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Abstract—This letter investigates the challenge of channel es-
timation in a multiuser millimeter-wave (mmWave) time-division
duplexing (TDD) system. In this system, the base station (BS) uses
a multi-antenna uniform linear array (ULA), while each mobile
user has a fluid antenna system (FAS). Accurate channel state
information (CSI) plays a crucial role in the precise placement of
antennas in FAS. To tackle this issue, we propose a low-sample-
size sparse channel reconstruction (L3SCR) method, capitalizing
on the sparse propagation paths of mmWave channels. Simulation
results show that our method obtains precise CSI with minimal
hardware switching and pilot overhead. As a result, the system
sum-rate approaches the upper bound with perfect CSI.

Index Terms—Channel estimation, fluid antenna system, mul-
tiple access, millimeter-wave communication.

I. INTRODUCTION

Recently, fluid antenna system (FAS) has emerged as a
new technology to obtain spatial diversity [1]. FAS refers to
any software-controllable fluidic conductive structure, recon-
figurable radio-frequency (RF)-pixels, or movable mechanical
antenna structure that can change its shape and position to re-
configure the gain, radiation pattern, and other characteristics.
By switching the antenna’s position, a transmitter or receiver
is able to access the ups and downs of the fading channel,
providing additional degrees of freedom and significant com-
munication gains. In [2], the outage probability of a point-to-
point FAS-assisted system was first investigated, and the effect
of the antenna size and port number was analyzed. FAS has
also been proven to be effective in supporting multiple access
and even massive connectivity. In [3] and [4], it was shown
that by placing an antenna at the port where all interfering
signals fade deeply, the interference at a user can be greatly
reduced, making FAS-assisted multiple access possible.

Current studies on FAS mainly focus on the analysis and
optimization of its communication performance, which relies
heavily on the acquisition of channel state information (CSI).
In FAS, the antenna can often change its position continuously
in a given area, which means that to realize its full potential,
the CSI of any position or a large number of preset ports at
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Fig. 1. Illustration of a FAS-assisted uplink system.

a FAS, has to be known, and conventional channel estimation
schemes developed for fixed-antenna systems are no longer
suitable. To date, little research has been done to estimate the
CSI for FAS. In [5], channel estimation for a point-to-point
communication system, where both the transmitter and receiver
use a planar FAS,1 was studied. However, as shown by the
results in [5], each antenna has to move over 256 positions
(the planar FAS has 400 ports in total) to estimate the channel,
which inevitably leads to quite high hardware switching and
pilot overhead. Therefore, it is of great importance to design
low-cost channel estimation schemes for FAS.

In this letter, we address the channel estimation problem
for a multiuser millimeter-wave (mmWave) time-division du-
plexing (TDD) system, in which the base station (BS) uses
a fixed multi-antenna uniform linear array (ULA) while each
mobile user is equipped with a linear FAS. As a benchmark, we
first show how to obtain the full CSI using the traditional least
squares (LS) method. Utilizing the fact that mmWave channels
have a sparse-scattering property [7], we then propose a low-
sample-size sparse channel reconstruction (L3SCR) method,
which works in three steps. In the first step, the antennas of
the users switch over only a few estimating locations (ELs)
and transmit orthogonal pilots at each EL, from which an LS
estimation of the channel matrix with reduced dimension is
obtained. In the second step, using a compressed-sensing based
method, the sparse parameters, including the number of spatial
paths, angles of arrival (AoAs), angles of departure (AoDs),
and path gains, are extracted at the BS. Finally, based on the
planar-wave geometric model and estimated sparse parameters,
the complete channel matrix (between all ports and the BS) is
reconstructed. Simulation results show that using the L3SCR
method, accurate CSI information can be obtained with quite
low hardware switching and pilot overhead.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a narrow-band mmWave
uplink system where U users simultaneously communicate
with the BS. The BS is equipped with an M -antenna ULA
with antenna spacing d = λ

