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Abstract—This paper reveals the latent relation inherent in
two typical problems in constructive interference (CI)-based
symbol-level precoding (SLP). One is the power minimization
(PM) problem subject to instantaneous signal-to-interference-
plus-noise ratio (SINR) constraints, and the other is the weighted
max-min SINR balancing (SB) problem with the symbol-level
transmit power budget. In particular, we establish an explicit
duality between the PM-SLP and SB-SLP problems, where we
prove that one of the two problems can be uniquely mapped
to the other. The proposed duality not only provides insights
into the intrinsic structure of the problems and solutions but
also facilitates obtaining the solution to the SB-SLP given the
solution to the PM-SLP without the need for one-dimension
search, and vice versa. We further propose a closed-form power
scaling algorithm to solve the SB-SLP via PM-SLP, by which
the separability of the PM-SLP can be leveraged to solve the
two problems simultaneously. Numerical results demonstrate our
derivations on the duality as well as the efficiency of the proposed
power scaling algorithm.

Index Terms—MU-MISO, constructive interference, symbol-
level precoding, power minimization, SINR balancing, separabil-
ity, duality, inverse problem.

I. INTRODUCTION

The precoding technique that allows the transmitter to pre-
code the data symbols onto the antenna-emitted transmit signal
has been extensively investigated in academia and industry
[1]. To manage interference in the downlink, channel state
information (CSI) is indispensable for precoding.

Under the assumption that the data symbols are indepen-
dent and identically distributed (i.i.d.), linear precoding uses
CSI to eliminate or suppress interference, where transmit
power and signal-to-interference-plus-noise ratio (SINR) are
two frequently considered design metrics. The corresponding
optimization problems account for the power minimization
(PM) problem with SINR constraints and the (weighted) max-
min SINR balancing (SB) problem subject to a transmit
power constraint. The former is dedicated to optimizing the
energy efficiency of the transmitter, and the latter focuses on
fairness among users. Although nonconvex due to the SINR-
related formulations, the two problems can be solved via
optimization theories, such as semidefinite relaxation (SDR)
[2] and second-order-cone programming (SOCP) [3]. On the
other hand, solutions based on the uplink-downlink duality are
viable for the two problems [4], where the uplink problems
have been solved early. In addition, a more straightforward

inverse relation between the two downlink problems has been
proven, and the one-dimension bisection search method has
also been proposed to solve the SB problem by iteratively
solving different instances of PM problems [3]. The above
linear precoding has a constant precoding matrix in each
channel coherence time to precode a block of data symbols,
also known as block-level precoding (BLP).

Contrary to the aforementioned BLP, symbol-level precod-
ing (SLP) imposes a unique precoding matrix in each symbol
slot to utilize both CSI and the deterministic information on
data symbols. The intuition behind the SLP is that, with the
knowledge of CSI and data symbols, the transmit signal can
be predicted and designed instantaneously. As a consequence,
known interference can be exploited as a source of useful
power beneficial to correct detection, which is known as
constructive interference (CI) [5]–[7]. Concerning symbol-
level design criteria, the PM-SLP and SB-SLP adopt symbol-
level transmit power and instantaneous SINR. Most solutions
to the two problems are based on the Lagrangian duality.
Specifically, an efficient gradient projection algorithm has
been proposed in [5] for the Lagrangian dual problem of the
PM-SLP problem. In [8], Lagrangian duality was exploited
to derive the optimal precoding structure for the SB-SLP
problem. On the other hand, the inverse relation similar to
the BLP case was also explored. It has been shown in [6] that
the PM-SLP problem and the SB-SLP problem are inverse
problems, and a bisection search method analogous to that of
the BLP case has been proposed to solve the SB-SLP problem.
Nevertheless, the intensively updated precoding strategy in
each symbol slot incurs an unbearing computational burden
to the transmitter. A better understanding of the relation and
structure of the two problems may open a new door to this.

