich
t al. 2019 ) are binned to a 256 × 256 grid to obtain images of simu-
ated galaxy structures. Pixels with no simulation data are inpainted
sing a primal-dual method in an unconstrained setting using the

art/rzad054_f7.eps


Learned interferometric imaging for SPIDER 771 

Figure 8. Distribution of reconstruction quality (PSNR and SSIM) for the different reconstruction methods on both the train and the test sets from the COCO 

data set of natural images for measurements with an ISNR of 30 dB. The reconstructions are made using the pseudo-inverse of the measurement operator, a 
primal-dual optimization scheme representing the state-of-the-art, our learned post-processing approach (U-Net), and our learned unrolled iterative approach 
(GU-Net). The dashed and dotted lines inside the distributions indicate the mean and quartiles of the distributions. 
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 1 -norm of a dictionary of wavelets containing the Dirac basis and
he first eight Daubechies wavelets (Db1–Db8) as the regularization 
unctional. We add a small amount of noise to the simulation data
input signal-to-noise ratio (ISNR) = 30 dB] and use Bayesian 
nference to estimate the regularization parameter for this inpainting 
roblem from the simulation data as described in Pereyra, Bioucas- 
ias & Figueiredo ( 2015 ). These steps are followed merely to process

he IllustrisTNG particle simulations in order to provide a data set of
round-truth galaxy images suitable for our imaging experiments. 
The final data set we consider is another small domain-specific 

ata set of 450 satellite Earth observations taken from the Deep 
lobe satellite challenge (Demir et al. 2018 ), split into 300 training

nd 150 test images. 

.2 Simulating measurements 

or a SPIDER instrument with parameters as defined in Table 1 , we
imulate measurements using the NUFFT operator (Section 4.1 ) with 
psampling factor 2 per dimension, resulting in upsampling to 512 

512 images, and a 6 × 6 KB kernel, which in this configuration
esults in y ∈ C 

4440 measurements. 
We contaminate the measurements with complex Gaussian noise, 
 ( n ) , � ( n ) ∈ N (0 , σ/ 

√ 

2 ) with 0 mean and standard deviation of the
eal and imaginary components defined by an ISNR of 30 dB: 

= 

‖ � x ‖ � 2 √ 

M 

· 10 
−ISNR 

20 . (36) 

.3 Training and transfer learning 

e train the networks on pairs ( y i , x i ) of synthetic noisy SPIDER
ourier measurements and images with the mean squared error 
MSE) cost 

( y i , x i ) = 

∑ N 

i= 1 ‖ � 

† 
θ y i − x i ‖ 2 
N 

, (37) 

here � 

† 
θ : C 

M → R 

N is the learned pseudo-inverse operator (i.e. 
he networks defined in Section 5 ), such that � 

† 
θ y gives the learned

econstructions of the noisy measurements y . 
The networks are trained using the ADAM optimizer (Kingma & 

a 2014 ) with a learning rate of 0.001 and a batch size of 5. The
raining data for each epoch are precomputed to save time. Networks
re trained for 200 epochs. 

.4 Computation time 

he average e v aluation time required to compute reconstructed 
mages for the different methods is shown in Table 3 for images of the
OCO data set. The e v aluation times include the initial application
f the NUFFT pseudo-inverse. Training time is also included and 
oes not include the time of pre-computing the augmented training 
ata. 
As expected, the U-Net model is highly computationally efficient 

ue to the small number of operator e v aluations. The GU-Net model
s moderately slower than the U-Net model, but not significantly 
o, again as expected. We note that learned methods are trained
nd e v aluated on the GPU while the primal-dual method is run on
 CPU, precluding direct comparison of the reconstruction time. 
e vertheless, the e v aluation times in Table 3 are roughly proportional

o the number of fine scale operator e v aluations, which corroborates
hat these e v aluations dominate the computational cost, and so a GPU
mplementation of the primal-dual algorithm would remain ∼600 ×
lower than our U-Net model and ∼55 × slower than our GU-Net
odel. The computational times required by our learned models to 

eco v er images, in the order of 10s of milliseconds, is sufficiently
ow that our proposed methods can indeed open up real-time imaging
or the SPIDER instrument. 