2 , where λ is the carrier wavelength.
Each user is equipped with a linear FAS of size Wλ and the
fluid antenna can be instantly switched to one of the N evenly

1We note that the term ‘movable antenna system’ was used in [5] instead.
However, the term ‘FAS’ is preferred as it includes both movable and non-
movable position-flexible antennas such as on-off switching pixels [6].
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distributed ports. Let nu denote the port used by user u for
uplink transmission. Then the received signal at the BS is

y =

U∑
u=1

gu,nuxu + z, (1)

where xu ∼ CN (0, pu) is the data signal of user u, pu is
the transmit power, gu,nu ∈ CM×1 is the channel vector from
the nu-th port of user u to the BS, and z ∼ CN (0, IM ) is
the additive noise. The BS applies a linear receiver wu,nu to
detect the signal of user u when its antenna stops at port nu.
Then the sum-rate can be written as

R=

U∑
u=1

τ log

(
1+

pu
∣∣wH

u,nugu,nu
∣∣2∑

u′ 6=u
pu′
∣∣wH

u,nugu′,nu′
∣∣2+‖wu,nu‖

2

)
, (2)

where τ is the loss from pilot signaling. The sum-rate can be
maximized by choosing a ‘good’ nu in {1, . . . , N}. We con-
sider a quasi-static block-fading channel, and aim to estimate
Gu , [gu,1, . . . , gu,N ],∀u ∈ {1, . . . , U}.

III. LS ESTIMATION

In this section, we adopt the classical LS method to estimate
Gu,∀u ∈ {1, . . . , U}. During the estimation period, the anten-
nas of all users switch synchronously over N ports and trans-
mit orthogonal pilot sequences Q = [q1, . . . , qU ] ∈ CU×U ,
where qHu qu = 1 and qHu qu′ = 0,∀u 6= u′. At each port, a
pilot sequence is transmitted T times, i.e., T subframes are
used for estimation with each subframe containing U time
slots. In the tn-th subframe, all antennas are located at the
n-th port and the received pilot signal at the BS is

Yn(tn) =

U∑
u=1

√
pugu,nq

H
u +Zn(tn), (3)

where Zn(tn) ∈ CM×U is the noise matrix whose elements
are independent and identically distributed (i.i.d.) and all
follow CN (0, 1). By right multiplying 1

T
√
pu

∑T
tn=1 Yn(tn)

by qu, the LS estimate of gu,n can be obtained as

ĝLS
u,n=

1

T
√
pu

T∑
tn=1

Yn(tn)qu=gu,n+
1

T
√
pu

T∑
tn=1

Zn(tn)qu.

(4)

We stack (4) for all n ∈ {1, . . . , N} and obtain

Ĝu,LS =
[
ĝLS
u,1, . . . , ĝ

LS
u,N

]
= Gu + Ẑu, (5)

where Ẑu = 1
T
√
pu

[
T∑
t1=1
Z1(t1)qu, . . . ,

T∑
tN=1

ZN (tN)qu

]
∈CM×N .

The performance of LS is determined by T and pu. However,
since N is usually very large, letting the antennas switch and
measure the channel requires extremely high overhead.

IV. L3SCR

To reduce the hardware switching and pilot overhead, in this
section, we take advantage of the sparse-scattering property of
mmWave channels and propose the L3SCR method. Using this
method, the antennas only need to switch and measure over a
few ELs, and the angular and gain information of the channel
can be extracted, from which the full CSI is then reconstructed.

