
To Sample or Not to Sample: Retrieving Exoplanetary Spectra with Variational
Inference and Normalizing Flows

Kai Hou Yip1 , Quentin Changeat1,2 , Ahmed Al-Refaie1 , and Ingo P. Waldmann1
1 Department of Physics and Astronomy University College London Gower Street, London WC1E 6BT, UK; kai.hou.yip@ucl.ac.uk

2 European Space Agency (ESA), ESA Office, Space Telescope Science Institute (STScI), 3700 San Martin Drive, Baltimore, MD 21218, USA
Received 2022 May 13; revised 2023 September 17; accepted 2023 October 18; published 2024 January 11

Abstract

Current endeavours in exoplanet characterization rely on atmospheric retrieval to quantify crucial physical
properties of remote exoplanets from observations. However, the scalability and efficiency of said technique are
under strain with increasing spectroscopic resolution and forward model complexity. The situation has become
more acute with the recent launch of the James Webb Space Telescope and other upcoming missions. Recent
advances in machine learning provide optimization-based variational inference as an alternative approach to
perform approximate Bayesian posterior inference. In this investigation we developed a normalizing-flow-based
neural network, combined with our newly developed differentiable forward model, Diff-τ, to perform Bayesian
inference in the context of atmospheric retrievals. Using examples from real and simulated spectroscopic data, we
demonstrate the advantages of our proposed framework: (1) training our neural network does not require a large
precomputed training set and can be trained with only a single observation; (2) it produces high-fidelity posterior
distributions in excellent agreement with sampling-based retrievals; (3) it requires up to 75% fewer forward model
calls to converge to the same result; and (4) this approach allows formal Bayesian model selection. We discuss the
computational efficiencies of Diff-τ in relation to TauREx3ʼs nominal forward model and provide a “lessons
learned” account of developing radiative transfer models in differentiable languages. Our proposed framework
contributes toward the latest development of neural network–powered atmospheric retrieval. Its flexibility and
significant reduction in forward model calls required for convergence holds the potential to be an important
addition to the retrieval tool box for large and complex data sets along with sampling-based approaches.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Neural networks (1933); Bayesian statistics
(1900); Posterior distribution (1926); Exoplanets (498); Observational astronomy (1145); Transmission
spectroscopy (2133)

1. Introduction

Atmospheric retrieval has become an indispensable tool for
astronomers to explain individual observations from transit,
eclipse, and phase-curve spectroscopy at both low (e.g., Tinetti
et al. 2007; Line et al. 2013, 2014, 2016; Kreidberg et al. 2014;
Lee et al. 2014; Haynes et al. 2015; Tsiaras et al. 2016b, 2016a;
Evans et al. 2016; MacDonald & Madhusudhan 2017, 2019;
Sheppard et al. 2017; Stevenson et al. 2017; Kreidberg et al.
2018; Mikal-Evans et al. 2019; Tsiaras et al. 2019; Pluriel et al.
2020a; Alam et al. 2020; Anisman et al. 2020; Changeat &
Al-Refaie 2020; Chubb et al. 2020; Skaf et al. 2020; von Essen
et al. 2020; Zhang et al. 2020; Alam et al. 2021; Carone et al.
2021; Changeat & Edwards 2021; Changeat et al. 2021;
Edwards et al. 2021; Mugnai et al. 2021; Saba et al. 2022;
Sheppard et al. 2021; Swain et al. 2021; Yip et al. 2021;
Changeat & Yip 2023; Foote et al. 2022; Mansfield et al. 2022;
Mikal-Evans et al. 2022, and references therein) and high
resolution (e.g., Brogi & Line 2019; Gibson et al. 2020;
Mollière et al. 2020; Seidel et al. 2020; Boucher et al. 2021;
Challener & Rauscher 2022; Harrington et al. 2022;
MacDonald & Lewis 2022; Meech et al. 2022; Rasmussen
et al. 2022). Over the years, the community has come up with a
variety of retrieval frameworks, each coupled with different

modeling assumptions and sampling techniques (e.g., Irwin
et al. 2008; Madhusudhan & Seager 2009; Line et al. 2013;
Lavie et al. 2017; Gandhi et al. 2019; Zhang et al. 2019;
Lothringer & Barman 2020; Min et al. 2020; Al-Refaie et al.
2021; Cubillos & Blecic 2021). As the number of spectroscopic
observations increases with the advent of new space and
ground-based observatories, the community has started to look
at planetary characterization on a population level (Sing et al.
2016; Barstow et al. 2017; Pinhas et al. 2019; Tsiaras et al.
2019; Mansfield et al. 2021; Roudier et al. 2021; Changeat
et al. 2022; Edwards et al. 2023).
At its core, atmospheric retrieval strives to find an

atmospheric model that can best explain a given observation.
Most contemporary retrieval frameworks formulated the
inverse problem in terms of Bayesian statistics, where the free
parameters of the physical model are framed as random
variables. The probability densities of these random variables
(θ) given the observed data (D) are collectively referred to as
the posterior distribution, p(θ|D). Bayes’ theorem provides a
way to calculate the posterior distribution via the following
relation:

p D
p D p

p D
, 1( | ) ( | ) ( )

( )
( )q

q q
=

where p(D|θ) and p(θ) represent the likelihood and the prior
distributions, respectively. However, the denominator, p(D), or
the evidence is intractable in most cases. The community has
thus far relied on sampling techniques such as Markov Chain
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Monte Carlo (MCMC) or nested sampling to compute the
approximate posterior distribution (see Madhusudhan 2018 for
a recent review).

Nevertheless, sampling-based techniques are prohibitively
slow when the dimensionality of the problem and quantity of
the observed data are large (Zhang et al. 2019). This issue will
become increasingly pressing with the increased data volume
originating from the recently launched James Webb Space
Telescope (JWST; Greene et al. 2016) and other future
missions such as Ariel (Tinetti et al. 2021), Twinkle (Edwards
et al. 2019), and ELTs from the ground (e.g., Udry et al. 2014).
These telescopes are designed to provide hundreds of higher-
resolution spectroscopic measurements with wider wavelength
coverage. On the other hand, recent investigations have
highlighted potential biases associated with some commonly
used modeling assumptions, such as isothermal atmospheres,
constant with altitude chemistry, or the 1D plane–parallel
approximation (e.g., Rocchetto et al. 2016; Changeat et al.
2019; Pluriel et al. 2020b; Changeat et al. 2020; MacDonald
et al. 2020; Ih & Kempton 2021), prompting the need for more
realistic treatment of the atmosphere (e.g., Changeat & Al-
Refaie 2020; Feng et al. 2020; Irwin et al. 2020). This will
inevitably increase both the computational cost and complexity
(Changeat et al. 2021) of the forward model. The increase in
both quantity of data and model complexity signals the need for
alternative approaches to computing the posterior distribution.

