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Abstract—This work studies resource allocation policies for
a multi-antenna access point that is powered by a combination
of harvested energy and the power grid, communicating with
multiple single-antenna users. Traditionally, a single-antenna
access point or orthogonal transmission was used for the
throughput maximization problem. However, these methods
are known to waste resources. To overcome this issue, we
propose a non-convex problem to directly solve throughput
maximization problem. Though the problem is changeling to
solve, we first propose an iterative algorithm based on the first-
order Taylor expansion and block coordinate descent for the
scenario where full channel state information (CSI) and energy
arrival information (EAI) are assumed to be known. Then,
inspired by this scenario, we study a case in which statistical CSI
and EAI are only required. Simulation results demonstrate that
the energy-performance trade-off as well as the performance
of the statistical case is comparable to the full CSI and EAI
scenario, which supports the practically aspect of the proposed
policies.

Index Terms—Energy harvesting, resource allocation, first-
order Taylor expansion, block coordinate descent.

I. INTRODUCTION

Recently, there has been a growing interest in using energy
harvesting (EH) sources for telecommunication tasks, where
the access point is typically equipped with the EH tools
to harvest energy from ambient energy sources such as
solar, wind, and thermoelectric [1]. However, these energy
sources are varied over time, resulting in the harvested energy
changes with time. Thus, the literature is abundant in the
dynamic resource allocation strategies for such a problem.

In [2], [3], and [4], the authors studied the EH multiple
access, broadcast, and relay channels, respectively. To min-
imize the transmission time, in [5], the authors proposed
optimal power allocation policies for an EH access point
with an infinite battery capacity. This work was extended
for the case where the capacity of the battery is finite in
[6]. To obtain the best performance of any feasible resource
allocation policies, in [7], for the single-user case, the authors
studied the scenario where full channel state information
(CSI) and energy arrival information (EAI) are known prior to
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the transmission begins. Joint power scheduling and antenna
selection using zero-forcing (ZF) technique for the multi-
antenna EH systems in the presence of the smart grid was
studied in [8] in order to provide communication services for
the multi-user scenario.

The previous works in the literature mainly focused on the
simple scenarios such as point-to-point communication, the
single-antenna access point, or orthogonal data transmission.
These assumptions, however, are known to substantially
waste resources. Accordingly, this paper studies a multiple-
antenna EH communication system, communicating with
multiple users in the presence of the power grid. More pre-
cisely, the required energy at the access point can be provided
by both the EH and grid sources. We consider a battery with
a finite capacity to store the energy whenever it is needed. We
propose a non-convex problem to maximize the average sys-
tem throughput constraint on the energy constraints–casualty,
battery overflow, and the power grid–, quality of service
(QoS) requested by all the users. The proposed problem can
strike a balance between the consumed energy from both
the sources and the communication performance. Though
this problem is challenging to solve as it is not convex, we
approximate the non-convex functions using the first-order
Taylor expansion. Then, using the block coordinate descent,
we provide an iterative algorithm to tighten the solution. We
first obtain a performance benchmark using the full CSI and
EAI. Then, we study the scenario where only requires the
statistical CSI and EAI, which can be exploited in practice.
The numerical results show an energy-performance trade-off
as well as the performance obtained by the proposed polices
is comparable to the energy-agnostic transmission.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a multi-antenna access
point with Nt antennas equipped with an EH device and
battery in the presence of the power grid, communicating
with M single-antenna users. Following [6], the maximum
capacity of the battery is considered as Emax. Suppose that
the total transmission time is [0, T ) and the energy arrives
Te times over this interval, following a Poisson process with
rate λe. Also, the energy values, e[i] for i ∈ {1, · · · , Te},
follow a uniform distribution with parameters emin[i] and
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Fig. 1: System model.