.5 Reconstruction quality 

e first compare the pseudo-inverse, primal-dual, and two learned 
econstruction methods on the COCO data set. The distribution of 
he quantitative metrics (PSNR and SSIM) over the training and test
ets are depicted in Fig. 8 . The reconstructions for a subset of training
nd test images from COCO data set are illustrated in Fig. 9 . 

Our U-Net model performs similarly to the primal-dual algorithm, 
hich represents the state-of-the-art variational regularization ap- 
roach, with marginally lower PSNR but marginally greater SSIM. 
o we ver, recall that imaging with the U-Net model is orders
f magnitude faster than the primal-dual algorithm. Our GU-Net 
odel outperforms both the U-Net and primal-dual approaches in 
RASTAI 2, 760–778 (2023) 
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Figure 9. Example reconstructed images for the pseudo-inverse, the primal-dual algorithm, our learned post-processing approach (U-Net), and our learned 
unrolled iterative approach (GU-Net) on five images from the COCO test set. The first column shows the true image followed by the four different reconstructions 
from noisy measurements with an ISNR of 30 dB. 
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oth PSNR and SSIM, as expected since it makes greater use of
nowledge of the measurement operator, while introducing only a
oderate increase in computation time compared with the U-Net

pproach. All methods outperform the pseudo-inverse, which is to be
xpected. 

We note the near mirror symmetry of the plots between training
nd test set, which indicates only small difference in distribution of
he metrics between the train and test sets (this is also the case for
he primal-dual method which is data set agnostic since it does not
ASTAI 2, 760–778 (2023) 
nclude any training). This suggests that the trained models generalize
ell to unseen data in the same domain. 
From the examples in Fig. 9 , it is apparent that the pseudo-inverse

ields noisy reconstructions with aliasing artefacts, the primal-dual
lgorithm provides an improvement but still yields reconstructions
ith considerable artefacts, the U-Net model generates good recon-

tructions that are sometimes o v ersmoothened, losing details, while
he GU-Net model does best at reco v ering details and suppressing
rtefacts, resulting in the o v erall best reconstructions. 
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Figure 10. Robustness of learned models (trained for ISNR = 30 dB) to increased input noise level: mean PSNR (left panel) and SSIM (right panel) averaged 
o v er a set of 100 images from the COCO test set as a function of ISNR in the noise model (as described in Section 6.2 ). Our learned models exhibit sufficient 
robustness to variations in noise, such that a moderate underestimation of the noise level will not result in a significant loss of reconstruction quality. 

Figure 11. Comparison of the three different approaches for training a model for smaller, domain-specific data sets (as described in Section 6.3 ). From left to 
right: the original image, a reconstruction from a network trained only on the small galaxy data set, a reconstruction using a network trained only on natural 
images from the COCO data set, and reconstruction made with a network trained first on natural images and then fine-tuned using transfer learning to the galaxy 
data set. The transfer learning approach reco v ers images with the highest reconstruction quality and the least amount of artefacts. 

Figure 12. Distribution of quantitive imaging metrics (PSNR and SSIM) o v er the train and test sets of the galaxy data set. The dashed and dotted lines indicate 
the mean and quartiles of the distributions. The learned approaches are trained using images of the COCO data set first, and are then adapted to the galaxy data 
set by transfer learning. 
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Figure 13. Reconstruction performance of the pseudo-inverse, a state-of-the-art reconstruction (primal-dual), our learned post-processing approach (U-Net), 
and our learned unrolled iterative approach (GU-Net) on five images from the galaxy images test set. The first column shows the true image followed by the 
four different reconstructions from noisy measurements with an ISNR of 30 dB. The learned methods are trained on images from the COCO data set first and 
are then adapted to the galaxy data set by transfer learning. 