Recent years have seen a surge in machine learning (ML)-
based techniques being applied to many areas within
exoplanetary science, from data detrending (e.g., Morvan
et al. 2020; Gebhard et al. 2020, 2022; Krick et al. 2020;
Nikolaou et al. 2020; Morvan et al. 2021), to planet detection
(e.g., Shallue & Vanderburg 2018; Yip et al. 2019; Yu et al.
2019; Valizadegan et al. 2021), and to planet characterization
(e.g., Márquez-Neila et al. 2018; Zingales & Waldmann 2018;
Cobb et al. 2019; Waldmann & Griffith 2019; Hayes et al.
2020; Oreshenko et al. 2020; Yip et al. 2020; Ardevol Martinez
et al. 2022; Haldemann et al. 2023; Himes et al. 2022). In 2022,
the topic of planet characterization has also been featured as a
competition at the Neural Information Processing Systems
(NeurIPS; Changeat & Yip 2023; Yip et al. 2022) conference.

Variational inference (VI) is a widely studied approach in the
field of ML used to provide approximate posterior distributions
for a large and high-dimensional data set with reduced
computational demand compared to Markovian sampling
approaches (e.g., Blei et al. 2016; Buchholz et al. 2018;
Fellows et al. 2018; Shu et al. 2018; Zhang et al. 2019, 2021;
Argelaguet et al. 2020; Fortuin et al. 2020; Friston et al. 2020;
Lopez-Alvis et al. 2021; Karchev et al. 2022; Lopez-Alvis et al.
2022). However, variational methods require models that can
provide their gradient with respect to some (input) parameters.
The field has recently explored different applications of
differentiable physical models. Differentiable models open up
the possibility to construct “physics-aware” neural networks, a
type of network that is explicitly constrained by physical laws
(e.g., Raissi et al. 2019; Chen et al. 2020; Morvan et al. 2021;
Amini Niaki et al. 2021; Cai et al. 2021; Haghighat et al. 2021;
Viana & Subramaniyan 2021; Cuomo et al. 2022). For
instance, Kawahara et al. (2022) used Hamiltonian Monte
Carlo (HMC), a gradient-informed Monte Carlo sampling
algorithm (Duane et al. 1987; Hoffman & Gelman 2011), to
perform atmospheric retrieval of exoplanets on high-resolution
spectroscopic data. Others have also applied HMC to speed up

light curve fitting (e.g., Agol et al. 2021; Foreman-Mackey
et al. 2021).
Here we present the following contributions:

1. We present Diff-τ, a Tensorflow-based fully
differentiable atmospheric forward model, based on the
implementation of TauREx3 (Al-Refaie et al. 2021,
2022).

2. For the first time, we introduced VI as a more efficient
alternative to perform atmospheric retrieval.

3. As our framework only requires a single data instance
during training time, there is no need for a large library of
spectra for pretraining.

4. We show that our framework formally takes into account
the uncertainties associated with the observations and is
able to reproduce physically motivated correlations
between atmospheric parameters.

5. Our Bayesian neural network is capable of producing
posterior distributions on par with distributions produced
from sampling-based approaches.

2. Overview

In this investigation our core aim is to explore an alternative
approach to the conventional, sampling approach with the use
of modern deep learning techniques. For simplicity we will
denote the conventional, sampling-based approach simply as
NS-retrieval and our proposed approach as VI-
retrieval. Our approach involves three core components:
a differentiable physical model, a formulation of VI, and a
normalizing flow (NF)-based neural network. Here we will
provide a top-level overview of how the three components
interact with each other, and see Figure 1 for a schematic
overview of the VI-retrieval.
Instead of relying on sampling to map the unknown

posterior distribution (as one normally does with, e.g.,
MCMC-based approaches), VI-retrieval relies on find-
ing a best-fit surrogate distribution to the actual posterior
distribution through optimization. The use of optimization-
based techniques means that VI-retrieval can be orders
of magnitudes faster than sampling-based approaches,
especially on high-dimensional problems. However, there
are two implementation difficulties that prevented the wide-
spread use of variational methods in the field of exoplanetary
atmospheres: (1) Gradients. Many optimization procedures
demand complete knowledge of the gradient flow within a
computational graph (i.e., a neural network), contemporary
atmospheric forward models break the flow as they are
undifferentiable; and (2) surrogate distributions: the chosen
distribution (usually a multinomial Gaussian distribution) is
often too simplistic to represent the actual, underlying
posterior distribution.
To circumvent the above difficulties, we built Diff-τ with

the Tensorflow library, and utilize its automatic differentia-
tion capabilities to compute gradients of the forward model. At
the same time, we implemented an NF-based neural network, a
deep learning approach that can transform a simple, “seed”
distribution (such as a multinomial Gaussian) to arbitrarily
complex distributions.
In the following sections we will explain the theoretical

background behind each technique, and in the latter part of the
paper we will demonstrate how these concepts are linked to
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each other in practice by providing retrieval examples for three
different scenarios.

2.1. VI

The mathematical theory of VI and its application in the field
of ML have been extensively discussed in Blei et al. (2016).
There are ongoing efforts to investigate the statistical
implication of using VI for parameter estimation (e.g.,
Chérief-Abdellatif & Alquier 2018; Pati et al. 2018). Here we
provide a brief overview of the methodology.

Given an observed spectrum x defined by the transit depths
(xi) and associate uncertainties (σi) in each spectral bin i, the
goal of atmospheric retrieval is to find the posterior distribution
p(z|x) of the set of latent variables (z) that can best describe the
observation under a specific atmospheric model assumption
. Instead of approximating the unnormalized p(z|x) via
sampling, variational methods approximate the distribution by
finding a best-matching surrogate distribution via optimization.

Suppose we have a family of probability distributions 
parameterized by some latent variables z. The optimal
distribution (best-matching surrogate distribution to p(z|x)) is
the one that minimizes the statistical distance to p(z|x). A
common choice is to compute the Kullback–Leibler (K-L)

divergence between the two probability density functions
(PDFs), i.e.:


z z x zq D p qarg min , 2

zq
KL( ) [ ( | ) || ( )] ( )

( )
=*

Î

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ z x

z
p

q
log . 3

( | )
( )

( )=

K-L divergence measures the relative entropy between two
PDFs with range [0, ∞]. A score of 0 means that the two
distributions contain identical information, and any (positive)
deviation from 0 means the two distributions become
increasingly different from one another (Kullback &
Leibler 1951). K-L divergence can be computed analytically
if one knows the functional form of both PDFs. In cases when
the functional forms of one or both PDFs are unknown, as we
will see below, numerical approaches must be sought to
approximate the divergence.
However, Equation (3) itself cannot be the objective function

for our optimization task, as we do not have any knowledge of
p(z|x) with which to begin. To negate the dependence on the
unknown true posterior distribution, VI provides an alternative

Figure 1. Overview of our proposed method. The left panel shows the structure of Diff-τ. It is almost identical to a conventional forward model, in the sense that it
takes in a set of physical parameters and outputs the corresponding theoretical spectrum, but with the additional ability to provide gradients. The right panel shows a
schematic of our proposed VI-retrieval. We provide a simple (user-defined) seed distribution ξ, observed data, and our prior bounds as inputs to the optimization
loop (Train). The NF-based neural network, i.e., NF, is tasked to transform ξ to a surrogate distribution q(z). We employ VI to approximate the typically intractable
posterior distributions, where the network (NF) must learn the best transformation to optimize the ELBO (controlled by log() and DKL). To calculate log ( ), we used
Diff-τ to transform samples from q(z) into spectra and compared with the observed data. Once the training is completed, the trained model is able to provide a q ∗ (z)
that best approximates p(z|x).
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formulation, the Evidence Lower BOund (ELBO):

 x z z zp D q pELBO log , 4KL[ ( | )] [ ( ) || ( )] ( )= -

where the first term is the expected value of the log-likelihood
log() and the second term is the K-L divergence between q(z)
and the prior distribution p(z). This formulation can be
understood, in terms of Bayesian statistics, as a “tug of war”
between the likelihood function and our prior belief on the
distribution. We included a detailed discussion on ELBO and
its link to Equation (3) in the Appendix.