emax[i], i.e., e[i] ∽ U(emin[i], emax[i]) for i ∈ {1, · · · , Te}.
We assume that the stored energy in the battery at the
beginning of the transmission time, t[0], is e[0]. In this
paper, similar to [9], [10], we consider a full-duplex battery
such that it can be charged or discharged at the same time.
For the communication model, we assume a block fading
channel where the channel states independently change Tc

times, following a Poisson process with rate λc over the
transmission time and remain constant during each block.
Let us assume that all the users and antennas have the same
coherence time though our model can be easily generalized
for the case where each user and antenna has a different
coherence time at the price of more parameters. The channel
state vector between the access point and the m-th user at
the i-th time slot is given by hm[i] ∈ CNt×1. We define
any change in the channel or energy as an event and the
time interval between two consecutive events as the time slot.
Thus, the number of events during the transmission time is
TE = Te + Tc. As a result, the time slots can be written as
ℓ[i] = t[i] − t[i − 1], ∀i ∈ K = {1, 2, · · · , TE + 1}. It is
worth noting that the first time slot is corresponding to the
beginning of the transmission and first event. Also, the last
time slot is for the last event and the end of transmission.

As shown in Fig. 1, the required energy at the access point,
transmission and signal processing, can be provided by both
the EH and grid sources. In particular, the power required
for the m−th user at the i−th time slot can be written in the
form of the summation of two sources as

∥wm[i]∥22 = ϕpem[i] + pgm[i], (1)

where pem[i] and pgm[i] are the portion of the power provided
by the EH and grid sources for the m−th user and the i−th
time slot, respectively. Moreover, the parameter ϕ can make
a balance in energy consumption from the EH and non-
renewable sources and ∥ · ∥2 is the ℓ2 norm. More precisely,
setting 0 < ϕ < 1 encourages the access point to consume
energy from the EH source. The required power at the i−th
time slot by the signal processing, including the frequency
synthesizer, mixer, digital to analog converter, and transmit
filter, is modeled as

ps[i] = ϕpes[i] + pgs [i], (2)

where pes[i] and pgs [i] are the portion of the power provided
by the EH device and grid at the i-th time slot, respectively.
There are two inherent constraints on the harvested energy.
First, the energy arrivals must not be consumed before being
harvested, which is known as the casualty energy constraint.
The following linear equations for all the time slots can
satisfy this [6]

k∑
i=1

(
M∑

m=1

1

η
pem[i] + pes[i]

)
ℓ[i] ≤

k∑
i=1

Ein[i], k ∈ K, (3)

where η is the efficiency of the power amplifier, which we
assumed that is the same for all the antennas. Ein[1] = e[0]
and if the i-th event is an energy arrival, Ein[·] = e[·],
otherwise, Ein[·] = 0. The second constraint states that the
available energy at the battery must be greater than or equal
to Emax to avoid the battery overflow, which can be satisfied
by the following equations [6]

k∑
i=1

(
M∑

m=1

1

η
pem[i] + pes[i]

)
ℓ[i]

≥
k∑

i=1

Ein[i]− pes[i]ℓ[i]− Emax, k ∈ K, (4)

Moreover, the maximum power that can be provided by the
grid is limited in each time slot. Thus, any resource allocation
polices must satisfy the following constraints [10]

k∑
i=1

( M∑
m=1

1

η
pgm[i] + pgs [i]

)
ℓ[i] ≤ pmg

k∑
i=1

ℓ[i], ∀k ∈ K,

(5)

where pmg is the maximum power that can be drawn from
the grid source.

Traditionally, the orthogonal approaches such as the ZF
method was used for the multiple antenna scenario. However,
this method is known to waste the energy and resources and
is not efficient for the case where there is no full information
regarding the channel and energy arrival. To over come these
issues, in this paper, we exploit the successive optimization
technique to directly solve the resource allocation problem
for the multiple antenna scenario. To do so, let us first define
the Signal-to-interference-plus-noise ratio (SINR) as γm[i] =

|hm[i]Hwm[i]|2∑
j ̸=m |hm[i]Hwm[i]|2+σ2 ,∀m, i, where σ2 = N0B in which

N0 and B are the spectral density of additive white Gaussian
noise (AWGN) and the bandwidth of the system, respectively.
Moreover, the term