Assume that during the estimation period each fluid antenna
stops at only K � N preset ELs, which are uniformly
distributed with adjacent spacing ∆ satisfying ∆ ≤ Wλ

K−1 . Let

Hu = [hu,1, . . . ,hu,K ] ∈ CM×K denote the channel matrix
between the K ELs of user u and the BS. Using the planar-
wave geometric channel model that is typically adopted in
mmWave systems [8], Hu can be modeled as

Hu =
√
MK

Lu∑
l=1

γu,lau,R(φu,l)a
H
u,T(θu,l), (6)

where Lu is the number of propagation paths between user
u and the BS, and γu,l is the complex channel gain. Also,
au,R(φu,l) and au,T(θu,l) are respectively the steering vectors
at the receiver and transmitter sides, given by
au,R(φu,l)=

1√
M

[
1, e−j

2π
λ d cosφu,l , . . . , e−j

2π
λ (M−1)d cosφu,l

]T
,

au,T(θu,l)=
1√
K

[
1, e−j

2π
λ ∆ cos θu,l , . . . , e−j

2π
λ (K−1)∆ cos θu,l

]T
,

(7)
where φu,l, θu,l ∈ [0, π] are respectively the AoA and AoD of
the l-th path. Denote2

Γu = diag{γu,1, . . . , γu,Lu} ∈ CLu×Lu ,
Au,R = [au,R(φu,1), . . . ,au,R(φu,Lu)] ∈ CM×Lu ,
Au,T = [au,T(θu,1), . . . ,au,T(θu,Lu)] ∈ CK×Lu ,

(8)

based on which Hu in (6) can be rewritten in matrix form as

Hu =
√
MKAu,RΓuA

H
u,T. (9)

Our aim is to estimate the sparse parameters Lu, γu,l, φu,l,
and θu,l such that Gu can be reconstructed. All users transmit
orthogonal pilot sequences at K ELs, and first get the LS
estimation of Hu using the technique in Section III, i.e.,

Ĥu,LS = Hu + N̂u, (10)

where N̂u∈CM×K is similarly defined as Ẑu in (5). Then, we
extract the sparse parameters from (10) and reconstruct Gu.

A. Estimation of Number of Paths and AoAs

We estimate the number of paths and AoAs by first applying
discrete Fourier transform (DFT) to obtain a coarse estimation
and then using angular rotation to refine the result. In particu-
lar, let Ω ∈ CM×M denote the normalized DFT matrix, whose
(m,m′)-th element is given by

[Ω]m,m′ =
1√
M
e−j

2π
M (m−1)(m′−1). (11)

Then, the DFT of Ĥu,LS normalized by
√
MK is found as

ĤDFT
u,LS =

1√
MK

ΩHĤu,LS

= ΩHAu,RΓuA
H
u,T +

1√
MK

ΩHN̂u. (12)

Lemma 1. If M → +∞, ΩHAu,R is a row sparse matrix
with a full column rank. Only one element in each column of
ΩHAu,R is 1 while all the others are 0.

Proof: See Appendix A.
From Lemma 1, if M approaches infinity, ΩHAu,RΓuA

H
u,T

is a row sparse matrix with Lu non-zero rows, each corre-
sponding to one of the AoAs φu,l. Let ml denote the l-th non-
zero row of ΩHAu,RΓuA

H
u,T. From Appendix A, we know

2The order of the propagation paths in (8) can be arbitrarily changed and
this will affect neither the value of Hu nor the following estimation process.
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that for a given φu,l, if φu,l ∈ [0, π2 ], ml satisfies ml−1

M ≤ d
λ ,

and if φu,l ∈ (π2 , π], ml−1
M > d

λ . Then, if ml is known, φu,l
can be directly calculated based on (34) and (38) as

φu,l =

{
arccos (ml−1)λ

Md , if ml−1
M ≤ d

λ ,

arccos (ml−1−M)λ
Md , if ml−1

M > d
λ .

(13)

Note that M is in practice finite and what we observe is not
ΩHAu,RΓuA

H
u,T but its noisy version ĤDFT

u,LS (see (12)). When
M is large, ĤDFT

u,LS is an asymptotic row sparse matrix and
its power is concentrated on a few rows while the remaining
power is leaked to the nearby rows. To estimate the AoAs from
ĤDFT
u,LS, we calculate the sum power of each row and search

for L̂u obvious power peaks where L̂u can be regarded as an
estimate of the number of paths Lu. Let m̂l denote the index
of the l-th power peak. Then, a coarse estimation of the AoAs
can be obtained from (13) by replacing ml with m̂l.