Unlike Equation (3), the ELBO does not require any
knowledge of the intractable evidence p(x) and therefore it
can be computed analytically. We can hence find the optimal
distribution q ∗ (z) by minimizing the ELBO. This optimization
technique is well studied in the field of deep learning (Kingma
& Welling 2013; Kingma et al. 2016). Most contemporary
neural networks are trained to minimize a given loss function
(e.g., ELBO in our case) by relying on a combination of
gradient descent and back-propagation algorithms. Modern
deep learning libraries such as Tensorflow (Abadi et al.
2015), PyTorch (Paszke et al. 2019), and JAX (Bradbury
et al. 2018) provide easy access to model training and
evaluation. In this study, our implementation will be solely
based on the Tensorflow framework, but other deep
learning frameworks can similarly be used (Kawahara et al.
2022).

2.2. Differentiable Forward Model, Diff-τ

Diff-τ is an atmospheric forward model built entirely
within the Tensorflow framework (Abadi et al. 2015). We
followed the forward model formulation as specified in Al-
Refaie et al. (2021) to construct Diff-τ, with minor
modifications to comply with the Tensorflow framework.
As the code is largely based on TauREx3, it provides excellent
agreement between the two forward models; see Figure 2 for an
empirical comparison between the two. We leverage the built-
in automatic differentiation functionality (Baydin et al. 2018),
which has the ability to differentiate (almost) any functions
automatically without the need to specify the corresponding
derivative form explicitly. This is immensely helpful as
atmospheric models are a mixture of different physical
processes, and deriving the respective derivative forms
analytically can be a time consuming and nontrivial task.

2.3. NFs

The stringent requirement of a predefined family of
distributions, , presents a major limitation in using VI. For
many real-life scenarios, the desired posterior distributions are
rarely Gaussian or well defined. We implemented an NF-based
neural network to break the limitations of Gaussianity in q

*

(z)
in Equation (4) by transforming it into an arbitrarily complex
probability distribution.
NF describes a mechanism to “craft” a complex, multimodel

distribution from a simple, “seed” distribution (Rippel &
Adams 2013; Rezende & Mohamed 2015; Kobyzev et al.
2021). This can usually be a distribution in the exponential
family (e.g., a Gaussian) or a uniform distribution.
Suppose we have an invertible function g, such that we can

transform a random variable ξ∼ pξ into another random
variable y∼ py using y= g(ξ). The probability density py of the
random variable y can be computed using the change of
variable formula, i.e.:

y y yp p f fdet D , 5y ( ) ( ( )) | ( ( ) | ( )= x

where f is the inverse of g, i.e., f≡ g−1, Df (y) is the Jacobian of
f, i.e., yfD

y
f( ) = ¶

¶
, and Dg(ξ) is the Jacobian of g,

gD g( )x =
x

¶
¶
. In terms of generative models, the invertible

function g(.) is a generator that “pushes” forward the seed
distribution to a more complex distribution function (the
generative direction). On the other hand, the function f (.)
moves in the opposite direction, transforming it back to a
simple, “normalized” distribution (normalizing direction). It
has been shown that one can generate or craft any form of
distribution py from any base distribution pξ, given that the
generator g can be arbitrarily complex (Bogachev et al. 2005;
Medvedev 2008).
Up until now we have only shifted the problem from crafting

an arbitrarily complex density function to an arbitrarily
complex generator function. Fortunately, invertible functions
(or bijections) have a nice property—the composition of
invertible functions is itself invertible, meaning that one can
build a successively more complicated function by chaining
nonlinear invertible functions together, i.e.:

 g g g g... , 6N N 1 1 ( )= -

Figure 2. Top panel: comparing the outputs from Diff-τ in native (light gray) and binned (Ariel) resolution (orange) and TauREx3 binned to the same resolution
(black dots and dashed line). The lower panel shows the residuals between the two binned spectra. The gray lines represent the mean (solid line) and 1σ standard
deviation (dashed lines).
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where g1...gN is a set of N bijective function. Similarly, g has an
inverse:

 f f f f... , 7N1 2 ( )=

and conveniently, the determinant of the Jacobian Df (y) is the
product of individual determinant of the Jacobians Dfi(y), i.e.:

yf fD D . 8
i

N

i i( ) ( ) ( ) j=

We denote ji as the resultant vector of the ith intermediate
flow, i.e., ji= gi◦L ◦g1(ξ)= fi◦L ◦fN(y), where jN= y.

In the context of our investigation, we will transform our
seed distribution ξ∼ pξ into y∼ py and treat y∼ py as our
surrogate distribution z∼ q(z), i.e., y∼ py≡ z∼ q(z).

However, these intermediate functions must—by definition
—be diffeomorphic, meaning they must be bijective and
differentiable (including their inverses). In recent years the field
has put significant effort in constructing bijectors that conform
with these restrictions but remain sufficiently expressive and
computationally efficient even in high-dimensional problems
such as images (Louizos & Welling 2017; Rothfuss et al. 2019;
Nielsen et al. 2020; Wu et al. 2020; Zhang & Chen 2021) and
notable bijector architectures including MADE (Germain et al.
2015), Masked Autoregressive Flow (Papamakarios et al.
2017), NICE (Dinh et al. 2014), RealNVP (Dinh et al. 2016),
Sylvester NF (Berg et al. 2018), FFJORD (Grathwohl et al.
2018), Glow (Kingma & Dhariwal 2018), and NSF (Durkan
et al. 2019). NF has proven to be a highly successful approach
in a wide range of applications, including audio synthesis
(Oord et al. 2018; Prenger et al. 2019; Aggarwal et al. 2020),
text translation (Jin et al. 2019; Izmailov et al. 2020), anomaly
detection (Rudolph et al. 2021; Gudovskiy et al. 2022), time
series forcasting (Schmidt & Simic 2019; Rasul et al. 2020;
Feng et al. 2022), and image generation (Grathwohl et al. 2018;
Kingma & Dhariwal 2018; Lugmayr et al. 2020).

3. Implementation

3.1. Flow-based Model Setup

We implemented the inverse autoregressive flow (IAF;
Kingma et al. 2016) as a default bijector unit in our NF-based
neural network. To perform the transformation, we chained
N= 10 bijector units together, each controlled by a two-layer,
densely connected neural network with 64 hidden units and
ReLU activation (He et al. 2015) in each layer. To stabilize the
network, we followed Kingma et al. (2016) and added a batch
normalization layer (Ioffe & Szegedy 2015) after each bijector
unit. We used Adam (Kingma & Ba 2014) as our optimizer
with a scheduled learning rate (see below), and the rest of the
settings are kept as default from Tensorflow. We used a
multidimensional uniform distribution as our seed distribu-
tion, ξ.

3.2. ELBO Formulation

We begin by describing our implementation to the general
ELBO formulation in Equation (4). The ELBO consists of two
terms—the log-likelihood term and the prior term.