∑M
j ̸=m |hm[i]Hwm[i]|2 is the co-channel

interference term at the m-th user caused by other users at the
i-th time slot. Accordingly, the system throughout at the i-th
time slot can be given by Rm[i] = B log2

(
1 + γm[i]

)
. Our

goal is to maximize the average system throughput over the
transmission time subject to the energy and minimum QoS
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requested by the users. To do so, we propose the following
optimization as

max
wm[i],pg

m[i]
pes[i],p

g
s [i],pem[i]

1

M(TE + 1)

TE+1∑
i=1

M∑
m=1

Rm[i]

s.t., (1), (2), (3), (4), and (5),

Rm[i] ≥ Rq, ∀ m, i, (6a)
pes[i], and pgs [i] ≥ 0,∀m, i. (6b)

Constraint (6a) is for the minimum QoS requested by all
the users over the transmission time in which Rq is the
minimum data rate. Constraint (6b) guarantees all the op-
timization variables are non-negative. Though Rq is not an
optimization variable, it can strike a balance between the
system throughput and energy consumption. It is difficult to
solve problem (6) since the objective value and constraint
(6a) are non-convex since the beamforming vectors appear
in both the numerator and denominator of the SINR fraction.
However, in the next section, we propose a novel solution for
the proposed problem when full CSI and EAI are available,
based on the first-order Taylor expansion of Rm[i] and the
block coordinate descent technique. It is worth clarifying
that the value of the full CSI and EAI. This regime can
provide the performance benchmark for any feasible resource
allocations since full CSI and EAI are assumed to be available
in advance. Moreover, this scenario paves the way to design
the statistical policy by providing insight into the optimal
resource allocation policies.

III. THROUGHPUT MAXIMIZATION WITH THE FULL CSI
AND EAI

As mentioned, problem (6) is not convex, hence there is
no efficient approach to solve it. To address this concern, in
this section, we propose a novel solution based on the first-
order Taylor expansion and the block coordinate descent. To
do this, let us first define Wm[i] = wm[i]wH

m[i],Qm[i] =
hm[i]hH

m[i], then, we can write ∥wm[i]∥22 =
tr(wm[i]wH

m[i]) = tr(Wm[i]), |hH
m[i]wm[i]|2 =

tr(hm[i]Hwm[i]hH
m[i]wm[i]) = tr(Qm[i]Wm[i]).

Consequently, the optimization problem in (6) can be
recast as

max
Wm[i]

pes[i],p
g
s [i],pem[i]

B

M(TE + 1)

TE+1∑
i=1

M∑
m=1

log2

(
1 +

tr(Qm[i]Wm[i])∑
j ̸=m tr(Qm[i]Wj [i]) + σ2

)

s.t., (2), (3), (4), and (5),

tr(Wm[i]) = ϕpgm[i] + pgm[i], (7a)

log2

(
1 +

tr(Qm[i]Wm[i])∑
j ̸=m tr(Qm[i]Wj [i]) + σ2

)
≥ Rq, (7b)

pes[i], and pgs [i] ≥ 0, ,

rank(Wm[i]) = 1,∀m, i, (7c)

where the last constraint ensures that the solution is rank-
one. The problem is intractable because of the non-convexity
of the data rate and rank-one constraint. To overcome these
issues, we used the successive convex optimization tech-
nique in the following. Note that for any given convex
function, f(t), at the local point t̃, there is the follow-
ing lower bound f(t) ≥ f(t̃) + ∇tf(t̃)

T (t − t̃), where
∇tf(t̃) is the gradient of f(t) at the local point t̃ [11].
To exploit this bound for our problem, let us first sim-

plify Rm[i] as Rm[i] = log2

(∑M
j=1 tr(Qm[i]Wj [i]) +

σ2

)
− log2

(∑M
j ̸=m tr(Qm[i]Wm[i]) + σ2

)
, where is

still non-convex since it is a difference of two con-
vex functions. By using the Taylor bound, we can ob-
tain a lower bound on the second term at the local
point W̃m[i] as − log2