The above DFT-based estimation is coarse and its perfor-
mance is limited by the resolution 1

M . With the estimated
number of paths L̂u and power peak indices {m̂1, . . . , m̂L̂u

},
we further improve the performance by employing the angular
rotation operation to compensate the angular mismatch [9].
Define the angular rotation matrix as

Ψ = diag
{

1, ej2πψ, . . . , ej2π(M−1)ψ
}
, (14)

where ψ ∈ [− 1
2M , 1

2M ] is the rotation parameter. Applying
both the DFT and angular rotation matrices to 1√

MK
Ĥu,LS,

we then obtain

ĤDFT,ro
u,LS = ΩHΨHAu,RΓuA

H
u,T +

1√
MK

ΩHΨHN̂u. (15)

The (m, l)-th element of ΩHΨHAu,R can be expressed as

[ΩHΨHau,R(φu,l)]m

=
1

M

M∑
m′=1

e−j2π(m′−1)( dλ cosφu,l−m−Mψ−1
M ). (16)

Comparing (16) with (33), we observe that the power beam at
index m is rotated to m−Mψ, which can vary continuously
in [m − 1

2 ,m + 1
2 ] (since ψ ∈ [− 1

2M , 1
2M ]) and corresponds

to a new angle for each ψ. Then, the remaining issue is for a
given m̂l, how to find the best ψ such that the estimated angle
after compensation best matches the real one. We do this by

ψl = arg max
ψ∈{− 1

2M ,− 1
2M +ε,..., 1

2M }
‖ [ĤDFT,ro

u,LS ]m̂l,: ‖2, (17)

where ε is the step length for searching. Once ψl is determined,
using (16) and following similar analysis in Appendix A, we
could obtain the estimation of φu,l as

φ̂u,l =

{
arccos (m̂l−Mψl−1)λ

Md , if m̂l−1
M ≤ d

λ ,

arccos (m̂l−Mψl−1−M)λ
Md , if m̂l−1

M > d
λ .

(18)

As such, Âu,R =
[
au,R(φ̂u,1), . . . ,au,R(φ̂u,L̂u)

]
∈ CM×L̂u .

B. Estimation of AoDs and Channel Gains

Assume that the estimation of the number of paths and AoAs
is accurate.3 Using Âu,R, we project ĤH

u,LS onto the AoA

3If this is not true, the proposed scheme can still be applied. However, its
performance may be compromised by errors in the number of paths and AoAs.

steering matrix subspace as
1√
MK

ĤH
u,LSÂu,R =Au,TΓ

H
u A

H
u,RÂu,R+

1√
MK

N̂H
u Âu,R

≈ Au,TΓ
H
u + Vu

=
[
γ∗u,1au,T(θu,1)+vu,1, . . . , γ

∗
u,Luau,T(θu,Lu)+vu,Lu

]
, (19)

where the approximation holds since AH
u,RÂu,R ≈ ILu when

M is large, Vu = 1√
MK

N̂H
u Âu,R, and vu,l is the l-th column

of Vu. It is obvious that each column of (19) contains the AoD
and gain information of only one path. Hence, we are faced
with a 1-sparse reconstruction problem, and thus apply low-
complexity matched filters to estimate the AoDs and gains.
Define the following dictionary matrix

D=

[
au,T(0),au,T

(
1

C
π

)
, . . . ,au,T

(
C−1

C
π

)]
∈CK×C , (20)

where C is the size of the dictionary, and au,T
(
c−1
C π

)
is the

array steering vector with angle c−1
C π and can be calculated

from (7). Applying D to (19), we get
1√
MK

DHĤH
u,LSÂu,R≈

[
γ∗u,1D

Hau,T(θu,1)+DHvu,1, . . . ,

γ∗u,LuD
Hau,T(θu,Lu)+DHvu,Lu

]
. (21)