We defined the log-likelihood as an additive log-Gaussian
PDF, i.e.:

^ x z xplog log , , 9[ ( | )] [ ( ( | )] ( )m s=

^
⎜ ⎟⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎤

⎦
⎥ x

log
1

2
exp

1

2
, 10

2

2

2

( ) ( )
s

m
sp

= -
-

where m̂ = Diff− τ(z) is a forward model generated by
Diff-τ binned to the spectral resolution of the data and σ is
the observed uncertainty. This formulation is the same as the
likelihood formulation currently employed by many retrieval
frameworks.
The second term, DKL[q(z)||p(z), computes the K-L

divergence between the surrogate distribution and the prior
distribution (as defined by the user), it can be expanded in a
similar fashion as Equation (3):

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥z z

z
z

D q p
q

p
log . 11KL [ ( )∣∣ ( )] ( )

( )
( )=

The functional form of p(z) can be easily determined (as it is
the user-defined priori distribution). The surrogate distribution,
q(z) has undergone multiple transformations by the flow-based
neural network. Instead of computing the K-L divergence
analytically, which requires knowledge of the full analytical
form of the distribution, we can approximate the K-L
divergence via Monte Carlo sampling, as it is not costly to
sample repeatedly from the transformed surrogate distribution
(Kingma et al. 2016). For this investigation, we sample both the
prior and surrogate distributions 10,000 times to approximate
the value of the K-L divergence. Consistent with existing
literature on exoplanetary retrieval, we imposed a uniform prior
on all physical parameters, but we note that any proper prior
probability distribution can be used.
Instead of optimizing the ELBO objective in its actual

formulation, we adopted the weight-annealing approach from
Sun et al. (2022) to optimize a modified ELBO objective, i.e.:

 x z z zp D q ploss
1

log , 12KL[ ( | )] [ ( ) || ( )] ( )
b

= -

where max 1, 0
epoch( )b b=
t

and β0 and τ represent the weight
constant and decay constant, respectively. This formulation
prevents the neural network from converging to bad local
minima at the start of the training, and encourages it to explore
different solutions before converging. As training progresses,
the objective function will slowly converge back to the original
ELBO formulation.

3.3. The Role of Diff-τ

The formulation of the log-likelihood function
(Equation (10)) prompts the need to compare our input
observation with theoretical spectra. The role of Diff-τ can
be seen simply as a deterministic transformation, i.e., from
physical parameters to spectra. As part of the optimization
process, the network must learn to adhere to physical laws
imposed by the forward model. In the end, the network will
produce outputs and correlations that are physically constrained
in order to achieve better scores. In other words, the network’s
behavior becomes physically motivated and explainable.
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3.4. Training Procedure

At training time, we define the seed (user-defined) distribu-
tion ξ=U min,max[ ],3 and our flow-based neural network (the
generator) will then transform it into a surrogate distribution q
(z) through our chain of bijections. We then sample from q(z)
and generate the atmospheric forward model using Diff-τ. At
each iteration, we will sample five times from the surrogate
distribution and compute the average (modified) ELBO
objective, Equation (12). The entire process is repeated until
the optimization has converged or is terminated. We have
implemented an Early Stopping procedure to stop the
optimization process if the loss value (ELBO) does not improve
over 50 epochs. As we have adopted a weight-annealing
objective, the stopping criteria will only become effective in the
later stages of the optimization, when the modified objective
converges back to the original ELBO formulation (weights stay
unity).4 The best model is used to produce the results in
Section 4. As for the learning rate, we have implemented a
cyclic learning rate as suggested by Smith (2015) and Himes
et al. (2022). Our experiments are consistent with their claims
of improved training performance and we show that our
method outperforms the constant learning rate and step-wise
decaying learning rate5 in terms of loss value as well as speed
of convergence.

Once trained, the generator network is decoupled from the
framework. At inference time, we initiate a seed distribution
and pass it to transform the seed distribution into our best-
matching surrogate distribution.

4. Application

In this section we will perform atmospheric retrieval with
NS-retrieval and VI-retrieval. We will demonstrate
the technique through three cases:

1. A real Hubble Space Telescope/Wide Field Camera 3
(HST/WFC3) observation of the hot Jupiter
HD 209458 b.

2. A simulated Ariel Tier 2 observation of the hot Jupiter
HD 209458 b.

3. A simulated observation (0.5–15 μm) with an N-point
temperature profile (Waldmann et al. 2015; Changeat
et al. 2021) of the hot Jupiter WASP-43 b.

4.1. Atmospheric Model Setup for Cases I and II

We have taken values from Tsiaras et al. (2016b) as our
reference values for the HD 209458 system. In both cases, we
assumed blackbody emission for the host star of Teff= 6065 K
and stellar radius R* = 1.155 Re. We also assumed a primary
atmosphere (dominated by H and He, ratio= 0.175) at solar
abundance. We divided the atmosphere into 70 atmospheric
layers over the 10−5 and 106 Pa pressure range (evenly spaced
in logarithmic scale) and furthermore assumed an isothermal T–
P profile and an iso-abundance chemical profile. Table 1 shows
the fitted input parameters for each case and their

corresponding ground truths, prior bounds, and formulation/
line list references. The atmospheric setup of Case III can be
found in Section 4.4.

4.2. Case I: HST/WFC3 Observation of HD 209458 b

Case I aims to demonstrate our method’s applicability to
actual data. The transmission spectrum is observed with the
HST/WFC3 G141 grism and processed by Iraclis (Tsiaras
et al. 2016b, 2019). The detrending process is described in
details in Tsiaras et al. (2016b). The basic atmospheric setup
follows Section 4.1. For this case we are assuming a hydrogen/
helium-dominated atmosphere, with opacities from trace gas
absorption and Mie scattering clouds6 (Lee et al. 2013). We ran
the optimization procedure for 2000 epochs, with the
convergence parameters, β0 and τ, set to 100 and 200,
respectively. These values are determined with a coarse
hyperparameter search between β0= [100, 1000] and
τ= [100, 1000].

4.3. Case II: Ariel Tier 2 Observation of HD 209458 b

In the second case we would like to understand the ability of
our proposed framework to retrieve the ground truth values and
showcase the flexibility of our framework to switch to different
atmospheric assumptions and spectral resolutions. We used
ArielRad (Mugnai et al. 2020) to simulate the expected noise
level for each wavelength channel for HD 209458 b at Ariel
Tier 2 resolution. In terms of atmospheric chemistry, we
adhered to the same setup as described in Section 4.1 and
include five trace gases: H2O, CH4, CO, CO2, and NH3. We
chose this set of molecules due to their expected contribution in
the wavelength range considered, and because they have been
successfully detected in hot Jupiter atmospheres. We ran the
optimization procedure for 2000 epochs, with β0 and τ set to
100 and 300, respectively.