In this paper, our goal is to inspect the PM-SLP and
SB-SLP problems from a novel dual perspective, different
from the uplink-downlink duality or Lagrangian duality. By
reformulating the original problems, we convert them into
more inspiring forms. We then prove an explicit duality
between the two considered problems, which indicates that
although having different objective functions and constraints,
one of the two problems can be mapped to the other uniquely.
More importantly, the equations of the solutions to the two
dual problems are explicitly determined. A closed-form power
scaling algorithm for the SB-SLP problem is subsequently



developed to obtain an efficient solution leveraging the separa-
bility of the PM-SLP problem discussed in [9]. Our simulation
results validate the proofs of the duality and illustrate the
complexity reduction of the power scaling algorithm over
compared schemes.

Notation: Scalars, vectors, and matrices, are represented
by plain lowercase, boldface lowercase, and boldface capital
letters, respectively. (·)T denotes transpose operator. CM×N

and RM×N denote the sets of M×N matrices with complex-
valued and real-valued entries, respectively. |·| represents the
absolute value of a real-valued scalar or the modulus of a
complex-valued scalar. ∥·∥ denotes the Euclidean norm of a
vector. ℜ{·} and ℑ{·} respectively denote the real part and
imaginary part of a complex-valued input. 1 represents the
all-ones vector of appropriate dimension.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In section, we present the system model and briefly review
the concept of CI in the context of PSK signaling, then
formulate the PM-SLP and SB-SLP problems.

A. System Model

Consider a downlink multi-user multiple-input single-output
(MU-MISO) system in which a base station (BS) equipped
with Nt antennas provides service to K single-antenna users
in the same time-frequency resource. The data symbol vector
s̃ ≜ [s̃1, · · · , s̃K ]T ∈ CK contains the overall K data symbols
in a symbol slot, which is mapped to the transmit signal x̃ ≜
[x̃1, · · · , x̃Nt

]T ∈ CNt at the BS via SLP. The received signal
of user k in one symbol slot is expressed as

ỹk = h̃T
k x̃+ z̃k, (1)

where h̃k ∈ CNt denotes the quasi-static Rayleigh flat-fading
channel vector between BS and user k, and z̃k ∼ CN (0, σ2

k)
is the complex-valued additive white Gaussian noise at user
k. To focus on the precoding design, perfect CSI is assumed.

B. Constructive Interference

The constructive and destructive addition of interference in
the noiseless received signal

{
h̃T
k x̃
}

is jointly determined by
CSI and the information on data symbols [10]. To predict and
further exploit the interference, CI-SLP optimizes the transmit
signal by judiciously utilizing CSI and data symbols such that
all the multi-user interference can add up constructively at
each receiver side [7]. Therefore, the received instantaneous
SINR at user k is given by

SINRk =
|h̃T

k x̃|2

σ2
k

. (2)

Since all interference is exploited via CI-SLP, the instanta-
neous SINR is equivalent to the conventional signal-to-noise
ratio (SNR).

For the sake of illustration, the geometric interpretation of
CI is shown in Fig. 1. Without loss of generality, denote
the symbol of interest of user k by s̃k, which is an arbi-
trary constellation point drawn from a normalized M-PSK
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Fig. 1. Illustration of CI regions for a generic M-PSK modulation.

constellation, corresponding to
−→
OS. The received noiseless

signal of user k can be expressed as h̃T
k x̃, which is denoted

by
−−→
OB in Fig. 1.

−→
OA represents The nominal constellation

point
√
γkσks̃k, where γk denotes a given instantaneous SINR

threshold for user k. The CI region associated with the nominal
constellation point

−→
OA is depicted as the darker-shaded area in

Fig. 1, where the CI region refers to a polyhedron bounded by
hyperplanes parallel to decision boundaries of the constellation
point [5], [11].

From Fig. 1 we can observe that when
−−→
OB is orthogonally

decomposed along
−→
OA, we have

−−→
OB =

−−→
OC +

−−→
CB, where−−→

OC ⊥
−−→
CB. Consequently, one of the criteria that specifies

the location of
−−→
OB in the CI region is

∣∣∣−−→CD
∣∣∣ ≥ ∣∣∣−−→CB

∣∣∣, where

D denotes the intersection of
−−→
CB and its nearest CI region

boundary. The mathematical formulation of CI constraints for
M-PSK signaling can be written as [5]

ℜ{ĥT
k x̃} −

|ℑ{ĥT
k x̃}|

tan π
M

≥ √
γkσk, ∀k, (3)

where ĥT
k ≜ h̃T

k

s̃k
, γk denotes the pre-defined instantaneous

SINR threshold for user k. The instantaneous SINR constraints
are incorporated into the above CI constraints.