The c-th element of γ∗u,lD
Hau,T(θu,l) can be calculated as[

γ∗u,lD
Hau,T(θu,l)

]
c

= γ∗u,lau,T

(
c− 1

C
π

)H
au,T(θu,l)

=
γ∗u,l
K

K∑
k=1

ej
2π
λ (k−1)∆[cos( c−1

C π)−cos θu,l]. (22)

Obviously, the modulus of (22) satisfies∣∣∣[γ∗u,lDHau,T(θu,l)
]
c

∣∣∣ ≤ |γ∗u,l|. (23)

When C is large enough, we can always find an integer
cl ∈ {1, . . . , C} such that cos

(
cl−1
C π

)
− cos θu,l = 0 and[

γ∗u,lD
Hau,T(θu,l)

]
c

= γ∗u,l. In this case, (23) holds with
equality, indicating that if depicting the power of the elements
of γ∗u,lD

Hau,T(θu,l) + DHvu,l over their indices, we see a
peak at

cl = arg max
c∈{1,...,C}

∣∣∣[γ∗u,lDHau,T(θu,l) +DHvu,l
]
c

∣∣∣ . (24)

Based on this observation, θu,l and γu,l can be estimated as

θ̂u,l =
cl − 1

C
π, (25)

γ̂u,l =
[
γ∗u,lD

Hau,T(θu,l) +DHvu,l
]∗
cl
. (26)

Remark 1. From (22), we know that if K = 1, then[
γ∗u,lD

Hau,T(θu,l)
]
c

= γ∗u,l,∀c ∈ {1, . . . , C}. Obviously, the
AoDs cannot be estimated in this case. Therefore, the L3SCR
scheme works only if K ≥ 2, i.e., each fluid antenna must
transmit pilot from at least two different ELs.

Remark 2. It should be noted that the inequality (23) holds
with equality not only when cos

(
c−1
C π

)
−cos θu,l = 0, but also

whenever ∆
λ

[
cos
(
c−1
C π

)
− cos θu,l

]
is an integer (no matter

positive or not). It can be easily verified that if ∆ ≥ λ, for
any θu,l ∈ [0, π], there are multiple c ∈ {1, . . . , C} such that
∆
λ

[
cos
(
c−1
C π

)
− cos θu,l

]
is an integer and thus (23) holds.

In order to avoid angular mismatch, we restrict ∆ < λ, i.e.,
the switching step of the fluid antenna should be less than the
wavelength in the estimation.
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Fig. 2. NMSE versus K with ρ = 10 dB and T = 1.

C. Channel Reconstruction

Once the number of paths, AoAs, AoDs, and channel gains
are estimated, we can reconstructGu based on the planar-wave
geometric model. In particular, we have

Ĝu,L3SCR =
√
MN

L̂u∑
l=1

γ̂u,lau,R(φ̂u,l)â
H
u,T(θ̂u,l), (27)

where au,R(φ̂u,l) can be calculated based on (7) and

âu,T(θ̂u,l)=
1√
N

[
1, e−j2π

W
N−1 cos θ̂u,l , . . . , e−j2πW cos θ̂u,l

]T
. (28)

D. Analysis of Pilot Overhead and Computational Complexity

Using the L3SCR scheme, the antenna of each user switches
over K ELs, and at each EL, a pilot of length U is transmitted
T times. As a result, the total pilot overhead is KTU . In
contrast, the LS method requires N hardware switches and
NTU pilot overhead. As we will show in the next section, an
accurate estimation of the full CSI can be obtained when K
and T are, respectively, 6 and 1. Therefore, the L3SCR scheme
requires very low hardware switching and pilot overhead.