4.4. Case III: N-Point T–P Profile Retrieval with WASP-43 b

We simulated the atmosphere of a WASP-43 b-like planet
observed at a customized wavelength range, i.e., from 0.5 to 15
μm. The atmospheric model setup largely followed Section 4.1,
but with 50 atmospheric layers instead of 70 layers. As for the
stellar and planetary parameters, we followed Hellier et al.
(2011) and set Teff= 4400 K, R* = 0.6 R⊕, Mp= 1.78 MJ, and
Rp= 0.93 RJ. We included log10(H2O) and log10(CH4) as trace
gases in the atmosphere, with their abundances set at −4 and
−3, respectively. As for the temperature–pressure profile, we
adopted the dayside temperature profile of WASP-43 b
retrieved by Changeat et al. (2021). We then generated a
(binned) atmospheric model with the above settings, and added
100 ppm Gaussian white noise to produce an observation. The
prior bounds of the parameters follow Table 1 apart from planet
temperature, where we expanded the bounds to [100, 3000].
The observation remains the same for all retrievals performed
in Case III.
As for the retrieval settings, we performed an N-point

retrieval with each temperature point located at a fixed,
predefined pressure point. The top and bottom pressure points
are fixed at 10−5 and 106, respectively throughout the

3 All bounded between [−1, 1].
4 The weight-annealing strategy reduces the contribution from the much
larger likelihood function initially and slowly returns it to its original value as
training progresses. The loss value will almost always increase as the weights
slowly increases back to unity).
5 The learning rate will reduce if the loss value did not decrease after a certain
number of epochs.

6 We note that the alternative and commonly used flat cloud model (i.e., a
constant pressure opacity cut-off) is inherently not differentiable and not
physically viable. We therefore chose to include the differentiable Mie
scattering formulation in Diff-τ.
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investigation, while the (pressure) points in between them vary
in accordance to the number of retrieved temperature (pressure)
points. In all cases the pressure points are separated equally (in
log-pressure space). Other retrieved parameters included Rp,
log10(H2O), and log10(CH4). In summary, the total number of
free parameters is N (temperature points)+ 3. The network
setup mostly follows Section 3.4. We ran the optimization
procedure for 5000 epochs, with β0 and τ set as 100 and 300,
respectively.

5. Results

5.1. Cases I and II

In both cases (Figures 3 and 4), VI-retrieval (in
yellow) is able to converge to very similar results to NS-
retrieval (in red). We observed excellent agreement
between both methods and the percentile values7 are within
1σ of each other.

As for the shape of the posterior distribution, the surrogate
distribution is able to reproduce peaked, Gaussian-like
distributions whenever there are sufficient constrains from the
observations (i.e., the radius of the planet at 1 bar pressure),
and, at the same time, produces a uniform-like distribution
(with upper limit) when the free parameters are unconstrained
by the observation (e.g., CO in Case II), conforming with our
uniform prior. In addition to this, the surrogate distribution
provides a faithful reproduction of the covariances between the
free parameters. These correlations result from the interactions
between the free parameters through the formulation of the
radiative transfer equations. They are most notable in Case II,
when the high signal-to-noise ratio observation of Ariel allows
better constraints on the free model parameters.

Apart from the similarities, there are also noticeable
differences between the two retrievals. For instance, VI-
retrieval is less adept at capturing “cliff-like” distributions
(e.g., log 10 mie

lee(c )), when there is a sharp upper or lower bound
on a parameter. There are also instances (such as Tp in Case I)
when the surrogate distribution is only able to capture “part” of
the conditional distribution obtained via NS-retrieval. The
difference could be due to the imperfect optimization process.
The loss function (ELBO) is a balance between the log-
likelihood term and the prior term. Minimizing one term will
always come at the expense of maximizing the other. This

situation is aggravated by the fact that the variability of the log-
likelihood term is orders of magnitude higher than that of the
prior term, which means that the training will always be driven
by the former term and produce sharply peaked distributions.
Our modified objective function (Equation (12)) aims to
alleviate the imbalance between the two terms by explicitly
lowering the contribution from the log-likelihood term during
the start of the training. However, the underdispersed situation
will likely return as the formulation slowly converges back to
the original ELBO form, as seen in both cases. An alternative
remedy is to increase the contribution from the prior term
permanently, which will inevitably increase the estimated
uncertainties and makes it harder to compare to the conven-
tional approach (i.e., NS-retrieval).

5.2. Case III

Figure 5 shows the outcome of the simulated WASP-43 b
observation. Figure 6 shows the results of performing N-point
retrievals from six free parameters to 12 free parameters. The
first row compares the retrieved T–P profiles from both
approaches (blue: NS-retrieval, yellow: VI-retrie-
val). The second row compares the number of forward models
calls (Ncalls) required by each approach. In all cases VI-
retrieval (in yellow) requires six times fewer Ncalls
compared to NS-retrieval (blue). The third row compares
the log-evidence obtained by each approaches. In all cases, the
log-evidence obtained by VI-retrieval never goes higher
than the ones obtained via NS-retrieval, which is
consistent with the formulation of ELBO. Both approaches
show a declining trend in log-evidence as the number of
retrieved points increases, with VI-retrieval declining
more rapidly than NS-retrieval. The faster decline in log-
evidence may be affected by the increase in dimensionality
(free parameters), which makes the accurate estimation of the
log-evidence harder.

6. Discussion

6.1. Limitations of Grid-based Learning

Most contemporary ML-based atmospheric retrievals are
trained in a supervised fashion with a large grid of simulated
spectra produced by a forward model. We broadly refer these
models as grid-based models here. This kind of training
procedure takes away the computational burden of having to
generate thousands to millions of forward models on the
fly during model deployment and makes these models

Table 1
Fitted Parameters for Cases I and II, along with Their Corresponding Ground Truths, Prior Bounds, and Molecular Line List References for Each Trace Gas Species

Parameters Ground Truth* Case I Case II Priors Reference

Tp (K) 1449 ✓ ✓  (100, 2500) N/A
Rp (RJ) 1.359 ✓ ✓  (0.5, 2.5) N/A
log10(H2O) −5 ✓ ✓  (−12, −2) Polyansky et al. (2018)
log10(CH4) −5 ✓  (−12, −2) Yurchenko et al. (2017)
log10(CO2) −5 ✓  (−12, −2) Yurchenko et al. (2020)
log10(NH3) −8 ✓  (−12, −2) Yurchenko et al. (2011)
log10(CO) −8 ✓  (−12, −2) Li et al. (2015)
log 10 mie

lee(c ) N/A ✓  (−40, −4) Lee et al. (2013)

q lee
mie N/A ✓  (1, 99) Lee et al. (2013)

log a10 mie
lee( ) N/A ✓  (−3, 1) Lee et al. (2013)

Note. The check mark (✓) indicates whether the parameter is included in each case. The ground truths are only available for Case II.

7 Defined as the 16th and 84th percentiles, indicated by the dashed line in
Figures 3 and 4.
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computationally fast for applications within their trained
domain. In other words, these models offload the computa-
tional burden of atmospheric retrievals to the model training
stage, with the fully trained model being quick to run at
inference. However, this approach comes with three limita-
tions: (1) model generalizability, (2) lack of a Bayesian
framework, and (3) a lack of model interpretability.