(∑M
j ̸=m tr(Qm[i]W̃m[i]) + σ2

)
−

∑M
j ̸=m tr

(
(Wm[i]−W̃j [i])

(
∑

r ̸=m W̃r[i]+σ2) ln 2

)
. By dropping the rank-one

constraint, problem (6) can be recast as

max
Wm[i],pg

m[i]
pes[i],p

g
s [i],pem[i]

1

TE + 1

TE+1∑
i=1

M∑
m=1

log2

( M∑
j=1

tr(Qm[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=1

tr(Qm[i]W̃m[i]) + σ2

)

−
M∑

j ̸=m

tr

(
(Wm[i]− W̃j [i])

(
∑

r ̸=m W̃r[i] + σ2) ln 2

)
.

s.t., (7a), (2), (3), (4), and (5),

log2

( M∑
j=1

tr(Qm[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(Qm[i]W̃m[i]) + σ2

)

−
M∑

j ̸=m

tr

(
(Wm[i]− W̃j [i])

(
∑

r ̸=m W̃r[i] + σ2) ln 2

)
≥ Rq,∀i,m,

(8a)

which is convex and can be efficiently solved using off-
the-shelf convex solvers such as CVX [12]. It is worth
mentioning that by the lower bound derived used in (8), the
feasible set of problem (8) will be a subset of the feasible set
of problem (6). Hence, the objective value of problem (8) is
less than the objective value of (8). Regarding the fact that
the solution of the above problem is a linear approximation
of the optimal solution, we tighten its solution using the
block coordinate descent technique. More precisely, we first
initialize the optimization variables, then solve problem (8),
and use the solutions for the next iterations. We run this
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Algorithm 1: The block coordinate descent method
for solving problem (8).
1: Initialize pes[i], p

g
s [i], p

e
m[i],Wm[i], pgm[i], set t and

ϵ ≪ 1 as the iteration step and error tolerance,
respectively.

2: Repeat
3: For given pes,t[i], p

g
s,t[i], p

e
m,t[i],Wm,t[i], p

g
m,t[i],

solve problem (8) and store the optimal solutions in
pes,t+1[i], p

g
s,t+1[i], p

e
m,t+1[i],Wm,t+1[i], p

g
m,t+1[i]

and set t = t+ 1.
5: Until ∥objt−objt−1∥2

∥objt−1∥2
≤ ϵ

Result: The final solutions are
pes,t[i], p

g
s,t[i], p

e
m,t[i],Wm,t[i], p

g
m,t[i].

iteratively until the termination criteria, ∥objt−objt−1∥2

∥objt−1∥2
≤ ϵ,

is satisfied, where ϵ is the tolerance error, obj is the objective
value of problem (8) and t is the iteration step of Algorithm 1.
The steps of the above procedure is summarized in Algorithm
1. Following our recent work [13] and regarding the fact
that the optimal solution of problem (8) is increasing in
each step, one can prove that Algorithm 1 is convergent.
Using numerical simulations in Section V, we show that the
proposed Algorithm 1 converges quickly.

Since the rank-one constraint is removed from the op-
timization problem, the solution might not be rank-one
matrices. To overcome this issue, one can use the Gaus-
sian randomization technique proposed in [14] constructing
candidate sets of beamforming vectors from the solution of
the proposed problem in (8) which satisfies the optimization
constraints.