C. Problem Formulation

1) PM-SLP Problem: The PM-SLP problem aims to min-
imize the total transmit power subject to CI constraints. This
optimization problem has the following mathematical form:

min
x̃

∥x̃∥2

s.t.ℜ{ĥT
k x̃} −

|ℑ{ĥT
k x̃}|

tan π
M

≥ √
γkσk, ∀k.

(4)

The above problem is convex and can be solved via off-the-
shelf solvers.



Recently, we revealed the separability of the PM-SLP prob-
lem for PSK modulation and proposed a parallelizable and
inversion-free CI-SLP approach in our previous work [9]. The
details are omitted here due to space limitations. Interested
readers are kindly referred to [9] and the references therein.

2) SB-SLP Problem: The SB-SLP problem focuses on fair-
ness in the system by maximizing the minimum instantaneous
SINR over all users subject to a total transmit power constraint.
This problem is formulated as (5) on the top of the next page,
where p denotes the symbol-level transmit power budget, and,
with a little abuse of notation, 1√

γk
denotes the square root of

the weight of SINRk in the context of the SB-SLP problem.
The original max-min SB-SLP problem can be equivalently

converted to a more tractable SOCP problem [5], given by
max
x̃,µ

µ

s.t.ℜ{ĥT
k x̃} −

|ℑ{ĥT
k x̃}|

tan π
M

≥ µ
√
γkσk, ∀k,

∥x̃∥2 ≤ p.

(6)

Similar to the PM-SLP problem, the problem above can
be solved using standard solvers for convex optimization.
The SB-SLP is more complex than the linearly constrained
quadratic PM-SLP problem. To solve it more efficiently,
the derivation of the optimal structure is used to obtain its
Lagrangian dual problem in [8], where an iterative closed-
form scheme was proposed for PSK signaling.

III. PROPOSED DUALITY

In this section, we reformulate the SB-SLP and PM-SLP
problems, then derive the one-to-one mapping between a pair
of PM-SLP and SB-SLP problems. Based on this, a closed-
form power scaling algorithm is proposed to solve the SB-SLP
problem. Accordingly, the separable structure of the PM-SLP
problem for PSK modulation analyzed in [9] can be employed
in solving both the PM-SLP and SB-SLP problems.

A. Problem Reformulation

The real-valued equivalent of (6) can be written as
max
x,µ

µ

s.t.TSkHkx ⪰ µ
√
γkσk1, ∀k,

∥x∥2 ≤ p,

(7)

where

x ≜

[
ℜ{x̃}
ℑ{x̃}

]
∈ R2Nt ,T ≜

[
1 − 1

tan π
M

1 1
tan π

M

]
∈ R2×2,

Sk ≜

ℜ
{

1

s̃k

}
−ℑ

{
1

s̃k

}
ℑ
{

1

s̃k

}
ℜ
{

1

s̃k

}
 ∈ R2×2,

Hk ≜

[
ℜ{h̃T

k } −ℑ{h̃T
k }

ℑ{h̃T
k } ℜ{h̃T

k }

]
∈ R2×2Nt .

We further introduce Āk ≜ TSkHk, and bk ≜
√
γkσk1.

Accordingly, the CI constraints become

Ākx ⪰ µbk, ∀k. (8)

Stack the CI constraints over all the K users yields a compact
formulation, given by

Ax ⪰ µb, (9)

where A ≜
[
ĀT

1 , · · · , ĀT
K

]T ∈ R2K×2Nt , b ≜[
bT
1 , · · · ,bT

K

]T ∈ R2K . It can be seen that the left-hand side
of (9) can be expressed as a linear combination of the columns
of A, i.e.,

∑2Nt

i=1 aixi, where ai is the i-th column of A, xi

is the i-th entry of x. Subsequently, (7) can be rearranged as
max
xi,µ

µ

s.t.