Generalizability. Any changes to the underlying model,
spectral range, or resolution, will hinder the model’s perfor-
mance, and in some cases, will require a full recomputation of
the training data from scratch and retraining the model
(Márquez-Neila et al. 2018; Zingales & Waldmann 2018; Cobb
et al. 2019; Yip et al. 2020; Ardevol Martinez et al. 2022;
Haldemann et al. 2023). Such a scenario can be triggered by

anything as simple as adding an extra molecule that is
previously not present in the training data. These limitations
can be alleviated to a certain extent by training a surrogate
forward model as done in Himes et al. (2022). Their model is
tasked to produce synthetic spectra at very high resolution, and
the output can subsequently be down-sampled to any
appropriate spectral range and resolution when required.
Nevertheless, the model is not immune to changes to the
underlying atmospheric assumptions and will likely need to be
retrained in those cases.
Lack of a Bayesian framework. Most contemporary

retrievals aim to map the Bayesian posterior distribution. In
contrast, most ML models applied in the field of atmospheric
characterization are formulated to perform maximum

Figure 3. Posterior distributions of the HD 209458 b WFC3/G141 observation obtained from NS-retrieval (blue) and VI-retrieval (yellow). The top right
corner is an empirical comparison between the two best-fitted spectra as obtained by the two methods. The shaded area shows the 1σ spread of the respective retrieval
approaches.
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likelihood estimation (e.g., Márquez-Neila et al. 2018; Yip
et al. 2020; Ardevol Martinez et al. 2022; Haldemann et al.
2023). The difference between these two objectives presents an
obstacle when trying to compare the outputs from the two
methodologies. Other non-Bayesian approaches includes
ExoGAN, in which case the generator is trained to optimize
the adversarial loss (Zingales & Waldmann 2018), but this loss
function does not guarantee a robust computation of P(θ|D).
There are other ways to bypass this limitation. For instance,
Cobb et al. (2019) and Ardevol Martinez et al. (2022) use an
ensemble of neural networks to approximate the conditional
distribution. Himes et al. (2022) bypassed this constraint by
running a traditional retrieval with an ML-based surrogate
forward model.

Interpretability. Interpretability varies from one model to
another. Learning algorithms such as linear regression and
decision trees are some of the most transparent algorithms, but
with limited modeling capability. Deep learning algorithms sits
at the opposite end of the spectrum, with extensive learning
capabilities, but at the cost of very limited interpretability. Most
grid-based learning models (Márquez-Neila et al. 2018;
Zingales & Waldmann 2018; Cobb et al. 2019; Yip et al.
2020; Ardevol Martinez et al. 2022; Haldemann et al. 2023)
use more complex models to learn the covariance between
parameters from a large grid of spectral examples. However,
the loss of interpretability means that it becomes hard for users
to understand when, where, and how the algorithm may break.
With no explicit control on the learning process (remember

Figure 4. Posterior distributions of HD 209458 b at Ariel Tier 2 resolution obtained via NS-retrieval (blue) and VI-retrieval (yellow). The top right corner
is an empirical comparison between the two best-fitted spectra as obtained by the two methods. The shaded area shows the 1σ uncertainty of the respective retrieval
methods.
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they are only asked to optimize the learning objective), it is
uncertain how the model may interpret the training data. By
relying only on the training data, it becomes important to make
sure the training data can adequately represent the underlying
forward model, which may be computational expensive or in
some cases difficult to ascertain (Fisher & Heng 2022).

6.2. A Flexible and Interpretable Bayesian Framework

Motivated by the above limitations, we presented an
alternative approach to train an end-to-end deep learning
model for atmospheric retrieval. Instead of focusing on a
generalizable model (one that works on a wide range of
spectra), our framework is specific (or in other words,
overfitted) to the observed data, and similar to conventional
Markovian sampling algorithms, it is not generalizable and
must be rerun for any changes in observed data and/or model
assumptions. By dropping the goal of training a generalizable
model, we forgo the need to create a vast training set as well as
the need to pretrain our model before any retrieval could take
place. It furthermore affords us with the flexibility of easily
changing our input data and forward models. This flexibility
has allowed us to explore the performance of our model at
different spectral resolutions, wavelength ranges, observational
uncertainties, and model assumptions with relative ease (as
demonstrated above). However, this alternative approach also
comes with disadvantages, see Section 6.4.1.

To allow direct comparison with conventional retrievals, we
formulated the objective function to optimize the ELBO
function, an alternative formulation of Bayes’ theorem. This
modification constrains the behavior of our trained model, and
allows us to obtain results comparable to conventional
retrievals (as demonstrated above). Another advantage of this
approach is the drastic reduction of the amount of forward
model computation to a fraction of its retrieval counterpart.
Table 2 shows a comparison of the number of forward model
calls between NS- and VI-retrieval in Cases I and II.

In the grid-based approaches, models have to learn implicitly
the physical relationships between atmospheric parameters
from the training data. There is no guarantee that the physical
laws are preserved or correctly represented in the trained
model. Our framework is purposely built to impose physical
laws explicitly. One can view our NF-based network as a
generator and Diff-τ as a corresponding decoder that
transforms parameters into spectra. The static8 decoder acts
as a physical regularizer to the generator, which explicitly

constrains the output from the generator to align with physical
laws (any misalignment will be reflected in the transformed
spectra). This is demonstrated through our examples, where the
surrogate distributions are able to provide physically plausible
correlations and are aligned with correlations produced from
standard Bayesian sampling retrievals (NS-retrieval,
blue). Having a fully analytic model allows us to impose
physical laws directly, without going through a training data
proxy.

6.3. Objective Function

The objective (loss) function is a crucial factor that governs
the learning behavior of a deep learning model. Deep learning
models in the literature are usually trained to best match the
respective ground truth values of the physical parameters9 (i.e.,
fitting for parameters). Here we opt to align our objective to
that of our retrieval counterpart; in other words, we are
explicitly asking our model to look for solutions that can best
explain our observation (i.e., fitting for observations).
Adopting an observation-based likelihood not only allows us

to align with the objective function of conventional retrievals, it
also has the added advantage of properly accounting for
observational uncertainties. ML-based retrieval methods often
incorporate observational uncertainties through noise augmen-
tation (Yip et al. 2020; Ardevol Martinez et al. 2022); this has
resulted in overestimation of the error bound as compared to
nested sampling–based retrievals (Ardevol Martinez et al.
2022).
In an ideal world, both approaches (fitting for parameters and

fitting for observations) will agree with each other. However, it
is not the case for inverse problems, where our observations are
inherently corrupted,10 and we may never be able to recover the
ground truths in some cases due to a loss of information and the
inverse processing being ill defined. In such cases, differences
in the objective function may lead to different results. On one
hand, the fitting-for-parameter approach is asking the neural
network to pursue parameter values that may no longer be
possible to retrieve (due to corruption of the observed data),
which will cause the neural network to exhibit fictitious
behavior if it results in the lowering of the loss function values
(Yip et al. 2020). On the other hand, the fitting-for-observation
approach explicitly asks for spectra that can explain the
observation and not the underlying ground truth. Of course,
that will also mean that our approach is not immune from the

Figure 5. Left: simulated observation of WASP-43 b from 0.5 to 15 μm; Right: dayside temperature profile used to generated this observation (adopted from Changeat
et al. 2021). There are 50 pressure points separated evenly (in logarithmic scale) between 10−5 and 106.