IV. THROUGHPUT MAXIMIZATION WITH THE
STATISTICAL CSI AND EAI

In this section, inspired by the full CSI and EAI, we study
the case where only statistical CSI and EAI are available.
Since obtaining full CSI and EAI are challenging in many
practical scenarios, the access point is not typically aware
of the future channel states and energy arrivals. Below, we
exploit a robust optimization technique for our proposed sta-
tistical policy. More precisely, using statistical CSI and EAI,
we first determine the average number of events and their
length during the transmission interval. Based on the fact
that the combination of two independent Poisson processes
is a Poisson process, we can conclude that the distribution
of the events is a Poisson process with rate λE = λe + λc.
Consequently, the expected number of events is T̄E = λET .
Now, let us assume that there is inexact information regarding
CSI as below

|h̄m[i]| ≤ |hm[i]| ≤ |ĥm[i]|, ∀i,m, (9)

which can be available through a long-term measurement
in practice such that |h̄m[i]| and |ĥm[i]| are the minimum

and maximum of the absolute value of the channel state
vector for the m-th user at the i-th time slot. Conse-
quently, the minimum throughput is R̄m[i] = B log

(
1 +

|h̄m[i]Hwm[i]|2∑
j ̸=m |ĥm[i]Hwm[i]|2+σ2

). By assuming that the access point
is currently working at the i0−th time slot, we can write the
following optimization for the i0-th at the local point W̃m[i]
and future time slots as

max
Wm[i],pg

m[i]
pes[i],p

g
s [i],pem[i]

1

T̄E + 1− i0

T̄E+1∑
i=i0

M∑
m=1

[
log2

( M∑
j=1

tr(Q̄m[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(Q̂m[i]W̃m[i]) + σ2

)

−
M∑

j ̸=m

tr

(
(Wm[i]− W̃j [i])

(
∑

r ̸=m W̃r[i] + σ2) ln 2

)]
s.t., (7a), (2), (3), (4), and (5),

log2

( M∑
j=1

tr(Q̄m[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(Q̂m[i]W̃m[i]) + σ2

)

−
M∑

j ̸=m

tr

(
(Wm[i]− W̃j [i])

(
∑

r ̸=m W̃r[i] + σ2) ln 2

)
≥ R̄q,

∀i ∈ {i0,··· ,T̄E+1}. (10a)

Note that all the constraints must be adopted for the i0−th
time slot, T̄E , and minimum energy arrival, however, to avoid
excessive clutter, we only show this for constraint (3) as

k∑
i=1

(
M∑

m=1

1

η
pem[i] + pes[i]

)
ℓ[i] ≤

k∑
i=1

Ēin[i],

k ∈ {i0, · · · , T̄E + 1}, (11)

where Ēin[1] = e[0] and if the i-th event is an energy
arrival, Ein[·] = emin[·], otherwise, Ein[·] = 0. Problem
(6) is convex and can be efficiently solved using CVX.
Then, the solution can be tightened using proposed Algorithm
1. In the simulation results, we compare the performance
of the full and statistical CSI and EAI. The last but not
the least is that the rank-one constraint is also necessary
for the statistical problem, however, using the Gaussian
randomization technique proposed in [14], one can obtain
a rank-one solution for problem (10).

V. EXPERIMENTS

This section provides Monte Carlo simulations to in-
vestigate the performance of the proposed resource allo-
cation policies. The bandwidth and noise power spectral
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Fig. 2: The average system throughput versus the number
of iterations, evaluating the convergence behavior of the
proposed policies for M = 4 users, λc = 1 1/s, λe = 60
J/sm, pmg = 30 dBm, and Nt = 10.

density are assumed to be B = 1 mega Hertz (MHz) and
N0 = 10−13 W/Hz, respectively. The Rayleigh channel
model with complex normal variables with the mean and
variance, µc = 5 × 10−5 and σ2

c = 10−10, are considered
for the simulations for all the users. The tolerance error in
Algorithm 1 is set to be ϵ = 10−4. The number of antennas
Nt = 10. Moreover, we initialize the variables of Algorithm
1 randomly. To evaluate the performance better, an upper
bound on the objective value of the proposed problem is

derived as Rub = B log2

(
1+

|ĥm[i]|2pmax

N0B

)
, where |ĥm[i]|

is the maximum of the absolute value of channel obtained by
µc and σc. Also, the maximum power can be calculated by