N∑
i=1

Aixi ⪰ µb,

N∑
i=1

∥xi∥2 ≤ p,

(10)

where xi ∈ Rni with
∑N

i=1 ni = 2Nt and Ai ∈ R2K×ni are
the i-th blocks of x and A, respectively. xi is composed of
the adjacent and/or disadjacent elements of x. Each column
of Ai is uniquely taken from the columns of A. Specifically,
if the elements in xi are taken from x continuously, we have
x =

[
xT
1 , · · · ,xT

N

]T
, A = [A1, · · · ,AN ]. On the other hand,

if we want to group the disadjacent elements of x into one
group, which can be expressed as xi = ET

i x, Ai = AEi,
where Ei ∈ R2Nt×ni , and each column of {Ei} is uniquely
picked from the columns of the 2Nt × 2Nt identity matrix.

In accordance with the procedure formulating (10), the
real-valued equivalent of the PM-SLP problem (4) can be
rearranged as [9]

min
xi

N∑
i=1

∥xi∥2

s.t.
N∑
i=1

Aixi ⪰ b.

(11)

The above formulation was first proposed in our previ-
ous work [9], where the separable structure of the PM-SLP
problem for PSK modulation was proven. The separability
was further utilized to decompose the original problem into
multiple parallel subproblems by the proposed parallel inverse-
free (PIF) algorithm.

Contrary to the separable PM-SLP problem (11), it is
observed that the above SB-SLP problem (10) is not separable
because of the objective function µ, which cannot be separated.
Thus the PIF-SLP approach proposed in [9] is not applicable to
decompose the SB-SLP problem at first glance. Fortunately,
we find an explicit relation inherent in solutions of the two
problems, which indicates that once the optimal solution to
the PM-SLP problem is obtained via the PIF algorithm [9]
or other algorithms, then finding the optimal solution to the



max
x̃

min
k

1
√
γkσk

{
ℜ{ĥT

k x̃} −
ℑ{ĥT

k x̃}
tan π

M
,ℜ{ĥT

k x̃}+
ℑ{ĥT

k x̃}
tan π

M

}
s.t. ∥x̃∥2 ≤ p,

(5)

SB-SLP problem is trivial, which is termed as the duality to
be presented below.

B. Duality Between the PM-SLP and SB-SLP

For the BLP that suppresses interference, it is known that
the PM problem and the SB problem are a pair of inverse
problems [3]. This relationship has been extended to CI-
SLP by [6], which proposes to solve the SB-SLP problem
via iteratively solving its inverse PM-SLP problem along
with a bisection search. Unlike the high-complexity one-
dimension search scheme, recently, a novel duality between
the conventional multicast PM and SB problems has been
revealed [12], which can explicitly determine the solution to
the SB problem given the solution to the PM problem, and
vice versa. Later in CI-based symbol error rate minimization
precoding, a closed-form algorithm was designed to solve the
detection-region-based noise uncertainty radius maximization
problem under the precondition of the solved detection-region-
based PM problem [13]. In this subsection, a novel duality
between the PM-SLP and SB-SLP problems is established.

Let xPM and pPM ≜ ∥xPM∥2 denote the optimal solution
and objective value of the PM-SLP problem for PSK mod-
ulation (11). xSB and µSB ≜ min

i

1
b̄i
āTi x

SB are the optimal
counterparts for the SB-SLP problem in (10), where āi denotes
the transpose of the i-th row of A, and b̄i represents the i-th
entry of b.

Lemma 1: The PM-SLP problem (11) and the SB-SLP
problem (10) are inverse problems:

xPM (αb) = xSB
(
b, pPM (αb)

)
, (12)

with α = µSB
(
b, pPM (αb)

)
. Reciprocally,

xSB (b, p) = xPM
(
µSB (b, p)b

)
, (13)

with p = pPM
(
µSB (b, p)b

)
.

Proof: Contradiction can be used to prove (12). As-
sume that there exists an optimal solution xSB

(
b, pPM (αb)

)
and the corresponding optimal value µSB

(
b, pPM (αb)

)
for

the SB-SLP problem (10) given parameters
(
b, pPM (αb)

)
.