8 Static in the sense that it remains invariant throughout the training.

9 Parameter values used to generate the forward model.
10 Possible sources include instrument and astrophysical noise sources as well
as information loss from binning data and/or by the forward model.
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intrinsic retrieval biases induced by the atmospheric forward
model itself (Rocchetto et al. 2016; Feng et al. 2020;
MacDonald et al. 2020). These biases can only be alleviated
through increasing the complexity of the atmospheric forward
model to represent better the physical/chemical processes
leading to the observed spectra.

In terms of model development, our framework bypasses the
need to train the network with a large library of synthetic
spectra before applying to actual data, as we are training the
network directly on actual observations. This move avoids the
problem of data shift (Quionero-Candela et al. 2009), where
our training distribution is different from our test distribution.

6.3.1. Computational Cost of VI-retrieval

In this section we will discuss the computational cost
associated with running a retrieval using VI-retrieval
compared to NS-retrieval. Under the same forward
model, VI-retrieval will always beat NS-retrieval,
but the matter becomes slightly more complicated as the two
methods do not always reuse the same forward model. We
provide an initial assessment of the two methodologies with
two different forward models. Note that the following figures
are based on running both methods using a Macbook Pro with
an Apple M1 chip (eight CPU cores in total). These figures
should be taken with caution as the two forward models are at
different developmental stages: TauREx3 is a highly optimized
code while Diff-τ is proof-of-concept forward model written
from scratch entirely in Tensorflow.
A single forward model call (FMcall) for Case I takes

about 0.89± 0.02 s on Diff-τ and 0.26± 0.10 s with
TauREx3ʼs forward model. For a single retrieval, VI-
retrieval takes 8781 FMcall and NS-retrieval takes
105,622 FMcall. Based on these numbers, VI-retrieval
takes 7815 s and NS-retrieval takes 94,003 s. As for Case
II, a single forward model call takes about 5.08± 0.38 s on
Diff-τ and 0.51± 0.34 s with TauREx3ʼs highly optimized
forward model. For a single retrieval, VI-retrieval takes

Figure 6. Comparing the performance of VI-retrieval (yellow) and NS-retrieval(blue). First row: T–P profiles retrieved by each approach. Each subplot
shows a different fixed-point T–P profile, going from three points to nine points in steps of two. Second row: the number of forward model calls requires for each
N-point retrieval. Third row: the log-evidence values retrieved by each approach.

Table 2
Comparing the Number of Forward Model Calls by Each Method for the Same

Atmospheric Models (as in Case I) at WFC3/G141 and Ariel Spectral
Resolution

Ncalls NS-retrieval VI-retrieval

WFC3/G141 105,622 8781
Ariel 65,414 9570

Note. In both cases, the number of forward model calls by VI-retrieval is
significantly lower than NS-retrieval.

11

The Astrophysical Journal, 961:30 (16pp), 2024 January 20 Yip et al.



9570 FMcall and NS-retrieval takes 65,414 FMcall.
Based on these numbers, VI-retrieval takes 48,615.2 s
and NS-retrieval takes 33,361 s.

From our simple analysis above we can see that VI-
retrievalʼs computation time is dependent on the speed of
the forward model. It is empirically faster than NS-retrie-
val if the computational times of the forward models are
similar to each other (Case I), but the advantage will elapse as
the forward model takes longer to compute. This difference in
performance can be easily narrowed down with model
optimization and the maturity of the framework itself. In this
vein, VI-retrieval will play an important role in retrieval
scenarios with complex, and subsequently slow-to-run, forward
models. In these situations the optimization objective becomes
the number of forward model calls with VI-retrieval
being an order of magnitude more efficient.

6.3.2. Model Selection

Model selection is a key part of the model evaluation cycle.
So far, the ML-retrieval literature has largely ignored the issue
by training networks under one or several fixed atmospheric
assumptions. Our flexible framework and similar objective
function to NS-retrieval means that we can, for the first
time, utilize some of the tools frequently used by sampling-
based retrievals to compare the retrieval results from different
models.

Given that our surrogate distribution is a good approx-
imation of the underlying posterior distribution, our ELBO,
despite being a lower bound, should closely approximate the
Bayesian evidence. We can therefore use the ELBO as a proxy
of the evidence, and compare our models by estimating the
Bayes’ factor:
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where xP k( ∣ ) represents the Bayesian evidence attained from
modelkand P k( ) represents our prior belief on a particular
model.

As an empirical example, we took our example from Case II
and performed VI-retrieval and NS-retrieval with
different atmospheric assumptions, including a flat line model,
an incomplete model (without methane), a complete model (as
specified in Case II), and an overspecified model (Case II plus
TiO and VO). Table 3 compares the corresponding ELBO from
VI-retrieval and the Bayesian evidence from NS-
retrieval. The ELBO retrieved from each model closely
follows, but is always smaller than, the corresponding Bayesian
evidence, as set out from the definition of ELBO. The Bayes’
factor displayed in Table 3 allows us to differentiate between

the different models. Following Jeffrey’s guideline scale
(Jeffreys 1998; Hobson et al. 2002; Padilla et al. 2019), the
Bayes’ factor strongly favors our complete model over the
other competing models. For more discussion on using
Bayesian evidence as a model selection tool, please refer to
the appendix in Changeat et al. (2021).

6.4. Limitations

6.4.1. Limitations on VI-retrieval

In this section we will focus on the framework of VI-
retrieval.

1. Generalizability. As set out from the design goal, VI-
retrieval is targeted to work on a single observation.
This approach has earned us flexibility, where we can
freely change our model assumptions, spectral range, and
resolution with relative ease. However, the same
advantage has also limited the generalizability of our
framework. As opposed to other deep learning
approaches, which can be rapidly deployed to a data set
within its training set range, it will have to be retrained
for each observation.

2. Convergence. Gradient descent helps to converge to a
global optimum if the function is convex. However in the
presence of model degeneracy, the function becomes
nonconvex and convergence to global minima is not
guaranteed.

3. Flow bijections. The expressiveness of the surrogate
distribution depends highly on the architecture of neural
network and the type of flow bijectors (IAF in our case).
While our investigation has demonstrated the flexibility if
these bijectors, it does not mean that any distribution
(Durkan et al. 2019) can be mimicked. It remains an
ongoing effort to design bijectors that are both flexible
and computational efficient.

4. Approximation. The formulation of VI, especially the use
of ELBO in the objective function, means that the
retrieved surrogate distribution will always be an
approximation to the ground truth. The use of flow-
based neural networks has of course improved the fidelity
of the approximation.

5. Tendency to produce an underdispersed solution. The
implementation of ELBO and its modified form in
Section 3.2 hints at the tendency for the network to
produce an underdispersed solution. The negative log-
likelihood term (first term) is almost always going to be
larger than the prior term (second term), meaning that the
network will tend to produce a sharp distribution first
before widening itself to comply with the prior. This
effect is also related to the expressiveness of the
bijections, as their flexibility is ultimately bounded by
the range of “action” that they can perform to transform
the distribution. We note here that this effect is minor in
our case as the shapes of the target distributions are
relatively simple.

