
 
Abstract—By virtue of their quasi one-dimensional geometries, 

III–V semiconductor nanowires present unique capabilities for 
terahertz photonic devices. Ultrafast terahertz polarisation 
modulators and miniature terahertz photoconductive detectors 
are two examples of such nanowire-based devices. By the same 
token, terahertz methods such as terahertz conductivity 
spectroscopy offer unparalleled insight into the electronic 
processes that dictate the performance of nanowire-based devices. 

I. INTRODUCTION 
II–V semiconductor nanowires (Fig. 1a and b) combine the 
superior (opto)electronic properties of their constituent III–V 
materials with the advantages of the nanowire geometry. 

These advantages include tunable charge carrier lifetimes 
coupled with high charge carrier mobilities [1, 2], pronounced 
polarisation anisotropy [3], Young’s moduli and yield strengths 
exceeding those of their bulk counterparts [4], waveguiding 
effects, the ability to combine highly lattice-mismatched and 
thermal expansion coefficient-mismatched materials without 
dislocations, and the occurrence of unusual crystal phases [5]. 
These properties are beneficial for a wide variety of 
applications spanning photonic integrated circuits, ultra-thin 
solar cells and terahertz photonics. 

II. CONTACT-FREE CHARACTERISATION 
Somewhat paradoxically, the quasi one-dimensional 

geometry that gives rise to nanowires’ remarkable properties 
also makes nanowires challenging to characterise using 
conventional contact-based electrical measurement techniques 
(e.g. Hall effect). Optical pump–terahertz probe (OPTP) 
spectroscopy overcomes these challenges and enables the 
contact-free electrical characterisation of nanowires, including 
their ultrafast properties. For example, OPTP spectroscopy has 
revealed the nature of surface recombination in GaAs 
nanowires, which occurs on picosecond timescales [1]. OPTP 
spectroscopy has also been instrumental in identifying suitable 
surface passivation protocols [6] as needed for highly efficient 
optoelectronic devices. 

III. TERAHERTZ DEVICES 
High charge carrier mobilities, tunable charge carrier 

lifetimes and polarisation anisotropy make III–V nanowires 

ideal components for terahertz photonic devices. For example, 
arrays of aligned GaAs nanowires have been employed as 
switchable terahertz polarisers (Fig. 1c) that feature broad 
bandwidth, high modulation depth, low insertion loss and can 
be modulated on timescales of a few picoseconds [3]. 

 

 
Fig. 1 (a, b) SEM images of (a) GaAs nanowires and (b) InP nanowires grown 
by metalorganic chemical vapour deposition for integration into terahertz 
polarization modulators and terahertz receivers, respectively. The scale bar in 
(a) and (b) is 1 µm. (c) Polar plot obtained from terahertz polarization 
modulators showing extinction of terahertz pulse as a function of polarization 
of photoexcitation pulse relative to the nanowire long axis, for photoexcitation 
fluences between 6 µJ/cm2 and 20 µJ/cm2. 
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