6

N  

t  

a  

t  

s
 

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/760/7453681 by KIM

 H
ohenheim

 user on 16 January 2024
.6 Robustness to noise 

ext, we e v aluate the robustness of our trained models with respect
o increased levels of additive Gaussian noise in the input. All models
re trained with ISNR = 30 dB; ho we ver, we v ary the ISNR from 30
ASTAI 2, 760–778 (2023) 
o 12.5 dB in test images. The averages of PSNR and SSIM o v er a
et of COCO images are shown in Fig. 10 . 

The plots in Fig. 10 both show a relative plateau followed by
 transition to linear decay at around ISNR = 20 dB indicating
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Figure 14. Distribution of quantitive imaging metrics (PSNR and SSIM) o v er the train and test sets of the Deep Globe satellite image data set. The dashed 
and dotted lines indicate the mean and quartiles of the distributions. The learned approaches are trained using images of the COCO data set first, and are then 
adapted to the satellite image data set by transfer learning. 
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obustness to a moderate increase in noise level, with a linear 
eprecation for higher noise levels. The PSNR GU-Net curve remains 
bo v e the U-Net curve as noise increases, while the SSIM curves are
ssentially on top of one another for higher noise levels. This suggests 
hat the advantage of the GU-Net in terms of SSIM is marginal for
igher noise levels, while we maintain some PSNR advantage even 
or higher noise lev els. Ov erall, Fig. 10 suggest sufficient robustness
f the trained models with respect to varying input noise levels, such
hat a moderate underestimation of the noise level will not result in
 significant loss of reconstruction quality. 

.7 Generalization to other data sets 

esides assessing the performance of the models on natural images, 
here we have a reasonably large number of training instances, we 

lso consider other data sets where data availability is limited, as is
he case for the galaxy and satellite data sets described in Section 6.1 .

We consider three approaches for training networks for the two 
maller, domain-specific data sets: (i) training on the small data set
rom scratch; (ii) reconstruction of test images using the network 
rained on the COCO data set without retraining; and (iii) transfer
earning via initializing with the COCO pre-trained networks and 
ne-tuning on images from the small data set for 100 epochs. 
As a first test, we compare these three approaches for the 

maller, domain-specific galaxy data set. Fig. 11 shows GU-Net 
econstructions for a test galaxy image in these three scenarios. The 
etwork trained on just the galaxy images produces artefacts in its
econstruction, due to the small volume of training data, while the 
odel trained solely on images from the COCO data set appears 

lurred, as the galaxy images do not have sharp edges. The transfer
earning approach, which leverages both the COCO data set and 
he smaller data set of galaxy images, reco v ers the image with the
ighest PSNR. Therefore, we restrict further comparisons to the 
ransfer leaning scenario. 

The distribution of the quantitative metrics over the training and 
est sets of the galaxy data set for the transfer learning scenario
an be seen in Fig. 12 . Example reconstructions can be seen in
ig. 13 . From Fig. 12 , it is evident that the U-Net has been o v er-
tted to the training data as its performance metrics on the test data
re substantially worse. Nevertheless, the example reconstructions 
f both learned models in Fig. 13 are visually very similar. We
uppose this is due to the nature of the galaxy data set for which
either PSNR nor SSIM is a particularly well suited metric. Indeed,
isually the galaxy images reconstructed by the learned models are 
rguably slightly more appealing that those reco v ered by the primal-
ual algorithm, while the quantitative metrics are similar or arguably 
arginally fa v our the primal-dual case. The close match between the

rain and test distributions for GU-Net indicates that incorporating 
he physical model into the learned reconstruction yields models with 
uperior generalization performance to unseen data. 

The same experiments are performed for the satellite image data 
et, with distributions of metrics shown in Fig. 14 and example
econstructions shown in Fig. 15 . Both our learned approaches 
utperform the primal-dual approach, in terms of metrics and visual 
nspection (the primal-dual algorithm yields more grainy, noisy 
econstructions). Moreo v er, the GU-Net models exhibits a slight 
mpro v ement o v er the U-Net model, particularly for images with
lear edges. 