Similarly, assume the optimal solution and the optimal value
for the PM-SLP problem (11) given αb are xPM (αb) and
pPM (αb), respectively. By definition, xPM (αb) is a feasible
solution to the above SB-SLP problem, and the associated
objective value is α. If α > µSB

(
b, pPM (αb)

)
, then this is

a contradiction for the optimality of µSB
(
b, pPM (αb)

)
. Oth-

erwise, if α < µSB
(
b, pPM (αb)

)
, then xSB

(
b, pPM (αb)

)
is also a feasible solution to the PM-SLP problem (11)
given αb, for which all the CI constraints are over sat-
isfied. Therefore, one can always find a v ∈ (0, 1) such

that vxSB
(
b, pPM (αb)

)
meets all the CI constraints while

providing a smaller objective value than pPM (αb). This is
a contradiction for the optimality of pPM (αb). The above
proves (12) is true with α = µSB

(
b, pPM (αb)

)
. The proof

of (13) is similar and is therefore omitted.
Lemma 2: Consider the PM-SLP problem (11), for any

α > 0, we have

xPM (αb) = αxPM (b) , (14)
pPM (αb) = α2pPM (b) . (15)

For the SB-SLP problem,

xSB
(
b, α2p

)
= αxSB (b, p) , (16)

µSB
(
b, α2p

)
= αµSB (b, p) . (17)

Proof: Let x = ẋ
α , where α > 0, ẋ = αx. Replacing x

in (11) yields

min
ẋi

N∑
i=1

∥ẋi∥2

s.t.

N∑
i=1

Aiẋi ⪰ αb,

(18)

then (14) and (15) follow immediately.
By substituting x = ẋ

α into (10), we similarly obtain

max
ẋi,µ

αµ

s.t.

N∑
i=1

Aiẋi ⪰ αµb,

N∑
i=1

∥ẋi∥2 ≤ α2p,

(19)

which induces (16) and (17).
Theorem 1 (Duality): Let xPM and pPM ≜ ∥xPM∥2

denote the optimal solution and the optimal value of the PM-
SLP problem (11), respectively. Then the counterparts of the
SB-SLP problem, xSB and µSB , are determined as

xSB (b, p) =

√
p

pPM (b)
xPM (b) , (20)

µSB (b, p) =

√
p

pPM (b)
. (21)

and vice versa as

xPM (b) =
1

µSB (b, p)
xSB (b, p) , (22)

pPM (b) =
p

(µSB (b, p))
2 . (23)



Proof: The optimal solution to the SB-SLP problem can
be equivalently written as

xSB (b, p) = xSB

(
b,

p

pPM (b)
pPM (b)

)
. (24)

By using (15) to transfer the transmit power budget in (24),
we have

xSB

(
b,

p

pPM (b)
pPM (b)

)
= xSB

(
b, pPM

(√
p

pPM (b)
b

))
. (25)

Combining (25) with (12) yields

xSB

(
b, pPM

(√
p

pPM (b)
b

))
= xPM

(√
p

pPM (b)
b

)
.

(26)

From (14) we have

xPM

(√
p

pPM (b)
b

)
=

√
p

pPM (b)
xPM (b) . (27)

Hence (20) is true.
We then use Lemma 1 and Lemma 2 to prove (21) and (23).

It is shown in Lemma 1 that

p = pPM
(
µSB (b, p)b

)
. (28)

Using (15), the above equality yields

pPM
(
µSB (b, p)b

)
=
(
µSB (b, p)

)2
pPM (b) . (29)

Thus (21) and (23) follow immediately.
The proof of (22) is similar to that of (20). For brevity, we

give an abbreviated proof below:

xPM (b) = xPM

(
1

µSB (b, p)
tSB (b, p)b

)
(17)
= xPM

(
µSB

(
b,

1

(µSB (b, p))
2 p

)
b

)
(13)
= xSB

(
b,

1

(µSB (b, p))
2 p

)
(16)
=

1

µSB (b, p)
xSB (b, p) . (30)

Corollary 1: The SB-SLP problem and the PM-SLP prob-
lem can be solved simultaneously. In particular, the solution
to the SB-SLP problem (10) can be obtained by first solving
the PM-SLP problem (11) and then scaling the transmit power
to satisfy the power budget of the SB-SLP problem, and vice
versa.