To facilitate the analysis, we assume equal number of paths
for all users, i.e., Lu = L,∀u ∈ {1, . . . , U}. The complexity of
estimating the number of paths and AoAs mainly stems from
the angle rotation operation (17), which involves 1

Mε matrix
multiplications in (15), each with a complexity of O(M3).
Hence, estimating the number of paths and AoAs for each
user requires a complexity of O(M2 1

ε ). The complexity of
estimating the AoDs and channel gains mainly stems from
(24), which requires C matrix multiplications in (21), each
with a complexity of O(CKL). The overall complexity of the
L3SCR scheme is thus O(UM2 1

ε + UC2KL).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
L3SCR scheme by simulations. The uplink carrier frequency
is set to 28 GHz. For convenience, we assume equal maximum
power constraint and equal number of paths for all users, i.e.,
pu = p, Lu = L,∀u ∈ {1, . . . , U}, and define the signal-
to-noise ratio (SNR) as ρ = 10 lg p (dB). We set U = 2,
W = 10, N = 50, ∆ = λ

2 , L = 5, ε = 1
400M , and C = 104.

Let S denote the number of symbols in a coherence block,
which is mainly determined by the coherence bandwidth and
coherence time [10]. Here we set S = 500. Since the L3SCR
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Fig. 3. Average sum rate versus K with ρ = 10 dB and T = 1.

and LS schemes respectively require KTU and NTU pilot
overhead, their corresponding loss factors in (2) are given by

τL3SCR = 1− KTU

S
, τLS = 1− NTU

S
. (29)

Besides the LS method, we also compare the proposed L3SCR
scheme with the orthogonal matching pursuit (OMP) algorithm
in [11]. In particular, we use the OMP algorithm to estimate
the sparse parameters from (10) and then reconstruct Gu. All
simulation results are obtained by averaging over 1000 channel
realizations. We investigate two performance metrics. The first
one is the normalized mean square error (NMSE)

NMSE(Ĝu) = E

[∑U
u=1 ‖Gu − Ĝu‖2F∑U

u=1 ‖Gu‖2F

]
, (30)

where the expectation is taken over different channel realiza-
tions, and Ĝu can be any of Ĝu,L3SCR, Ĝu,LS, or Ĝu,OMP.
The second metric is the average system rate R, which can
be calculated from (2). Here we assume that the BS adopts
the maximum ratio combining method for signal detection.
In addition, we look for the optimal ports for the users to
maximize R by employing the exhaustive searching method.

In Fig. 2 and Fig. 3, the effect of M and K is investigated,
from which several observations can be made. First, as M in-
creases, both NMSE(Ĝu,L3SCR) and NMSE(Ĝu,OMP) notably
drop, leading to great improvement in the sum rate. When M
is small, the OMP algorithm outperforms the proposed L3SCR
scheme in terms of both NMSE and sum rate, while when M is
large, the situation reverses. This is because the L3SCR scheme
separately estimates the AoAs and AoDs. The estimation error
in the first step will therefore be passed to the second step.
In contrast, the OMP algorithm in [11] jointly estimates the
AoAs and AoDs. Second, it is observed that when K increases,
the NMSE of both the L3SCR and OMP schemes decreases
monotonically, whereas the sum rate first increases and then
decreases. This is because while increasing K can effectively
improve estimation accuracy, it also increases pilot overhead.
Moreover, we see that NMSE(Ĝu,LS) remains unchanged with
K and M . We will explain this later in Fig. 4. In many
configurations, the LS method outperforms the L3SCR and
OMP schemes in terms of NMSE. However, it is important to
recognize that the LS method requires NTU pilot overhead,
resulting in lower sum rate (see Fig. 3).