6. Hyperparameter tuning. Similar to conventional neural
networks, hyperparameters do not always stay optimal from
one setup to another, which means some degree of
hyperparameter search should be performed to identify a
good setup However, this is alleviated by identifying the key
hyperparameters that may influence the optimization
procedure. In our case we realized the annealing weights

Table 3
Retrieved ELBO from VI-retrieval and Bayesian (log-) Evidence from

NS-retrieval (Ref) for Each Scenario

Model ELBO Ref log 10( )
Flat line 62.74 62.83 315.66
No methane 345.37 347.18 33.03
Complete 378.40 380.20 N/A
Overspecified Model 374.00 377.74 4.4

Note. log 10( ) shows the log-difference between the ELBO of our complete
model and other competing models.
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plays a role in the optimization procedure, owing to their
close relationship with the objective function. Other
hyperparameters are generally fixed and do not differ much.

6.4.2. Limitations on Differentiable Frameworks

The ability to differentiate and provide gradients with respect
to some quantities is central to modern deep learning
algorithms. The growing popularity of ML in recent years
has accelerated the development of differentiable frameworks,
among them Tensorflow, PyTorch, and JAX have
amassed substantial user bases.

There have been several recent attempts within the field of
exoplanets to develop differentiable physical models within
these frameworks. Initial results show that these differentiable
models may hold the keys to overcome the curse of
dimensionality brought by our increasingly complex models
(Morvan et al. 2021; Kawahara et al. 2022), and may one day
enable us to perform population studies without placing
significant demand on computational resources.

However, these frameworks are not without issues. Here we
would like to provide our “user experience” for readers who are
interested and/or would like to implement their own models.

1. Significant overheads. Current development in differenti-
able programming mandates that any implementation must
be written entirely in terms of a chosen framework. While
it has become relatively straightforward to translate most
operations from one framework to another, it is not a trivial
and error-free process. These frameworks come with their
own programming restrictions and conventions. Users are
expected to adhere to these conventions or otherwise they
might risk losing the ability to differentiate.

2. Differentiability is not guaranteed. Not all operations are
differentiable. Some operations may be mathematically
nondifferentiable11 or they are not designed to have a
gradient, such as a LookUpTable or interpola-
tion. Depending on the algorithmic structure of the
forward (atmospheric) model, this obstacle may present
difficulties in obtaining a valid gradient. One good
example is the gray cloud model. This model assumes the
planet becomes completely opaque below a certain
pressure level/altitude. This model, while easy to
implement in any computational language, is not
differentiable. A possible way around is for the user to
implement their own gradient like in Kawahara et al.
(2022), but this approach is only possible if one knows
the differentiable form.

3. Suboptimal performance. Many modern differentiable
languages are built and designed around deep learning–
based applications. They are not designed to handle
complex computational models. In other words, a
differentiable model may suffer from reduced perfor-
mance compared to its undifferentiable counterpart (Hu
et al. 2019, 2020).

4. Rapidly evolving language. Differentiable languages are
under constant development and rapid release cycles in
response to the latest research. Some of these develop-
ments may not be backward compatible12 and may impact
the long term sustainability of the developed model.

7. Conclusion

In this paper we introduced the differentiable forward model
(Diff-τ) based on TauREx3 and implemented in Tensor-
flow. We combined our newly developed model with our
density-alternating neural network and showed that it is
possible to compute an approximate Bayesian posterior
distribution that is in excellent agreement with the ones
produced from computationally more expensive sampling-
based techniques. Through our examples we have demon-
strated three advantages of our framework:

1. Fewer forward model calls. Our VI-retrieval
requires 25% or fewer forward model calls compared to
NS-retrieval to converge, which opens up opportu-
nities for more rapid retrieval with more complex (i.e.,
slower) forward models.

2. Flexibility. Unlike many deep learning–based frame-
works, which rely on large precomputed libraries of
spectra, our proposed framework resembles more closely
a traditional retrieval set up by explicitly including the
physical forward model in the deep learning architecture.
Consequently, it retains many of the advantages of
traditional retrieval codes, such as the freedom to choose
the model assumptions, number of free parameters,
spectral wavelength range, and observed uncertainties,
without having to produce a separate training data set
each time.

3. Error propagation. By incorporating observational
uncertainties directly into the likelihood function, we
demonstrated the capability of our network to produce
uncertainty bounds that are on par with conventional
atmospheric retrievals.

4. Model selection. We demonstrated, for the first time, that
we can compare the adequacy of our neural network
model to a given observation by computing the Bayesian
evidence and Bayes factor.

Our proposed framework presents a major step toward the
wider adoption of neural network–powered atmospheric
retrieval. With significantly higher spectral resolutions and
signal-to-noise ratios afforded by JWST and Ariel data,
atmospheric forward models must consequently increase in
complexity to model these data accurately. Such an increase in
the dimensionality of the problem will result in significant
strain on traditional sample-based retrieval approaches. While
the results shine light to rapid AI-assisted Bayesian inference,
we must stress that our framework is not meant to replace the
sampling-based framework, but to complement existing frame-
works. VI-retrieval, similar to most MCMC-based
approaches, are susceptible to nonglobal minima. NS-
retrieval on the other hand, tends to allow a more
thorough exploration of the parameter space. This difference
becomes important when multiple solutions are equally
plausible for a given observation. The approximate retrieval
performed by VI-retrieval can act as a precursor before
the more computationally heavy nested sampling retrievals are
required. Its rapid convergence means that one can scan
through multiple candidate atmospheric models before conver-
ging to a few promising models for further, more detailed
evaluations. The parameter bounds extracted by our framework
can also act as an informative prior to speed up the sampling
process of conventional retrievals.

11 Such as a discontinuity in the function, e.g., logarithmic function.
12 One good example is the switch from Tensorflow 1 to Tensorflow 2.
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Appendix
ELBO Derivation

In this section we will describe the mathematical derivation
that led to the formulation of the ELBO. We will start from
Equation (3), i.e.:


z z x zq D p qarg min . A1

zq
KL( ) [ ( | ) || ( )] ( )

( )
=*

Î

We start by expanding the left-hand side of the above
expression:

 z x z z z xD p q q plog log , A2KL [ ( | ) || ( )] [ ( )] [ ( | )] ( )= -

and expand the latter term with the multiplication rule and
chain rule of probability:




z x z z
z x x

D p q q
p p

log
log , log , A3

KL [ ( | ) || ( )] [ ( ( ))]
[ ( )] ( ) ( )

=
- +

  z x z z xq p p plog log log log ,
A4

[ ( ( ))] [ ( | )] [ ( )] ( )
( )

= - + +

 


x z z
z x

p q
p p

log log
log log , A5

( [ ( | )] ( [ ( ( ))]
[ ( )]) ( ) ( )

= - -
- +

 x z z z xp D q p plog log . A6KL( [ ( ∣ )] [ ( )∣∣ ( )]) ( ) ( )= - - +

Here we will substitute the expression for the ELBO as defined
in Equation (4):

z x z xD p q pELBO log . A7KL [ ( | ) || ( )] ( ) ( )= - +

From the above expression we can see that the K-L divergence
is determined by the interaction between the ELBO and the
Bayesian evidence term. While the former term depends on the
quality of the surrogate distribution q(z), the latter term is a
constant as it depends only on the data x. This, combined with
the fact that DKL� 0 , the ELBO term is inherently constrained
by xplog ( ), i.e.:

 xpELBO log . A8( ) ( )

Hence the term is known as the ELBO. We can therefore use
the ELBO as our objective function, since maximizing the
ELBO is equivalent to minimizing the K-L divergence. In our
implementation, the objective function is set to minimize the
negative ELBO.
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