Algorithm 1 Power Scaling Algorithm for the SB-SLP prob-
lem (10)

Input: A, b, p
Output: x

1: Solve (11) by the PIF algorithm [9] or other algorithms,
obtain xPM (b) and pPM (b);

2: Compute x by (20).

C. Power Scaling Algorithm

Corollary 1 suggests that the SB-SLP problem for PSK
modulation can be solved by a simple one-step power scaling
algorithm, provided that the solution to the PM-SLP problem is
available. The proposed closed-form power scaling algorithm
is summarized in Algorithm 1. We point out that although
the PIF algorithm cannot directly be applied to the SB-SLP
problem due to the lack of separability, a power scaling
PIF (SPIF) algorithm can be designed to solve the SB-
SLP problem with the aid of the closed-form power scaling
algorithm, which consists of two steps. In the first step, we
obtain the parallelizable solution to the PM-SLP problem via
the PIF algorithm proposed in [9]. Whileas in the second step,
we use the closed-form power scaling algorithm to acquire
the solution to the SB-SLP problem. By applying the SPIF
algorithm, the separability of the PM-SLP problem can be
utilized to attain a low-complexity and parallelizable solution
to the SB-SLP problem.

IV. SIMULATION RESULTS

In this section, we provide simulation results to validate
the proposed duality and compare the SPIF algorithm with
other works. The i.i.d. data symbols in s̃ are drawn from the
normalized 8PSK constellation, i.e., M = 8. We use ‘K×Nt’
to denote a downlink system with K single-antenna users and
an Nt-antenna BS. The square roots of the weights 1√

γk
and

the transmit power budget p are all set to 1. We assume
each random channel realization is used to transmit one
frame of data symbols, where each frame contains Ns = 20
symbol slots [14]. The benchmark schemes are selected as the
conventional linear SB-BLP solved by line search [1], [3], the
SB-SLP solved by interior point method (IPM) [15], and the
closed-form solutions for CI-SLP (CI-CF) [8].

Fig. 2 presents the symbol error rate (SER) performance of
the SPIF algorithm as a function of the number of iterations for
two different MIMO configurations, the results are averaged
over 10000 symbol slots, where the number of random channel
realizations Nc = 500. The required number of iterations for
the BER of the SPIF algorithm converging to that of the IPM
is about T = 70 for the two considered MIMO configurations.
The obtained number of iterations is used in the subsequent
simulations.

Fig. 3 depicts the SER performance versus the increasing
SNR for the two MIMO configurations. It can be observed
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Fig. 3. SER versus SNR, T = 70, Nc = 500, Ns = 20, 8PSK.

that the SER performance of the proposed SPIF algorithm is
almost consistent with that of the selected SLP benchmark
algorithms, which validates the derivations of the proposed
duality and illustrates the effectiveness of the proposed SPIF
algorithm.

TABLE I
AVERAGE EXECUTION TIME PER FRAME IN SEC. SNR = 24DB, T = 70,

Nc = 500, Ns = 20, 8PSK.

BLP IPM CI-CF SPIF
12 × 16 2.8270 4.9975 6.8639e-3 2.7314e-3
24 × 32 9.7372 5.3517 2.0503e-2 9.9743e-3

Table I lists the time complexity in terms of the average
execution time per frame of the compared algorithms for the
SB-SLP problem under two MIMO configurations, where the
number of iterations of the SPIF algorithm is the same as in
Fig. 3. The execution time of the SPIF algorithm based on
the proposed duality is about 39.8% and 49.7% of that of the
CI-CF algorithm in 12×16 and 24×32 MIMO configurations,

respectively. The computational efficiency of the proposed
SPIF algorithm is appealing in all the considered MIMO
configurations, which can be further enhanced by parallel
processing in practice.

V. CONCLUSION

In this work, a novel duality between the typical PM-SLP
and SB-SLP problems was presented, for which we inves-
tigated the one-to-one mapping between the two considered
problems. Moreover, we proved that the solutions to them
admit explicit representations with determined coefficients. A
closed-form power scaling algorithm for the SB-SLP problem
was further developed. Numerical results were conducted to
validate the proposed duality and illustrate the efficiency of
the proposed algorithm.
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