pmax =
Emax + pmg

λE
where Emax = emax[i] for all i. We set

ps = 40 dBm as the static circuit power consumption [10].
The minimum data rate is set to be Rq = 5 megabits per
second (Mbits/s). The transmission interval is assumed to be
5 seconds, i.e., (0, 5]. The maximum capacity of the battery
is set to be Emax = 500 joule (J). Without loss of generality,
we assume that emin[i] = 2 J and emax[i] = 5 J. We set
ϕ = 0.01 to ensure that the access point prefers to consume
energy from the EH source. The power amplifier’s efficiency
is set to be η = 0.35. The maximum power that can be drawn
from the grid will be specified in each simulation. For a fair
comparison, we set i0 = 1 in problem (10). We exploit the
full CSI an EAI scenario as the performance benchmark for
the statistical case.

A. Converge Behavior of the Proposed Policies

We commence our evaluations by investigating the con-
vergence behavior of the proposed policies in Fig. 2 for
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Fig. 3: The average system throughput versus the rate of
energy arrivals for M = 4 users, λc = 1 1/J, and pmg = 30
dBm, Nt = 10.

M = 4 users. For this simulation, we set pmg = 30 dBm,
λc = 1 1/s, and λe = 1 J/s. It is observed from this figure
that the proposed policies quickly converge after almost 12
iterations. The performance of the scenario where full CSI
and EAI are assumed to be available at the access point
serves as a benchmark for the statistical scenario. Moreover,
this performance is comparable to the maximum achievable
throughput, Rub.

B. The Average System Throughput Versus the Energy Ar-
rival Rate

In Fig. 3, we evaluate the average system throughput versus
the different values of energy arrival rate for M = 4 users,
λc = 1 1/s, and pmg = 30 dBm over 100 Monte Carlo
simulations. Intuitively, by increasing the energy arrival rate,
it is expected to achieve better performance in terms of the
system throughput for all the methods as shown in Fig. 3.
This is because of the fact that more energy is available
at the access point. It is also observed from this figure
that the performance of the statistical scenario is close to
the benchmark (the full CSI ane EAI scenario) in both the
low and high energy arrival rates. More precisely, when
the energy arrival rate is low, the access point is mainly
relied on the grid source for its operations. Thus, prior
knowledge about the future energy arrivals has a low effect
on the resource allocation policies, approaching the statistical
scenario’s performance to the the full CSI and EAI case. On
the other hand, in case of high rate regime, the EH source will
be a continuous energy source. Consequently, information
regarding the energy arrivals in the future time slots is less
valuable in the resource allocation policies because energy is
always available at the access point.
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Fig. 4: The average system throughput versus the rate of
energy arrivals for the different values of pmg , M = 4 users,
λc = 1 1/J.

In Fig. 4, we depict the average system throughput versus
the rate of energy arrivals for the different values of Pmg

in order to evaluate the effect of the maximum energy that
can be drawn from the grid on the proposed policies. To
avoid excessive clutters, we only consider the full CSI and
EAI scenario. From this figure, one can understand that a
higher value of pmg results in better performance in terms of
the throughput. This is mainly because of the fact that with
a large value of pmg , the grid can provide energy for the
access point operation whenever energy at the battery is low,
enhancing the throughput. In Addition, it is observed that the
performance slightly diminishes when the energy arrival rate
is high. This comes from the fact that the access point prefers
to consume the energy from the EH source, which means
that for the high value of energy arrival rate, the access point
relies on the EH source and pmg is less important for the
resource allocation policies, approaching the results for all
the different values of pmg .

VI. CONCLUSION

This paper studied the full and statistical CSI and EAI
policies for a multi-antenna EH communication system in
the presence of the power grid, serving multiple users. We
proposed a non-convex optimization in order to maximize
the average system throughput subject to the energy and
QoS constraints. Using the first-Taylor expansion and block
coordinate descent techniques, we solved the proposed prob-
lem for the full CSI ane EAI regime. Then, motivated by
this policy, we developed the statistical policy. Simulation
evaluations were done to investigate the performance of the
proposed approaches and showed that it is comparable to the
energy-agnostic transmission approach.
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