In summary, by adopting a transfer learning approach our learned 
maging methods achieve similar or superior reconstruction quality 
o a state-of-the-art variational regularization approach even for data 
ets for which limited training data is available, in a fraction of the
omputational time. 

.  C O N C L U S I O N S  

e have proposed two new learned approaches to reconstruct images 
or the SPIDER instrument, which compared with the classical state- 
f-the-art proximal optimization algorithms impro v e reconstruction 
uality, while dramatically reducing the computational time required 
o reco v er images. 

Our first learned method adopts a learned post-processing ap- 
roach to clearly separate the physical measurement model from 

he learned imaging via a U-Net model. A consequence of this
onfiguration is that the pseudo-inverse of the physical measurement 
odel need only be applied once, resulting in orders of magnitude

eduction in imaging time compared with the benchmark traditional 
ptimization algorithm. Reconstruction quality is similar to the 
enchmark traditional algorithm. 
Our second learned method, the GU-Net, uses a similar archi- 

ecture but enhanced with multiscale e v aluations of the gradient of
he data fidelity term, interweaving the measurement model into 
RASTAI 2, 760–778 (2023) 
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R

Figure 15. Reconstruction performance of the pseudo-inverse, a state-of-the-art reconstruction (primal-dual), our learned post-processing approach (U-Net), 
and our learned unrolled iterative approach (GU-Net) on five images from the satellite images test set. The first column shows the true image followed by the 
four different reconstructions from noisy measurements with an ISNR of 30 dB. The learned methods are trained on images from the COCO data set first and 
are then adapted to the satellite image data set by transfer learning. 
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he U-Net architecture. While this results in a moderate increase
n the time required to reco v er images compared with the U-Net
odel, reconstruction quality is impro v ed by making greater use of

nowledge of the physical measurement model. 
ASTAI 2, 760–778 (2023) 
Overall, our learned methods achieve similar or superior re-
onstruction quality compared with traditional approaches, while
ealizing a dramatic reduction in the time required to reco v er
mages, to the extent that real-time imaging with the SPIDER
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nstrument becomes possible for the first time, opening up many new 

se-cases. 
While our learned methods are trained using data with a specific 

oise level, their performance on measurements with increased 
oise levels remains similar for a moderate increase in noise level. 
urthermore, in scenarios where only a limited volume of training 
ata is available, as common in domain-specific problems, the 
erformance of the models can be increased by transfer learning from
 domain with sufficient training data. While for actual observations 
ne should try to construct as representative training as possible, our 
earned methods show that it is possible to achieve similar or superior
econstruction quality to the traditional primal-dual approach in 
ettings where limited train data are available, and at a fraction of
he computational cost. 

In addition, we have presented two approaches to modelling the 
easurement process of the SPIDER instrument. One method is 

ased on the NUFFT, which is widely used in radio interferometry 
nd is applicable to any arbitrary sampling distribution. We also 
resent a new modelling approach based on the Radon transform, 
n NU-Radon method, that applies specifically when the sampling 
istribution has radial spokes of measurements, as is the case for
PIDER, and show similarities to works in the medical imaging 
omain. This latter approach is computationally more efficient when 
he number of measurements is large and the calculation of the mea-
urement operator is dominated by the (de)gridding of measurements 
r when the number of pixels is large for a modest number of
pokes. Both modelling methods and all imaging techniques have 
een implemented in Python and are available for use in the LEIA 

8 

ode. 
While the methods presented in this work can be used with 

ny arbitrary sampling distribution (when using the NUFFT), the 
ampling distribution we have considered is fix ed. F or radio interfer-
metric imaging the sampling distribution typically varies for each 
bservation as it depends on the location of the object in the sky as
ell as the length of time of the observation. Looking to the future,

n order to extend the learned methods presented in this paper to
adio interferometry, the networks need to be trained in such a way
s to support varying sampling patterns. This is the focus of ongoing
esearch, for which preliminary results are encouraging. Variants of 
he methods presented in this paper are therefore likely to be of use
ot only for SPIDER imaging but for radio interferometric imaging 
ore generally. 
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