Fig. 4 depicts the NMSE and computational time required
for one channel realization versus ρ and T . It can be ob-
served that lg NMSE(Ĝu,LS) decreases linearly with ρ, while
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Fig. 4. NMSE and computational time with M = 64 and K = 10.

lg NMSE(Ĝu,L3SCR) and lg NMSE(Ĝu,OMP) reduce at the be-
ginning and then saturate. Using (5), (30), and the fact that
p = 10ρ/10, lg NMSE(Ĝu,LS) can be calculated as

lgE


∑U
u=1

∥∥∥∑T
t=1 Ẑu(t)

∥∥∥2

F∑U
u=1 ‖Gu‖2F

− 2 lg T − ρ

10
, (31)

where the expectation is seen as a constant. (31) shows that
lg NMSE(Ĝu,LS) is determined only by ρ and T , and decreases
linearly with ρ. This also explains why it remains unchanged
with K and M in Fig. 2. In contrast, the performance of
L3SCR and OMP is affected not only by ρ and T , but also
by M and K (see Fig. 2). In addition, we see that the
computational time of both L3SCR and OMP decreases with
ρ, and the OMP algorithm requires much higher computational
complexity. This is because when ρ is small, more iterations
are needed for the algorithms to converge, and different from
the L3SCR scheme, the OMP algorithm needs to compute
matrix inversions, which is computationally intensive.

VI. CONCLUSIONS

This letter devised a novel channel estimation scheme for
a multiuser mmWave system, wherein mobile users employ
FAS to establish communication with the BS. Leveraging the
channel sparsity, our scheme mandates each fluid antenna to
selectively switch and measure the channel across a limited set
of ELs. This approach enables us to reconstruct full CSI with
minimal hardware switching and pilot overhead. Our results
substantiated the efficacy of our proposed scheme, both in
terms of NMSE and the system sum-rate performance.

APPENDIX A
PROOF OF LEMMA 1

Denote

ΩHAu,R =
[
ΩHau,R(φu,1), . . . ,ΩHau,R(φu,Lu)

]
. (32)

Based on the definitions of au,R(φu,l) and Ω in (7) and (11),
the m-th element of ΩHau,R(φu,l) can be written as

[ΩHau,R(φu,l)]m

=
1

M

M∑
m′=1

ej
2π
M (m′−1)(m−1)e−j

2π
λ (m′−1)d cosφu,l

=
1

M

M∑
m′=1

e−j2π(m′−1)( dλ cosφu,l−m−1
M ). (33)

We prove Lemma 1 by separately discussing two cases with
φu,l ∈ [0, π2 ] and φu,l ∈ (π2 , π].

First, if φu,l ∈ [0, π2 ] and M is large enough, since d
λ = 1

2 ,
there always exists an integer ml ∈ {1, . . . ,M} such that

d

λ
cosφu,l −

ml − 1

M
= 0. (34)

Then, it is known from (33) that

[ΩHau,R(φu,l)]ml = 1. (35)

For any m ∈ {1, . . . ,M} \ml, it can always be expressed as
m = ml+f , where f ∈ N is non-zero. Using the sum formula
of a geometric progression and (34), (33) can be rewritten as

[ΩHau,R(φu,l)]m =
1

M

1− e−j2πM( dλ cosφu,l−m−1
M )

1− e−j2π( dλ cosφu,l−m−1
M )

=
1

M

1− ej2πf

1− e−j2π f
M

= 0,∀m ∈ {1, . . . ,M} \ml. (36)

If φu,l ∈ (π2 , π], we use the fact that e−j2π(m′−1) =
1,∀m′ ∈ {1, . . . ,M} \ml and rewrite (33) as

[ΩHau,R(φu,l)]m

=
1

M

M∑
m′=1

e−j2π(m′−1)e−j2π(m′−1)( dλ cosφu,l−m−1
M )

=
1

M

M∑
m′=1

e−j2π(m′−1)( dλ cosφu,l+1−m−1
M ). (37)

Obviously, if M is large enough, there always exists an integer
ml ∈ {1, . . . ,M} such that

d

λ
cosφu,l + 1− ml − 1

M
= 0. (38)

Then, it can be proven similarly as the first case that (35) and
(36) also hold. This completes the proof of Lemma 1.
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